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Abstract
This work proposes an unsupervised fusion framework based on deep convolutional
transform learning. The great learning ability of convolutional filters for data analysis is
well acknowledged. The success of convolutive features owes to the convolutional
neural network (CNN). However, CNN cannot perform learning tasks in an unsupervised
fashion. In a recent work, we show that such shortcoming can be addressed by
adopting a convolutional transform learning (CTL) approach, where convolutional
filters are learnt in an unsupervised fashion. The present paper aims at (i) proposing a
deep version of CTL , (ii) proposing an unsupervised fusion formulation taking
advantage of the proposed deep CTL representation , and (iii) developing a
mathematically sounded optimization strategy for performing the learning task. We
apply the proposed technique, named DeConFuse, on the problem of stock
forecasting and trading. A comparison with state-of-the-art methods (based on CNN
and long short-term memory network) shows the superiority of our method for
performing a reliable feature extraction.

Keywords: Information fusion, Deep learning, Convolution, Stock trading, Financial
forecasting

1 Introduction
In the last decade, convolutional neural network (CNN) has enjoyed tremendous success
in different types of data analysis. It was initially applied for images in computer vision
tasks. The operations within the CNN were believed to mimic the human visual sys-
tem. Although such a link between human vision and CNN may be present, it has been
observed that deep CNNs are not exact models for human vision [1]. For instance, biol-
ogists consider that the human visual system would consist of 6 layers [2, 3] and not 20+
layers used in GoogleNet [4].
Neural network models have also been used for analyzing time series data. Until

recently, long short-term memory (LSTM) networks were the almost exclusively used
neural network models for time series analysis as they were supposed to mimic memory
and hence were deemed suitable for such tasks. However, LSTM are not able to model
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very long sequences, and their training is hardware intensive. Owing to these short-
comings, LSTMs are being replaced by CNNs. The reason for the great results of CNN
methods for time series analysis (1D data processing in general) is not well understood.
One possibility may lie in the universal function approximation capacity of deep neural
networks [5, 6] rather than its biological semblance. The research in this area is primarily
led by its success rather than its understanding.
An important point to mention is that the performance of CNN is largely driven by

the availability of very large labeled datasets. This probably explains their tremendous
success in facial recognition tasks. Google’s FaceNet [7] and Facebook’s DeepFace [8]
architectures are trained on 400 million facial images, a significant proportion of world’s
population. These companies are easily equipped with gigantic labeled facial images data
as these are “tagged” by their respective users. In the said problem, deep networks reach
almost 100% accuracy, even surpassing human capabilities. However, when it comes to
tasks that require expert labeling, such as facial recognition from sketches (requiring
forensic expertise) [8] or ischemic attack detection from EEG (requiring medical exper-
tise) [9], the accuracies become modest. Indeed, such tasks require expert labeling that is
difficult to acquire, thus limiting the size of available labeled dataset.
The same is believed by a number of machine learning researchers, including Hin-

ton himself, who are wary of supervised learning. In an interview with Axios1, Hinton
mentioned his “deep suspicion” on backpropagation, the workhorse behind all super-
vised deep neural networks. He even added that “I don’t think it’s how the brain works,”
and “We clearly don’t need all the labeled data.” It seems that Hinton is hinting towards
unsupervised learning frameworks. Unsupervised learning technique does not require
targets/labels to learn from data. This approach typically takes benefit from the fact that
data is inherently very rich in its structure, unlike targets that are sparse in nature. Thus,
it does not take into account the task to be performed while learning about the data, sav-
ing from the need of human expertise that is required in supervised learning. More on the
topic of unsupervised versus supervised learning can be found in a blog by DeepMind2.
In this work, we would like to keep the best of both worlds, i.e., the success of convo-

lutive models from CNN and the promises of unsupervised learning formulations. With
this goal in mind, we developed convolutional transform learning (CTL) [10]. This is a
representation learning technique that learns a set of convolutional filters from the data
without label information. Instead of learning the filters (by backpropagating) from data
labels, CTL learns them by minimizing a data fidelity loss, thus making the technique
unsupervised. CTL has been shown to outperform several supervised and unsupervised
learning schemes in the context of image classification. In the present work, we propose
to extend the shallow CTL version to deeper layers, with the aim to generate a feature
extraction strategy that is well suited for 1D time series analysis. This is the first major
contribution of this work—deep convolutional transform learning.
In most applications, time series signals are multivariate, as they arise from multiple

sources/sensors. For example, biomedical signals like ECG and EEG come from multiple
leads; financial data from stocks are recorded with different inputs (open, close, low, high,
and net asset value) and demand forecasting problems in smartgrids come with multiple

1https://www.axios.com/artificial-intelligence-pioneer-says-we-need-to-start-over-1513305524-f619efbd-9db0-4947-
a9b2-7a4c310a28fe.html
2https://deepmind.com/blog/article/unsupervised-learning
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types of data (power consumption, temperature, humidity, occupancy, etc.). In all such
cases, the final goal is to perform prediction/classification task from such multivariate
time series.We propose to address such problem as one of feature fusion. The information
from each of the sources will be processed by the proposed deep CTL pipeline, and the
generated deep features will be finally fused by an unsupervised fully connected layer.
This is the second major contribution of this work—an unsupervised fusion framework
with deep CTL.
The resulting features can be used for different applicative tasks. In this paper, we will

focus on the applicative problem of financial stock analysis. The ultimate goal may be
either to forecast the stock price (regression problem) or to decide whether to buy or sell
(classification problem). Depending on the considered task, we can pass the generated
features into suitable machine learning tool that may not be as data hungry as deep neural
networks. Therefore, by adopting such a processing architecture, we expect to yield better
results than traditional deep learning especially in cases where access to labeled data is
limited.

2 Literature review
2.1 CNN for time series analysis

Let us briefly review and discuss CNN-based methods for time series analysis. For a more
detailed review, the interested reader can peruse [11]. We mainly focus on studies on
stock forecasting as it will be our use case for experimental validation.
The traditional choice for processing time series with neural network is to adopt a recur-

rent neural network (RNN) architecture. Variants of RNN like long short-term memory
(LSTM) [12] and gated recurrent unit (GRU) [13] have been proposed. However, due to
the complexity of training such networks via backpropagation through time, they have
been progressively replaced with 1D CNN [14]. For example, in [15], a generic time
series analysis framework was built based on LSTM, with assessed performance on the
UCR time series classification datasets https://www.cs.ucr.edu/~eamonn/time_series_
data/. The later study from the same group [17], based on 1D CNN, showed considerable
improvement over the prior model on the same datasets.
There are also several studies that convert 1D time series data into a matrix form

so as to be able to use 2D CNNs [16, 18, 19]. Each column of the matrix corresponds
to a subset of the 1D series within a given time window, and the resulting matrix is
processed as an image. The 2D CNN model has been especially popular in stock fore-
casting. In [19], the said techniques have been used on stock prices for forecasting. A
slightly different input is used in [20]: instead of using the standard stock variables (open,
close, high, low, and NAV), it uses high frequency data for forecasting major points
of inflection in the financial market. In another work [21], a similar approach is used
for modeling exchange -traded fund (ETF). It has been seen that the 2D CNN model
performs the same as LSTM or the standard multi-layer perceptron [22, 23]. The appar-
ent lack of performance improvement in the aforementioned studies may be due to an
incorrect choice of CNN model, since an inherently 1D time series is modeled as an
image.

2.2 Deep learning and fusion

We now review existing works for processing multivariate data inputs, within the deep

https://www.cs.ucr.edu/~eamonn/time_series_data/
https://www.cs.ucr.edu/~eamonn/time_series_data/
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learning framework. Since the present work aims at being applied to stock price forecast-
ing/trading, we will mostly focus our review on the multi-channel/multi-sensor fusion
framework. Multimodal data and fusion for image processing, less related to our work,
will be mentioned at the end of this subsection for the sake of completeness.
Deep learning has been widely used recently for analyzing multi-channel/multi-sensor

signals. In several of such studies, all the sensors are stacked one after the other to
form a matrix and 2D CNN is used for analyzing these signals. For example, [24] uses
this strategy for analyzing human activity recognition from multiple body sensors. It is
important to distinguish such an approach from the aforementioned studies [19–23].
Here, the images are not formed from stacking windowed signals from the same sig-
nal one after the other, but by stacking signals from different sensors. The said study
[24] does not account for any temporal modeling; this is rectified in [25]. In there, 2D
CNN is used on a time series window; but the different windows are finally processed
by GRU, thus explicitly incorporating time series modeling. There is however no explicit
fusion framework in [24, 25]. The information from raw multivariate signals is simply
fused to form matrices and treated by 2D convolutions. A true fusion framework was
proposed in [26]. Each signal channel is processed by a deep 1D CNN, and the output
from the different signal processing pipelines are then fused by a fully connected layer.
Thus, the fusion is happening at the feature level and not in the raw signal level as it was
in [24, 25].
Another area that routinely uses deep learning based fusion is multi-modal data pro-

cessing. This area is not as well defined as multi-channel data processing; nevertheless,
we will briefly discuss some studies on this topic. In [27], a fusion scheme is shown
for audio-visual analysis that uses a fusion scheme for deep belief network (DBN) and
stacked autoencoder (SAE) for fusing audio and video channels. Each channel is pro-
cessed separately and connected by a fully connected layer to produce fused features.
These fused features are further processed for inference. We can also mention the work
on video-based action recognition addressed in [28], which proposes a fusion scheme for
incorporating temporal information (processed by CNN) and spatial information (also
processed by CNN).
There are several other such works on image analysis [29–31]. In [29], a fusion scheme

is proposed for processing color and depth information (via 3D and 2D convolutions,
respectively) with the objective of action recognition. In [30], it was shown that by fusing
hyperspectral data (high spatial resolution) with Lidar (depth information), better classi-
fication results can be achieved. In [31], it was shown that fusing deeply learnt features
(from CNN) with handcrafted features via a fully connected layer can improve analysis
tasks. In this work, our interest lies in the first problem; that of inference from 1D/time-
series multi-channel signals. To the best of our knowledge, all prior deep learning-based
studies on this topic are supervised. In keeping with the vision of Hinton and others,
our goal is to develop an unsupervised fusion framework using deeply learnt convolutive
filters.

2.3 Convolutional transform learning

Convolutional transform learning (CTL) has been introduced in our seminal paper [10].
Since it is a recent work, we present it in detail in the current paper, to make it self-
content. CTL learns a set of filters (tm)1≤m≤M operated on observed samples

(
s(k)

)
1≤k≤K
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to generate a set of features
(
x(k)
m

)

1≤m≤M,1≤k≤K
. Formally, the inherent learning model is

expressed through convolution operations defined as

(∀m ∈ {1, . . . ,M} ,∀k ∈ {1, . . . ,K}) tm ∗ s(k) = x(k)
m . (1)

Following the original study on transform learning [32], a sparsity penalty is imposed
on the features for improving representation ability and limit overfitting issues. Moreover,
in the same line as CNN models, the non-negativity constraint is imposed on the fea-
tures. Training then consists of learning the convolutional filters and the representation
coefficients from the data. This is expressed as the following optimization problem

minimize
(tm)m,(x(k)

m )m,k

1
2

K∑

k=1

M∑

m=1

(∥
∥
∥tm ∗ s(k) − x(k)

m

∥
∥
∥
2

2
+ ψ(x(k)

m )

)

+μ

M∑

m=1
‖tm‖22 − λ log det ([ t1| . . . |tM] ) , (2)

where ψ is a suitable penalization function. Note that the regularization term “μ ‖·‖2F −
λ log det” ensures that the learnt filters are unique, something that is not guaranteed in
CNN. Let us introduce the matrix notation

T ∗ S − X =

⎡

⎢
⎢
⎣

t1 ∗ s(1) − x(1)
1 . . . tM ∗ s(1) − x(1)

M
...

. . .
...

t1 ∗ s(K) − x(K)
1 . . . tM ∗ s(K) − x(K)

M

⎤

⎥
⎥
⎦ (3)

where T =
[
t1 . . . tM

]
, S =

[
s(1) . . . s(K)

]�
, and X =

[
x(k)
1 . . . x(k)

M

]

1≤k≤K
. The cost

function in problem (2) can be compactly rewritten as3

F(T ,X) = 1
2

‖T ∗ S − X‖2F + �(X) + μ ‖T‖2F − λ log det (T) , (4)

where � applies the penalty term ψ column-wise on X.
A local minimizer to (4) can be reached efficiently using the alternating proximal algo-

rithm [33–35], which alternates between proximal updates on variables T and X. More
precisely, set a Hilbert space (H, ‖ · ‖) and define the proximity operator [23] at x̃ ∈ H of
a proper lower-semi-continuous convex function ϕ : H →]−∞,+∞] as

proxϕ(x̃) = argmin
x∈H

ϕ(x) + 1
2

∥
∥x − x̃

∥
∥2 . (5)

Then, the alternating proximal algorithm reads

For n = 0, 1, ...⌊
T [n+1] = proxγ1F(·,X[n])

(
T [n])

X[n+1] = proxγ2F(T [n+1],·)
(
X[n])

(6)

with initializations T [0], X[0] and γ1, γ2 positive constants. For more details on the
derivations and the convergence guarantees, the readers can refer to [10].

3 Fusion based on deep convolutional transform learning
In this section, we discuss our proposed formulation. First, we extend the aforementioned
CTL formulation to a deeper version. Next, we develop the fusion framework based on
transform learning, leading to our DeConFuse4 strategy.

3Note that T is not necessarily a square matrix. By an abuse of notation, we define the “log-det” of a rectangular matrix
as the sum of logarithms of its singular values.
4Code available at: https://github.com/pooja290992/DeConFuse.git

https://github.com/pooja290992/DeConFuse.git
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Fig. 1 Deep CTL architecture. The illustration is given for L = 2 layers, with the first layer T1 composed of
M1 = 4 filters of size 5 × 1, and the second layer composed ofM2 = 8 filters of size 3 × 1

3.1 Deep convolutional transform learning

Deep CTL consists of stacking multiple convolutional layers on top of each other to gen-
erate the features, as shown in Fig. 1. To learn all the variables in an end-to-end fashion,
deep CTL relies on the key property that the solution X̂ to the CTL problem, assuming
fixed filters T, can be reformulated as the simple application of an element-wise activation
function, that is

argmin
X

F(T ,X) = φ(T ∗ S), (7)

with φ the proximity operator of � [36]. For example, if � is the indicator function of the
positive orthant, then φ identifies with the famous rectified linear unit (ReLU) activation
function. Many other examples are provided in [36]. Consequently, deep features can be
computed by stacking many such layers

(∀� ∈ {1, . . . , L − 1}) X� = φ�(T� ∗ X�−1), (8)

where X0 = S and φ� a given activation function for layer �.
Putting all together, deep CTL amounts to

minimize
T1,...,TL,X

Fconv(T1, . . . ,TL,X | S) (9)

where

Fconv(T1, . . . ,TL,X | S) = 1
2
‖TL ∗ φL−1(TL−1 ∗ . . . φ1(T1 ∗ S)) − X‖2F

+ �(X) +
L∑

�=1

(
μ||T�||2F − λ log det(T�)

)
. (10)

This is a direct extension of the one-layer formulation in (4).

3.2 Multi-channel fusion framework

We now propose a fusion framework to learn in an unsupervised fashion a suitable rep-
resentation of multi-channel data that can then be utilized for a multitude of tasks. This
framework takes the channels of input data samples to separate branches of convolu-
tional layers, leading to multiple sets of channel-wise features. These decoupled features
are then concatenated and passed to a fully connected layer, which yields a unique set of
coupled features. The complete architecture, called DeConFuse, is shown in Fig. 2.
Since we have multi-channel data, for each channel c ∈ {1, . . . ,C}, we learn a different

set of convolutional filters T (c)
1 , . . . ,T (c)

L and features X(c). At the same time, we learn the
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Fig. 2 DeConFuse architecture

(not convolutional) linear transform T̃ = (T̃c)1≤c≤C to fuse the channel-wise features
X = (X(c))1≤c≤C , along with the corresponding fused features Z, which constitute the
final output of the proposed DeConFuse model, as shown in Fig. 2. This leads to the joint
optimization problem

minimize
T ,X,T̃ ,Z

Ffusion(T̃ ,Z,X) +
C∑

c=1
Fconv(T (c)

1 , . . . ,T (c)
L ,X(c) | S(c))

︸ ︷︷ ︸
J(T ,X,T̃ ,Z)

(11)

where

Ffusion(T̃ ,Z,X) = 1
2

∥
∥
∥
∥
∥
Z −

C∑

c=1
flat(X(c))T̃c

∥
∥
∥
∥
∥

2

F

+ι+(Z)+
C∑

c=1

(
μ‖T̃c‖2F − λ log det(T̃c)

)
,

(12)

where the operator “flat” transforms X(c) into a matrix where each row contains the
features of a sample flattened as a vector.
To summarize, our formulation aims to jointly train the channel-wise convolutional

filters T (c)
� and the fusion coefficients T̃ in an end-to-end fashion. We explicitly learn the

features X and Z subject to non-negativity constraints so as to avoid trivial solutions and
make our approach completely unsupervised. Moreover, the “log-det” regularization on
both T (c)

� and T̃ breaks symmetry and forces diversity in the learnt transforms, whereas
the Frobenius regularization ensures that the transform coefficients are bounded.
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3.3 Optimization algorithm

As for the solution of problem (11), we remark that all terms of the cost function are
differentiable, except the indicator function of the non-negativity constraint. We can,
therefore, find a local minimizer to (11) by employing the projected gradient descent,
whose iterations read

For n = 0, 1, ...
⎢
⎢
⎢
⎢
⎢
⎢
⎣

T [n+1] = T [n] − γ∇TJ(T [n],X[n], T̃ [n],Z[n])

X[n+1] = P+
(
X[n] − γ∇XJ(T [n],X[n], T̃ [n],Z[n])

)

T̃ [n+1] = T̃ [n] − γ∇T̃ J(T
[n],X[n], T̃ [n],Z[n])

Z[n+1] = P+
(
Z[n] − γ∇ZJ(T [n],X[n], T̃ [n],Z[n])

)

(13)

with initialization T [0],X[0], T̃ [0],Z[0], γ > 0, and P+ = max{·, 0}. In practice, we make
use of accelerated strategies [37] within each step of this algorithm to speed up learning.
There are two notable advantages with the proposed optimization approach. Firstly,

we rely on automatic differentiation [38] and stochastic gradient approximations to effi-
ciently solve problem (11). Secondly, we are not limited to ReLU activation in (8), but
rather we can use more advanced ones, such as SELU [39]. This is beneficial for the
performance, as shown by our numerical results.

3.4 Computational complexity of proposed framework—DeConFuse

Table 1 summarizes the computational complexity of DeconFuse architecture, both for
training and test phases. Specifically, it is reported the cost incurred for every input
sample at each iteration of gradient descent in the training phase and for the output
computation in testing phase. The computational complexity of DeConFuse architecture
is comparable to a regular CNN. The only addition is the log-det regularization, which
requires to compute the truncated singular value decomposition of T (c)

� and T̃c. However,
as the size of these matrices is determined by the filter size, the number of filters, and the
number of output features per sample, the training complexity is not worse than that of a
CNN.

4 Experimental evaluation
We carry out experiments on the real-world problem of stock forecasting and trading.
The problem of stock forecasting is a regression problem aiming at estimating the price
of a stock at a future date (next day for our problem) given inputs till the current date.

Table 1 Time complexity in training and test phases (for one input sample)

Phase Steps Time complexity Dimension description

Training phase 1. Convolution layers O(P�D�M�C)

2. Fully-connected (f.-c.) layer O(I2C2) S(c) ∈ R
K×D

3. Frobenius norm on conv. layers O (P�M�C) T (c)
� ∈ R

P�×M�

4. Frobenius norm on f.-c. layer O(I2C2) flat(X(c)) ∈ R
K×I

5. log-det on conv. layers O(P2�M�C) T̃c ∈ R
I×O

6. log-det on f.-c. layer O(I3C2)

Testing phase Step 1. + Step 2. Step 1. + Step 2.

D = input sample size – K = num. of samples – C = num. of channels – L = num. of layers
P� = filter size at layer � –M� = num. of filters at layer � – D� = output sample size at layer �
I = DLML is the num. of output features per sample at last convolution layer
O = αIC (with α ∈[ 0, 1]) is the num. of output features per sample at the fully connected layer
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Stock trading is a classification problem, where the decision whether to buy or sell a stock
has to be taken at each time. The two problems are related by the fact that simple logic
dictates that if the price of a stock at a later date is expected to increase, the stock must be
bought; and if the stock price is expected to go down, the stock must be sold.
We will use the five raw inputs for both the tasks, namely open price, close price,

high, low, and net asset value (NAV). One could compute technical indicators based
on the raw inputs [19], but in keeping with the essence of true representation learn-
ing, we chose to stay with those raw values. Each of the five inputs is processed by
a separate 1D processing pipeline. Each of the pipelines produces a flattened output
(Fig. 1). The flattened outputs are then concatenated and fed into the transform learn-
ing layer acting as the fully connected layer (Fig. 2) for fusion. While our processing
pipeline ends here (being unsupervised), the benchmark techniques are supervised and
have an output node. The node is binary (buy/sell) for classification and real valued
for regression. More precisely, we will compare with two state-of-the-art time series
analysis models, namely TimeNet [15] and ConvTimeNet [17]. In the former, the pro-
cessing individual processing pipelines are based on LSTM and in the later they use
1D CNN.
We make use of a real dataset from the National Stock Exchange (NSE) of India. The

dataset contains information of 150 symbols between 2014 and 2018; these stocks were
chosen after filtering out stocks that had less than 3 years of data. The companies avail-
able in the dataset are from various sectors such as IT (e.g., TCS, INFY), automobile
(e.g., HEROMOTOCO, TATAMOTORS), bank (e.g., HDFCBANK, ICICIBANK), coal

Table 2 Description of compared models

Method Architecture description Other parameters

DeConFuse 5 ×

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

layer1 : 1D Conv(1, 4, 5, 1, 2)1

Maxpool(2, 2)2

SELU

layer2 : 1D Conv(5, 8, 3, 1, 1)1

layer3 : Fully connected

Learning rate = 0.001, λ = 0.01,μ = 0.0001,
Optimizer used: Adam **with parameters**
(β1,β2) = (0.9, 0.999), weight_decay = 5e-5,
epsilon = 1e-8

ConvTimeNet 5×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

layer1 : 1D Convolution(1, 32, 9, 1, 4)1

Batch normalization + SELU

layer2 : 1D Convolution(32, 32, 3, 1, 1)1

Batch normalization + SELU + SC3

layer3 : 1D Convolution(32, 64, 9, 1, 4)1

Batch normalization + SELU

layer4 : 1D Convolution(64, 64, 3, 1, 1)1

Batch normalization + SELU + SC3

layer3 : Global Average Pooling

layer4 : Fully connected
For Trading, added layer5 : Softmax

For forecasting: Learning rate = 0.001, For
trading: Learning rate = 0.0001, Optimizer
used: Adam **with parameters** (β1,β2) =
(0.9, 0.999), weight_decay = 1e-4, epsilon =
1e-8

TimeNet 5 ×
{

layer1 : LSTM unit(1, 12, 2, True)4

layer2 : Global Average Pooling

layer3 : Fully connected
For trading, added layer4 : Softmax

For forecasting: Learning Rate = 0.001, For
trading: Learning Rate = 0.0005, Optimizer
used: Adam **with parameters** (β1,β2) =
(0.9, 0.999), weight_decay = 5e-5, epsilon =
1e-8

1(in_planes, out_planes, kernel_size, stride, padding)
2(kernel_size, stride)
3SC - Skip-Connection
4(input_size,hidden_size,#layers,bidirectional)
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and petroleum (e.g., OIL, ONGC), steel (e.g., JSWSTEEL, TATASTEEL), construction
(e.g., ABIRLANUVO, ACC), and public sector units (e.g., POWERGRID, GAIL). The
detailed architectures for each tested techniques, namely DeConFuse, ConvTimeNet, and
TimeNet, are presented in Table 2. For DeConFuse, TimeNet, and ConvTimeNet, we have
tuned the architectures to yield the best performance and have randomly initialized the
weights for each stock’s training.

4.1 Stock forecasting—regression

Let us start with the stock forecasting problem. We feed the generated unsupervised fea-
tures from the proposed architecture into an external regressor, namely ridge regression.
Evaluation is carried out in terms of mean absolute error (MAE) between the predicted
and actual stock prices for all 150 stocks. The stock forecasting results are shown in
Table 5 in Appendix 1 section. The MAE for individual stocks are presented for each of
close price, open price, high price, low price, and net asset value.
From Table 5 in Appendix 1 section, it can be seen that the MAE values reached for

the proposed DeConFuse solution for the four first prices (open, close, high, low) are
exceptionally good for all of the 150 stocks. Regarding NAV prediction, the proposed
method performs extremely well for 128 stocks. For the remaining 22 stocks, there are 13
stocks, highlighted in red, for which DeConFuse does not give the lowest MAE but it is
still very close to the best results given by the TimeNet approach.
For a concise summary of the results, the average values over all stocks are shown in

Table 3.
From the summary Table 3, it can be observed that our error is more than an order of

magnitude better than the state of the arts. The plots for one of the regressed prices (close
price) for some examples of stocks in Fig. 3 show that the predicted close prices from
DeConFuse are closer to the true close prices than benchmark predictions.

4.2 Stock trading—classification

We now focus on the stock trading task. In this case, the generated unsupervised fea-
tures fromDeConFuse are inputs to an external classifier based on random decision forest
(RDF) with 5 decision tree classifiers and depth 3. Even though we used this architec-
ture, we found that the results from RDF are robust to changes in architecture. This is a
well known phenomenon about RDFs [40]. We evaluate the results in terms of precision,
recall, F1 score, and area under the ROC curve (AUC). From the financial viewpoint, we
also calculate annualized returns (AR) using the predicted trading signals/labels as well
as using true trading signals/labels named as predicted AR and true AR, respectively. The
starting capital used for calculating AR values for every stock is Rs. 100,000 and the trans-
action charges are Rs 10. The stock trading results are shown in Table 6 in Appendix 2
section.

Table 3 Summary of forecasting results

Method Close Open High Low NAV

DeConFuse 0.016 0.007 0.012 0.013 0.410

ConvTimeNet 1.550 1.550 1.530 1.560 2.350

TimeNet 0.295 0.295 0.294 0.295 0.511
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Fig. 3 Stock forecasting performance

Certain results from Table 6 in Appendix 2 section are highlighted in bold or red. The
first set of results, marked in bold, are the ones where one of the techniques for each met-
ric gives the best performance for each stock. The proposed solution DeConFuse gives
the best results for 89 stocks for precision score, 85 stocks for recall score, 125 stocks for
F1 score, 91 stocks for AUC measure, and 56 stocks in case of the AR metric. The other
set marked in red highlights the cases where DeConfuse has not performed the best but
performs nearly equal (here, a difference of maximum 0.05 in the metric is considered) to
the best performance given by one of the benchmarks, i.e., DeConFuse gives the next best
performance. We noticed that there are 24 stocks for which DeConFuse gives the next
best precision metric value. Likewise, 18 stocks in case of recall, 22 stocks for F1 score, 26
stocks for AUC values, and 1 stock in case of AR. Overall, DeConfuse reaches a very sat-
isfying performance over the benchmark techniques. This is also corroborated from the
summary of trading results in Table 4.

Table 4 Summary of trading results

Method Precision Recall F1 score AUC MAE AR

DeConFuse 0.520 0.810 0.628 0.543 17.350

ConvTimeNet 0.510 0.457 0.413 0.524 19.410

TimeNet 0.470 0.648 0.490 0.513 18.760
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We also display empirical convergence plots for few stocks, namely RELIANCE,
ONGC, HINDUNILVR, and ICICIBANK, in Fig. 4. We can see that the training loss
decreases to a point of stability for each example.

5 Conclusion
In this work, we propose DeConFuse, a deep fusion end-to-end framework for the pro-
cessing of 1D multi-channel data. Unlike other deep learning models, our framework
is unsupervised. It is based on a novel deep version of our recently proposed con-
volutional transform learning model. We have applied the proposed model for stock
forecasting/trading leading to very good performance. The framework is generic enough
to handle other multi-channel fusion problems as well.
The advantage of our framework is its ability to learn in an unsupervised fashion. For

example, consider the problem we address. For traditional deep learning-based models,
we need to retrain to deep networks for regression and classification. But we can reuse our
features for both the tasks, without the requirement of re-training, for specific tasks. This
has advantages in other areas as well. For example, one can either do ischemia detection,
i.e., detect whether one is having a stroke at the current time instant (from EEG); or one
can do ischemia prediction, i.e., forecast if a stroke is going to happen. In standard deep
learning, two networks need to be retrained and tuned to tackle these two problems.With
our proposed method, there is no need for this double effort.
In the future, we would work on extending the framework for supervised/semi-

supervised formulations. We believe that the semi-supervised formulation will be of
immense practical importance. We would also like to extend it to 2D convolutions in
order to handle image data.

Fig. 4 Empirical convergence plots
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Appendix 1: Detailed stock forecasting results

Table 5 Stock-wise forecasting results

Stock name Method MAE close MAE open MAE high MAE low MAE NAV

ABIRLANUVO DeConFuse 0.021 0.015 0.019 0.017 0.416
ConvTimeNet 0.204 0.212 0.219 0.195 1.804
TimeNet 0.112 0.111 0.111 0.112 0.467

ACC DeConFuse 0.012 0.016 0.014 0.017 0.580
ConvTimeNet 0.158 0.161 0.159 0.158 0.765
TimeNet 0.116 0.116 0.115 0.118 0.388

ADANIENT DeConFuse 0.041 0.015 0.024 0.038 0.359
ConvTimeNet 4.656 4.795 4.654 4.800 0.748
TimeNet 0.538 0.549 0.540 0.551 0.475

ADANIPORTS DeConFuse 0.012 0.005 0.009 0.010 0.391
ConvTimeNet 0.124 0.122 0.122 0.123 1.258
TimeNet 0.283 0.283 0.280 0.285 0.43

ADANIPOWER DeConFuse 0.026 0.010 0.019 0.020 0.405
ConvTimeNet 0.610 0.600 0.590 0.602 1.796
TimeNet 0.205 0.205 0.204 0.206 0.448

AJANTPHARM DeConFuse 0.016 0.007 0.012 0.012 0.418
ConvTimeNet 0.401 0.374 0.384 0.400 0.867
TimeNet 0.262 0.261 0.258 0.264 0.480

ALBK DeConFuse 0.020 0.009 0.015 0.015 0.362
ConvTimeNet 0.908 1.029 0.995 0.953 1.020
TimeNet 0.184 0.181 0.180 0.185 0.448

AMARAJABAT DeConFuse 0.015 0.007 0.011 0.012 0.435
ConvTimeNet 0.047 0.046 0.047 0.047 0.631
TimeNet 0.087 0.088 0.086 0.089 0.386

AMBUJACEM DeConFuse 0.012 0.005 0.008 0.009 0.355
ConvTimeNet 2.283 2.272 2.280 2.267 3.132
TimeNet 0.106 0.107 0.105 0.107 0.414

ANDHRABANK DeConFuse 0.022 0.009 0.016 0.016 0.373
ConvTimeNet 5.095 5.074 5.008 5.158 2.200
TimeNet 0.144 0.140 0.138 0.148 0.471

APOLLOHOSP DeConFuse 0.025 0.009 0.015 0.021 0.687
ConvTimeNet 0.268 0.240 0.258 0.254 0.719
TimeNet 0.153 0.155 0.151 0.156 0.536

APOLLOTYRE DeConFuse 0.014 0.006 0.010 0.011 0.391
ConvTimeNet 0.552 0.547 0.543 0.558 1.267
TimeNet 0.283 0.283 0.281 0.284 0.346

ARVIND DeConFuse 0.015 0.006 0.010 0.011 0.423
ConvTimeNet 0.302 0.278 0.294 0.290 1.251
TimeNet 0.268 0.268 0.267 0.269 0.465

ASHOKLEY DeConFuse 0.017 0.005 0.010 0.013 0.376
ConvTimeNet 1.042 1.018 0.987 1.096 0.586
TimeNet 0.343 0.343 0.344 0.342 0.451

ASIANPAINT DeConFuse 0.008 0.004 0.007 0.006 0.370
ConvTimeNet 0.816 0.801 0.804 0.816 1.272
TimeNet 0.290 0.289 0.288 0.290 0.465

AUROPHARMA DeConFuse 0.015 0.005 0.009 0.010 0.312
ConvTimeNet 1.802 1.847 1.801 1.829 1.034
TimeNet 0.075 0.076 0.075 0.076 0.393
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Table 5 Stock-wise forecasting results (Continued)

Stock name Method MAE close MAE open MAE high MAE low MAE NAV

BAJAJ-AUTO DeConFuse 0.012 0.007 0.009 0.010 0.392

ConvTimeNet 0.329 0.326 0.328 0.327 0.580

TimeNet 0.175 0.176 0.175 0.176 0.466

BAJFINANCE DeConFuse 0.013 0.004 0.009 0.009 0.361

ConvTimeNet 2.519 2.518 2.534 2.506 2.575

TimeNet 0.509 0.509 0.508 0.510 0.693

BANKBARODA DeConFuse 0.021 0.007 0.015 0.014 0.299

ConvTimeNet 0.891 0.860 0.849 0.887 0.845

TimeNet 0.130 0.131 0.130 0.132 0.402

BANKINDIA DeConFuse 0.022 0.009 0.016 0.016 0.354

ConvTimeNet 2.451 2.437 2.449 2.441 1.351

TimeNet 0.374 0.375 0.373 0.375 0.384

BATAINDIA DeConFuse 0.015 0.009 0.012 0.011 0.391

ConvTimeNet 0.143 0.111 0.129 0.125 1.095

TimeNet 0.301 0.299 0.299 0.301 0.477

BEL DeConFuse 0.019 0.007 0.013 0.014 0.366

ConvTimeNet 1.576 1.537 1.524 1.622 3.338

TimeNet 0.145 0.146 0.142 0.148 0.410

BHARATFORG DeConFuse 0.013 0.006 0.009 0.01 0.567

ConvTimeNet 3.207 3.178 3.162 3.219 7.468

TimeNet 0.345 0.345 0.343 0.347 0.555

BHARTIARTL DeConFuse 0.019 0.012 0.015 0.016 0.381

ConvTimeNet 1.849 1.809 1.817 1.841 1.042

TimeNet 0.167 0.167 0.168 0.166 0.500

BHEL DeConFuse 0.016 0.007 0.012 0.012 0.765

ConvTimeNet 2.664 2.613 2.660 2.617 8.514

TimeNet 0.389 0.389 0.391 0.386 0.928

BIOCON DeConFuse 0.016 0.007 0.013 0.012 0.450

ConvTimeNet 1.338 1.287 1.303 1.330 1.031

TimeNet 0.604 0.603 0.604 0.602 0.470

BOSCHLTD DeConFuse 0.012 0.005 0.009 0.007 0.516

ConvTimeNet 0.158 0.158 0.159 0.155 0.600

TimeNet 0.724 0.723 0.727 0.721 0.551

BPCL DeConFuse 0.014 0.006 0.010 0.011 0.323

ConvTimeNet 0.243 0.267 0.267 0.244 1.614

TimeNet 0.276 0.277 0.276 0.276 0.374

BRITANNIA DeConFuse 0.009 0.004 0.006 0.006 0.367

ConvTimeNet 0.800 0.828 0.813 0.812 1.442

TimeNet 0.414 0.413 0.413 0.413 0.450

CAIRN DeConFuse 0.016 0.008 0.011 0.013 0.334

ConvTimeNet 3.945 3.988 3.939 4.025 0.969

TimeNet 0.159 0.159 0.159 0.158 0.345

CANBK DeConFuse 0.021 0.008 0.015 0.015 0.276

ConvTimeNet 2.140 2.023 2.065 2.100 0.806

TimeNet 0.151 0.153 0.151 0.154 0.444

CASTROLIND DeConFuse 0.014 0.005 0.010 0.011 0.523

ConvTimeNet 2.055 2.107 2.036 2.162 12.249

TimeNet 0.141 0.141 0.141 0.143 0.527

CEATLTD DeConFuse 0.015 0.006 0.010 0.011 0.319

ConvTimeNet 2.341 2.308 2.295 2.344 1.118

TimeNet 0.160 0.163 0.161 0.162 0.326
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Table 5 Stock-wise forecasting results (Continued)

Stock name method MAE close MAE open MAE high MAE low MAE NAV

CENTURYTEX DeConFuse 0.015 0.006 0.010 0.013 0.404

ConvTimeNet 1.111 1.072 1.106 1.083 2.685

TimeNet 0.405 0.406 0.404 0.407 0.352

CESC DeConFuse 0.013 0.005 0.009 0.010 0.404

ConvTimeNet 0.390 0.377 0.374 0.395 0.602

TimeNet 0.364 0.363 0.362 0.364 0.477

CIPLA DeConFuse 0.012 0.004 0.009 0.008 0.408

ConvTimeNet 2.063 2.074 2.052 2.066 0.695

TimeNet 0.064 0.064 0.063 0.065 0.476

COALINDIA DeConFuse 0.012 0.005 0.009 0.009 0.393

ConvTimeNet 1.635 1.737 1.632 1.723 2.791

TimeNet 0.154 0.156 0.155 0.154 0.474

COLPAL DeConFuse 0.009 0.004 0.006 0.007 0.553

ConvTimeNet 0.115 0.119 0.114 0.117 1.158

TimeNet 0.164 0.164 0.164 0.165 0.566

DABUR DeConFuse 0.010 0.005 0.008 0.008 0.474

ConvTimeNet 1.369 1.398 1.360 1.409 1.530

TimeNet 0.271 0.269 0.270 0.271 0.539

DHFL DeConFuse 0.016 0.007 0.012 0.012 0.471

ConvTimeNet 0.302 0.285 0.291 0.289 1.118

TimeNet 0.456 0.456 0.457 0.457 0.657

DISHTV DeConFuse 0.016 0.006 0.013 0.012 0.478

ConvTimeNet 0.722 0.733 0.742 0.708 1.948

TimeNet 0.224 0.225 0.225 0.224 0.586

DIVISLAB DeConFuse 0.014 0.006 0.012 0.010 0.508

ConvTimeNet 0.183 0.195 0.190 0.190 0.871

TimeNet 0.160 0.159 0.161 0.159 0.422

DLF DeConFuse 0.021 0.012 0.015 0.018 0.318

ConvTimeNet 1.053 1.104 1.053 1.100 0.590

TimeNet 0.311 0.309 0.308 0.312 0.402

DRREDDY DeConFuse 0.013 0.006 0.010 0.010 0.393

ConvTimeNet 0.213 0.210 0.210 0.210 0.628

TimeNet 0.373 0.373 0.37 0.374 0.505

EICHERMOT DeConFuse 0.012 0.004 0.008 0.008 0.363

ConvTimeNet 0.295 0.296 0.295 0.297 0.452

TimeNet 0.816 0.816 0.818 0.814 0.393

ENGINERSIN DeConFuse 0.023 0.019 0.020 0.022 0.452

ConvTimeNet 0.265 0.260 0.258 0.260 2.059

TimeNet 0.128 0.128 0.128 0.128 0.500

EXIDEIND DeConFuse 0.012 0.005 0.009 0.009 0.418

ConvTimeNet 0.442 0.453 0.449 0.448 1.209

TimeNet 0.265 0.263 0.263 0.265 0.420

FEDERALBNK DeConFuse 0.015 0.006 0.010 0.012 0.407

ConvTimeNet 2.405 2.345 2.360 2.378 1.292

TimeNet 0.146 0.148 0.147 0.147 0.502

GAIL DeConFuse 0.014 0.009 0.011 0.012 0.369

ConvTimeNet 0.209 0.169 0.182 0.195 1.070

TimeNet 0.330 0.330 0.330 0.330 0.394

GLENMARK DeConFuse 0.013 0.005 0.010 0.009 0.374

ConvTimeNet 0.614 0.675 0.612 0.666 2.597

TimeNet 0.399 0.401 0.402 0.397 0.448
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Table 5 Stock-wise forecasting results (Continued)

Stock name Method MAE close MAE open MAE high MAE low MAE NAV

GMRINFRA DeConFuse 0.029 0.017 0.023 0.024 0.616

ConvTimeNet 0.101 0.137 0.118 0.116 1.044

TimeNet 0.094 0.092 0.095 0.094 0.799

GODREJIND DeConFuse 0.012 0.008 0.010 0.011 0.376

ConvTimeNet 0.287 0.298 0.28 0.296 1.647

TimeNet 0.327 0.326 0.325 0.328 0.362

GRASIM DeConFuse 0.014 0.008 0.011 0.011 0.445

ConvTimeNet 0.307 0.318 0.309 0.312 1.289

TimeNet 0.259 0.259 0.259 0.257 0.386

HAVELLS DeConFuse 0.012 0.005 0.009 0.009 0.377

ConvTimeNet 0.426 0.410 0.422 0.421 1.182

TimeNet 0.403 0.402 0.402 0.404 0.400

HCLTECH DeConFuse 0.014 0.010 0.011 0.014 0.383

ConvTimeNet 1.854 1.839 1.818 1.853 1.457

TimeNet 0.113 0.113 0.113 0.114 0.442

HDFC DeConFuse 0.009 0.004 0.006 0.006 0.314

ConvTimeNet 0.747 0.713 0.734 0.746 1.239

TimeNet 0.318 0.319 0.317 0.321 0.383

HDFCBANK DeConFuse 0.007 0.003 0.005 0.005 0.330

ConvTimeNet 0.529 0.533 0.533 0.544 3.680

TimeNet 0.422 0.422 0.421 0.423 0.576

HDIL DeConFuse 0.027 0.014 0.021 0.022 0.624

ConvTimeNet 0.300 0.560 0.352 0.439 10.715

TimeNet 0.297 0.291 0.290 0.296 1.106

HEROMOTOCO DeConFuse 0.009 0.004 0.006 0.006 0.322

ConvTimeNet 0.129 0.134 0.129 0.134 0.810

TimeNet 0.191 0.192 0.190 0.193 0.416

HEXAWARE DeConFuse 0.017 0.007 0.012 0.013 0.496

ConvTimeNet 2.798 2.710 2.691 2.769 1.050

TimeNet 0.425 0.422 0.424 0.423 0.473

HINDALCO DeConFuse 0.016 0.007 0.012 0.012 0.310

ConvTimeNet 0.984 0.995 0.979 1.002 1.159

TimeNet 0.403 0.403 0.402 0.404 0.388

HINDPETRO DeConFuse 0.016 0.007 0.012 0.012 0.37

ConvTimeNet 0.998 0.961 0.965 0.999 1.545

TimeNet 0.375 0.377 0.376 0.376 0.397

HINDUNILVR DeConFuse 0.008 0.003 0.006 0.006 0.413

ConvTimeNet 0.181 0.153 0.151 0.183 0.997

TimeNet 0.414 0.413 0.413 0.415 0.427

HINDZINC DeConFuse 0.012 0.006 0.009 0.010 0.333

ConvTimeNet 0.057 0.063 0.062 0.055 2.246

TimeNet 0.346 0.346 0.344 0.347 0.362

IBREALEST DeConFuse 0.033 0.026 0.031 0.028 0.694

ConvTimeNet 6.230 6.588 6.338 6.375 6.639

TimeNet 0.612 0.611 0.613 0.611 0.662

IBULHSGFIN DeConFuse 0.014 0.006 0.011 0.011 0.381

ConvTimeNet 0.352 0.341 0.343 0.354 0.556

TimeNet 0.357 0.358 0.356 0.358 0.584

ICICIBANK DeConFuse 0.016 0.012 0.014 0.014 0.314

ConvTimeNet 2.773 2.801 2.766 2.784 1.126

TimeNet 0.156 0.155 0.156 0.155 0.609



Maggu et al. EURASIP Journal on Advances in Signal Processing         (2020) 2020:26 Page 17 of 32

Table 5 Stock-wise forecasting results (Continued)

Stock name Method MAE close MAE open MAE high MAE low MAE NAV

IDBI DeConFuse 0.026 0.010 0.019 0.018 0.408

ConvTimeNet 0.900 0.909 0.846 0.952 1.995

TimeNet 0.135 0.137 0.134 0.138 0.550

IDEA DeConFuse 0.022 0.008 0.015 0.015 0.396

ConvTimeNet 1.612 1.684 1.629 1.671 1.676

TimeNet 0.576 0.575 0.569 0.580 0.454

IDFC DeConFuse 0.017 0.008 0.012 0.013 0.523

ConvTimeNet 0.693 0.674 0.629 0.748 5.201

TimeNet 0.134 0.135 0.134 0.134 0.680

IFCI DeConFuse 0.024 0.009 0.020 0.016 0.623

ConvTimeNet 0.807 0.744 0.837 0.755 10.316

TimeNet 0.244 0.243 0.246 0.245 0.967

IGL DeConFuse 0.015 0.005 0.011 0.011 0.490

ConvTimeNet 0.264 0.255 0.257 0.264 1.324

TimeNet 0.348 0.350 0.350 0.346 0.369

INDIACEM DeConFuse 0.023 0.014 0.018 0.020 0.360

ConvTimeNet 0.712 0.689 0.692 0.705 1.012

TimeNet 0.149 0.150 0.148 0.150 0.360

INDUSINDBK DeConFuse 0.009 0.004 0.006 0.006 0.315

ConvTimeNet 0.502 0.509 0.507 0.500 1.253

TimeNet 0.453 0.453 0.452 0.454 0.419

INFY DeConFuse 0.010 0.005 0.008 0.008 0.405

ConvTimeNet 2.417 2.415 2.410 2.409 1.837

TimeNet 0.140 0.139 0.14 0.139 0.605

IOC DeConFuse 0.012 0.006 0.010 0.011 0.369

ConvTimeNet 0.334 0.285 0.309 0.327 1.359

TimeNet 0.205 0.206 0.204 0.206 0.392

IRB DeConFuse 0.019 0.007 0.014 0.014 0.475

ConvTimeNet 0.365 0.360 0.355 0.380 1.583

TimeNet 0.076 0.076 0.077 0.076 0.580

ITC DeConFuse 0.009 0.004 0.007 0.006 0.383

ConvTimeNet 0.539 0.545 0.549 0.540 1.089

TimeNet 0.106 0.106 0.105 0.108 0.457

JINDALSTEL DeConFuse 0.029 0.017 0.023 0.024 0.337

ConvTimeNet 6.234 6.467 6.223 6.34 5.342

TimeNet 0.394 0.392 0.392 0.394 0.565

JISLJALEQS DeConFuse 0.022 0.008 0.014 0.018 0.461

ConvTimeNet 0.965 0.969 0.953 0.976 1.066

TimeNet 0.238 0.237 0.238 0.236 0.474

JPASSOCIAT DeConFuse 0.046 0.028 0.035 0.040 0.675

ConvTimeNet 0.321 0.318 0.309 0.321 1.660

TimeNet 0.565 0.567 0.563 0.568 1.227

JSWENERGY DeConFuse 0.024 0.019 0.023 0.021 0.610

ConvTimeNet 0.453 0.462 0.438 0.469 1.320

TimeNet 0.045 0.044 0.044 0.044 0.621

JSWSTEEL DeConFuse 0.014 0.006 0.011 0.010 0.304

ConvTimeNet 1.093 1.206 1.093 1.135 1.895

TimeNet 0.535 0.534 0.535 0.535 0.365

JUBLFOOD DeConFuse 0.013 0.006 0.010 0.011 0.409

ConvTimeNet 7.716 7.395 7.521 7.733 3.604

TimeNet 0.442 0.441 0.44 0.443 0.672
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Table 5 Stock-wise forecasting results (Continued)

Stock name Method MAE close MAE open MAE high MAE low MAE NAV

JUSTDIAL DeConFuse 0.026 0.009 0.018 0.020 0.473

ConvTimeNet 7.726 7.839 7.787 7.856 3.06

TimeNet 0.738 0.745 0.735 0.750 0.505

KOTAKBANK DeConFuse 0.009 0.004 0.007 0.007 0.342

ConvTimeNet 0.278 0.294 0.258 0.307 5.970

TimeNet 0.401 0.400 0.399 0.402 0.349

KSCL DeConFuse 0.016 0.006 0.011 0.012 0.503

ConvTimeNet 0.240 0.252 0.235 0.242 1.831

TimeNet 0.089 0.086 0.085 0.090 0.739

KTKBANK DeConFuse 0.016 0.006 0.012 0.013 0.452

ConvTimeNet 2.447 2.452 2.430 2.464 1.224

TimeNet 0.124 0.125 0.123 0.126 0.504

L&TFH DeConFuse 0.017 0.006 0.011 0.012 0.366

ConvTimeNet 0.343 0.345 0.339 0.351 0.741

TimeNet 0.466 0.467 0.468 0.465 0.416

LICHSGFIN DeConFuse 0.013 0.005 0.009 0.010 0.354

ConvTimeNet 1.587 1.604 1.591 1.584 1.971

TimeNet 0.126 0.127 0.126 0.128 0.400

LT DeConFuse 0.010 0.005 0.007 0.008 0.372

ConvTimeNet 0.877 0.858 0.851 0.877 0.732

TimeNet 0.222 0.222 0.221 0.224 0.338

LUPIN DeConFuse 0.014 0.004 0.009 0.010 0.406

ConvTimeNet 0.687 0.658 0.678 0.663 1.229

TimeNet 0.707 0.706 0.705 0.706 0.514

M&M DeConFuse 0.014 0.008 0.010 0.011 0.361

ConvTimeNet 2.729 2.723 2.713 2.684 1.088

TimeNet 0.207 0.207 0.206 0.208 0.413

M&MFIN DeConFuse 0.018 0.011 0.014 0.016 0.356

ConvTimeNet 1.800 1.789 1.795 1.807 1.489

TimeNet 0.371 0.370 0.371 0.372 0.358

MARUTI DeConFuse 0.009 0.003 0.006 0.006 0.356

ConvTimeNet 0.253 0.249 0.248 0.254 1.103

TimeNet 0.542 0.542 0.542 0.542 0.546

MINDTREE DeConFuse 0.019 0.010 0.015 0.013 0.491

ConvTimeNet 0.594 0.559 0.545 0.599 1.058

TimeNet 0.319 0.318 0.319 0.317 0.770

MOTHERSUMI DeConFuse 0.014 0.005 0.009 0.011 0.381

ConvTimeNet 0.954 0.995 0.962 0.964 0.955

TimeNet 0.388 0.389 0.388 0.39 0.413

MRF DeConFuse 0.010 0.004 0.007 0.008 0.597

ConvTimeNet 0.422 0.421 0.420 0.423 0.618

TimeNet 0.915 0.915 0.916 0.914 0.489

NHPC DeConFuse 0.012 0.006 0.010 0.010 0.608

ConvTimeNet 2.957 3.029 2.986 3.006 9.161

TimeNet 0.083 0.082 0.083 0.084 0.706

NMDC DeConFuse 0.018 0.012 0.015 0.016 0.385

ConvTimeNet 0.747 0.743 0.741 0.746 1.214

TimeNet 0.103 0.103 0.105 0.101 0.491

NTPC DeConFuse 0.009 0.007 0.008 0.008 0.370

ConvTimeNet 0.507 0.507 0.515 0.499 1.082

TimeNet 0.111 0.110 0.110 0.112 0.563
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Table 5 Stock-wise forecasting results (Continued)

Stock name Method MAE close MAE open MAE high MAE low MAE NAV

OFSS DeConFuse 0.012 0.007 0.009 0.009 0.590

ConvTimeNet 0.144 0.158 0.150 0.152 0.727

TimeNet 0.105 0.103 0.105 0.103 0.552

OIL DeConFuse 0.014 0.007 0.010 0.012 0.441

ConvTimeNet 0.294 0.271 0.283 0.279 1.602

TimeNet 0.068 0.070 0.070 0.069 0.455

ONGC DeConFuse 0.012 0.006 0.009 0.010 0.467

ConvTimeNet 5.154 5.167 5.140 5.171 1.673

TimeNet 0.074 0.075 0.076 0.073 0.548

ORIENTBANK DeConFuse 0.023 0.009 0.017 0.016 0.378

ConvTimeNet 1.706 1.565 1.632 1.63 6.662

TimeNet 0.673 0.675 0.674 0.674 0.725

PAGEIND DeConFuse 0.017 0.006 0.013 0.010 0.431

ConvTimeNet 0.377 0.376 0.377 0.377 0.862

TimeNet 0.824 0.823 0.826 0.821 0.655

PETRONET DeConFuse 0.014 0.006 0.011 0.011 0.494

ConvTimeNet 0.785 0.793 0.793 0.787 3.480

TimeNet 0.119 0.118 0.118 0.118 0.455

PFC DeConFuse 0.019 0.011 0.015 0.016 0.335

ConvTimeNet 6.082 6.160 6.127 6.107 5.328

TimeNet 0.208 0.208 0.206 0.209 0.377

PIDILITIND DeConFuse 0.011 0.006 0.008 0.008 0.339

ConvTimeNet 0.148 0.159 0.158 0.148 1.693

TimeNet 0.328 0.327 0.328 0.328 0.514

PNB DeConFuse 0.025 0.010 0.019 0.017 0.402

ConvTimeNet 9.020 9.009 8.898 9.059 4.502

TimeNet 0.358 0.357 0.357 0.358 0.593

POWERGRID DeConFuse 0.009 0.006 0.007 0.008 0.351

ConvTimeNet 1.329 1.354 1.321 1.359 4.055

TimeNet 0.196 0.196 0.194 0.197 0.412

PTC DeConFuse 0.016 0.007 0.011 0.012 0.385

ConvTimeNet 1.190 1.146 1.140 1.190 1.877

TimeNet 0.187 0.188 0.187 0.187 0.353

RCOM DeConFuse 0.049 0.019 0.040 0.033 0.515

ConvTimeNet 11.473 11.273 11.142 11.890 2.267

TimeNet 0.363 0.360 0.344 0.377 0.581

RECLTD DeConFuse 0.017 0.005 0.012 0.012 0.401

ConvTimeNet 7.043 6.659 6.798 6.912 12.186

TimeNet 0.145 0.145 0.144 0.147 0.521

RELCAPITAL DeConFuse 0.025 0.014 0.018 0.021 0.302

ConvTimeNet 2.394 2.359 2.289 2.428 0.498

TimeNet 0.127 0.130 0.128 0.131 0.474

RELIANCE DeConFuse 0.011 0.004 0.008 0.008 0.305

ConvTimeNet 0.251 0.234 0.245 0.239 1.609

TimeNet 0.459 0.458 0.458 0.459 0.654

RELINFRA DeConFuse 0.019 0.007 0.013 0.014 0.270

ConvTimeNet 2.045 2.032 1.998 2.084 0.970

TimeNet 0.157 0.159 0.157 0.159 0.320

RPOWER DeConFuse 0.024 0.007 0.018 0.016 0.475

ConvTimeNet 2.229 2.178 2.159 2.268 2.384

TimeNet 0.296 0.297 0.295 0.302 0.757
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Table 5 Stock-wise forecasting results (Continued)

Stock name Method MAE close MAE open MAE high MAE low MAE NAV

SAIL DeConFuse 0.023 0.008 0.014 0.016 0.284

ConvTimeNet 1.319 1.225 1.274 1.276 1.399

TimeNet 0.161 0.160 0.163 0.158 0.495

SBIN DeConFuse 0.015 0.006 0.011 0.01 0.339

ConvTimeNet 0.663 0.661 0.675 0.648 1.428

TimeNet 0.120 0.118 0.120 0.118 0.696

SIEMENS DeConFuse 0.011 0.006 0.008 0.009 0.452

ConvTimeNet 0.289 0.212 0.292 0.245 8.495

TimeNet 0.085 0.086 0.085 0.086 0.763

SOUTHBANK DeConFuse 0.018 0.008 0.013 0.013 0.539

ConvTimeNet 7.863 7.712 7.795 7.788 10.684

TimeNet 0.162 0.161 0.161 0.163 0.534

SRF DeConFuse 0.016 0.006 0.011 0.012 0.396

ConvTimeNet 0.373 0.318 0.339 0.359 0.791

TimeNet 0.226 0.225 0.225 0.225 0.508

SRTRANSFIN DeConFuse 0.019 0.011 0.015 0.017 0.445

ConvTimeNet 2.900 2.892 2.838 2.946 0.667

TimeNet 0.297 0.295 0.296 0.297 0.482

STAR DeConFuse 0.027 0.015 0.022 0.025 0.464

ConvTimeNet 2.461 2.586 2.307 2.629 6.115

TimeNet 0.827 0.820 0.821 0.825 0.642

SUNPHARMA DeConFuse 0.016 0.006 0.011 0.011 0.368

ConvTimeNet 0.203 0.202 0.203 0.203 0.655

TimeNet 0.388 0.390 0.385 0.391 0.645

SUNTV DeConFuse 0.015 0.005 0.010 0.011 0.356

ConvTimeNet 0.175 0.172 0.173 0.176 1.482

TimeNet 0.471 0.472 0.470 0.472 0.483

SYNDIBANK DeConFuse 0.024 0.009 0.017 0.017 0.361

ConvTimeNet 1.405 1.391 1.271 1.521 4.672

TimeNet 0.176 0.175 0.174 0.177 0.410

TATACHEM DeConFuse 0.011 0.005 0.008 0.009 0.392

ConvTimeNet 1.044 1.066 1.044 1.025 0.690

TimeNet 0.368 0.368 0.367 0.368 0.412

TATACOMM DeConFuse 0.013 0.006 0.009 0.010 0.443

ConvTimeNet 0.231 0.249 0.239 0.241 0.835

TimeNet 0.241 0.241 0.239 0.243 0.541

TATAGLOBAL DeConFuse 0.017 0.006 0.013 0.012 0.599

ConvTimeNet 1.724 1.807 1.737 1.813 4.354

TimeNet 0.418 0.417 0.418 0.416 0.477

TATAMOTORS DeConFuse 0.015 0.007 0.012 0.011 0.333

ConvTimeNet 0.644 0.688 0.660 0.650 1.844

TimeNet 0.279 0.278 0.278 0.277 0.659

TATAMTRDVR DeConFuse 0.015 0.006 0.013 0.011 0.380

ConvTimeNet 1.153 1.213 1.161 1.153 1.219

TimeNet 0.444 0.443 0.445 0.440 0.455

TATAPOWER DeConFuse 0.012 0.005 0.009 0.010 0.413

ConvTimeNet 0.435 0.442 0.431 0.452 1.265

TimeNet 0.096 0.096 0.096 0.096 0.571

TATASTEEL DeConFuse 0.015 0.005 0.009 0.012 0.258

ConvTimeNet 1.363 1.390 1.369 1.365 0.862

TimeNet 0.381 0.381 0.380 0.381 0.662



Maggu et al. EURASIP Journal on Advances in Signal Processing         (2020) 2020:26 Page 21 of 32

Table 5 Stock-wise forecasting results (Continued)

Stock name Method MAE close MAE open MAE high MAE low MAE NAV

TCS DeConFuse 0.012 0.005 0.009 0.008 0.445

ConvTimeNet 1.481 1.337 1.409 1.323 6.096

TimeNet 0.231 0.229 0.230 0.231 0.525

TECHM DeConFuse 0.014 0.005 0.009 0.009 0.386

ConvTimeNet 1.857 1.634 1.753 1.746 6.126

TimeNet 0.175 0.174 0.176 0.173 0.416

TITAN DeConFuse 0.014 0.005 0.010 0.010 0.419

ConvTimeNet 2.649 2.676 2.698 2.633 3.126

TimeNet 0.548 0.548 0.547 0.548 0.630

TVSMOTOR DeConFuse 0.014 0.005 0.009 0.011 0.385

ConvTimeNet 1.120 1.120 1.108 1.129 0.848

TimeNet 0.441 0.441 0.441 0.441 0.403

UBL DeConFuse 0.018 0.008 0.014 0.013 0.418

ConvTimeNet 0.144 0.191 0.157 0.173 0.915

TimeNet 0.246 0.244 0.248 0.241 0.593

ULTRACEMCO DeConFuse 0.011 0.005 0.008 0.007 0.408

ConvTimeNet 0.088 0.086 0.086 0.088 0.712

TimeNet 0.237 0.236 0.236 0.237 0.483

UNIONBANK DeConFuse 0.023 0.009 0.017 0.016 0.307

ConvTimeNet 8.195 8.076 8.034 8.207 11.330

TimeNet 0.395 0.395 0.396 0.394 0.394

UPL DeConFuse 0.014 0.004 0.009 0.010 0.391

ConvTimeNet 1.182 1.034 1.122 1.101 2.592

TimeNet 0.275 0.276 0.274 0.277 0.410

VEDL DeConFuse 0.018 0.010 0.014 0.015 0.235

ConvTimeNet 2.904 3.024 2.967 2.959 0.605

TimeNet 0.295 0.295 0.295 0.295 0.720

VOLTAS DeConFuse 0.016 0.009 0.012 0.013 0.369

ConvTimeNet 1.244 1.272 1.268 1.254 4.493

TimeNet 0.475 0.475 0.474 0.476 0.354

WIPRO DeConFuse 0.009 0.005 0.007 0.007 0.456

ConvTimeNet 0.301 0.290 0.298 0.295 0.799

TimeNet 0.067 0.065 0.067 0.066 0.647

WOCKPHARMA DeConFuse 0.021 0.009 0.015 0.016 0.504

ConvTimeNet 2.407 2.486 2.335 2.582 5.903

TimeNet 0.394 0.395 0.394 0.393 0.492

YESBANK DeConFuse 0.014 0.006 0.01 0.011 0.335

ConvTimeNet 0.875 0.868 0.866 0.879 1.066

TimeNet 0.422 0.423 0.424 0.422 0.599

ZEEL DeConFuse 0.010 0.005 0.008 0.008 0.400

ConvTimeNet 1.132 1.135 1.136 1.123 1.449

TimeNet 0.265 0.265 0.264 0.267 0.513
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Appendix 2: Detailed stock trading results

Table 6 Stock-wise trading results

Stock name Method
Computational model performance Financial evaluation

Precision Recall F1 score AUC True AR Predicted AR

ABIRLANUVO DeConFuse 0.553 0.886 0.681 0.558 41.950 15.600

ConvTimeNet 0.515 0.966 0.672 0.541 3.090

TimeNet 0.512 0.989 0.674 0.478 8.340

ACC DeConFuse 0.449 0.761 0.565 0.600 – 7.090 – 1.070

ConvTimeNet 0.449 0.337 0.385 0.529 – 4.100

TimeNet 0.389 0.152 0.219 0.506 – 9.020

ADANIENT DeConFuse 0.581 0.962 0.724 0.560 20.690 4.570

ConvTimeNet 0.594 0.145 0.233 0.504 69.400

TimeNet 0.565 0.962 0.712 0.571 – 3.610

ADANIPORTS DeConFuse 0.520 0.919 0.660 0.546 0.900 0.010

ConvTimeNet 0.503 0.694 0.583 0.570 2.560

TimeNet 0.534 0.568 0.550 0.559 17.750

ADANIPOWER DeConFuse 0.461 0.862 0.601 0.492 – 34.600 10.840

ConvTimeNet 0.473 0.569 0.517 0.460 – 28.930

TimeNet 0.495 0.872 0.631 0.495 – 19.110

AJANTPHARM DeConFuse 0.449 0.757 0.564 0.514 – 44.660 – 29.150

ConvTimeNet 0.469 0.757 0.579 0.498 – 22.320

TimeNet 0.577 0.214 0.312 0.603 – 35.460

ALBK DeConFuse 0.485 0.776 0.597 0.550 – 23.800 – 5.890

ConvTimeNet 0.461 0.766 0.575 0.495 – 17.440

TimeNet 0.478 0.411 0.442 0.516 29.660

AMARAJABAT DeConFuse 0.549 0.718 0.622 0.568 19.460 41.830

ConvTimeNet 0.463 0.321 0.379 0.502 – 19.990

TimeNet 0.667 0.026 0.049 0.549 – 27.870

AMBUJACEM DeConFuse 0.486 0.829 0.613 0.576 – 8.970 – 10.080

ConvTimeNet 0.457 0.410 0.432 0.503 – 1.310

TimeNet 0.448 0.533 0.487 0.470 16.490

ANDHRABANK DeConFuse 0.391 0.753 0.515 0.479 – 21.850 4.660

ConvTimeNet 0.401 0.763 0.526 0.513 1.060

TimeNet 0.446 0.484 0.464 0.548 – 18.610

APOLLOHOSP DeConFuse 0.447 0.921 0.602 0.510 23.140 6.820

ConvTimeNet 0.432 0.812 0.564 0.509 1.440

TimeNet 0.436 0.941 0.596 0.493 4.630

APOLLOTYRE DeConFuse 0.502 0.920 0.650 0.536 – 13.140 2.730

ConvTimeNet 0.600 0.027 0.051 0.606 – 2.810

TimeNet 0.482 0.973 0.645 0.468 0.950

ARVIND DeConFuse 0.513 0.936 0.662 0.571 16.320 19.560

ConvTimeNet 0.603 0.376 0.463 0.637 – 33.780

TimeNet 0.476 1.000 0.645 0.445 0.000

ASHOKLEY DeConFuse 0.532 0.849 0.654 0.520 47.650 – 16.530

ConvTimeNet 0.524 0.092 0.157 0.502 – 14.800

TimeNet 0.522 0.798 0.631 0.551 – 13.550

ASIANPAINT DeConFuse 0.523 0.868 0.652 0.595 32.770 1.250

ConvTimeNet 0.500 0.245 0.329 0.539 4.400

TimeNet 0.463 1.000 0.633 0.487 0.000

AUROPHARMA DeConFuse 0.511 0.835 0.634 0.532 3.370 4.430

ConvTimeNet 0.484 0.679 0.565 0.509 – 5.900

TimeNet 0.468 0.954 0.628 0.548 – 8.060
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Table 6 Stock-wise trading results (Continued)

Stock name Method
Computational model performance Financial evaluation

Precision Recall F1 score AUC True AR Predicted AR

AXISBANK DeConFuse 0.527 0.843 0.649 0.535 3.830 26.440

ConvTimeNet 0.503 0.643 0.565 0.485 12.060

TimeNet 0.500 0.835 0.625 0.525 – 6.970

BAJAJ-AUTO DeConFuse 0.491 0.776 0.601 0.552 12.590 15.430

ConvTimeNet 0.431 0.234 0.303 0.518 – 9.380

TimeNet 0.463 0.355 0.402 0.512 – 10.670

BAJFINANCE DeConFuse 0.570 0.934 0.708 0.487 21.610 -4.050

ConvTimeNet 0.526 0.440 0.479 0.441 16.480

TimeNet 0.569 1.000 0.725 0.568 0.000

BANKBARODA DeConFuse 0.584 0.473 0.523 0.569 – 21.990 2.880

ConvTimeNet 0.485 0.573 0.525 0.495 – 3.680

TimeNet 0.286 0.018 0.034 0.539 – 16.310

BANKINDIA DeConFuse 0.463 0.925 0.617 0.428 – 29.380 – 2.880

ConvTimeNet 0.491 0.757 0.596 0.500 – 25.090

TimeNet 0.571 0.224 0.322 0.567 – 19.800

BATAINDIA DeConFuse 0.523 0.693 0.596 0.494 63.650 34.340

ConvTimeNet 0.000 0.000 0.000 0.522 0.000

TimeNet 0.520 0.456 0.486 0.547 6.090

BEL DeConFuse 0.457 0.892 0.604 0.592 – 17.530 – 22.310

ConvTimeNet 0.421 0.785 0.548 0.560 – 18.020

TimeNet 0.405 0.985 0.574 0.566 1.220

BHARATFORG DeConFuse 0.496 1.000 0.663 0.507 – 2.210 3.800

ConvTimeNet 0.400 0.035 0.065 0.578 – 3.510

TimeNet 0.493 0.982 0.657 0.496 1.500

BHARTIARTL DeConFuse 0.486 0.817 0.609 0.563 9.350 – 10.08

ConvTimeNet 0.580 0.279 0.377 0.527 – 7.500

TimeNet 0.493 0.327 0.393 0.535 – 7.670

BHEL DeConFuse 0.540 0.857 0.662 0.578 – 3.050 10.340

ConvTimeNet 0.555 0.589 0.571 0.576 – 32.780

TimeNet 0.481 0.562 0.519 0.494 – 7.340

BIOCON DeConFuse 0.523 0.780 0.626 0.487 30.340 – 9.750

ConvTimeNet 1.000 0.051 0.097 0.540 11.350

TimeNet 0.539 0.407 0.464 0.520 – 0.280

BOSCHLTD DeConFuse 0.437 0.938 0.596 0.550 – 5.430 4.380

ConvTimeNet 0.464 0.481 0.473 0.513 3.330

TimeNet 0.000 0.000 0.000 0.496 0.000

BPCL DeConFuse 0.525 0.850 0.649 0.509 – 0.640 – 0.740

ConvTimeNet 0.535 0.611 0.570 0.561 – 2.290

TimeNet 0.482 0.956 0.641 0.466 – 1.660

BRITANNIA DeConFuse 0.604 0.871 0.714 0.550 17.710 4.930

ConvTimeNet 0.558 0.258 0.353 0.492 17.400

TimeNet 0.500 0.043 0.079 0.572 42.380

CAIRN DeConFuse 0.558 0.682 0.614 0.540 38.310 – 14.830

ConvTimeNet 0.833 0.059 0.110 0.483 69.850

TimeNet 0.000 0.000 0.000 0.480 63.040

CANBK DeConFuse 0.500 0.798 0.615 0.552 – 2.440 – 9.350

ConvTimeNet 0.472 0.862 0.610 0.471 15.920

TimeNet 0.485 0.908 0.633 0.528 – 20.500

CASTROLIND DeConFuse 0.468 0.843 0.602 0.502 – 12.570 – 17.840

ConvTimeNet 0.427 0.800 0.557 0.464 – 15.310

TimeNet 0.800 0.057 0.107 0.516 – 20.970
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Table 6 Stock-wise trading results (Continued)

Stock name Method
Computational model performance Financial evaluation

Precision Recall F1 score AUC True AR Predicted AR

CEATLTD DeConFuse 0.474 0.797 0.595 0.598 – 10.760 5.010

ConvTimeNet 0.413 0.725 0.526 0.509 – 27.600

TimeNet 0.434 0.957 0.597 0.520 – 10.180

CENTURYTEX DeConFuse 0.575 0.807 0.672 0.602 – 18.430 – 21.330

ConvTimeNet 0.513 0.675 0.583 0.535 – 16.620

TimeNet 0.498 1.000 0.665 0.483 0.000

CESC DeConFuse 0.489 0.789 0.604 0.562 2.300 – 4.980

ConvTimeNet 0.550 0.101 0.171 0.535 – 5.930

TimeNet 0.458 0.844 0.594 0.476 – 7.060

CIPLA DeConFuse 0.472 0.810 0.596 0.564 – 3.130 – 12.260

ConvTimeNet 0.508 0.619 0.558 0.541 – 7.370

TimeNet 0.462 0.867 0.603 0.536 – 3.270

COALINDIA DeConFuse 0.557 0.462 0.505 0.528 – 2.370 – 1.030

ConvTimeNet 0.500 0.051 0.093 0.433 – 5.210

TimeNet 0.667 0.051 0.095 0.489 6.380

COLPAL DeConFuse 0.519 0.893 0.657 0.436 16.070 6.000

ConvTimeNet 0.643 0.074 0.133 0.562 1.580

TimeNet 0.566 0.355 0.437 0.524 – 3.180

DABUR DeConFuse 0.542 0.791 0.643 0.560 21.590 – 3.260

ConvTimeNet 0.500 0.026 0.050 0.503 41.300

TimeNet 0.500 0.983 0.663 0.560 – 4.800

DHFL DeConFuse 0.513 0.836 0.635 0.553 – 8.590 – 8.510

ConvTimeNet 0.449 0.726 0.555 0.501 7.130

TimeNet 0.456 1.000 0.627 0.547 0.000

DISHTV DeConFuse 0.497 0.815 0.618 0.512 – 14.010 20.570

ConvTimeNet 0.507 0.954 0.662 0.536 – 12.220

TimeNet 0.469 0.981 0.635 0.539 0.700

DIVISLAB DeConFuse 0.505 0.867 0.638 0.485 2.800 – 0.920

ConvTimeNet 0.460 0.513 0.485 0.474 14.960

TimeNet 0.489 0.973 0.651 0.567 – 4.620

DLF DeConFuse 0.583 0.903 0.709 0.545 14.530 32.160

ConvTimeNet 0.605 0.395 0.478 0.565 3.060

TimeNet 0.539 0.992 0.699 0.524 2.690

DRREDDY DeConFuse 0.518 0.870 0.649 0.586 – 2.060 10.640

ConvTimeNet 0.492 0.774 0.601 0.470 5.080

TimeNet 0.507 0.991 0.671 0.487 – 10.530

EICHERMOT DeConFuse 0.515 0.936 0.664 0.519 – 7.280 – 1.070

ConvTimeNet 0.478 0.681 0.561 0.494 – 7.780

TimeNet 0.503 0.904 0.646 0.553 0.750

ENGINERSIN DeConFuse 0.568 0.659 0.610 0.612 – 3.150 – 40.820

ConvTimeNet 0.456 0.439 0.447 0.508 – 9.830

TimeNet 0.500 0.085 0.146 0.473 – 27.400

EXIDEIND DeConFuse 0.525 0.850 0.649 0.603 22.020 9.570

ConvTimeNet 0.629 0.195 0.297 0.542 2.170

TimeNet 0.484 0.788 0.599 0.506 17.840

FEDERALBNK DeConFuse 0.479 0.810 0.600 0.551 – 23.270 – 20.170

ConvTimeNet 0.434 0.790 0.560 0.511 16.480

TimeNet 0.428 0.860 0.571 0.508 – 9.940

GAIL DeConFuse 0.554 0.683 0.612 0.496 35.420 1.670

ConvTimeNet 0.000 0.000 0.000 0.564 0.000

TimeNet 0.714 0.083 0.149 0.521 29.550
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Table 6 Stock-wise trading results (Continued)

Stock name Method
Computational model performance Financial evaluation

Precision Recall F1 score AUC True AR Predicted AR

GLENMARK DeConFuse 0.543 0.847 0.662 0.546 – 12.340 7.550

ConvTimeNet 0.640 0.483 0.551 0.580 – 14.500

TimeNet 0.529 0.780 0.630 0.490 4.890

GMRINFRA DeConFuse 0.512 0.792 0.622 0.547 8.230 3.520

ConvTimeNet 0.424 0.132 0.201 0.537 46.980

TimeNet 0.000 0.000 0.000 0.523 0.000

GODREJIND DeConFuse 0.551 0.932 0.692 0.572 12.190 6.320

ConvTimeNet 0.528 0.957 0.681 0.569 – 4.980

TimeNet 0.515 1.000 0.680 0.584 1.560

GRASIM DeConFuse 0.451 0.854 0.590 0.571 11.750 31.030

ConvTimeNet 0.457 0.552 0.500 0.563 4.060

TimeNet 0.421 1.000 0.590 0.563 – 0.660

HAVELLS DeConFuse 0.562 0.886 0.688 0.534 25.080 4.960

ConvTimeNet 0.929 0.106 0.190 0.553 1.110

TimeNet 0.586 0.724 0.647 0.621 28.710

HCLTECH DeConFuse 0.596 0.862 0.704 0.510 26.700 – 4.330

ConvTimeNet 0.573 0.331 0.42 0.477 13.730

TimeNet 0.566 0.985 0.719 0.529 1.090

HDFC DeConFuse 0.557 0.817 0.662 0.530 – 13.020 11.470

ConvTimeNet 0.677 0.175 0.278 0.551 7.020

TimeNet 0.515 0.575 0.543 0.492 18.220

HDFCBANK DeConFuse 0.551 0.851 0.669 0.561 – 0.470 9.890

ConvTimeNet 0.569 0.306 0.398 0.510 – 7.500

TimeNet 0.529 0.992 0.690 0.522 0.520

HDIL DeConFuse 0.466 0.883 0.610 0.565 – 51.190 – 11.390

ConvTimeNet 0.448 0.915 0.601 0.482 27.120

TimeNet 0.445 1.000 0.610 0.474 0.000

HEROMOTOCO DeConFuse 0.482 0.796 0.601 0.556 – 19.99 – 1.530

ConvTimeNet 0.529 0.350 0.421 0.570 – 18.100

TimeNet 0.418 0.573 0.484 0.442 – 0.910

HEXAWARE DeConFuse 0.577 0.879 0.697 0.518 41.150 – 3.690

ConvTimeNet 1.000 0.015 0.030 0.495 20.850

TimeNet 0.570 0.955 0.714 0.458 5.010

HINDALCO DeConFuse 0.495 0.872 0.631 0.547 6.020 – 6.310

ConvTimeNet 0.474 0.679 0.558 0.524 1.110

TimeNet 0.494 0.807 0.613 0.540 – 19.450

HINDPETRO DeConFuse 0.459 0.931 0.615 0.507 – 18.980 – 1.200

ConvTimeNet 0.446 0.775 0.566 0.549 – 14.200

TimeNet 0.445 1.000 0.615 0.457 0.000

HINDUNILVR DeConFuse 0.594 0.956 0.733 0.512 8.010 2.820

ConvTimeNet 0.500 0.030 0.056 0.497 10.740

TimeNet 0.623 0.696 0.657 0.578 20.200

HINDZINC DeConFuse 0.529 0.894 0.664 0.581 – 8.970 7.870

ConvTimeNet 0.617 0.257 0.362 0.570 – 26.230

TimeNet 0.495 0.938 0.648 0.511 0.920

IBREALEST DeConFuse 0.613 0.642 0.627 0.562 50.250 4.550

ConvTimeNet 0.750 0.028 0.055 0.560 2.720

TimeNet 0.000 0.000 0.000 0.455 0.000

IBULHSGFIN DeConFuse 0.534 0.814 0.645 0.574 – 33.740 3.660

ConvTimeNet 0.488 0.907 0.634 0.562 2.130

TimeNet 0.447 0.837 0.583 0.491 4.990
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Table 6 Stock-wise trading results (Continued)

Stock name Method
Computational model performance Financial evaluation

Precision Recall F1 score AUC True AR Predicted AR

ICICIBANK DeConFuse 0.514 0.664 0.580 0.554 – 15.240 – 7.840

ConvTimeNet 0.528 0.262 0.350 0.530 7.090

TimeNet 0.455 0.047 0.085 0.471 32.410

IDBI DeConFuse 0.545 0.757 0.634 0.596 – 38.100 – 4.320

ConvTimeNet 0.503 0.775 0.610 0.529 – 14.250

TimeNet 0.577 0.505 0.538 0.538 – 11.360

IDEA DeConFuse 0.450 0.949 0.610 0.571 – 26.870 – 12.280

ConvTimeNet 0.415 0.667 0.512 0.549 10.310

TimeNet 0.395 0.495 0.439 0.414 26.380

IDFC DeConFuse 0.460 0.737 0.566 0.500 10.310 7.640

ConvTimeNet 0.511 0.232 0.319 0.550 – 28.470

TimeNet 0.444 0.040 0.074 0.538 – 11.310

IFCI DeConFuse 0.541 0.653 0.592 0.612 – 21.380 – 10.090

ConvTimeNet 0.429 0.713 0.535 0.489 9.880

TimeNet 0.450 0.178 0.255 0.542 1.240

IGL DeConFuse 0.505 0.955 0.660 0.545 – 17.220 – 4.580

ConvTimeNet 0.489 1.000 0.657 0.425 0.000

TimeNet 0.483 0.902 0.629 0.500 3.870

INDIACEM DeConFuse 0.512 0.796 0.623 0.607 3.720 – 15.030

ConvTimeNet 0.450 0.537 0.489 0.452 – 17.100

TimeNet 0.473 0.907 0.622 0.541 – 1.060

INDUSINDBK DeConFuse 0.510 0.896 0.650 0.485 2.350 – 2.270

ConvTimeNet 0.250 0.026 0.047 0.483 7.450

TimeNet 0.502 1.000 0.669 0.455 0.000

INFY DeConFuse 0.590 0.803 0.677 0.519 19.370 23.970

ConvTimeNet 0.590 0.348 0.440 0.501 23.650

TimeNet 0.577 0.598 0.587 0.482 33.220

IOC DeConFuse 0.546 0.848 0.664 0.560 7.260 – 8.670

ConvTimeNet 0.495 0.938 0.648 0.527 – 1.190

TimeNet 0.477 0.946 0.635 0.452 1.350

IRB DeConFuse 0.528 0.920 0.671 0.567 – 14.090 – 15.820

ConvTimeNet 0.517 0.821 0.634 0.509 – 20.420

TimeNet 0.489 1.000 0.657 0.491 0.000

ITC DeConFuse 0.515 0.785 0.622 0.550 16.580 8.780

ConvTimeNet 0.482 0.383 0.427 0.509 16.990

TimeNet 0.465 0.935 0.621 0.550 – 2.330

JINDALSTEL DeConFuse 0.547 0.894 0.679 0.497 34.970 19.940

ConvTimeNet 0.440 0.089 0.149 0.434 114.370

TimeNet 0.535 0.187 0.277 0.548 35.170

JISLJALEQS DeConFuse 0.495 0.877 0.633 0.480 – 26.510 – 9.490

ConvTimeNet 0.495 0.412 0.450 0.521 – 6.950

TimeNet 0.477 0.623 0.540 0.455 18.140

JPASSOCIAT DeConFuse 0.467 0.324 0.383 0.465 – 15.680 – 7.23

ConvTimeNet 0.545 0.056 0.101 0.503 – 22.480

TimeNet 0.000 0.000 0.000 0.504 0.000

JSWENERGY DeConFuse 0.537 0.784 0.637 0.573 28.740 25.080

ConvTimeNet 0.509 0.569 0.537 0.512 – 2.810

TimeNet 0.494 0.873 0.631 0.472 11.840

JSWSTEEL DeConFuse 0.567 0.850 0.680 0.559 17.590 3.040

ConvTimeNet 0.560 0.425 0.483 0.522 – 20.500

TimeNet 0.520 0.975 0.678 0.476 – 4.980
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Table 6 Stock-wise trading results (Continued)

Stock name Method
Computational model performance Financial evaluation

Precision Recall F1 score AUC True AR Predicted AR

JUBLFOOD DeConFuse 0.586 0.882 0.704 0.554 24.580 7.970

ConvTimeNet 0.520 0.205 0.294 0.501 22.900

TimeNet 0.750 0.071 0.129 0.582 110.88

JUSTDIAL DeConFuse 0.570 0.450 0.503 0.560 29.030 1.600

ConvTimeNet 0.643 0.248 0.358 0.560 – 20.230

TimeNet 0.000 0.000 0.000 0.439 0.000

KOTAKBANK DeConFuse 0.584 0.910 0.711 0.526 27.020 – 5.120

ConvTimeNet 0.000 0.000 0.000 0.502 0.000

TimeNet 0.579 0.955 0.721 0.511 0.900

KSCL DeConFuse 0.545 0.838 0.660 0.572 4.420 – 15.790

ConvTimeNet 0.535 0.575 0.554 0.545 46.130

TimeNet 0.522 0.300 0.381 0.473 30.920

KTKBANK DeConFuse 0.494 0.784 0.606 0.518 – 16.590 – 15.610

ConvTimeNet 0.488 0.532 0.509 0.530 – 6.400

TimeNet 0.491 0.730 0.587 0.545 – 13.540

L&TFH DeConFuse 0.468 0.906 0.617 0.550 – 20.710 – 7.570

ConvTimeNet 0.453 0.906 0.604 0.550 – 19.540

TimeNet 0.432 0.958 0.595 0.478 – 1.020

LICHSGFIN DeConFuse 0.517 0.852 0.640 0.549 – 21.250 12.680

ConvTimeNet 0.471 0.676 0.555 0.514 14.560

TimeNet 0.476 0.980 0.640 0.530 – 1.150

LT DeConFuse 0.525 0.810 0.637 0.524 7.670 – 3.420

ConvTimeNet 0.562 0.078 0.136 0.553 – 1.190

TimeNet 0.519 0.241 0.329 0.534 21.790

LUPIN DeConFuse 0.562 0.860 0.680 0.545 – 46.000 – 13.900

ConvTimeNet 0.534 0.645 0.584 0.504 – 9.170

TimeNet 0.518 0.702 0.596 0.515 – 13.000

M&M DeConFuse 0.576 0.760 0.656 0.556 26.670 – 5.130

ConvTimeNet 1.000 0.062 0.117 0.550 9.230

TimeNet 0.596 0.791 0.680 0.570 5.390

M&MFIN DeConFuse 0.505 0.819 0.625 0.435 57.200 3.640

ConvTimeNet 0.000 0.000 0.000 0.539 0.000

TimeNet 0.590 0.310 0.407 0.519 26.820

MARUTI DeConFuse 0.527 0.883 0.660 0.574 10.200 3.950

ConvTimeNet 0.508 0.559 0.532 0.562 6.680

TimeNet 0.485 1.000 0.653 0.500 0.000

MINDTREE DeConFuse 0.521 0.718 0.604 0.483 51.140 34.170

ConvTimeNet 0.625 0.097 0.168 0.528 1.180

TimeNet 0.577 0.291 0.387 0.498 37.020

MOTHERSUMI DeConFuse 0.510 0.863 0.641 0.504 – 0.320 4.730

ConvTimeNet 0.510 0.537 0.526 0.519 – 22.050

TimeNet 0.489 0.979 0.653 0.535 2.480

MRF DeConFuse 0.489 0.571 0.527 0.463 – 3.020 2.370

ConvTimeNet 0.500 0.089 0.152 0.520 – 6.320

TimeNet 0.482 0.964 0.643 0.480 – 3.050

NHPC DeConFuse 0.531 0.520 0.526 0.598 – 10.570 – 3.130

ConvTimeNet 0.556 0.255 0.350 0.564 13.660

TimeNet 0.000 0.000 0.000 0.474 0.000

NMDC DeConFuse 0.550 0.783 0.646 0.557 – 10.800 5.560

ConvTimeNet 0.540 0.558 0.549 0.528 – 16.940

TimeNet 0.528 0.633 0.576 0.500 – 10.610
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Table 6 Stock-wise trading results (Continued)

Stock name Method
Computational model performance Financial evaluation

Precision Recall F1 score AUC True AR Predicted AR

NTPC DeConFuse 0.487 0.862 0.623 0.480 1.690 – 4.410

ConvTimeNet 0.535 0.349 0.422 0.560 - -7.440

TimeNet 0.497 0.789 0.610 0.534 3.830

OFSS DeConFuse 0.500 0.723 0.591 0.453 21.390 33.070

ConvTimeNet 0.593 0.134 0.219 0.518 6.100

TimeNet 0.667 0.017 0.033 0.419 6.190

OIL DeConFuse 0.533 0.731 0.616 0.525 – 21.220 – 15.240

ConvTimeNet 0.495 0.577 0.533 0.541 – 17.520

TimeNet 0.496 0.769 0.603 0.465 – 13.470

ONGC DeConFuse 0.526 0.750 0.618 0.604 20.320 13.740

ConvTimeNet 0.496 0.519 0.507 0.498 – 13.270

TimeNet 0.447 0.704 0.547 0.543 11.750

ORIENTBANK DeConFuse 0.466 0.880 0.609 0.553 – 10.110 – 17.560

ConvTimeNet 0.435 0.740 0.548 0.492 16.580

TimeNet 0.430 0.490 0.458 0.518 38.720

PAGEIND DeConFuse 0.503 0.935 0.655 0.489 39.910 8.130

ConvTimeNet 0.375 0.195 0.256 0.400 0.630

TimeNet 0.447 0.545 0.491 0.521 1.050

PETRONET DeConFuse 0.520 0.929 0.669 0.525 12.330 – 9.760

ConvTimeNet 0.520 0.241 0.331 0.539 – 12.190

TimeNet 0.485 0.982 0.649 0.546 1.450

PFC DeConFuse 0.503 0.733 0.597 0.532 2.150 7.310

ConvTimeNet 0.479 0.657 0.554 0.551 11.310

TimeNet 0.458 0.667 0.543 0.497 – 14.680

PIDILITIND DeConFuse 0.602 0.773 0.677 0.596 30.150 11.440

ConvTimeNet 0.564 0.500 0.530 0.501 12.880

TimeNet 0.550 1.000 0.710 0.518 0.000

PNB DeConFuse 0.512 0.644 0.570 0.572 – 23.580 – 14.500

ConvTimeNet 0.496 0.634 0.557 0.560 – 18.650

TimeNet 0.495 0.455 0.474 0.550 – 6.780

POWERGRID DeConFuse 0.491 0.757 0.595 0.560 10.340 – 5.810

ConvTimeNet 0.473 0.777 0.588 0.531 – 6.230

TimeNet 0.481 0.495 0.488 0.511 0.420

PTC DeConFuse 0.526 0.766 0.624 0.610 – 19.080 – 30.920

ConvTimeNet 0.471 0.607 0.531 0.518 – 34.44

TimeNet 0.449 0.907 0.601 0.537 – 5.060

RCOM DeConFuse 0.474 0.540 0.505 0.524 – 29.600 – 38.130

ConvTimeNet 0.091 0.010 0.018 0.489 – 39.190

TimeNet 0.000 0.000 0.000 0.495 0.000

RECLTD DeConFuse 0.439 0.863 0.582 0.511 – 29.540 – 32.010

ConvTimeNet 0.407 0.621 0.492 0.491 – 2.110

TimeNet 0.420 0.495 0.454 0.500 – 25.420

RELCAPITAL DeConFuse 0.497 0.843 0.625 0.575 – 31.650 12.140

ConvTimeNet 0.481 0.704 0.571 0.563 – 14.590

TimeNet 0.471 0.981 0.637 0.491 – 15.740

RELIANCE DeConFuse 0.588 0.870 0.702 0.574 4.780 9.430

ConvTimeNet 0.000 0.000 0.000 0.524 0.000

TimeNet 0.571 0.802 0.667 0.506 4.880

RELINFRA DeConFuse 0.535 0.868 0.662 0.528 – 12.910 – 11.870

ConvTimeNet 0.493 0.930 0.644 0.505 – 3.650

TimeNet 0.493 0.974 0.655 0.482 1.860
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Table 6 Stock-wise trading results (Continued)

Stock name Method
Computational model performance Financial evaluation

Precision Recall F1 score AUC True AR Predicted AR

RPOWER DeConFuse 0.541 0.860 0.660 0.588 – 40.030 2.300

ConvTimeNet 0.512 0.947 0.660 0.605 9.490

TimeNet 0.500 0.904 0.644 0.529 – 15.860

SAIL DeConFuse 0.541 0.748 0.628 0.498 10.540 41.720

ConvTimeNet 0.576 0.276 0.374 0.498 12.370

TimeNet 0.562 0.146 0.232 0.482 11.190

SBIN DeConFuse 0.518 0.673 0.585 0.569 – 1.370 – 3.740

ConvTimeNet 0.491 0.486 0.488 0.545 6.730

TimeNet 0.463 0.467 0.465 0.484 29.460

SIEMENS DeConFuse 0.520 0.919 0.664 0.574 – 6.930 3.220

ConvTimeNet 0.540 0.613 0.574 0.559 8.280

TimeNet 0.485 0.991 0.651 0.505 – 1.080

SOUTHBANK DeConFuse 0.492 0.492 0.492 0.628 – 34.640 – 42.640

ConvTimeNet 0.407 0.559 0.471 0.542 – 48.180

TimeNet 0.000 0.000 0.000 0.568 0.000

SRF DeConFuse 0.543 0.809 0.649 0.569 – 15.350 42.110

ConvTimeNet 0.471 0.205 0.286 0.484 – 37.280

TimeNet 0.479 0.859 0.615 0.487 – 19.230

SRTRANSFIN DeConFuse 0.575 0.780 0.662 0.564 2.810 32.140

ConvTimeNet 0.765 0.106 0.186 0.578 – 0.030

TimeNet 0.517 0.862 0.646 0.441 9.070

STAR DeConFuse 0.474 0.881 0.617 0.581 -38.200 – 34.590

ConvTimeNet 0.453 0.631 0.527 0.531 – 50.680

TimeNet 0.462 0.512 0.486 0.482 – 56.200

SUNPHARMA DeConFuse 0.476 0.908 0.625 0.521 24.640 – 0.220

ConvTimeNet 0.468 0.743 0.574 0.472 15.310

TimeNet 0.476 0.734 0.578 0.520 -15.150

SUNTV DeConFuse 0.502 0.928 0.652 0.513 – 9.190 – 7.630

ConvTimeNet 0.588 0.423 0.492 0.600 – 16.630

TimeNet 0.485 0.892 0.629 0.533 – 6.620

SYNDIBANK DeConFuse 0.450 0.786 0.572 0.552 – 52.140 – 9.720

ConvTimeNet 0.443 0.755 0.558 0.540 -17.660

TimeNet 0.222 0.020 0.037 0.533 -34.330

TATACHEM DeConFuse 0.538 0.739 0.620 0.565 8.710 8.700

ConvTimeNet 0.700 0.061 0.112 0.504 3.210

TimeNet 0.530 0.765 0.620 0.548 2.060

TATACOMM DeConFuse 0.516 0.855 0.644 0.581 2.020 – 9.330

ConvTimeNet 0.488 0.936 0.642 0.537 – 14.430

TimeNet 0.480 0.964 0.640 0.562 – 4.480

TATAGLOBAL DeConFuse 0.573 0.850 0.685 0.574 29.440 14.710

ConvTimeNet 0.530 0.733 0.615 0.564 – 6.740

TimeNet 0.536 0.850 0.660 0.534 – 9.600

TATAMOTORS DeConFuse 0.522 0.761 0.619 0.576 – 30.220 – 1.920

ConvTimeNet 0.483 0.633 0.548 0.511 – 6.140

TimeNet 0.450 0.450 0.450 0.491 – 2.090

TATAMTRDVR DeConFuse 0.478 0.854 0.610 0.518 – 35.66 – 1.030

ConvTimeNet 0.447 0.738 0.557 0.502 – 17.550

TimeNet 0.455 0.971 0.610 0.502 – 8.180

TATAPOWER DeConFuse 0.540 0.514 0.527 0.564 – 4.090 – 17.580

ConvTimeNet 0.558 0.276 0.369 0.549 – 25.530

TimeNet 0.333 0.010 0.019 0.450 – 8.550
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Table 6 Stock-wise trading results (Continued)

Stock name Method
Computational model performance Financial evaluation

Precision Recall F1 score AUC True AR Predicted AR

TATASTEEL DeConFuse 0.552 0.807 0.655 0.528 17.240 – 10.030

ConvTimeNet 0.562 0.613 0.586 0.551 – 22.210

TimeNet 0.518 0.958 0.673 0.474 – 13.700

TCS DeConFuse 0.573 0.746 0.648 0.557 33.910 2.550

ConvTimeNet 0.636 0.056 0.102 0.453 2.990

TimeNet 0.573 0.714 0.636 0.565 6.360

TECHM DeConFuse 0.555 0.835 0.667 0.480 49.080 29.110

ConvTimeNet 0.578 0.496 0.534 0.507 47.820

TimeNet 0.572 0.685 0.624 0.563 – 5.130

TITAN DeConFuse 0.562 0.744 0.641 0.562 18.960 4.930

ConvTimeNet 0.000 0.000 0.000 0.560 0.000

TimeNet 0.528 0.628 0.574 0.477 24.260

TVSMOTOR DeConFuse 0.453 0.953 0.614 0.504 – 4.950 – 11.570

ConvTimeNet 0.431 0.802 0.561 0.438 – 19.260

TimeNet 0.441 1.000 0.612 0.473 0.000

UBL DeConFuse 0.609 0.664 0.635 0.550 59.870 32.690

ConvTimeNet 1.000 0.049 0.094 0.568 17.720

TimeNet 0.600 0.221 0.323 0.515 47.160

ULTRACEMCO DeConFuse 0.569 0.757 0.649 0.585 26.850 – 0.390

ConvTimeNet 0.556 0.522 0.538 0.581 – 16.410

TimeNet 0.500 0.991 0.665 0.542 0.860

UNIONBANK DeConFuse 0.497 0.689 0.577 0.553 – 4.350 30.000

ConvTimeNet 0.453 0.709 0.553 0.494 – 25.830

TimeNet 0.408 0.194 0.263 0.511 – 34.140

UPL DeConFuse 0.480 0.897 0.627 0.553 5.600 2.450

ConvTimeNet 0.480 0.738 0.585 0.526 5.010

TimeNet 0.459 0.841 0.594 0.501 – 3.330

VEDL DeConFuse 0.475 0.864 0.613 0.599 3.610 – 4.550

ConvTimeNet 0.433 0.636 0.515 0.570 – 28.800

TimeNet 0.360 0.136 0.198 0.491 – 18.810

VOLTAS DeConFuse 0.497 0.864 0.631 0.483 60.280 8.460

ConvTimeNet 1.000 0.009 0.018 0.541 4.970

TimeNet 0.480 1.000 0.649 0.528 0.000

WIPRO DeConFuse 0.503 0.780 0.612 0.535 – 11.360 3.560

ConvTimeNet 0.532 0.615 0.570 0.562 – 13.570

TimeNet 0.492 0.872 0.629 0.575 8.590

WOCKPHARMA DeConFuse 0.516 0.899 0.656 0.559 – 7.170 18.620

ConvTimeNet 0.523 0.517 0.520 0.515 59.110

TimeNet 0.487 0.865 0.623 0.524 – 2.650

YESBANK DeConFuse 0.522 0.828 0.640 0.565 0.050 3.180

ConvTimeNet 0.494 0.664 0.566 0.523 – 7.690

TimeNet 0.507 1.000 0.672 0.559 0.000

ZEEL DeConFuse 0.557 0.900 0.688 0.535 4.660 – 8.240

ConvTimeNet 0.607 0.375 0.464 0.622 – 6.830

TimeNet 0.527 0.900 0.667 0.569 12.100
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TL: Transform learning; CTL: Convolutional transform learning; CNN: Convolutional neural network; LSTM: Long short-term
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Exchange; AUC: Area under curve; ROC: Receiver operating characteristics; NAV: Net asset value; RDF: Random decision
forest; EEG: Electroencephalogram; ECG: Electrocardiogram; AR: Annualized returns; MAE: Mean absolute error
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