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ARTICLE INFO ABSTRACT

Handling editor: Zorana Andersen Background: Heat stress during pregnancy may limit fetal growth, with ramifications throughout the life course.

Keywords: However, critical exposure windows are unknown, and effects of meteorological variability have not been in-

Distributed lag models vestigated.

Critical windows Objectives: We aimed to identify sensitive windows for the associations of mean and variability of temperature

Temperature and humidity with term birthweight.

I;“Tlidit'yh Methods: We analyzed data from two French mother—child cohorts, EDEN and PELAGIE (n = 4771), recruited in
irthweight

2002-2006. Temperature exposure was assessed using a satellite-based model with daily 1-km? resolution, and
relative humidity exposure data were obtained from Météo France monitors. Distributed lag models were
constructed using weekly means and standard deviation (SD, to quantify variability) from the first 37 gestational
weeks. Analyses were then stratified by sex. Results for each exposure were adjusted for the other exposures,
gestational age at birth, season and year of conception, cohort and recruitment center, and individual con-
founders.

Results: There was no evidence of association between term birthweight and mean temperature. We identified a
critical window in weeks 6-20 for temperature variability (cumulative change in term birthweight of —54.2 g
[95% CI: —102, —6] for a 1 °C increase in SD of temperature for each week in that window). Upon stratification
by sex of the infant, the relationship remained for boys (weeks 1-21, cumulative change: —125 g [95% CI:
—228, —21]). For mean humidity, there was a critical window in weeks 26-37, with a cumulative change of
—28 g (95% CI: —49, —7) associated with a 5% increase in humidity for each week. The critical window was
longer and had a stronger association in boys (weeks 29-37; —37 g, 95% CI: —63, —11) than girls (week 14;
—1.8g,95% CI: —3.6, —0.1).

Discussion: Weekly temperature variability and mean humidity during critical exposure windows were asso-
ciated with decreased term birthweight, especially in boys.

Weather variability

1. Introduction reach its full growth potential, contributes significantly toward peri-
natal morbidity and mortality (Pallotto and Kilbride 2006). Even be-
Intrauterine growth restriction (IUGR), the failure of a fetus to yond the neonatal period, IUGR can have ramifications throughout the
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entire life course by increasing the risk of several cardiovascular and
metabolic diseases (Fowden et al. 2006). A variety of maternal ex-
posures during pregnancy have the potential to impact fetal growth,
ranging from infections to stressful situations to environmental factors
(Longo et al. 2014; Romo et al. 2009). With climate change leading to
rising average temperatures and volatile meteorological conditions, it is
important to understand the impacts of temperature and humidity on
fetal growth.

Reduced birthweight can be a manifestation of IUGR. The current
evidence on temperature and birthweight is somewhat mixed (Zhang
et al. 2017). While some retrospective cohort studies (Bakhtsiyarava
et al. 2018; Deschénes et al. 2009; Kloog et al. 2015; Li et al. 2018; Ngo
and Horton 2016) and ecological studies (Arroyo et al. 2016; Basu et al.
2018; Flouris et al. 2009; Matsuda et al. 1998; Wells and Cole 2002)
have linked hotter weather to a reduction in birthweight, others have
noted higher birthweight with more frequent hot days (Grace et al.
2015), or lower birthweight with decreasing temperatures (Elter et al.
2004; Murray et al. 2000). A recent large cohort study found that
hotter-than-average temperatures and colder-than-average tempera-
tures were both associated with decreased term birthweight (though the
reduction was smaller with colder-than-average temperatures), sug-
gestive of an inverse U-shaped relationship (Sun et al. 2019). Similarly,
another recent cohort study found that term low birth weight was as-
sociated with both hot and cold temperatures, compared to mild tem-
peratures (Ha et al. 2017). Still others have found that the direction of
association varies depending on the trimester of exposure (Lawlor et al.
2005), and some have reported no association at all between tem-
perature and birthweight or low birthweight (Diaz et al., 2016; Son
et al. 2019; Tustin et al. 2004).

Multiple reasons may account for the discrepancies between these
findings. Studies conducted under different climates investigate dif-
ferent temperature ranges, and if the dose-response relationship is not
linear (as is often the case with temperature), this could lead to ap-
parent differences in results. Another possible explanation is that lo-
cation-specific differences in climate could lead to different patterns of
effect, especially since acclimatization varies between populations
(Kuehn and McCormick 2017). The role of acclimatization is particu-
larly noteworthy in the face of climate change, which may increase
meteorological variability such that pregnant women cannot suffi-
ciently acclimatize (Bathiany et al. 2018). An increase in temperature
variability implies that women will experience temperature fluctuation
over relatively short periods of time. Hence, the adverse health effects
of climate change could be related to an increase in short-term varia-
bility of temperature rather than to a warmer average temperature to
which women might be able to adapt in the long term (McGeehin and
Mirabelli 2001). Yet there is currently limited evidence about the ef-
fects of temperature variability on pregnancy outcomes (Molina and
Saldarriaga 2017).

Besides location-specific differences in climate, the disparate find-
ings in the literature may also be related to methodological differences
in exposure assessment and analytical approach. For instance, many
studies have relied on temperature measurements taken from the
nearest monitoring station, but spatial coverage can be sparse. This may
lead to exposure misclassification. The issue is compounded by the fact
that most studies assess outside temperature, which may strongly differ
from personal exposure, depending on the area-specific rate of air
conditioning and habits related to window opening. There have also
been differences in the way temperature exposure is conceptualized.
For example, while some have focused on heatwaves (Diaz et al., 2016),
others have investigated daily or weekly minimum and maximum
temperatures (Arroyo et al. 2016; Deschénes et al. 2009; Li et al. 2018;
Murray et al. 2000), and several others have studied mean temperature
over a given period (Kloog et al. 2018; Son et al. 2019; Tustin et al.
2004). Often temperature is averaged over the entire duration of ge-
station or over trimesters, which is somewhat arbitrary. There is cur-
rently no consensus on which periods of pregnancy might be
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particularly vulnerable to weather conditions, but these time windows
are unlikely to fit neatly into trimesters. Furthermore, the approach that
considers trimester average exposures separately to estimate associa-
tions with health outcomes has been shown to be biased, and mutual
adjustment for trimester-specific exposures may not be enough to
eliminate bias (Wilson et al. 2017b). One recently developed strategy
for addressing this problem is to build distributed lag models (DLMs),
which may be used to identify critical windows in a data-driven way
(Gasparrini 2014). DLMs are suitable for studying time-varying asso-
ciations, because they regress the outcome of interest on an exposure
measured at intervals during the preceding time period (e.g. daily or
weekly measurements) (Wilson et al. 2017a). Although this strategy has
been applied to preterm birth (Cox et al. 2016; Vicedo-Cabrera et al.
2014), to our knowledge it has not been used to study the impact of
meteorological conditions on term birthweight.

Humidity limits the human body’s ability to release heat, and can
exacerbate the heat stress caused by high temperatures (Wells and Cole
2002). Many studies have included humidity in models as a covariate,
or studied the effect of heat index or apparent temperature (measures
that reflect both temperature and relative humidity) (Basu et al. 2018;
Son et al. 2019). However, little is currently known about the possible
effects of humidity itself on birth outcomes.

We aimed to clarify the association between mean temperature and
relative humidity and term birthweight (i.e. among infants born after
37 completed gestational weeks), by using a fine spatio-temporal model
for temperature exposure and building distributed lag models to iden-
tify critical windows of exposure. Furthermore, we investigated the role
of meteorological variability.

2. Methods
2.1. Study population

Data were obtained from a consortium of two French mother—child
prospective cohorts, EDEN (Etude des Déterminants pré et post natals
du développement et de la santé de I’ENfant) and PELAGIE
(Perturbateurs Endocriniens: étude Longitudinale sur les Anomalies de
la Grossesse, I'Infertilité et ’Enfance). Both cohorts were formed to
study the effects of prenatal exposures on child development and
health, and their protocols have been described in detail elsewhere
(Heude et al. 2016; Petit et al. 2012).

For the EDEN cohort, 2,002 pregnant women were enrolled in the
cities of Poitiers and Nancy between 2003 and 2006 (Fig. 1). They were
recruited from the prenatal clinics of university hospitals before the
24th week of amenorrhea. Women were not included if they had French
illiteracy, or plans to move away from the area within three years. The
PELAGIE study recruited 3,421 pregnant women from three depart-
ments in the region of Brittany (Ille-et-Vilaine, Cétes d’Armor, and Fi-
nistére), from 2002 to 2006. These women were enrolled at their first
prenatal care visit with obstetrician-gynecologists or ultrasonographers.
The primary inclusion criteria were submitting the initial questionnaire
before the 19th week of amenorrhea, and being pregnant at that time.

After accounting for multiple gestation, non-livebirths, and attri-
tion, there were 1,907 children enrolled in EDEN and 3,322 children
enrolled in PELAGIE (Fig. 1). For the purposes of our study, women
with multiple gestation, diabetes diagnosed before pregnancy, gesta-
tional diabetes, and gestational hypertension were excluded, to avoid
potential confounding. Preterm births (gestational age at birth <

37 weeks) were also excluded from our analysis. In total, there were
ultimately 4,589 mother—child pairs in the EDEN-PELAGIE Consortium
for the purposes of this study.

2.2. Data collection for covariates and outcomes

In both cohorts, questionnaires and clinical examinations were used
to collect sociodemographic and medical information, during and after
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EDEN
Enrolled women: n = 2002
(Nancy: n=1034
Poitiers: n = 968)

PELAGIE
Enrolled women: n = 3421
(Brittany)
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e e e e e e e

Enrolled children: n = 1907 | |

Enrolled children: n = 3322

Exclude gestational
diabetes (or unknown
status) & gestational
hypertension (or
unknown status):
n=211

P ————

Exclude preterm
births (or unknown
gestational age):
n=_85

e = = e e

Included in study:
n=1611

Exclude pre-existing*
or gestational
diabetes (or unknown
status) & gestational
hypertension (or
unknown status):
n= 247

I —

Exclude preterm
births (or unknown
gestational age):
n=97
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EDEN-PELAGIE Consortium
n=4589

* Excluded for consistency between EDEN and PELAGIE

Fig. 1. Composition of study population.

pregnancy. Birthweight data were obtained from medical records
(Chevrier et al. 2011; Kadawathagedara et al. 2016). In EDEN, newborn
birth weight was measured with Seca electronic scales (Hamburg,
Germany: Seca 737 in Nancy and Seca 335 in Poitiers; precision 10 g).
The PELAGIE study covered the whole region of Brittany (3 depart-
ments: Ille-et-Vilaine, Coétes d’Armor, and Finistére), which includes
many clinics and university hospitals, which used their own weighing
scales. Home addresses of the women were collected and geocoded, at
the time of inclusion for PELAGIE (mean gestational age 11.7 weeks)
and at the time of birth for EDEN.

2.3. Exposure assessment

Temperature exposure estimates were generated by a hybrid spatio-
temporal model, using Moderate Resolution Imaging Spectroradiometer
(MODIS) satellite surface temperature data (Kloog et al. 2017). Briefly,
daily satellite surface temperature data (in 1 km? grid cells) were ob-
tained, and calibrated with air temperature data from Météo France
monitors within 1 km, with adjustment for spatio-temporal predictors.
For grid cells where satellite surface temperature data were unavailable
on a particular day, the model relied on the association on other days
between the satellite-based predicted air temperature in that grid cell,
and the measured air temperature from nearby monitoring stations (as
well as temperature values in the surrounding grid cells). These daily
model predictions were used to generate temperature exposure esti-
mates for each gestational week for every study participant, based on
her home address.

Humidity was defined as relative humidity, which reflects the level
of moisture contained in the air compared to the maximum amount of
moisture that could be present at a given temperature (US National
Oceanic and Atmospheric Administration 2013). The relative humidity
exposure estimates were obtained from the French national meteor-
ological service, Météo France, using data from the monitoring station

nearest to the home address of each woman.

Exposure estimates for mean temperature, standard deviation of
temperature, mean humidity, and standard deviation of humidity, were
calculated for each participant within each week of pregnancy.

2.4. Ethical approvals and informed consent

EDEN and PELAGIE were both approved by the relevant ethical
committees: la Commission Nationale de UInformatique et des Libertés, le
Comité Consultatif pour la Protection des Personnes dans la Recherche
Biomédicale du Kremlin Bicétre, le Comité Consultatif sur le Traitement de
l'Information en Matiére de Recherche dans le Domaine de la Santé, and le
Comité d’Ethique de I'Inserm. This particular study was reviewed by the
Institutional Review Board of the Harvard T. H. Chan School of Public
Health and deemed exempt per the federal criteria at 45 CFR 46.101(b)
4.

2.5. Statistical analyses

We performed regression analysis for this cohort study with gen-
eralized linear models, adjusted for the following possible confounders:
gestational age at birth, cohort and recruitment center (Nancy, Poitiers,
Brittany), season of conception, sex of the newborn, and several ma-
ternal characteristics (height, pre-pregnancy weight, parity, age at
conception, educational level, and smoking status) (Kramer 1987;
Strand et al. 2011). These covariates were selected a priori, based on
biological and epidemiological reasoning and evidence in the literature.
Gestational age at birth was censored at 42 weeks, since professional
consensus among French obstetricians favors induction of labor after
that point (Vayssiere et al. 2013).

2.5.1. Main analytical strategy: Distributed lag models
Relationships between term birthweight and meteorological
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Table 1

Distribution of participant characteristics.
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Variable

Consortium n (%) or Mean (SD)

EDEN n (%) or Mean (SD)

PELAGIE n (%) or Mean (SD)

p-value [%2® or t-test’]

Study population

Temperature over entire pregnancy (°C)
Humidity over entire pregnancy (%)
Term birthweight (g)

Mean birthweight in g, term births (SD)
Missing

4589 (100%)
12.0 (2.1)
79.0 (4.2)

3402 (439)
4 (0.1%)

1611 (100%)

2978 (100%)

<0.001°

Recruitment center
Brittany (PELAGIE)
Poitiers (EDEN)

Nancy (EDEN)

Maternal age at conception

2978 (64.9%)
809 (17.6%)
802 (17.5%)

< 25 years 1611 (35.1%)
25-29 years 1836 (40.0%)
30-34 years 1495 (32.6%)
=35 years 576 (12.6%)
Missing 14 (0.3%)
Educational level

Primary school or less 72 (1.6%)

Above primary school through baccalauréat
Baccalauréat level + 2 or more

1756 (38.3%)
2717 (59.2%)

Missing 44 (1.0%)
Tobacco use in early pregnancy
None 3311 (72.2%)

1-5 cigarettes/day
6-10 cigarettes/day
> 10 cigarettes/day

569 (12.4%)
465 (10.1%)
214 (4.7%)

Missing 30 (0.7%)
Parity

0 1993 (43.4%)
1 1745 (38.0%)
2 669 (14.6%)
=3 170 (3.7%)
Missing 12 (0.3%)
Sex of infant

Male 2337 (50.9%)
Female 2252 (49.1%)
Season of conception

Winter 1140 (24.8%)
Spring 1055 (23.0%)
Summer 1258 (27.4%)
Fall 1136 (24.8%)
Year of conception

2002 653 (14.2%)
2003 1731 (37.7%)
2004 1553 (33.8%)
2005 652 (14.2%)

Maternal pre-pregnancy weight

Mean weight in kg (SD)

Missing

Maternal height

Mean height in cm (SD)

Missing

Gestational age at birth

Mean gestational age at birth in weeks (SD)

60.5 (11.4)
23 (0.5%)

163.9 (6.0
34 (0.7%)

38.2(1.2)

11.6 (2.4) 12.2 (1.9)
77.6 (3.5) 79.8 (4.3) < 0.001°
<0.001°
3338 (43 2) 3436 (4 3 9)
3 (0.2%) 1 (0.0%)
< 0.001°
0 (0.0%) 2978 (100.0%)
809 (50.2%) 0 (0.0%)
802 (49.8%) 0 (0.0%)
< 0.001°
317 (19.7%) 351 (11.8%)
613 (38.1%) 1223 (41.1%)
490 (30.4%) 1005 (33.7%)
191 (11.9%) 385 (12.9%)
0 (0.0%) 14 (0.5%)
< 0.001°
56 (3.5%) 16 (0.5%)
677 (42.0%) 1079 (36.2%)
849 (52.7%) 1868 (62.7%)
29 (1.8%) 15 (0.5%)
0.09%
1187 (73.7%) 2124 (71.3%)
175 (10.9%) 394 (13.2%)
165 (10.2%) 300 (10.1%)
82 (5.1%) 142 (4.4%)
2 (0.1%) 28 (0.9%)
0.006°
705 (43.8%) 1288 (43.3%)
609 (37.8%) 1136 (38.1%)
215 (13.3%) 454 (15.2%)
79 (4.9%) 91 (3.1%)
3 (0.2%) 9 (0.3%)
0.19°
842 (52.3%) 1495 (50.2%)
769 (47.7%) 1483 (49.8%)
0.0027
359 (22.3%) 781 (26.2%)
355 (22.0%) 700 (23.5%)
459 (28.5%) 799 (26.8%)
438 (27.2%) 698 (23.4%)
< 0.001°
67 (4.2%) 586 (19.7%)
648 (40.2%) 1083 (36.4%)
597 (37.1%) 956 (32.1%)
299 (18.6%) 353 (11.9%)
0.003°
61.2 (11.7) 60.1 (11.2)
14 (0.9%) 9 (0.3%)
0.001°
163.5 (6.2) 164.1 (5.9)
22 (1.3%) 12 (0.4%)
<0.001°
38.0 (1.8) 38.3 (1.2)

exposures were initially modelled with minimal adjustment, and then
modelled in a fully-adjusted framework. The minimally-adjusted
models were built for each exposure separately (mean temperature,
standard deviation of temperature, mean humidity, and standard de-
viation of humidity), adjusting only for gestational age at birth. Fully-
adjusted models contained mean temperature, mean humidity, stan-
dard deviation of temperature, and standard deviation of humidity as
simultaneous exposures, with adjustment for the aforementioned pos-
sible confounders. (As seen in Table Al, these meteorological exposures
were not highly correlated with each other within each week of preg-
nancy; the Spearman correlation coefficients ranged from —0.55 to
0.47.) We used distributed lag models with an exposure matrix of the
first 37 gestational weeks for each meteorological exposure. Exposures
after 37 weeks were not addressed in the main analysis, but were in-
cluded in a sensitivity analysis as described later.

The exposure-response relationship was modelled linearly, and the
lag-response relationship (reflecting the impact of exposure timing) was
modelled with natural cubic splines. Degrees of freedom were tested
from 2 to 6, and chosen by minimizing the Akaike information criterion
(AIC) in minimally-adjusted models for each exposure (Table A2). Then
the selected values for degrees of freedom were used in building the
fully-adjusted models, which contained all four exposures simulta-
neously. If the AIC was equally low with different degrees of freedom,
e.g. same AIC with 2 or 3 degrees of freedom, the lowest number of
degrees of freedom was chosen. Knots were set at equally spaced
quantiles. We graphed these fully-adjusted DLMs and used them to
identify critical exposure windows during pregnancy.

We also checked for non-linearity of the exposure-response re-
lationship with natural cubic splines, again testing degrees of freedom
from 2 to 6 and choosing the degrees of freedom that minimized the AIC
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in minimal models (Table A3). The AIC of fully-adjusted models was
consistently lower with a linear exposure-response relationship than
with a non-linear exposure-response relationship. Also, we performed
likelihood ratio tests for departure from linearity using fully-adjusted
models, as shown in Table A4. The results were consistent with linearity
(p > 0.05), so a linear exposure-response relationship was used in
final models.

2.5.2. Sensitivity and secondary analyses

Since fetal weight gain accelerates in late pregnancy (Cunningham
et al. 2018), a secondary analysis was conducted to include late preg-
nancy exposures, using distributed lag models built with 42-week ex-
posure matrices. However, since most term births occurred before
42 weeks, many women were missing exposure observations after de-
livery (between weeks 37 and 42). The distributed lag modelling
technique does not permit missing values in the exposure matrix, such
that a participant missing any exposure observations must be com-
pletely removed from the analysis. To avoid this, for any woman who
delivered prior to 42 weeks, exposure after delivery was set to the
median of exposures in previous weeks (specific to each woman). We
refer to the models in this secondary analysis as “partial exposure dis-
tributed lag models,” since participants were permitted to have ex-
posure histories only partly filled with actual weekly exposures, and
“missing” values after birth replaced with median exposure values.
Models in the primary analysis with 37-week exposure matrices are
referred to here as “complete exposure distributed lag models,” because
every week in each exposure history contained an actual temperature or
humidity estimate, with no imputed median values.

We also created models using average exposure windows (exposure
data averaged over trimesters and the first 37 weeks of pregnancy), for
comparison with the distributed lag models and to illustrate the pos-
sible bias of these types of analyses (Wilson et al. 2017b). Since me-
teorological exposures in each trimester were somewhat correlated with
the same exposures in the other two trimesters (particularly for mean
temperature in the 1st and 3rd trimesters), we used the Frisch-Waugh
method to adjust for the influence of average exposure in the other
trimesters. (Please see Table A5 for the correlation coefficients for each
exposure in different time windows.) Bell et al. have described the
Frisch-Waugh method in a similar context in a study of ambient air
pollution and low birth weight (Bell et al. 2007).

Finally, we repeated key analyses with stratification by sex of the
infant, to investigate possible effect modification by sex.

Analyses were conducted with the R statistical software environ-
ment, version 3.4.0 (R Core Team 2017), mainly using the dlnm
package (Gasparrini 2014). A significance level of a = 0.05 was used in
interpreting results.

3. Results
3.1. Study population

Approximately two-thirds of the 4,589 women in this study lived in
Brittany (64.9%), with the rest split fairly evenly between Poitiers and
Nancy (17.6% and 17.5%, respectively) (Table 1). Most women
(72.6%) were 25 to 34 years old at the time of delivery, and the ma-
jority (59.2%) had completed at least two years of university education
(i.e. baccalauréat level + 2 or higher). The mean gestational age at birth
among the term births was 38.2 + 1.2 weeks.

Mean temperature * standard deviation over the entire pregnancy
was 12.0 = 2.1 °C, while mean humidity was 79.0 * 4.2%. Both of
these exposures were slightly higher in PELAGIE than in EDEN. On
average, weekly standard deviation of temperature (mean =+ standard
deviation) was 2.1 °C = 0.02, while weekly standard deviation of
humidity was 6.65% =+ 0.05.

Fig. 2 illustrates the distribution of mean temperature and mean
humidity over time, by location of recruitment center.
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As Table A6 shows, mean term birthweight was higher in the
PELAGIE cohort (3436 =+ 439 g) than in the EDEN cohort
(3357 = 435 g in Poitiers, 3318 + 429 g in Nancy; p < 0.001).
Overall, the mean term birthweight was 3402 + 439 g. Table A6 also
contains the results of analyses of term birthweight with other parti-
cipant characteristics, adjusted only for gestational age at birth. In
general, higher maternal age, maternal education, and parity were as-
sociated with higher term birthweight. Tobacco use was associated with
lower term birthweight.

3.2. Associations between term birthweight and temperature and relative
humidity

There was no week of pregnancy with a statistically significant as-
sociation between mean temperature and term birthweight in the
complete exposure model, partial exposure model, or sex-stratified
complete exposure model (Fig. 3). In all of these models, the estimated
association trended downwards but was always fairy close to 0.

In the complete exposure model, partial exposure model, and sex-
stratified complete exposure model, the estimate for the association
between standard deviation of temperature and term birthweight was
negative but steadily upwards towards 0 (Fig. 4). Based on the complete
exposure model, this relationship was statistically significant between
weeks 6 and 20. Over this critical period, there was a cumulative
change in term birthweight of —54.2 g (95% CI: —101.9, —6.4) for a
1 °C increase in standard deviation of temperature in every week from
week 6 to 20. After stratification by sex of the infant, the relationship in
female infants was nonsignificant, but the relationship in male infants
was statistically significant from week 1 to 21. The cumulative change
in term birthweight was —124.5 g (95% CI: —228.0, —20.9) (Table 2).

Based on the complete exposure analysis and the partial exposure
analysis, the estimated association between mean humidity and term
birthweight was negative throughout pregnancy (Fig. 5a, Fig. 5b). In
the complete exposure analysis, the relationship between mean hu-
midity and term birthweight was statistically significant from week 26
to 37. There was a cumulative change in term birthweight of —28.2 g
(95% CI: —49.2, —7.1) for a 5% increase in mean humidity for each
week of that critical window (Table 2). In male infants, this relationship
was statistically significant from week 29 to 37, and the cumulative
change in term birthweight was —37.3 g (95% CI: —63.4, —11.1)
(Table 2). In female infants, the relationship was negative throughout
the first 37 weeks of pregnancy, but was closer to zero towards the
beginning and end of pregnancy (Fig. 5d). There were borderline sig-
nificant associations between approximately week 13 and week 25. At
week 14, this association was statistically significant, with a change in
term birthweight of —1.8 (95% CI: —3.6, —0.1) for a 5% increase in
mean humidity (Table 2).

Fig. 6 shows that the estimated association between standard de-
viation of humidity and term birthweight was not statistically sig-
nificant in any week of pregnancy, in any of the DLMs. In analysis
stratified by sex of the infant, for male infants the estimated association
downtrended over pregnancy, whereas for female infants it uptrended
(Fig. 6¢, Fig. 6d).

Primary results from the complete exposure DLMs (37-week ex-
posure matrix) and secondary results from the partial exposure DLMs
(42-week exposure matrix) are provided in Table 2 and Fig. 3d - Fig. 6d.
Even with the longer exposure matrix of the partial exposure models, no
week after the 37th week of pregnancy was found to have statistically
significant associations between weather conditions and term birth-
weight.

The above findings are from fully-adjusted DLMS, while results from
minimally-adjusted DLMs are provided in Figure Al - Figure A4 and
Table A7.

Table A8 presents the cumulative change in term birthweight as-
sociated with various weather conditions over the course of each tri-
mester and the first 37 weeks of pregnancy, from the fully-adjusted
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Fig. 2. Mean temperature and humidity estimates at home addresses of study participants over time, by recruitment center location.

complete exposure DLMs and the trimester average exposure approach.
Estimates of association produced by distributed lag models were
generally in the same direction as those produced by trimester average
exposure models, but with different magnitudes. However, it is worth
noting that the effect sizes from these models are not directly com-
parable, because the exposures of interest are averaged over different
time periods (weekly vs. over a trimester or entire pregnancy). Results
that were statistically significant in the DLMs were typically not sta-
tistically significant in the trimester average exposure models, and vice
versa. In particular, the trimester average exposure approach identified
statistically significant associations for mean temperature during tri-
mesters 1 and 3, but no strong association with temperature variability
(Table A8). This is the opposite of the pattern observed with the cu-
mulative change (Table A8) and critical weeks (Fig. 3, Fig. 4) estimated
by the distributed lag models.

4. Discussion
4.1. Main findings

In our primary analysis, critical windows of exposure were found for
weekly standard deviation of temperature from week 6 to 20 (middle of
the first trimester to middle of the second trimester) and for weekly
mean humidity from week 26 to 37 (late in the second trimester to late
in the third trimester), both of which were negatively associated with
term birthweight. Stratifying these analyses by the sex of the infant
suggested that these negative associations were much larger in boys
than girls. In fact, there was a significant negative association with
standard deviation of temperature in the first 21 weeks of pregnancy for
male infants, but no critical exposure window for female infants. The
critical window for mean humidity in boys (week 29 to 37) was longer
than in girls (week 14). No critical exposure window was identified for
mean temperature or standard deviation of humidity.

Regarding clinical significance, although an estimated average
change of 50 g in birth weight might be seen as somewhat small, it
could reflect suboptimal development and carry some clinical sig-
nificance for at-risk infants. For comparison, the general difference
observed in birth weight between boys and girls is around 100 g (132 g
in the present study, please see Table A6), which is considered to

represent true physiological differences. We limited our study to term
births to avoid confounding, but one might expect the same critical
windows to exist for pre-term births (if these critical windows arise
from particular stages in fetal development). For infants who are pre-
term or small for gestational age, small changes in birthweight may be
more meaningful. Furthermore, when considered across an entire po-
pulation where almost all pregnant women are exposed to these me-
teorological factors, these small changes might shift the birth weight
distribution towards the left and thus increase the number of low birth
weight (< 2500 g) babies, which has major impact in terms of public
health as these babies are at higher risk for perinatal morbidity and
mortality and developmental issues.

4.2. Discussion of methodology

To our knowledge, this is the first time that distributed lag models
have been used to study the association between weather conditions
and term birthweight. This is an important development in research on
this topic, as using trimester average exposures to study health effects
of environmental exposures can lead to bias. Wilson et al. demonstrated
this in a 2017 simulation, where they assessed the impact of prenatal
fine particulate matter exposure on children’s body mass index z-score
and fat mass in Massachusetts (Wilson et al. 2017b). In their simulation,
results of regressions relying on trimester average exposure were
biased, particularly when adjustment was not made for exposures in the
other trimesters, and led to the identification of incorrect critical win-
dows when the true windows did not match trimester boundaries. This
was due to correlations between trimester average exposures, which
arose from seasonal trends. In our analysis, the bias of the trimester
average exposure approach may have been somewhat reduced by the
use of the Frisch-Waugh method to adjust for other trimester exposures.
In fact, our distributed lag models and more classical regression models
were in agreement regarding a possible adverse effect of third trimester
humidity exposure on term birthweight. Regarding temperature effects,
when we compared results from distributed lag models to those of the
trimester average exposure approach, we found that they generally did
not identify the same critical exposure windows. Most of the time
window/exposure combinations found to be statistically significant
with DLMs were not statistically significant with the trimester average



O. Jakpor, et al.

A

Change in term birthweight (g)
0 5
1
— .
—_———
—]
L -
L
L o
] -
—
—] -

Gestational age (weeks)

Change in term birthweight (g)

T T T T
0 10 20 30

Gestational age (weeks)

Environment International 142 (2020) 105847

%D ]HHHHHUMHJHHHIHrmmm,m
|-

Gestational age (weeks)

Change in term birthweight (g)

T T T T
0 10 20 30

Gestational age (weeks)

Note: These results are adjusted for the other exposures (SD temperature, mean humidity, and SD
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height, weight, education, tobacco use, and parity), sex of child (except in models stratified by sex),
season and year of conception, and recruitment center.

Fig. 3. Change in term birthweight associated with a 5 °C increase in mean temperature in fully-adjusted distributed lag models. [A] Association between term
birthweight and mean temperature over the first 37 weeks of pregnancy, using complete exposure model. [B] Association between term birthweight and mean
temperature over 42 weeks of pregnancy, using partial exposure model. [C] Association in male infants between term birthweight and mean temperature over the
first 37 weeks of pregnancy, using complete exposure model. [D] Association in female infants between term birthweight and mean temperature over the first

37 weeks of pregnancy, using complete exposure model.

exposure approach. It should be noted though that for a given trimester
of exposure, the distributed lag model and the trimester average ex-
posure approach do not estimate the same effect. For example, for mean
temperature the distributed lag model assesses the cumulative effect of
a 5 °C increase in every week throughout the whole lag period of the
given trimester, while the trimester average exposure approach assesses
the effect of a 5 °C increase on average in the given trimester. Even so,
distributed lag models were a more flexible and data-driven approach
to identifying critical exposure windows.

The main analysis only looked for critical windows of exposure
during the first 37 weeks of pregnancy. In the secondary analysis using
partial exposure DLMs, we examined the entire 42 weeks of pregnancy
but did not identify any critical windows of exposure after 37 weeks.
This supports the theory that most likely, no critical windows were
missed by the 37-week complete exposure DLMs. For this study we
favor using 37-week exposure matrices, as this avoids the need for
median imputation of post-birth exposures. This discussion will there-
fore focus on the results of the complete exposure analysis.

4.3. Strengths and weaknesses

One major strength of this study is the fine spatial and temporal
resolution of the temperature exposure data used. By using a satellite-
based temperature model with high spatial resolution (1 km?), we were

able to reduce exposure error and the downward bias that could ac-
company it (Zanobetti et al. 2017; Zeger et al. 2000). Furthermore, the
use of distributed lag models allowed for fine temporal resolution of
exposure modelling. These models permitted us to identify critical
windows of exposure during pregnancy with more precision than the
trimester average exposure approach. Another important feature of our
work is that we investigated the impacts of humidity itself, rather than
only temperature, and that we studied weather variability using weekly
standard deviation. The impacts of these exposures have rarely been
described in the previous literature, but in light of our findings, tem-
perature variability and humidity may merit more attention moving
forward.

A weakness of our study is that we did not account for daily activity
patterns or changes in residence during pregnancy, and instead relied
on participants’ home addresses at time of inclusion (PELAGIE) or at
birth (EDEN) to estimate exposure. Based on the literature, we would
expect about 20% of women to have changes in residence during
pregnancy (Bell and Belanger 2012). Since women are more likely to
move during the second trimester of pregnancy (Bell and Belanger
2012), measurement error in exposure estimates is more likely towards
the end of pregnancy for PELAGIE and towards the beginning of the
pregnancy for EDEN. Of note, residential mobility during pregnancy is
often fairly local (e.g. < 10 km), such that even women who moved
during pregnancy may not have had large changes in meteorological
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Fig. 4. Change in term birthweight associated with a 1° C increase in standard deviation of temperature in fully-adjusted distributed lag models. [A] Association
between term birthweight and standard deviation of temperature over the first 37 weeks of pregnancy, using complete exposure model. [B] Association between term
birthweight and standard deviation of temperature over 42 weeks of pregnancy, using partial exposure model. [C] Association in male infants between term

birthweight and standard deviation of temperature over the first 37 weeks of pregnancy, using complete exposure model. [D] Association in female infants between
term birthweight and standard deviation of temperature over the first 37 weeks of pregnancy, using complete exposure model.

exposure (Bell and Belanger 2012). In this study we would expect re- obtained from monitoring stations, and therefore did not have the same
sidential mobility to lead to nondifferential exposure misclassification, level of fine spatial resolution as the temperature data. We did not
causing our results to be biased towards the null. adjust for air pollution, which has been linked with decreased birth-

As for other weaknesses of this study, the humidity data were weight (Stieb et al. 2012) and is often associated with temperature
Table 2

Cumulative change in term birthweight from fully-adjusted distributed lag models during gestational weeks that show statistically significant associations between
term birthweight and meteorological exposures.

Complete exposure” distributed lag model Partial exposure” distributed lag model
N Change (g) (95% CI) N Change (g) (95% CI)
SD temperature (1 °C)
All infants: Weeks 6-20 3834 —54.2 (-101.9, —6.4)
Male infants: Weeks 1-21 1923 —124.5 (-228.0, —20.9)
Mean humidity (5%)
All infants: Weeks 17-26 4347 —-9.4 (-17.1, —-1.7)
All infants: Weeks 26-37 3834 —28.2(-49.2, —-7.1)
Male infants: Weeks 29-37 1923 —37.3 (-63.4, —11.1)
Female infants: Week 14 1911 —1.8 (-3.6, —0.1)

Note: These results are adjusted for the other exposures and the following participant characteristics: gestational age at birth, maternal factors (age, height, weight,
education, tobacco use, and parity), sex of child (except in models stratified by sex), season and year of conception, and recruitment center.

2 “Complete exposure” refers to distributed lag models based on 37-week exposure matrices, with a study population that included term births only (such that
every participant had a complete exposure history, with an observation for each of the first 37 weeks of pregnancy). “Partial exposure” refers to distributed lag
models based on 42-week exposure matrices. For women who gave birth between 37 and 42 weeks, exposures after birth were set to the median of prior exposures
(specific to each woman).
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Note: These results are adjusted for the other exposures (mean temperature, SD temperature, and SD
humidity) and the following participant characteristics: gestational age at birth, maternal factors (age,
height, weight, education, tobacco use, and parity), sex of child (except in models stratified by sex),
season and year of conception, and recruitment center.

Fig. 5. Change in term birthweight associated with a 5% increase in mean humidity in fully-adjusted distributed lag models. [A] Association between term birth-
weight and mean humidity over the first 37 weeks of pregnancy, using complete exposure model. [B] Association between term birthweight and mean humidity over
42 weeks of pregnancy, using partial exposure model. [C] Association in male infants between term birthweight and mean humidity over the first 37 weeks of
pregnancy, using complete exposure model. [D] Association in female infants between term birthweight and mean humidity over the first 37 weeks of pregnancy,

using complete exposure model.

(Buckley et al. 2014). However, air pollution might be on the causal
pathway between temperature exposure and term birthweight, so ad-
justing for air pollution would potentially have been inappropriate
(Buckley et al. 2014).

We can expect some small measurement error from the weighing
scales, which is likely to be nondifferential and therefore produce bias
toward the null. Our study identified significant vulnerable windows to
temperature variability and mean humidity in association with de-
creased birthweight, which suggests that the measurement error and
corresponding bias were minimal.

4.4. Comparison with the literature

Unlike some previous studies (Elter et al. 2004; Kloog et al. 2015;
Lawlor et al. 2005; Sun et al. 2019), we did not find an association
between mean temperature and birthweight, either positively or ne-
gatively. This is likely because we used distributed lag models rather
than trimester average exposure models in our main analysis, to reduce
bias (Wilson et al. 2017b). Kloog et al. also assessed term birthweight in
their 2015 study of mean temperature and birth outcomes in Massa-
chusetts, and they similarly used high resolution temperature data
obtained from a satellite-based model (Kloog et al. 2015). However,
they used models relying on various predefined time windows before
birth, not DLMs. They found that higher mean temperature in the third

trimester was significantly associated with decreased term birthweight.
Although probably biased, the results of our secondary analysis relying
on trimester average exposures were consistent with those reported by
Kloog et al.

Some prior studies have described a nonlinear relationship between
temperature and birthweight, and the relationship between tempera-
ture and other health outcomes like mortality has been described as
V-, J- or U-shaped (Armstrong 2006; Basu et al. 2018; Kloog et al. 2018;
Sun et al. 2019). However, both AIC and formal likelihood ratio testing
supported modelling our data with a linear exposure-response re-
lationship. Although we do not yet have an explanation for this relative
inconsistency, it suggests that the relationship between temperature
variability and term birthweight would be linear, which might be re-
levant from a physiological point of view. As for humidity, we observed
a linear relationship between mean humidity and term birthweight.

While several studies on weather and birth outcomes have adjusted
for humidity to clarify the impacts of temperature (Li et al. 2018;
Rashid et al. 2017), to our knowledge this is the first study to report the
effect of humidity itself on term birthweight. Some prior studies have
used measures that reflect both temperature and humidity. For ex-
ample, Basu et al. reported that increased apparent temperature over
the duration of gestation (particularly the third trimester) was asso-
ciated with increased risk of term low birth weight in California (Basu
et al. 2018). The critical window of mean humidity exposure identified
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Note: These results are adjusted for the other exposures (mean temperature, SD temperature, and
mean humidity) and the following participant characteristics: gestational age at birth, maternal factors
(age, height, weight, education, tobacco use, and parity), sex of child (except in models stratified by
sex), season and year of conception, and recruitment center.

Fig. 6. Change in term birthweight associated with a 1% increase in standard deviation of humidity in fully-adjusted distributed lag models. [A] Association between
term birthweight and standard deviation of humidity over the first 37 weeks of pregnancy, using complete exposure model. [B] Association between term birthweight
and standard deviation of humidity over 42 weeks of pregnancy, using partial exposure model. [C] Association in male infants between term birthweight and
standard deviation of humidity over the first 37 weeks of pregnancy, using complete exposure model. [D] Association in female infants between term birthweight and
standard deviation of humidity over the first 37 weeks of pregnancy, using complete exposure model.

in our study was largely in the third trimester as well, which aligns with
their findings. On the other hand, Son et al. did not find a statistically
significant association between heat index and term low birthweight in
Seoul, Korea (Son et al. 2019).

To our knowledge, this is also the first study to investigate the im-
pacts of variability in temperature and relative humidity on term
birthweight, with standard deviations calculated within each week of
participant exposure. Other studies have aimed to capture the impact of
weather variability on birth outcomes in other ways. For example,
Molina and Saldarriaga found that monthly temperature anomalies of
one standard deviation higher than the local historic mean temperature
were associated with a decrease in birthweight, and that this associa-
tion was particularly notable in the first trimester (Molina and
Saldarriaga 2017). We likewise found that temperature variability
(standard deviation of temperature) was associated with decreased
term birthweight, with a critical window in early to mid-pregnancy.
However, in our study, we assessed temperature variability on a shorter
timescale (week by week).

4.5. Biological plausibility

Animal studies have shown chronic thermal stress in pregnancy to
cause reduced birthweight in many species, due to diminished uterine
and umbilical blood flow and reduced placental weight (Wells 2002).
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However, the relevance of these potential mechanisms in humans is
unclear. Some studies have reported associations between temperature
changes and inflammatory markers. Although many of these have noted
greater evidence of inflammation with reductions in temperature (Basu
et al. 2017; Halonen et al. 2010; Hong et al. 2012; Schneider et al.
2008), some have also found decreased inflammatory markers with
lower temperatures (Hampel et al. 2010) or increased inflammatory
markers with higher temperatures (Wilker et al. 2012). This suggests
the possibility that an inflammatory mechanism could be at play in the
relationship between weather conditions and fetal growth. Also, heat
stress can induce oxidative stress, and placental oxidative stress has
been implicated as a possible contributor to intrauterine growth re-
striction (Dennery 2010; Fujimaki et al. 2011; Takahashi 2012). These
potential mechanisms do not directly address temperature variability,
as a concept separate from average temperature itself. However, it is
plausible that unrelenting temperature variation might interfere with
the body’s ability to recover from inflammatory changes or patterns of
blood flow induced by thermal stress. Furthermore, thermoregulation
and acclimation to significant rapid changes in temperature may be less
efficient in pregnant women, given the cardiovascular demands and
other physiologic changes involved in pregnancy.

Humidity is known to reduce the body’s ability to release heat, but
the potential independent impacts of humidity on health are not well
understood (Wells and Cole 2002). Bind et al. reported that relative
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humidity was associated with blood hypomethylation of the gene
ICAM-1 suggesting that it might lead to increased expression of the
protein ICAM-1 (intercellular adhesion molecule 1), which is upregu-
lated during inflammatory responses (Bind et al. 2014). In pregnant
women, associations have been shown between relative humidity
during the second trimester and the month preceding birth and pla-
cental DNA methylation in several genomic regions (Abraham et al.
2018). More research is certainly needed, but this hints at the possi-
bility that epigenetic programing might be involved in the relationship
between humidity and fetal growth. In our study, reduced term birth-
weight was associated with increased mean humidity during the end of
the pregnancy, which corresponds to the developmental period where
the baby gains the most weight (Smith 2004).

Boys and girls are known to have different fetal growth patterns
both early and late in gestation, and have also been found to have
different levels of sensitivity to various prenatal stressors
(Jedrychowski et al. 2009; Vik et al. 2003). This is consistent with our
identification of a critical exposure window for mean humidity in male
but not female infants, and different critical windows in male and fe-
male infants for weekly temperature variation. Our results suggest that
male infants might be more vulnerable regarding the effects of tem-
perature and humidity on term birthweight than female infants. The
exact biological mechanisms underlying these different development
patterns have yet to be fully elucidated. That said, studies have sug-
gested that placentas for boys may be more efficient but have less re-
serve than placentas for girls. In other words, although placentas for
boys may allow them to grow faster than girls from a very early stage,
boys may also be at higher risk of impaired growth if fetal nutrition
(delivered via the placenta) is compromised (Eriksson et al. 2010;
Forsén et al. 1999). This raises the question of whether boys might be
more susceptible to placental oxidative stress or impaired function in-
duced by heat stress, which would be consistent with our results. In-
terestingly, though not statistically significant, the association between
term birth weight and standard deviation of humidity downtrended
over time in boys and uptrended over time in girls. Also, for mean
humidity the lag-response relationship had an inverse U-shape in boys
and a very shallow U-shape in girls. If confirmed by future studies, this
may suggest multiple mechanisms at play in the link between meteor-
ological conditions and fetal development, perhaps predominating at
different times in male and female infants.

5. Summary

By estimating effects of both mean and variability of temperature
and humidity simultaneously, this study adds to the evidence of a sig-
nificant association between term birthweight and temperature and
humidity exposure, especially temperature variability. A key contribu-
tion of this study is the identification of critical windows for adverse
effects on term birthweight, with regards to increased temperature
variability (early to mid-pregnancy) and mean humidity (mid- to late
pregnancy). Our results suggest that temperature variability could be an
important risk factor for reductions in term birthweight. Boys seemed to
be more likely to have an association between reduced term birth-
weight and increased exposure to temperature variability and mean
humidity. These findings have significant implications not only for the
health of newborns, but also for health across the lifespan, as reduced
birthweight is associated with chronic diseases in childhood and
adulthood. Identification of time window- and sex-specific associations
provide insights into the identification of vulnerable subgroups and the
underlying mechanisms linking meteorological conditions and birth-
weight.
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