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We discuss the Klein-Gordon (KG) equation using a path-integral approach in 5D space-time. We explicitly show that the KG equation in flat space-time admits a consistent probabilistic interpretation with positively defined probability density. However, the probabilistic interpretation is not covariant. In the non-relativistic limit, the formalism reduces naturally to that of the Schrödinger equation. We further discuss other interpretations of the KG equation (and their non-relativistic limits) resulting from the 5D space-time picture. Finally, we apply our results to the problem of hydrogenic spectra and calculate the canonical sum of the hydrogenic atom.

Introduction

The Klein-Gordon (KG) equation describes the quantum propagation of a spineless particle in a flat fourdimensional (4D) space-time. We denote the flat 4D metric by η µν ≡ diag(-1, 1, 1, 1) where µ, ν = 0, 1, 2, 3 and introduce cartesian coordinates x µ , where x 0 may also be written as x 0 = ct (c is the speed of light and t is the coordinate time). With the notation ∂ µ for the partial derivative with respect to x µ , the KG equation for a free particle with mass m is written as

∂ µ ∂ µ Ψ - m 2 c 2 2 Ψ = 0. (1) 
A conserved four-current j µ can be defined as ( * is symbol for complex conjugation)

j µ ∝ (Ψ * ∂ µ Ψ -Ψ∂ µ Ψ * ). (2) 
A local U(1) transformation of Ψ, equivalent to a gauge transformation of the electromagnetic field, indicates how electromagnetic interactions enter the KG equation, according to the minimal coupling recipe. In the Lorentz gauge, the KG equation with electromagnetic field becomes

∂ µ -i e c A µ ∂ µ -i e c A µ Ψ - m 2 c 2 2 Ψ = 0, (3) 
where A µ is the electromagnetic vector potential, e is the electromagnetic charge of the particle, and i is the complex unit. In the presence of the electromagnetic field, we obtain ∂ µ j µ ∝ ∂ µ (A µ Ψ * Ψ). Hence, some authors (e.g., Refs. [START_REF] Gross | Relativistic Quantum Mechanics and Field Theory[END_REF][START_REF] Greiner | Quantum Electrodynamics[END_REF]) change the definition of j µ by a term proportional to A µ Ψ * Ψ so that newly defined current density has zero divergence. 2The probabilistic, quantum-mechanical interpretation of the KG equation met with difficulties; e.g., Refs. [START_REF] Schweber | An introduction to relativistic quantum field theory[END_REF][START_REF] Blokhintsev | Space and time in the microworld[END_REF]. For this reason, the KG equation was regarded with skepticism in the early days of quantum mechanics [START_REF] Kragh | Equation with the many fathers. The Klein-Gordon equation in[END_REF]. Subsequent work, providing an alternate interpretation [START_REF] Pauli | Über die Quantisierung der skalaren relativistischen Wellengleichung[END_REF] and showing that the Schrödinger equation can be obtained as the non-relativistic limit of the KG equation [START_REF] Feshbach | Elementary Relativistic Wave Mechanics of Spin 0 and Spin 1/2 Particles[END_REF], revived interest in the KG equation. There are two major approaches to taking the non-relativistic limit of the KG equation.

One approach proceeds by separating the small and large components of the wavefunction; then particle and antiparticle states, satisfying the Schrödinger equation, are identified using the Foldy-Wouthysen procedure [START_REF] Gross | Relativistic Quantum Mechanics and Field Theory[END_REF][START_REF] Feshbach | Elementary Relativistic Wave Mechanics of Spin 0 and Spin 1/2 Particles[END_REF][START_REF] Bjorken | Relativistic quantum mechanics[END_REF][START_REF] Grandy | Relativistic Quantum Mechanics of Leptons and Fields[END_REF][START_REF] Greiner | Relativistic Quantum Mechanics[END_REF]. In the other approach, one solves for the partial derivative of the wavefunction with respect to time using a square root, which is further interpreted using Taylor expansion. The Schödinger equation results in the limit c → ∞ [START_REF] Yndurain | Relativistic Quantum Mechanics and Introduction to Field Theory[END_REF][START_REF] Strange | Relativistic Quantum Mechanics[END_REF][START_REF] Moss | Advanced molecular quantum mechanics. An introduction to relativistic quantum mechanics and the quantum theory of radiation[END_REF]. Claims are that the two approaches are equivalent [START_REF] Wu | Relativistic Quantum Mechanics and Quantum Fields[END_REF]. More recent work [START_REF] Bechouche | Nonrelativistic limit of Klein-Gordon-Maxwell to Schrodinger-Poisson[END_REF][START_REF] Masmoudi | Nonrelativistic limit from Maxwell-Klein-Gordon and Maxwell-Dirac to Poisson-Schrodinger[END_REF] shows that, in the limit c → ∞, the system formed by the KG and Maxwell equations (where j µ is interpreted as electric current density and serves as coupling) yields, as leading order, the Schrödinger equation together with the Poisson equation for the electric potential, A 0 . A third approach, less popular, is performing an asymptotic expansion in the kinetic energy, which is much smaller than the rest energy, E -mc 2 mc 2 [START_REF] Greiner | Relativistic Quantum Mechanics[END_REF]. A discussion of the KG equation using initial and final boundary conditions for the scalar field, and touching ground with the Schrödinger equation, can be found in Ref. [START_REF] Wharton | A Novel Interpretation of the Klein-Gordon Equation[END_REF] and references therein.

Here we re-evaluate the KG equation using a 5D space-time with a space-like fifth dimension that is neither compact nor Planckian [START_REF] P S Wesson | Space-time-matter[END_REF][START_REF] Kleidis | On the adiabatic expansion of the visible space in a higher-dimensional cosmology[END_REF]. Following Kaluza's paper [START_REF] Kaluza | Zum Unitätsproblem der Physik[END_REF], it has been shown that, if the 5D geometry is independent of the fifth coordinate, the 5D gravitational equations break into 4D equations for the gravitational and electromagnetic fields [START_REF] P S Wesson | Space-time-matter[END_REF]. Other works on field equations (e.g., see Refs. [START_REF] P S Wesson | Space-time-matter[END_REF][START_REF] Kleidis | On the adiabatic expansion of the visible space in a higher-dimensional cosmology[END_REF][START_REF] Fariña-Busto | Some new cosmological results of quadratic Lagrangians[END_REF][START_REF] Ibáez | Radiative isotropic cosmologies with extra dimensions[END_REF][START_REF] Davidson | Black holes as windows to extra dimensions[END_REF]) and geodesic motion [START_REF] P S Wesson | Space-time-matter[END_REF] are also based on the idea that the existence of extra dimensions brings new physics to ordinary 4D space-time. Particularly, a discussion of geodesic motion and classical tests of 4D general relativity adapted to the 5D space-time geometry employed here are summarized in Ref. [START_REF] P S Wesson | Space-time-matter[END_REF]. However, we interpret the 5D geometry differently [START_REF] Breban | Interpretation of the five dimensional quantum propagation of a spinless massless particle[END_REF]. We assume that an observer perceives 4D geometrically, which, in principle, could be any four dimensions out of five, while the extra dimension manifests indirectly. Hence, in our case, the relation between our theory and experiment does not follow the paved way of the classical tests of general relativity.

In Ref. [START_REF] Breban | Interpretation of the five dimensional quantum propagation of a spinless massless particle[END_REF], we used a 5D space-time to show both how the KG equation emerges from a relativistic path integral (Sec. 5), and the Schrödinger equation emerges from the non-relativistic limit of the same path integral (Sec. 3.2). Here we demonstrate explicitly that the Schrödinger equation results by taking the non-relativistic limit of the KG equation. We reinterpret the KG equation, revisiting its probabilistic, quantum-mechanical interpretation.

The KG equation in 5D space-time

We postulate that, given a 5D space-time with the metric h AB = diag(-1, 1, 1, 1, 1) where A, B, ... = 0, 1, 2, 3, 5 (µ, ν, ... go over 4 out of the 5 values 0, 1, 2, 3, 5-to be specified-and j, k, ... = 1, 2, 3), all quantum propagation takes place on 5D null paths. Consider any two causally ordered events 1 and 2, with 1 in the past of 2, which we write as 1 ≺ 2. Denote the coordinates of 1 and 2 by x A

(1) and x A (2) , respectively. Then, the sum over 5D null paths between 1 and 2, denoted here by R(x A (1) , x A (2) ), is positively defined, conformally invariant, and has the status of a microcanonical sum, determining the particle propagation between 1 and 2 [START_REF] Breban | Interpretation of the five dimensional quantum propagation of a spinless massless particle[END_REF]. Null path integrals satisfy a selfconsistency relation virtue to their geometric interpretation

R(x A (1) , x A (2) ) = 1≺3≺2 |h|d 5 x (3) R(x A (1) , x A (3) )R(x A (3) , x A (2) ). (4) 
We postulate that observers perceive geometrically only four dimensions; the fifth dimension (e.g., x 5 , x 0 , etc.) manifests indirectly through its consequences. Thus, a complete description of the physics in the 5D space-time requires measurements of additional entities than 4D space-time events. The interpretation of the 5D space-time by a 4D observer is greatly facilitated by symmetry. In particular, if the 5D geometry has a space-like Killing vector then the 5D physics can be interpreted as a 4D quantum mechanics, while if the 5D geometry has a time-like Killing vector then the 5D geometry can be interpreted as a 4D statistical mechanics [START_REF] Breban | Interpretation of the five dimensional quantum propagation of a spinless massless particle[END_REF].

Starting from Eq. ( 4), we gave a heuristic derivation for how 5D null path integrals satisfy the following partial differential equation [START_REF] Breban | Interpretation of the five dimensional quantum propagation of a spinless massless particle[END_REF] 

∂ A ∂ A R ≡ -∂ 2 0 R + ∇ 2 R + ∂ 2 5 R = 0, (5) 
in a flat 5D space-time with the metric η AB = diag(-1, 1, 1, 1, 1) in pseudocartesian coordinates x A ; ∂ A stood for the partial derivative with respect to x A (2) . 3 The KG equation (1) resulted from Fourier transforming Eq. ( 5) with respect to x 5 and conjugating x 5 with the inverse Compton wavelength λ -1 = mc/ . Obtaining equations similar to [START_REF] Kragh | Equation with the many fathers. The Klein-Gordon equation in[END_REF] for path integrals in arbitrary curved space-times is cumbersome.

Here we extend the discussion to a special class of 5D space-times that can be foliated into conformally flat 4D space-times (i.e., the 4D conformal factor is the inverse square lapse of the foliation) with superimposed electromagnetic fields, fit for describing many experimental setups. These space-times represent just local approximations of more realistic geometric constructs including non-trivial gravitational fields, whose metrics satisfy suitable field equations [START_REF] P S Wesson | Space-time-matter[END_REF][START_REF] Breban | Interpretation of the five dimensional quantum propagation of a spinless massless particle[END_REF].

Removing the conformal factor from the metric as it is irrelevant for null-path counting, we have hAB =

η µν + q 2 c 4 A µ A ν q c 2 A µ q c 2 A ν 1 , hAB = η µν -q c 2 A µ -q c 2 A ν 1 + q 2 c 4 A µ A ν , (6) 
where the µ, ν, ... indices go over 0, 1, 2, 3 and are raised with η µν . This space-time may be obtained from the 5D flat one through a non-holonomic transformation of coordinates

dy µ = dx µ , (7) 
dy 5 = dx 5 - q c 2 A µ (x ν )dx µ .
If A µ dx µ is integrable, then the coordinate transformation is holonomic; i.e., the space-time remains flat, containing an electromagnetic field that is pure gauge. In the Lorentz gauge, applying transformation (7) to Eq. ( 5) yields

∂ µ - q c 2 A µ ∂ 5 ∂ µ - q c 2 A µ ∂ 5 R + ∂ 5 ∂ 5 R = 0. ( 8 
)
We further note that

∂ µ - q c 2 A µ ∂ 5 ∂ µ - q c 2 A µ ∂ 5 R + ∂ 5 ∂ 5 R = ˜ A ˜ A R, (9) 
where ˜ A is the covariant derivative corresponding to the metric hAB (see Appendix A). Hence, the 5D KG equation can be summarized in covariant fashion using 5D parallel transport alone

˜ A ˜ A R = 0. (10) 
A 5D covariant probabilistic interpretation of Eq. ( 10) for the propagation of a single quantum particle remains challenging. However, a scalar probability density can be naturally defined. First, we note that the 5D null path intregrals R(x A (1) , x A (2) ) are positively defined for all pairs of events 1 and 2, 1 ≺ 2. Second, Eq. ( 4) is formally identical to the selfconsistency relation of a conditional probability. Hence, up to proper normalization, we may intrepret R(x A (1) , x A (2) ) as the conditional probability that a particle at event 1 reaches event 2. The probability density that the particle is at event 2 is thus given by J-( 2)

|h|d 5 x (1) R(x A (1) , x A (2) 
)

J+(2) |h|d 5 x (3) R(x A (2) , x A (3) ) ∀1≺3 |h|d 5 x (1) d 5 x (3) R(x A (1) , x A (3) ) , (11) 
where J ± (2) denote the causal future and past of event 2, respectively. However, it appears impossible to construct a probability 5-current density having this scalar field as its zeroth component.

The KG equation in quantum mechanics

The quantum mechanics picture of the 5D propagation applies in the case where the 5D metric is x 5independent. Computing the path integral R(x A (1) , x A (2) ) in the 5D Lorentzian manifold with the metric hAB is now equivalent to computing the following integral

Ψ ± (λ -1 ; x µ (1) , x µ (2) ) = [d 4 x] exp iλ -1 x µ (2) 
x µ

(1)

± -η µν dx µ dx ν - q c 2 A ρ dx ρ (12) 
of paths between x µ (1) and x µ (2) , the 4D projections of x A (1) and x A (2) , respectively, in a 4D non-Lorentzian curved manifold with infinitesimal distance

ds 4 ± = ± -η µν dx µ dx ν - q c 2 A ρ dx ρ ,
if the two neighboring events are causally ordered and -ds 4 ± if they are inverse causally ordered [START_REF] Breban | Interpretation of the five dimensional quantum propagation of a spinless massless particle[END_REF]. Hence, computing the path integral R(x

A (2) , x A (1) ) is equivalent to computing Ψ * ± (λ -1 ; x µ (1) , x µ (2)
) [START_REF] Breban | Interpretation of the five dimensional quantum propagation of a spinless massless particle[END_REF]. It is important to note that Ψ ± is not a scalar field on the 4D manifold since a transformation of coordinates that reverses causality implies a complex conjugation of Ψ ± .

A differential equation for Ψ ± (λ

-1 ; x µ (1) , x µ (2)
) is obtained by Fourier transforming Eq. ( 8), which results in the 4D KG equation for a particle in electromagnetic field [START_REF] Schweber | An introduction to relativistic quantum field theory[END_REF]. The probability density of localizing the quantum particle at a 4D space-time event may be constructed starting from the sum over loops in the 4D manifold

P(λ -1 ; x µ (1) , x µ (2) ) ≡ Ψ ± (λ -1 ; x µ (1) , x µ (2) )Ψ ± (λ -1 ; x µ (2) , x µ (1) ) = Ψ ± (λ -1 ; x µ (1) , x µ (2) )Ψ * ± (λ -1 ; x µ (1) , x µ (2) ). ( 13 
)
Note that P is invariant under gauge transformations of the electromagnetic field and, just like R, satisfies the self-consistency relation of conditional probability

P(λ -1 ; x µ (1) , x µ (2) ) = 1≺3≺2 |η|d 5 x (3) P(λ -1 ; x µ (1) , x µ (3) )P(λ -1 ; x µ (3) , x µ (2) ), (14) 
virtue to its geometrical interpretation. Hence, the probability density that a particle undergoing causal propagation is localized at the 4D event x µ (2) may be defined as

∀1≺2 |η|d 4 x (1) Ψ ± (λ -1 ; x µ (1) , x µ (2) )Ψ * ± (λ -1 ; x µ (1) , x µ (2) ) ∀1≺2 |η|d 4 x (1) d 4 x (2) Ψ ± (λ -1 ; x µ (1) , x µ (2) )Ψ * ± (λ -1 ; x µ (1) , x µ (2) ) , (15) 
and the probability density that a particle undergoing anti-causal propagation is localized at the 4D event x µ (1) may be defined as

∀1≺2 |η|d 4 x (2) Ψ ± (λ -1 ; x µ (1) , x µ (2) )Ψ * ± (λ -1 ; x µ (1) , x µ (2) ) ∀1≺2 |η|d 4 x (1) d 4 x (2) Ψ ± (λ -1 ; x µ (1) , x µ (2) )Ψ * ± (λ -1 ; x µ (1) , x µ (2) 
)

.

However, like in Sec. 2, a covariant form of the current density remains elusive. In what follows, we explain the relationship between the KG and Schrödinger equations and discuss the implications for the probabilistic interpretation.

Probabilistic interpretation for the KG equation without electromagnetic field

Let us start with the KG equation for a free particle with 5-momentum p A (n.b., Eq. ( 5) yields p A p A = 0) in a 5D flat space-time; i.e., Eq. ( 5). Using the light-cone coordinates

y 0 = x 5 -x 0 ≡ cτ, y j = x j , y 5 = (x 0 + x 5 )/2, ( 17 
)
we obtain

∂ ∂τ ∂ ∂y 5 R = - c 2 ∇ 2 R. ( 18 
)
Performing a Fourier transform with respect to y 5 brings the KG equation given by Eq. ( 18) in the form of the Schrödinger equation

i ∂ ∂τ Ψ = - c λ 2 ∇ 2 Ψ, ( 19 
)
where Ψ is the Fourier transform of R with respect to y 5 and λ-1 is conjugated to y 5 ; n.b., λ is defined over the whole real axis. It is now straightforward to define a four-current density for the KG equation

ĵτ = Ψ * Ψ, ĵk = c λ 2i ( Ψ * ∂ k Ψ -Ψ∂ k Ψ * ), (20) 
satisfying

∂ ĵτ ∂τ + ∂ k ĵk = 0. ( 21 
)
It is important to note that ( ĵτ , ĵk ) is not a four vector. While 5D and 4D covariance are lost in Eqs. ( 20) and ( 21), the probability density, ĵτ = Ψ * Ψ, has an appealing geometrical interpretation, in the spirit of the scalar probability density field discussed in Sec. 2.1.

The non-relativistic limit of Eq. ( 19) in the quantum mechanics picture, where an observer perceives x µ geometrically and the momentum along x 5 as mass, is as follows. Taking the limit |p j | |p 0 | and |p j | |p 5 |, we obtain p 0 ≈ ±p 5 or ( /i)∂ 0 Ψ ≈ ±p 5 Ψ; i.e., a non-relativistic particle starting at the origin of the coordinate frame is remains localized around x 0 ≈ ±x 5 (see also the discussion in Ref. [START_REF] Breban | Interpretation of the five dimensional quantum propagation of a spinless massless particle[END_REF], Sec. 3.2). Thus, in the non-relativistic limit, y 5 ≈ x 5 , λ ≈ mc/ and Eq. ( 19) becomes the Schrödinger equation for a free particle

i ∂ ∂τ Ψ = - 2 2m ∇ 2 Ψ, ( 22 
)
where τ is the coordinate time corresponding to the non-relativistic kinetic energy only. 4 Equations ( 20) and ( 21) yield the well-known formulae for the probability and current density of the Schrödinger equation. The probabilistic interpretation carries over naturally from the KG equation to the Schrödinger equation and yields the expected formalism.

Probabilistic interpretation for the KG equation with electromagnetic field

Equation (8) can also be brought in a form that is linear in the derivative with respect to the zeroth coordinate and could serve for a 5D probabilistic interpretation. Straightforward algebra shows that this requires a coordinate transformation x A → y A such that ∂y 0 /∂x A is a 5D null vector; n.b., this condition is satisfied by Eqs. [START_REF] Wharton | A Novel Interpretation of the Klein-Gordon Equation[END_REF]. However, the reduction to 4D by a Fourier transform is generally not justified because hAB depends on y 5 .

In what follows, we restrict our discussion to the non-relativistic limit in the presence of weak electromagnetic fields. The coordinates y A (17) are only approximate light-cone coordinates, but they suffice in this case. We obtain

-∂ 0 - q c 2 A 0 ∂ 5 2 + ∂ 2 5 + ∂ j - q c 2 A j ∂ 5 2 = -2 ∂ 2 ∂y 0 ∂y 5 + 2 q c 2 A 0 ∂ 0 ∂ 5 - q c 2 2 A 2 0 ∂ 2 5 +∂ 2 j -2 q c 2 A j ∂ j ∂ 5 + q c 2 2 A 2 j ∂ 2 5 - q c 2 (∂ µ A µ )∂ 5 . ( 23 
)
Replacing the Lorentz gauge (i.e., ∂ µ A µ = 0) with the Coulomb gauge (i.e., ∂ j A j = 0), using y 5 ≈ x 5 , and taking a Fourier transform with respect to x 5 , Eq. ( 8) becomes

- i ∂Ψ ∂τ = 1 2m i ∇ - mq c - → A 2 Ψ - i (mq) mc A 0 ∂ 0 Ψ + (qm) 2 2mc 2 A 2 0 Ψ. ( 24 
)
In the limit of weak fields, we drop the term quadratic in A 0 and use the approximation ( /i)∂ 0 Ψ ≈ p 5 Ψ in the term linear in A 0 , which gives -i (mq)A 0 ∂ 0 Ψ/mc ≈ (mq)A 0 Ψ. Hence, Eq. ( 24) yields the Schrödinger equation, obtained as the non-relativistic limit of the KG equation.

The KG equation in statistical mechanics

We first analyze the case of the equation without electromagnetic field. A Laplace transform of Eq. ( 18) with respect to τ yields

∂ ∂y 5 ψ = Λ 2 ∇ 2 ψ. (25) 
With the notation y5 ≡ cu, in the non-relativistic limit where y 5 ≈ x 5 , Eq. ( 25) becomes the Fokker-Planck equation (see [START_REF] Breban | Interpretation of the five dimensional quantum propagation of a spinless massless particle[END_REF], Sec. 4.2), the core of statistical mechanics

∂ ∂u ψ = cΛ 2 ∇ 2 ψ, (26) 
where Λ = 2/(βζc), β = 1/(k B T ) and ζ is the drag coefficient.

We now discuss the non-relativistic limit in the presence of electromagnetic field. Statistical mechanics results in the particular case where the metric hAB is x 0 -independent (see Ref. [START_REF] Breban | Interpretation of the five dimensional quantum propagation of a spinless massless particle[END_REF], Sec. 4); thus, we further request that ∂ 0 A µ = 0. Since the change of coordinates ( 17) yields

-∂ 0 - q c 2 A 0 ∂ 5 2 + ∂ 2 5 = -2 ∂ 2 ∂y 0 ∂y 5 + 2 q c 2 A 0 ∂ 0 ∂ 5 - q c 2 2 [A 2 0 ∂ 2 5 -A 0 (∂ 5 A 0 )∂ 5 ],
assuming that the particle has a well-defined mass (i.e., ∂ 5 A µ = 0), and the limit of weak fields bring the non-relativistic limit of Eq. ( 9) in the following form

5 2 ∂ 2 ∂(cu)∂y 0 R = ∇ - q c 2 - → A ∂ 0 2 R + 2 q c 2 A 0 ∂ 2 0 R. (27) 
A Laplace transform with respect to time yields

- ∂ψ ∂u = -1 2M -∇ + M q c - → A 2 ψ -(M q)A 0 ψ, ( 28 
)
where M is defined as Λ ≡ /(M c).

Other interpretations of the KG equation

Other changes of coordinates will bring the KG equation in the form of Eq. ( 18), as well. For example, the coordinate transformation

y 0 = x 3 -x 0 ≡ cτ z , y 1 = x 1 , y 2 = x 2 , y 3 = (x 0 + x 3 )/2, y 5 = x 5 , (29) 
and, assuming that all fields are independent of y 3 , a Fourier transform with respect to y 3 ≡ z yield, similarly to the calculations in Sec. 2.1, a Schrödinger-like equation for ultrarelativistic particles. We perform another Fourier transform with respect to x 5 to make the equation easier to interpret

i 1 - 2(mq)A z3 cp z ∂ ∂τ z Ψ z = c 2p z i ∂ 1 - mq c A z1 2 + i ∂ 2 - mq c A z2 2 Ψ z +(mq)A z0 Ψ z - (mq) 2 cp z A z0 A z3 Ψ z - m 2 c 3 2p z Ψ z , (30) 
where A zµ is the transformed electromagnetic field

A z0 = A 3 -A 0 A z1 = A 1 , A z2 = A 2 , A z3 = (A 0 + A 3 )/2, ( 31 
)
p z is the projection of the 5-momentum of the ultrarelativistic particle along the z-axis, and Ψ z is the Fourier transform of R with respect to both z and x 5 . Equation ( 30) describes the quantum motion of a particle of mass m transverse to the z direction and generalizes Eq. ( 7.2) in Ref. [START_REF] Breban | Interpretation of the five dimensional quantum propagation of a spinless massless particle[END_REF].

The current density has the following components

j zτ = Ψ * z Ψ z 1 - 2(mq)A z3 cp z - 2(mq) cp z dτ z Ψ * z Ψ z ∂A z3 ∂τ z , ( 32 
)
j z1 = c 2ip z (Ψ * ∂ 1 Ψ -Ψ∂ 1 Ψ * ), ( 33 
)
j z2 = c 2ip z (Ψ * ∂ 2 Ψ -Ψ∂ 1 Ψ * ), (34) 
and satisfies the 3D continuity equation.

The hydrogenic atom from a 5D perspective

The hydrogenic system is particularly suited for discussion here due to its extensively developed quantum theory in both the relativistic and non-relativistic regimes. The electron propagation problem can be set up in a 5D manifold with the metric hAB [START_REF] Pauli | Über die Quantisierung der skalaren relativistischen Wellengleichung[END_REF] where the electromagnetic potential is A µ = (Ze/x j x j , 0 j ). Hence, the following key physical quantities are introduced: the speed of light in vacuum c, the electron specific charge q, and, due to the translational symmetries of hAB along x 5 and x 0 , two conjugate wavelengths λ and λ . As mentioned previously, λ stands for the Compton wavelength of the quantum particle; λ ≡ c/E is associated to energy conservation.

Energy spectrum

The energy levels of the hydrogenic atom described by the KG equation are given by [START_REF] Itzykson | Quantum Field Theory[END_REF] 

E nl = mc 2 1 + Z 2 α 2 [n -l -1/2 + (l + 1/2) 2 + Z 2 α 2 ] 2 -1/2 , ( 35 
)
where α = e 2 /( c) is the fine-structure constant, n = 1, 2, ... and l = 0, 1, ..., n. The non-relativistic limit of Eq. ( 35) can be obtained formally as α → 0 [START_REF] Itzykson | Quantum Field Theory[END_REF]. It is important to note that the principles of the KG equation do not provide a physical interpretation of the hydrogenic energy spectrum. The interpretation requires the principles of photonics, particularly the Ritz principle. Using 5D physical quantities, Eq. (35) becomes

λ nl λ 2 -1   n -l - 1 2 + l + 1 2 2 + λ * λ 2   2 = λ * λ 2 , (36) 
where we introduced an additional length scale, λ * ≡ q(Ze)/c 2 , resulting from the 5D metric parameterization and equal to the classical electron radius multiplied by Z; n.b., λ * /λ = Zα. Thus, energy quantization (36) may be regarded as a matching condition between the metric length scale, λ * , and the two wavelengths of particle propagation, λ and λ . In statistical mechanics, the coordinate x 0 is handled with a Laplace transform. To recover the traditional formalism of statistical mechanics, another Laplace transform is performed with respect to x 5 [START_REF] Breban | Interpretation of the five dimensional quantum propagation of a spinless massless particle[END_REF]. The quantization condition becomes

Λ Λ nl 2 -1   n -l - 1 2 + l + 1 2 2 - λ * Λ nl 2   2 = - λ * Λ nl 2 . ( 37 
)
Not only for the proof of concept, but also because it works well for the hydrogen atom, we take the nonrelativistic limit of Eq. ( 37)

Λ nl ≈ Λ 1 + 1 2n 2 λ * Λ 2 , (38) 
which, with the notation e nl = c/Λ nl and substituting Λ and λ * , becomes

e nl ≈ M c 2 - M c 2 (Ze) 2 q 2 M 2 2n 2 2 c 2 ≡ e n , (39) 
reminiscent of the traditional formula for the discrete hydrogenic energy levels.6 

Canonical sum

The energy levels obtained in the statistical interpretation may be used for constructing a canonical sum, defined as the trace of the Fokker-Planck propagator, integrated over all space-time (see Ref. [START_REF] Breban | Interpretation of the five dimensional quantum propagation of a spinless massless particle[END_REF], Sec. 4.2). Its non-relativistic approximation can be obtained by adapting the calculations performed by Blinder for the traditional model of the hydrogenic atom [START_REF] Blinder | Canonical partition function for the hydrogen atom via the Coulomb propagator[END_REF].

Integrating the Fokker-Planck propagator over all space-time leads to a divergent result. To maintain the dependence on volume in the canonical sum and, simultaneously, resolve the divergence problem, Blinder [START_REF] Blinder | Canonical partition function for the hydrogen atom via the Coulomb propagator[END_REF] considered the hydrogen atom at the center of a large sphere of radius R and performed the integration over the volume of the sphere. He also assumed that, with good approximation, the energy eigenfunctions of the hydrogenic atom in infinite volume can be used for those of the atom trapped in the spherical cavity. Although appealing, this ansatz has important consequences for the interpretation of our statistical mechanics defined on a 4D Riemannian background. First, Blinder's ansatz may only be justified for the non-relativistic approximation since it breaks general covariance. Second, it requires a particular treatment of the canonical sum over continuous states. Our statistical mechanics describes particles at rest (i.e., whose initial and final events coincide). A free particle in an infinite volume is at rest if and only if it has vanishing kinetic energy. The situation is substantially different if the free particle is trapped in a cavity. In this case, there exist at-rest particle states of non-vanishing kinetic energy: i.e., standing waves created within the cavity. However, computing the canonical sum over these states is outside the principled path described for our 4D covariant statistical mechanics; for this, we adopt Blinder's approach [START_REF] Blinder | Canonical partition function for the hydrogen atom via the Coulomb propagator[END_REF], as explained below.

We consider the canonical sum for the hydrogenic atom, Z, split into the contributions due to the continuous and discrete parts of the energy spectrum, Z c,d , respectively

Z = Z c + Z d . (40) 
Introducing spherical coordinates over the 3D space covered by x 1,2,3 , Z c can be written as

Z c = R 0 dr r 2 π 0 dθ sin(θ) 2π 0 dφ ∞ 0 dk l,m |ψ klm (r, θ, φ)| 2 e -ue k / , (41) 
where e k = M c 2 + 2 k 2 /(2M ) are the eigenvalues of the continuous spectrum and ψ klm (r, θ, φ) are the corresponding eigenfunctions. Similarly, Z d is given by

Z d = R 0 dr r 2 π 0 dθ sin(θ) 2π 0 dφ n,l,m |ψ nlm (r, θ, φ)| 2 e -uen/ , (42) 
where e n are the eigenvalues of the discrete spectrum and ψ nlm (r, θ, φ) are the corresponding eigenfunctions. Adapting Blinder's results [START_REF] Blinder | Canonical partition function for the hydrogen atom via the Coulomb propagator[END_REF] to our case, we obtain

Z c = V e -η Λ 3 (2πη) 3/2 - e -η 2 n 1 n 2 exp - n 2 π 4/3 ucΛ 2V 2/3 exp λ * Λ 2 η 2n 2 erfc λ * Λ η 2n 2 -1 , (43) 
where erfc(•) is the complementary error function, η ≡ uc/Λ and V is the volume of the sphere with radius R. Furthermore, we have

Z d = n 1 e -uen/ R 0 drD n (r), (44) 
where the function D n (•) is given in terms of Whittaker functions M n,1/2 (•) and their derivatives with respect to the argument, denoted by primes,

D n (r) = 4r 2 n 3 ρ 3 M n,1/2 2r nρ 2 -M n,1/2 2r nρ M n,1/2 2r nρ ; ρ ≡ Λ 2 λ * . (45) 
In Appendix B, we show that the series in Eqs. ( 43) and (44) converge; our analysis of the function D n (•) differs from Blinder's [START_REF] Blinder | Canonical partition function for the hydrogen atom via the Coulomb propagator[END_REF].

A thermodynamical interpretation of the hydrogenic atom may be proposed in analogy to that of a blackbody cavity containing a single photon. One may think of the bound electron trapped in the hydrogenic potential as being macroscopically at rest, undergoing transitions in the rest mass, according to a discrete spectrum.

To complete the interpretation of the 4D statistical picture, we need to provide a formula for the quantum of physical time u in terms of experimentally accessible quantities. This is done empirically; in Ref. [START_REF] Breban | Interpretation of the five dimensional quantum propagation of a spinless massless particle[END_REF], a comparison to Feynman's version of statistical mechanics in the case of free particles led to u = 2m/ζ. While this result may be adopted here in the case where Ze = 0, it is unclear whether it holds in the case of the hydrogenic atom. Comparison between the thermodynamical results resulting from Z and experiment may offer an estimate of u, despite spin-related effects revealed by experimental data. This remains a topic for future work.

Discussion and conclusion

In 1934, Pauli and Weisskopf [START_REF] Pauli | Über die Quantisierung der skalaren relativistischen Wellengleichung[END_REF] provided a physical interpretation for the KG equation that is still in use today. Within the formalism of quantum field theory in Minkowski space-time, they interpreted j µ (2) as current density of electric charge. They used complex conjugation to transform particle states into antiparticle states and vice versa. They further showed that j µ consists of two terms, one due to particles and another one due to antiparticles, such that a complex conjugation of the states changes j µ into -j µ .

The interpretation of the KG equation proposed here has common features to that proposed earlier by Pauli and Weisskopf [START_REF] Pauli | Über die Quantisierung der skalaren relativistischen Wellengleichung[END_REF]. Particularly, we showed that causal and anti-causal propagators are linked by complex conjugation. This feature appeared naturally in our theory, owing to a 4D non-Lorentzian spacetime. This space-time occurred from foliating a 5D Lorentzian manifold, while imposing that the count of null paths between two points, 1 and 2, in the 5D Lorentzian manifold is linked by Fourier transformed to a sum over time-like paths between the 4D projections of the points 1 and 2 in the non-Lorentzian spacetime [START_REF] Breban | Interpretation of the five dimensional quantum propagation of a spinless massless particle[END_REF]. In our 4D non-Lorentzian space-time, a transformation of coordinates that reverses causality (i.e., turns particles into antiparticles, according to the Feynman-Stueckelberg interpretation) is equivalent to a complex conjugation of the KG wavefunction and, therefore, a change in sign of j µ . In this regard, it may be justified to interpret j µ as current density of electric charge.

Following previous work, we discussed physical interpretations resulting from breaking covariance of a 5D wave equation, which is satisfied by the count of null paths in certain 5D Lorentzian space-times. When the 5D metric is independent of the fifth, space-like coordinate, the KG equation resulted naturally by foliation and Fourier transform, as previously noted for the flat space-time [START_REF] Seahra | Null geodesics in five-dimensional manifolds[END_REF]. To take the non-relativistic limit of the KG equation in a flat space-time, we used light-cone coordinates to bring the 5D wave equation in the form of the Schrödinger equation. This approach has two advantages: (a) transparent non-relativistic limit, and (b) natural (yet, non-covariant) probabilistic interpretation of the KG equation. We further showed how the Schrödinger equation resulted as the non-relativistic limit of the KG equation in the case of weak electromagnetic fields. Then we discussed other interpretations of the 5D wave equation in the case where the 5D metric is not only independent of x 5 , but also x 0 and x 3 , respectively. As an application of this A A 5D covariant form of the KG equation in certain space-times

We assume that the null path integral R(x B ) satisfies the following equation defined on the surface of a 5D null cone

˜ A ˜ A R(x B ) = 0, ( 46 
)
where ˜ A is the covariant derivative of the manifold with the metric hAB . We show that Eq. ( 46) yields the well-known KG equation in the presence of electromagnetic field [START_REF] Schweber | An introduction to relativistic quantum field theory[END_REF]. Considering the path integral R(x B ) to be scalar with respect to the covariant derivative, we have

˜ A ˜ A R(x D ) = hAB ∂ A ∂ B R(x D ) + hAB ΓC AB ∂ C R(x D ), (47) 
where ΓC AB are the Christoffel symbols of the metric hAB ; see [START_REF] P S Wesson | Space-time-matter[END_REF], Sec. 5.6 for the general formulae. Using the notation N µ ≡ -q c 2 A µ , the right term in the RHS can be further expanded as

hAB ΓC AB ∂ C = hµν ΓC µν ∂ C + 2 hµ5 ΓC µ5 ∂ C = η µν Γρ µν ∂ ρ + η µν Γ5 µν ∂ 5 + 2N µ Γρ µ5 ∂ ρ + 2N µ Γ5 µ5 ∂ 5 ,
where

η µν Γρ µν ∂ ρ = N µ (∂ µ N ν -∂ ν N µ )∂ ν , η µν Γ5 µν ∂ 5 = -(∂ µ N µ )∂ 5 , 2N µ Γρ µ5 ∂ ρ = -η µν Γρ µν ∂ ρ , 2N µ Γ5 µ5 ∂ 5 = 0.
Equation (47) becomes

˜ A ˜ A R = [∂ µ ∂ µ + 2N µ ∂ µ ∂ 5 + (N µ N µ + 1)∂ 5 ∂ 5 -(∂ µ N µ )∂ 5 ]R = 0. ( 48 
)
Applying a Fourier transform with respect to x 5 and re-grouping the differential operators, we obtain

∂ µ -i qm c A µ ∂ µ -i qm c A µ Ψ - m 2 c 2 2 Ψ -2i qm c (∂ µ A µ )Ψ = 0, (49) 

It is unclear whether a fix is needed. As is, current conservation already holds for scattering systems and stationary states (i.e., Ψ * Ψ is constant at infinity), and situations where the electromagnetic field vanished at infinity.

It can also be shown that R satisfies Eq. (5) in the first argument, x A (1) , as well.

The phase of a single wave of the Schrödinger equation is -i[τ p j p j /(2m) -p j x j ]/ . The non-relativistic limit of the

5D phase yields ip A x A / ≈ -i[t(E -mc 2 ) -p j x j ]/ ≈ -i[tp j p j /(2m) -p j x j ]/ ; thus, the substitution t → τ yields the non-relativistic phase.

We make use of the zeroth order non-relativistic approximation ∂ 5 ψ ≈ ∂ 0 ψ in the terms that are first order in the electromagnetic field Aµ.

In terms of temperature, the non-relativistic condition, λ * /Λ 1, becomes T (Ze)qζ/(2ck B ).

formalism, we discussed the spectrum of the hydrogenic atom. Using the fact that the 5D wave equation can be interpreted as a Focker-Planck equation in the case where the 5D metric is independent of both x 5 and x 0 , we calculated the canonical sum of the hydrogenic atom.

where Ψ is the Fourier transform of R with respect to x 5 , and m is the mass of the quantum particle. In the Lorentz gauge, Eq. (49) represents the KG equation for a particle with electric charge qm ≡ e in electromagnetic field [START_REF] Schweber | An introduction to relativistic quantum field theory[END_REF]. The above derivation makes use only of the covariant derivative of a 5D manifold (rather than gauge covariant derivatives) where the electromagnetic and gravitational fields are on equal footage. In fact, the electromagnetic field appears as a gauge field only when the 5D manifold is given a 4D interpretation.

B Convergence of the canonical sum

Z c is obviously convergent since the factor within braces in Eq. ( 43) approaches -[λ * /(nΛ)] 2η/π as n → ∞. An argument for the convergence of Z d is as follows. The function

being interpreted as the degeneracy of the nth discrete energy level [START_REF] Blinder | Generalized Unsöld theorem and radial distribution function for hydrogenic orbitals[END_REF]. Hence, we immediately obtain

In fact, Blinder noted that, as n → ∞, D n (r) approaches a universal reduced form [START_REF] Blinder | Generalized Unsöld theorem and radial distribution function for hydrogenic orbitals[END_REF]. In particular, we have

Proposition. Consider ρ/2 for the unit length. The universal function

Proof. We proceed by taking the limit of

as n → ∞. An asymptotic form for the Whittaker function M n,1/2 (nr) can be obtained via Laguerre polynomials L

n (nr) since

Asymptotic expansions for the Laguerre polynomials developed by Erdélyi [START_REF] Erdélyi | Asymptotic forms for Laguerre polynomials[END_REF], later extended by Muckenhoupt [START_REF] Muckenhoupt | Asymptotic forms for Laguerre polynomials[END_REF], followed by expansions for the resulting Bessel and Airy functions, yield

where

Plugging Eqs. ( 56) and (57) into Eq. ( 55), we obtain the required asymptotic form of M n,1/2 (nr) for taking the limit of Eq. (54). Straightforward calculation yields Eq. (53). 12

The convergence behavior of Z d can be described using D(r)

The effect of considering the hydrogenic atom in a large spherical cavity becomes now transparent. For n R/4, the degeneracy of the energy levels remains ∼ n 2 ; otherwise, the degeneracy is gradually reduced through the incomplete integral over D(r). In particular, we have