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Abstract. We develop an extension of the knockoff inference procedure,
introduced by Barber and Candès [2015]. This new method, called ag-
gregation of multiple knockoffs (AKO), addresses the instability in-
herent to the random nature of knockoff-based inference. Specifically,
AKO improves both the stability and power compared with the original
knockoff algorithm while still maintaining guarantees for false discovery
rate control. We provide a new inference procedure, prove its core prop-
erties, and demonstrate its benefits in a set of experiments on synthetic
and real datasets. †

1. INTRODUCTION

In many fields, multivariate statistical models are used to fit some outcome of interest
through a combination of measurements or features. For instance, one might predict
the likelihood for individuals to declare a certain type of disease based on genotyp-
ing information. Besides prediction accuracy, the inference problem consists in defining
which measurements carry useful features for prediction. More precisely, we aim at con-
ditional inference (as opposed to marginal inference), that is, analyzing which features
carry information given the other features. This inference is however very challenging
in high-dimensional settings.

Among the few available solutions, knockoff-based (KO) inference [BC15, CFJL18]
consists in introducing noisy copies of the original variables that are independent from
the outcome conditional on the original variables, and comparing the coefficients of
the original variables to those of the knockoff variables. This approach is particularly
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attractive for several reasons: i) it is not tied to a given statistical model, but can
work instead for many different multivariate functions, whether linear or not; ii) it
requires a good generative model for features, but poses few conditions for the validity
of inference; and iii) it controls the false discovery rate (FDR, [BH95]), a more useful
quantity than multiplicity-corrected error rates.

Unfortunately, KO has a major drawback, related to the random nature of the knockoff
variables: two different draws yield two different solutions, leading to large, uncontrolled
fluctuations in power and false discovery proportion across experiments (see Figure 1
below). This makes the ensuing inference irreproducible. An obvious way to fix the
problem is to rely on some type of statistical aggregation, in order to consolidate the
inference results. Such procedures have been introduced by [GZ19] and by [EK19],
but they have several limitations: the computational complexity scales poorly with the
number B of bootstraps, while the power of the method decreases with B. In high-
dimensional settings that we target, these methods are thus only usable with a limited
number of bootstraps.

In this work, we explore a different approach, that we call aggregation of multiple
knockoffs (AKO): it rests on a reformulation of the original knockoff procedure that
introduces intermediate p-values. As it is possible to aggregate such quantities even
without assuming independence [MMB09], we propose to perform aggregation at this
intermediate step. We first establish the equivalence of AKO with the original knockoff
aggregation procedure in case of one bootstrap (Proposition 1). Then we show that
the FDR is also controlled with AKO (Theorem 1). By construction, AKO is more
stable than (vanilla) knockoff; we also demonstrate empirical benefits in several ex-
amples, using simulated data, but also genetic and brain imaging data. Note that the
added knockoff generation and inference steps are embarrassingly parallel, making this
procedure no more costly than the original KO inference.

Notation. Let [p] denote the set {1, 2, . . . , p}; for a given set given set A, |A| ∆=
card(A); matrices are denoted in bold uppercase letter, while vectors in bold lowercase
letter and scalars normal character. An exception for this is the vector of knockoff
statistic W, in which we follow the notation from the original paper of [BC15].

2. BACKGROUND

Problem Setting. Let X ∈ Rn×p be a design matrix corresponding to n observations
of p potential explanatory variables x1,x2, . . . ,xn ∈ Rp, with its target vector y ∈ Rn.
To simplify the exposition, we focus on sparse linear models, as [BC15] and [CFJL18]:

(1) y = Xβ∗ + σε
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where β∗ ∈ Rp is the true parameter vector, σ ∈ R+ the unknown noise magnitude,
ε ∈ Rn some Gaussian noise vector. Yet, it should be noted that the algorithm does
not require linearity or sparsity. Our main interest is in finding an estimate Ŝ of the
true support set S = {j ∈ [p] : β∗j 6= 0}, or the set of important features that have an
effect on the response. As a consequence, the complementary of the support S, which
is denoted Sc = {j ∈ [p] : β∗j = 0}, corresponds to null hypotheses. Identifying the
relevant features amounts to simultaneously testing

Hj0 : β∗j = 0 versus Hja : β∗j 6= 0, ∀j = 1, . . . , p.

Specifically, we want to bound the proportion of false positives among selected variables,
that is, control the false discovery rate (FDR, [BH95]) under certain predefined level α:

FDR = E
[
|Ŝ ∩ Sc|
|Ŝ| ∨ 1

]
≤ α ∈ (0, 1) .

Knockoff Inference. Introduced originally by [BC15], the knockoff filter is a variable
selection method for multivariate models with theoretical control of FDR. [CFJL18]
expanded the method to work in the case of (mildly) high-dimensional data, with the
assumption that x = (x1, . . . , xp) ∼ PX such that PX is known. The first step of
this procedure involves sampling extra null variables that have a correlation structure
similar to that of the original variables, with the following formal definition.

Definition 1 (Model-X knockoffs, [CFJL18]). The model-X knockoffs for the fam-
ily of random variables x = (x1, . . . , xp) are a new family of random variables x̃ =
(x̃1, . . . , x̃p) constructed to satisfy the two properties:

1. For any subsetK ⊂ {1, . . . , p}, (x, x̃)swap(K)
d= (x, x̃), where the vector (x, x̃)swap(K)

denotes the swap of entries xj and x̃j for all j ∈ K, and d= denotes equality in
distribution.

2. x̃ ⊥⊥ y | x .

A test statistic is then calculated to measure the strength of the original variables
versus their knockoff counterpart. We call this the knockoff statistic W = {Wj}pj=1,
that must fulfill two important properties.

Definition 2 (Knockoff statistic, [CFJL18]). A knockoff statistic W = {Wj}j∈[p] is
a measure of feature importance that satisfies the two following properties:

1. It depends only on X, X̃ and y

W = f(X, X̃,y) .
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2. Swapping the original variable column xj and its knockoff column x̃j switches
the sign of Wj :

Wj([X, X̃]swap(S), y) =
{
Wj([X, X̃],y) if j ∈ Sc
−Wj([X, X̃], y) if j ∈ S .

Following previous works on the analysis of the knockoff properties [ACC17, RRJW20],
we make the following assumption about the knockoff statistic. This is necessary for
our analysis of knockoff aggregation scheme later on.

Assumption 1 (Null distribution of knockoff statistic). The knockoff statistic defined
in Definition 2 are such that {Wj}j∈Sc , are independent and follow the same distribution
P0.

Remark 1. As a consequence of [CFJL18, Lemma 2] regarding the signs of the null
Wj as i.i.d. coin flips, if Assumption 1 holds true, then P0 is symmetric around zero.

One such example of knockoff statistic is the Lasso-coefficient difference (LCD). The
LCD statistic is computed by first making the concatenation of original variable and
knockoff variables [X, X̃] ∈ Rn×2p, then solving the Lasso problem [Tib96]:

(2) β̂ = argmin
β∈R2p

{1
2
∥∥∥y− [X, X̃]β

∥∥∥2

2
+ λ ‖β‖1

}
with λ ∈ R the regularization parameter, and finally to take:

(3) ∀j ∈ [p] , Wj = |β̂j | − |β̂j+p| .

This quantity measures how strong the coefficient magnitude of each original covariate
is against its knockoff, hence the name Lasso-coefficient difference. Clearly, the LCD
statistic satisfies the two properties stated in Definition 2.

Finally, a threshold for controlling the FDR under given level α ∈ (0, 1) is calculated:

(4) τ+ = min
{
t > 0 : 1 + #{j : Wj ≤ −t}

#{j : Wj ≥ t} ∨ 1 ≤ α
}
,

and the set of selected variables is Ŝ = {j ∈ [p] : Wj ≥ τ+}.

Instability in Inference Results. Knockoff inference is a flexible method for mul-
tivariate inference in the sense that it can use different loss functions (least squares,
logistic, etc.), and use different variable importance statistics. However, a major draw-
back of the method comes from the random nature of the knockoff variables X̃ obtained
by sampling: different draws yield different solutions (see Figure 1 in Section 5.1). This
is a major issue in practical settings, where knockoff-based inference is used to prove
the conditional association between features and outcome.
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3. AGGREGATION OF MULTIPLE KNOCKOFFS

3.1 Algorithm Description

One of the key factors that lead to the extension of the original (vanilla) knockoff filter
stems from the observation that knockoff inference can be formulated based on the
following quantity.

Definition 3 (Intermediate p-value). Let W = {Wj}j∈[p] be a knockoff statistic
according to Definition 2. For j = 1, . . . , p, the intermediate p-value πj is defined as:

(5) πj =


1 + #{k : Wk ≤ −Wj}

p
if Wj > 0

1 if Wj ≤ 0 .

We first compute B draws of knockoff variables, and then knockoff statistics. Using
Eq. (5), we derive the corresponding empirical p-values π(b)

j , for all j ∈ [p] and b ∈ [B].
Then, we aggregate them for each variable j in parallel, using the quantile aggregation
procedure introduced by [MMB09]:

(6) π̄j = min

1,
qγ
(
{π(b)

j : b ∈ [B]}
)

γ


where qγ(·) is the γ-quantile function. In the experiments, we fix γ = 0.3 and B = 25.
The selection of these default values is explained more thoroughly in Section 5.1.

Finally, with a sequence of aggregated p-values π̄1, . . . , π̄p, we use Benjamini-Hochberg
step-up procedure (BH, [BH95]) to control the FDR.

Definition 4 (BH step-up, [BH95]). Given a list of p-values π̄1, . . . , π̄p and predefined
FDR control level α ∈ (0, 1), the Benjamini-Hochberg step-up procedure comprises
three steps:

1. Order p-values such that: π̄(1) ≤ π̄(2) ≤ · · · ≤ π̄(p).
2. Find:

(7) k̂BH = max
{
k : π̄(k) ≤

kα

p

}
.

3. Select Ŝ = {j ∈ [p] : π̄(j) ≤ π̄(k̂BH)}.
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This procedure controls the FDR, but only under independence or positive-dependence
between p-values [BY01]. As a matter of fact, for a strong guarantee of FDR control, one
can consider instead a threshold yielding a theoretical control of FDR under arbitrary
dependence, such as the one of [BY01]. We call BY step-up the resulting procedure. Yet
we use BH step-up procedure in the experiments of Section 5, as we observe empirically
that the aggregated p-values π̄j defined in Eq. (5) does not deviate significantly from
independence (details in Appendix).

Definition 5 (BY step-up, [BY01]). Given an ordered list of p-values as in step 1
of BH step-up π̄(1) ≤ π̄(2) ≤ · · · ≤ π̄(p) and predefined level α ∈ (0, 1), the Benjamini-
Yekutieli step-up procedure first finds:

(8) k̂BY = max
{
k ∈ [p] : π̄(k) ≤

kβ(p)α
p

}
,

with β(p) = (∑p
i=1 1/i)−1, and then selects

Ŝ =
{
j ∈ [p] : π̄(j) ≤ π̄(k̂BY )

}
.

[BR09] later on introduced a general function form for β(p) to make BY step-up more
flexible. However, because we always have β(p) ≤ 1, this procedure leads to a smaller
threshold than BH step-up, thus being more conservative.

Algorithm 1 AKO – Aggregation of multiple knockoffs
Input: X ∈ Rn×p, y ∈ Rn, B – number of bootstraps ; α ∈ (0, 1) – target FDR level
Output: ŜAKO – Set of selected variables index

for b = 1 to B do
X̃(b) ← sampling_knockoff(X)
W(b) ← knockoff_statistic(X, X̃(b),y)
π(b) ← convert_statistic(W(b)) // Using Eq. (5)

end for

for j = 1 to p do
π̄j ← quantile_aggregation

(
{π(b)

j }
B
b=1

)
// Using Eq. (6)

end for

k̂ ← fdr_threshold(α, (π̄1, π̄2, . . . , π̄p)) // Using either Eq. (7) or Eq. (8)

Return: ŜAKO ←
{
j ∈ [p] : π̄j ≤ π̄

k̂

}
The AKO procedure is summarized in Algorithm 1. We show in the next section that
with the introduction of the aggregation step, the procedure offers a guarantee on FDR
control under mild hypotheses. Additionally, the numerical experiments of Section 5
illustrate that aggregation of multiple knockoffs indeed improves the stability of the
knockoff filter, while bringing significant statistical power gains.
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3.2 Related Work

To our knowledge, up until now there have been few attempts to stabilize knockoff in-
ference. Earlier work of [SQL15] rests on the same idea of generating multiple knockoff
bootstrap as ours, but relies on the linear combination of the so-called one-bit p-values
(introduced as a means to prove the FDR control in original knockoff work of [BC15]).
As such, the method is less flexible since it requires a specific type of knockoff statistic
to work. Furthermore, it is unclear how this method would perform in high-dimensional
settings, as it was only demonstrated in the case of n > p. More recently, the work of
[HH18] incorporates directly multiple bootstraps of knockoff statistics for FDR thresh-
olding without the need of p-value conversion. Despite its simplicity and convenience
as a way of aggregating knockoffs, our simulation study in Section 5.1 demonstrates
that this method somehow fails to control FDR in several settings.

In a different direction, [GZ19] and [EK19] have introduced simultaneous knockoff pro-
cedure, with the idea of sampling several knockoff copies at the same time instead of
doing the process in parallel as in our work. This, however, induces a prohibitive com-
putational cost when the number of bootstraps increases, as opposed to the AKO algo-
rithm that can use parallel computing to sample multiple bootstraps at the same time.
In theory, on top of the fact that sampling knockoffs has cubic complexity on runtime
with regards to number of variables p (requires covariance matrix inversion), simulta-
neous knockoff runtime is of O(B3p3), while for AKO, runtime is only of O(Bp3) and
O(p3) with parallel computing. Moreover, the FDR threshold of simultaneous knockoff
is calculated in such a way that it loses statistical power as the number of bootstraps
increases, when the sampling scheme of vanilla knockoff by [BC15] is used. We have set
up additional experiments in the Appendix to illustrate this phenomenon. In addition,
the threshold introduced by [EK19] is only proven to have a theoretical control of FDR
in the case where n > p.

4. THEORETICAL RESULTS

We now state our theoretical results about the AKO procedure.

4.1 Equivalence of Aggregated Knockoff with Single Bootstrap

First, when B = 1 and γ = 1, we show that AKO+BH is equivalent to vanilla knockoff.

Proposition 1 (Proof in Appendix A.1). Assume that for all j, j′ = 1, . . . , p,

P(Wj = Wj′ , Wj 6= 0, Wj′ 6= 0) = 0

that is, non-zero LCD statistics are distinct with probability 1. Then, single bootstrap
version of aggregation of multiple knockoffs (B = 1), using γ = 1 and BH step-up
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procedure in Definition 4 for calculating FDR threshold, is equivalent to the original
knockoff inference by [BC15].

Remark 2. Although Proposition 1 relies on the assumption of distinction between
non-zero Wjs for all j = 1, . . . , p, the following lemma establishes that this assumption
holds true with probability one for the LCD statistic up to further assumptions.

Lemma 1 (Proof in Appendix A.2). Define the equi-correlation set as:

Ĵλ =
{
j ∈ [p] : x>j (y−Xβ̂) = λ/2

}
with β̂, λ defined in Eq. (2). Then we have:

(9) P
(
Wj = Wj′ ,Wj 6= 0,Wj′ 6= 0, rank(X

Ĵλ
) = |Ĵλ|

)
= 0

for all j, j′ ∈ [p] : j 6= j′. In other words, assuming X
Ĵλ

is full rank, then the event
that LCD statistic defined in Eq. (3) is distinct for all non-zero value happens almost
surely.

4.2 Validity of Intermediate P-values

Second, the fact that the πj are called “intermediate p-values” is justified by the fol-
lowing lemma.

Lemma 2. If Assumption 1 holds true, and if |Sc| ≥ 2, then, for all j ∈ Sc, the
intermediate p-value πj defined by Eq. (5) satisfies:

∀t ∈ [0, 1] P(πj ≤ t) ≤
κp

|Sc|
t

where κ =
√

22− 2
7
√

22− 32
≤ 3.24.

Proof. The result holds when t ≥ 1 since κp ≥ p ≥ |Sc| and a probability is always
smaller than 1. Let us now focus on the case where t ∈ [0, 1), and definem = |Sc|−1 ≥ 1
by assumption. Let F0 denote the c.d.f. of P0, the common distribution of the null
statistics {Wk}k∈Sc , which exists by Assumption 1. Let j ∈ Sc be fixed. By definition
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of πj , when Wj > 0 we have:

πj = 1 + #{k ∈ [p] : Wk ≤ −Wj}
p

= 1 + #{k ∈ S : Wk ≤ −Wj}
p

+ #{k ∈ Sc \ {j} : Wk ≤ −Wj}
p

(since Wj > 0 > −Wj)

≥ m

p
F̂m(−Wj) + 1

p
(10)

where ∀u ∈ R, F̂m(u) ∆= #{k ∈ Sc \ {j} : Wk ≤ u}
m

is the empirical cdf of {Wk}k∈\{j}.
Therefore, for every t ∈ [0, 1),

P(πj ≤ t) = P(πj ≤ t and Wj > 0) + P(πj ≤ t and Wj ≤ 0)︸ ︷︷ ︸
=0 since πj=1 when Wj≤0

= E
[
P(πj ≤ t |Wj)1Wj>0

]
≤ E

[
P
(
m

p
F̂m(−Wj) + 1

p
≤ t |Wj

)
1Wj>0

]
by (10)

≤ P
(
m

p
F̂m(−Wj) + 1

p
≤ t
)
.(11)

Notice that Wj has a symmetric distribution around 0, as shown by Remark 1, that is,
−Wj and Wj have the same distribution. Since Wj and {Wk}k∈Sc\{j} are independent
with the same distribution P0 by Assumption 1, they have the same joint distribution as
F−1

0 (U), F−1
0 (U1), . . . , F−1

0 (Um) where U,U1, . . . , Um are independent random variables
with uniform distribution over [0, 1], and F−1

0 denotes the generalized inverse of F0.
Therefore, Eq. (11) can be rewritten as

P(πj ≤ t) ≤ P
(
m

p
F̃m
(
F−1

0 (U)
)

+ 1
p
≤ t
)

(12)

where ∀v ∈ R, F̃m(v) ∆= 1
m

m∑
k=1

1F−1
0 (Uk)≤v .

Notice that for every u ∈ R,

Ĝm(u) ∆= 1
m

m∑
k=1

1Uk≤u ≤
1
m

m∑
k=1

1F−1
0 (Uk)≤F−1

0 (u)

= F̃m
(
F−1

0 (u)
)
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since F−1
0 is non-decreasing. Therefore, Eq. (12) shows that

P(πj ≤ t) ≤ P
(
mĜm(U) ≤ tp− 1

)
=
∫ 1

0
P
(
mĜm(u) ≤ tp− 1

)
du .(13)

Now, we notice that for every u ∈ (0, 1), mĜm(u) follows a binomial distribution with
parameters (m,u). So, a standard application of Bernstein’s inequality [BLM13, Eq.
2.10] shows that for every 0 ≤ x ≤ u ≤ 1,

P
(
mĜm(u) ≤ mx

)
≤ exp

(
−m2(u− x)2

2mu+ m(u−x)
3

)

= exp
(
−3mx

(
u
x − 1

)2
7u
x − 1

)
.

Note that for every λ ∈ (0, 1/7), we have

∀w ≥ 1− λ
1− 7λ ≥ 1 , w − 1

7w − 1 ≥ λ

hence ∀u ≥ x 1− λ
1− 7λ ,

P
(
mĜm(u) ≤ mx

)
≤ exp

[
−3mλx

(
u

x
− 1

)]
.

As a consequence, ∀λ ∈ (0, 1/7),∫ 1

0
P
(
mĜm(u) ≤ mx

)
du ≤ 1− λ

1− 7λx+
∫ 1

1−λ
1−7λx

exp
[
−3mλ(u− x)

]
du

≤ 1− λ
1− 7λx+

∫ +∞

6λ
1−7λx

exp(−3mλv)dv

≤ 1− λ
1− 7λx+ 1

3mλ exp
(
−3mλ 6λ

1− 7λx
)

≤ 1− λ
1− 7λx+ 1

3mλ.

Taking x = (tp− 1)/m, we obtain from Eq. (13) that ∀λ ∈ (0, 1/7)

P(πj ≤ t) ≤
1− λ
1− 7λ

tp− 1
m

+ 1
3mλ

= 1− λ
1− 7λ

tp

m
+
( 1

3λ −
1− λ
1− 7λ

) 1
m
.(14)
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Choosing λ = (5−
√

22)/3 ∈ (0, 1/7), we have 1
3λ = 1−λ

1−7λ hence the result with

κ = 1− λ
1− 7λ =

√
22− 2

7
√

22− 32
≤ 3.24.

Remark 3. If the definition of πj is replaced by

(15) πj,c
∆=


c+ #{k : Wk ≤ −Wj}

p
if Wj > 0

1 if Wj ≤ 0

for some c > 0, the above proof also applies and yields an upper bound of the form

∀t ≥ 0 , P(πj,c ≤ t) ≤ κ(c)t

for some constant κ(c) > 0. It is then possible to make κ(c) as close to 1 as desired, by
choosing c large enough. Lemma 2 corresponds to the case c = 1.

Note that we also prove in the Appendix that if p→ +∞ with |S| � p, then for every
j ≥ 1 such that β∗j = 0, πj is an asymptotically valid p-value, that is,

(16) ∀t ∈ [0, 1] , lim sup
p→+∞

P(πj ≤ t) ≤ t .

Yet, proving our main result (Theorem 1) requires a non-asymptotic bound such that
the one of Lemma 2.

4.3 FDR control for AKO

Finally, the following theorem provides a non-asymptotic guarantee about the FDR of
AKO with BY step-up.

Theorem 1. If Assumption 1 holds true and |Sc| ≥ 2, then for any B ≥ 1 and
α ∈ (0, 1), the output ŜAKO+BY of aggregation of multiple knockoff (Algorithm 1),
with the BY step-up procedure, has a FDR controlled as follows:

E
[
|ŜAKO+BY ∩ Sc|
|ŜAKO+BY | ∨ 1

]
≤ κα

where κ ≤ 3.24 is defined in Lemma 2.
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Sketch of the proof. The proof of [MMB09, Theorem 3.3], which itself relies partly
on [BY01], can directly be adapted to upper bound the FDR of ŜAKO+BY in terms of
quantities of the form P(π(b)

j ≤ t) for j ∈ Sc and several t ≥ 0. Combined with Lemma
2, this yields the result. A full proof is provided in Appendix A.5.

Note that Theorem 1 loses a factor κ compared to the nominal FDR level α. This can
be solved by changing α into α/κ in the definition of ŜAKO+BY . Nevertheless, in our
experiments, we do not use this correction and find that the FDR is still controlled at
level α.

5. EXPERIMENTS

Compared Methods. We make benchmarks of our proposed method aggregation
of multiple knockoffs (AKO) with B = 25, γ = 0.3 and vanilla knockoff (KO), along
with other recent methods for controlling FDR in high-dimensional settings, mentioned
in Section 3.2: simultaneous knockoff, an alternative aggregation scheme for knockoff
inference introduced by [GZ19] (KO-GZ), along with its variant of [EK19] (KO-EK);
the knockoff statistics aggregation by [HH18] (KO-HH); and debiased Lasso (DL-BH)
[JJ19].

5.1 Synthetic Data

Simulation Setup. Our first experiment is a simulation scenario where a design ma-
trix X (n = 500, p = 1000) with its continuous response vector y are created following
a linear model assumption. The matrix is sampled from a multivariate normal distri-
bution of zero mean and covariance matrix Σ ∈ Rp×p. We generate Σ as a symmetric
Toeplitz matrix that has the structure:

Σ =


ρ0 ρ1 . . . ρp−1

ρ1 . . . . . . ρp−2

... . . .
. . . ...

ρp−1 ρp−2 . . . ρ0


where the ρ ∈ (0, 1) parameter controls the correlation structure of the design matrix.
This means that neighboring variables are strongly correlated to each other, and the
correlation decreases with the distance between indices. The true regression coefficient
β∗ vector is picked with a sparsity parameter that controls the proportion of non-
zero elements with amplitude 1. The noise ε is generated to follow N (µ, In) with its
magnitude σ = ‖Xβ∗‖2 /(SNR ‖ε‖2) controlled by the SNR parameter. The response
vector y is then sampled according to Eq. (1). In short, the three main parameters
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controlling this simulation are correlation ρ, sparsity degree k and signal-to-noise ratio
SNR.

Aggregation Helps Stabilizing Vanilla Knockoff. To demonstrate the improve-
ment in stability of the aggregated knockoffs, we first do multiple runs of AKO and
KO with α = 0.05 under one simulation of X and y. In order to guarantee a fair
comparison, we compare 100 runs of AKO, each with B = 25 bootstraps, with the
corresponding 2500 runs of KO. We then plot the histogram of FDP and power in
Figure 1. For the original knockoff, the false discovery proportion varies widely and has
a small proportion of FDP above 0.2 = 4α. Besides, a fair amount of KO runs returns
null power.

On the other hand, AKO not only improves the stability in the result for FDP —the
FDR being controlled at the nominal level α = 0.05— but it also improves statistical
power: in particular, it avoids catastrophic behavior (zero power) encountered with
KO.

250

500

250

500

Figure 1:Histogram of FDP and power for 2500 runs of KO (blue, top row) vs.
100 runs of AKO with B = 25 (teal, bottom row) under the same simulation.
Simulation parameter: SNR = 3.0, ρ = 0.5, sparsity = 0.06. FDR is controlled at level
α = 0.05.

Inference Results on Different Simulation Settings. To observe how each algo-
rithm performs under various scenarii, we vary each of the three simulation parameters
while keeping the others unchanged at default value. The result is shown in Figure 2.
Compared with KO, AKO improves statistical power while still controlling the FDR.
Noticeably, in the case of very high correlation between nearby variables (ρ > 0.7), KO
suffers from a drop in average power. The loss also occurs, but is less severe for AKO.
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Moreover, compared with simultaneous knockoff (KO-GZ), AKO gets better control
for FDR and a higher average power in the extreme correlation (high ρ) case. Knockoff
statistics aggregation (KO-HH), contrarily, is spurious: it detects numerous truly sig-
nificant variables with high average statistical power, but at a cost of failure in FDR
control, especially when the correlation parameter ρ gets bigger than 0.6. Debiased
Lasso (DL-BH) and KO-EK control FDR well in all scenarii, but are the two most
conservative procedures.
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Figure 2: FDR (left) and average power (right) of several methods for 100
runs with varying simulation parameters. For each varying parameter, we keep
the other ones at default value: SNR = 3.0, ρ = 0.5, sparsity = 0.06. FDR is controlled
at level α = 0.1. The benchmarked methods are: aggregation of multiple knockoffs
(AKO – ours); vanilla knockoff (KO); simultaneous knockoff by [GZ19] (KO-GZ) and
by [EK19] (KO-EK); knockoff statistics aggregation (KO-HH); debiased-Lasso (DL-
BH).

Choice of B and γ for AKO. Figure 3 shows an experiment when varying γ and
B. FDR and power are averaged across 30 simulations of fixed parameters: SNR=3.0,
ρ = 0.7, sparsity=0.06. Notably, it seems that there is no further gain in statistical
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Figure 3: FDR and average power for 30 simulations of fixed parameters:
SNR=3.0, ρ = 0.7, sparsity=0.06. There is virtually no gain in statistical power
when B > 25 and when γ ≥ 0.1.

power when B > 25. Similarly, the power is essentially equal for γ values greater than
0.1 when B ≥ 25. Based on the results of this experiment we set the default value of
B = 25, γ = 0.3.

5.2 GWAS on Flowering Phenotype of Arabidopsis thaliana

To test AKO on real datasets, we first perform a genome-wide association study
(GWAS) on genomic data. The aim is to detect association of each of 174 candidate
genes with a phenotype FT_GH that describes flowering time of Arabidopsis thaliana,
first done by [AHV+10]. Preprocessing is done similarly to [AGS+13]: 166 data samples
of 9938 binary SNPs located within a ±20−kilobase window of 174 candidate genes that
have been selected in previous publications as most likely to be involved in flowering
time traits. Furthermore, we apply the same dimension reduction by hierarchical clus-
tering as [SCAV19] to make the final design matrix of size n = 166 samples × p = 1560
features. We list the detected genes from each method in Table 1.

The three methods that rely on sampling knockoff variables detect AT2G21070. This
gene, which is responsible for the mutant FIONA1, is listed by [KKY+08] to be vital
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Table 1
List of detected genes associated with phenotype FT_GH. Empty line (—) signifies no

detection. Detected genes are listed in well-known studies dated up to 20 years ago.

Method Detected Genes

AKO AT2G21070, AT4G02780, AT5G47640
KO AT2G21070
KO-GZ AT2G21070
DL-BH —

for regulating period length in the Arabidopsis circadian clock. FIONA1 also appears to
be involved in photoperiod-dependent flowering and in daylength-dependent seedling
growth. In particular, the time for opening of the first flower for FIONA1 mutants are
shorter than the ones without under both long and short-day conditions. In addition
to FIONA1 mutant, AKO also detects AT4G02780 and AT5G47640. It can be found
in studies dating back to the 90s [SCS98] that AT4G02780 encodes a mutation for
late flowering. Meanwhile, AT5G47640 mutant delay flowering in long-day but not in
short-day experiments [CBE+07].

5.3 Functional Magnetic Resonance Imaging (fMRI) analysis on Human
Connectome Project Dataset

Human Connectome Project (HCP900) is a collection of neuroimaging and behavioral
data on 900 healthy young adults, aged 22–35. Participants were asked to perform
different tasks inside an MRI scanner while blood oxygenation level dependent (BOLD)
signals of the brain were recorded. The analysis investigates what brain regions are
predictive of the subtle variations of cognitive activity across participants, conditional
to other brain regions. Similar to genomics data, the setting is high-dimensional with
n = 1556 samples acquired and 156437 brain voxels. A voxel clustering step that reduces
data dimension to p = 1000 clusters is done to make the problem tractable.

When decoding brain signals on HCP subjects performing a foot motion experiment
(Figure 4, left), AKO recovers an anatomically correct anti-symmetric solution, in
the motor cortex and the cerebellum, together with a region in a secondary sensory
cortex. KO only detects a subset of those. Moreover, across seven such tasks, the results
obtained independently from DL-BH are much more similar to AKO than to KO, as
measured with Jaccard index of the resulting maps (Figure 4, right). The maps for
the seven tasks are represented in the Appendix. Note that the sign of the effect for
significant regions is readily obtained from the regression coefficients, with a voting
step for bootstrap-based procedures.
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Figure 4: Detection of significant brain regions for HCP data (900 subjects).
(left) Selected regions in a left or right foot movement task. Orange: brain areas with
positive sign activation. Blue: brain areas with negative sign activation. Here the AKO
solution recovers an anatomically correct pattern, part of which is missed by KO. (right)
Jaccard index measuring the Jaccard similarity between the KO/AKO solutions on the
one hand, and the DL solution on the other hand, over 7 tasks: AKO is significantly
more consistent with the DL-BH solution than KO.

6. DISCUSSION

In this work, we introduce a p-value to measure knockoff importance and design a
knockoffs bootstrapping scheme that leverages this quantity. With this we are able
to tame the instability inherent to the original knockoff procedure. Analysis shows
that aggregation of multiple knockoffs retains theoretical guarantees for FDR control.
However, i) the original argument of [BC15] no longer holds (see Appendix); ii) a
factor κ on the FDR control is lost; this calls for tighter FDR bounds in the future,
since we always observe empirically that the FDR is controlled without the factor κ.
Moreover, both numerical and realistic experiments show that performing aggregation
results in an increase in statistical power and also more consistent results with respect
to alternative inference methods.
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The quantile aggregation procedure from [MMB09] used here is actually conservative:
as one can see in Figure 2, the control of FDR is actually stricter than without the
aggregation step. Nevertheless, as often with aggregation-based approaches, the gain in
accuracy brought by the reduction of estimator variance ultimately brings more power.

We would like to address here two potential concerns about FDR control for AKO+BH.
The first one is when the {Wj}j∈Sc are not independent, hence violating Assumption
1. In the absence of a proof of Theorem 1 that would hold under a general dependency,
we first note that several schemes for knockoff construction (for instance, the one of
[CFJL18]) imply the independence of (xi − x̃i)i∈[p], as well as their pseudo inverse.
These observations do not establish the independence of Wj . Yet, intuitively, the Lasso
coefficient of one variable should be much more associated with its knockoff version than
with other variables, so it should not be much affected by these other variables, making
the Lasso-coefficient differences weakly correlated if not independent. Moreover, in the
proof of Lemma 2 and Theorem 1, Assumption 1 is only used for applying Bernstein’s
inequality, and several dependent versions of Bernstein’s inequality have been proved
[Sam00, MPR09, HS17, among others]. Similarly, the proof of Eq. (16) only uses As-
sumption 1 for applying the strong law of large numbers, a result which holds true for
various kinds of dependent variables (for instance, [Abd18], and references therein).
Therefore we conjecture that independence in Assumption 1 can be relaxed into some
mixing condition. Overall, given that the unstability of KO with respect to the KO
randomness is an important drawback (see Figure 1), we consider Assumption 1 as a
reasonable price price to pay for correcting it, given that we expect to relax it in future
works.
The second potential concern is that Theorem 1 is for AKO with k̂ computed from
the BY procedure, while BH step-up may not control the FDR when the aggregated
p-values (π̄j)j∈[p] are not independent. We find empirically that the (π̄j)j∈[p] do not
exhibit spurious Spearman correlation (Figure B.6 in Appendix) under a setting where
the Wj satisfy a mixing condition. This is a mild assumption that should be satisfied,
especially when each feature Xj only depends on its "neighbors" (as typically observed
on neuroimaging and genomics data). It is actually likely that the aggregation step
contributes to reducing the statistical dependencies between the (π̄j)j∈[p]. Eventually,
it should be noted that BH can be replaced by BY [BY01] in case of doubt.
To conclude on these two potential concerns, let us emphasize that the FDR of AKO+BH
with B > 1 is always below α (up to error bars) in all the experiments we did, includ-
ing preliminary experiments not shown in this article, which makes us confident when
applying AKO+BH on real data such as the ones of Sections 5.2–5.3.

A practical question of interest is to handle the cases where n� p, that is, the number
of features overwhelms the number of samples. Note that in our experiments, we had
to resort to a clustering scheme of the brain data and to select some genes. A possible
extension is to couple this step with the inference framework, in order to take into
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account that for instance the clustering used is not given but estimated from the data,
hence with some level of uncertainty.

The proposed approach introduces two parameters: the number B of bootstrap repli-
cations and the γ parameter for quantile aggregation. The choice of B is simply driven
by a compromise between accuracy (the larger B, the better) and computation power,
but we consider that much of the benefit of AKO is obtained for B ≈ 25. Regarding
γ, adaptive solutions have been proposed [MMB09], but we find that choosing a fixed
quantile (0.3) yields a good behavior, with little variance and a good sensitivity.
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APPENDIX

The Appendix is organized as follows. First, the main theoretical results of the article
are proved:

• Proof of Proposition 1: AKO+BH with B = 1 and γ = 1 is equivalent to vanilla
KO.

• Proof of Lemma 1: for Lasso-coefficient differences, the non-zero Wj are distinct.
• Proof that the πj are asymptotically valid p-values (without any multiplicative

correction): Lemma A.3.
• Statement and proof of a new general result about FDR control with quantile-

aggregated p-values: Lemma A.4.
• Proof of Theorem 1.

Second, the results of some additional experiments are reported:

• Additional experiments to show that the KO-GZ alternative aggregation proce-
dure by [GZ19] has decreasing power when the number κ of knockoff vectors x̃
considered simultaneously increases (we compare κ = 2 with κ = 3). We show
empirically that this is not the case for AKO with respect to B.

• Empirical evidence for the near independence of p-values πj .
• Additional figures for HCP 900 experiments.

APPENDIX A: DETAILED PROOFS

A.1 Proof of Proposition 1

We begin by noticing that the function f : R+ → Z+, f(x) = #{k : Wk ≤ −x}
p

is
decreasing in x. This means the first step of both FDR control step-up procedures,
that involves ordering the intermediate p-values ascendingly, is the same as arranging
the knockoff statistic in descending order: W(1) ≥ W(2) ≥ · · · ≥ W(p). Therefore from
Eq. (7) and the definition of πj we have:

k̂ = max
{
k :

1 + #{i : W(i) ≤ −W(k)}
p

≤ kα

p

}
(note that we can exclude all the π(k) = 1 due to the fact that ∀ k ∈ [p], α ∈ (0, 1) :
kα/p < 1).

This can be written as:

k̂ = max
{
k :

1 + #{i : W(i) ≤ −W(k)}
#{i : W(i) ≥W(k)}

≤ α
}
,
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since #{i : W(i) ≥ W(k)} = k because {W(j)}j∈[p] is ordered descendingly and because
of the assumption that non-zero LCD statistics are distinct. Furthermore, finding the
maximum index k of the descending ordered sequence is equivalent to finding the
minimum value in that sequence, or

k̂ = min
{
W(k) > 0 :

1 + #{i : W(i) ≤ −W(k)}
#{i : W(i) ≥W(k)}

≤ α
}
,

since all W(j) ≤ 0 (corresponding with π(k) = 1) have been excluded. Without loss of
generality, we can write:

t̂+ = min
{
t > 0 : 1 + #{i : Wi ≤ −t}

#{i : Wi ≥ t}
≤ α

}
.

This threshold t̂+ is exactly the same as the definition of threshold τ+ in Eq. (4) from
the original KO procedure.

A.2 Proof of Lemma 1

Setting. Let X ∈ Rn×q, β∗ ∈ Rq, λ > 0, σ > 0 be fixed. Define

y = Xβ∗ + ε

∀β ∈ Rq, L(β) := ‖y−Xβ‖22 + λ‖β‖1 .

with ε ∼ N (0, σIn) the Gaussian noise and ‖·‖p the Lp norm.

Classical Optimization Properties. Since L is convex, non-negative, and tends to
+∞ at infinity, its minimum over Rq exists and is attained (although may not be
unique). Since L is convex, its minima are characterized by a first-order condition:

β̂λ ∈ argmin
β∈Rq

{L(β)} ⇔ 0 ∈ ∂L(β)

which is equivalent to ∃ ẑ ∈ [−1, 1]q : X>Xβ̂λ = X>y− λ

2 ẑ

∀j s.t. (β̂λ)j 6= 0, ẑj = sign((β̂λ)j)
(A.17)

As shown by [Gir14, Section 4.5.1] for instance, the fitted value f̂λ ∈ Rn is uniquely
defined:

∃! f̂λ ∈ Rn such that ∀β̂λ ∈ argmin
β∈Rq

{L(β)} , f̂λ = Xβ̂λ .
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As a consequence, the equicorrelation set

Ĵλ :=
{
j ∈ {1, . . . , q} :

∣∣∣x>j (y−Xβ̂λ)
∣∣∣ = λ/2

}
is uniquely defined. We also have,

(A.18) ∀ β̂λ ∈ argmin
β∈Rq

{L(β)} ,
{
j : (β̂λ)j 6= 0

}
⊂ Ĵλ

(but these two sets are not necessarily equal, and the former set may not be uniquely
defined).

Note that for every set J ⊂ {1, . . . , q} such that ∀j /∈ J , (β̂λ)j = 0, we have Xβ̂λ =
XJ(β̂λ)J so that (X>Xβ̂λ)J = X>J XJ(β̂λ)J . As a consequence, taking J = Ĵλ, by eq.
(A.17) and (A.18), any minimizer β̂λ of L over Rq satisfies

(A.19) X>
Ĵλ

X
Ĵλ

(β̂λ)
Ĵλ

= X>
Ĵλ

y− λ

2 ẑ
Ĵλ

for some ẑ
Ĵλ
∈ {−1, 1}Ĵλ .

If the matrix X>
Ĵλ

X
Ĵλ

is non-singular (that is, if X
Ĵλ

is of rank |Ĵλ|), then the argmin
of L is unique [Gir14, Section 4.5.1].

Result A.1. For every α ∈ Rq\{0}, the event

rank(X
Ĵλ

) = |Ĵλ| , α>β̂λ = 0 and ∃ j ∈ {1, . . . , q} , αj(β̂λ)j 6= 0 ,(A.20)

where {β̂λ} = argminβ∈Rq {L(β)} is well-defined by the first property, has probability
zero.

Proof. Let Ω be the event defined by Eq. (A.20). If Ω holds true, then there exists
some J ⊂ {1, . . . , q} and some ẑ ∈ {−1, 1}q such that rank(XJ) = |J |, (β̂λ)Jc = 0, and

X>J XJ(β̂λ)J = X>J y− λ

2 ẑJ .

Indeed, this is a consequence of Eq. (A.18) and (A.19), by taking J = Ĵλ and z such
that z

Ĵλ
= sign

(
(β̂λ)

Ĵλ

)
. Therefore, using that X>J XJ is non-singular, we get

(β̂λ)J = M(J)ε + v(J, z)
where M(J) := (X>J XJ)−1X>J

and v(J, z) := (X>J XJ)−1X>J Xβ∗ − (X>J XJ)−1λ

2 ẑJ ,
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hence
α>β̂λ = α>JM(J)ε + α>v(J, z)

follows a normal distribution with variance σ2α>JM(J)M(J)>αJ = σ2
∥∥∥M(J)>αJ

∥∥∥2
.

Now, on Ω, we also have the existence of some j such that αj(β̂λ)j 6= 0. Since (β̂λ)Jc = 0,
we must have j ∈ J , which shows that αJ 6= 0.

Overall, we have proved that

Ω ⊂
⋃

J∈J ,z∈{−1,1}q
ΩJ,z

where J := {j ∈ {1, . . . , q} : rank(XJ) = |J | and αJ 6= 0}

and ΩJ,z :=
{
α>JM(J)ε + α>v(J, z) = 0

}
.

For every J ∈ J ,M(J)>αJ 6= 0 since αJ 6= 0 andM(J) is of rank |J |. As a consequence,
for every J ∈ J and z ∈ {−1, 1}p, P(ΩJ,z) is the probability that a Gaussian variable
with non-zero variance is equal to zero, so it is equal to zero. We deduce that

P(Ω) ≤
∑

J∈J ,z∈{−1,1}q
P(ΩJ,z) = 0

since the sets J and {−1, 1}q are finite.

Applying Result A.1 to the case where X concatenates the original p covariates and
their knockoff counterparts (hence q = 2p), we get that, apart from the event where
X
Ĵλ

is not full rank, for every j ∈ {1, . . . , p}, Wj takes any fixed non-zero value with
probability zero (with αj = ±1, αj+p = ±1, αk = 0 otherwise).

Similarly, the above lemma shows that for every j 6= j′ ∈ {1, . . . , p}:

P(X
Ĵλ

is full-rank and ∃j 6= j′,Wj = Wj′ ,Wj 6= 0,Wj′ 6= 0) = 0.

As a consequence, with probability 1, all the non-zero Wj are distinct if X
Ĵλ

is full-
rank.

Remark A.4. The proof of Result A.1 is also valid for other noise distributions: it only
assumes that the support of the distribution of ε is not included into any hyperplane
of Rn.

A.3 Asymptotic Validity of Intermediate P-values

We consider in this section an asymptotic regime where p→ +∞.
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Assumption A.2 (Asymptotic regime p→ +∞). When p grows to infinity, n, X, β∗,
ε and y all depend on p implicitly. We assume that for every integer j ≥ 1, 1β∗j=0 does
not depend on p (as soon as p ≥ j), and that

|S|
p

=
∣∣{j ∈ [p] : β∗j 6= 0}

∣∣
p

−−−−→
p→+∞

0 .

When making Assumption 1, we also assume that P0 does not depend on p.

Lemma A.3. If Assumptions 1 and A.2 hold true, then for all j ≥ 1 such that β∗j = 0,
the empirical p-value πj defined by Eq. (5) is a valid p-value asymptotically, that is,

∀t ∈ [0, 1] , lim
p→+∞

P(πj ≤ t) ≤ t .

Note that our proof of Theorem 1 in Section A.5 relies on the use of Lemma 2 with t
that can be of order 1/p. Therefore, Lemma A.3 above is not sufficient for our needs.
Nevertheless, it still provides a interesting insight about the πj , and justifies (asymp-
totically) their name, which is why we state and prove this result here.

Proof. By definition, πj ≤ 1 almost surely, so the result holds when t = 1. Let us
now focus on the case where t ∈ [0, 1). Let F0 denote the c.d.f. of P0, the common
distribution of the null statistics {Wj}1≤j≤p / β∗j=0, which exists by Assumption 1. Let
j ≥ 1 such that β∗j = 0 be fixed, and assume that p ≥ j is large enough so that |Sc| ≥ 2.
Let m = |Sc| − 1 ≥ 1 as in the proof of Lemma 2. Note that m depends on p, and
m/p→ 1 as p→ +∞ by Assumption A.2, hence m→ +∞ as p→ +∞.

By definition of πj , when Wj > 0 we have:

πj = 1 + #{k ∈ [p] : Wk ≤ −Wj}
p

(since Wj > 0 > −Wj) = 1 + #{k ∈ S : Wk ≤ −Wj}+ #{k ∈ Sc \ {j} : Wk ≤ −Wj}
p

≥ #{k ∈ Sc \ {j} : Wk ≤ −Wj}
p

= F̂m(−Wj)
αp

(A.21)

where αp
∆= p

m
and for all u ∈ R,

F̂m(u) ∆= #{k ∈ Sc \ {j} : Wk ≤ u}
m
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is the empirical cdf of {Wk}k∈Sc\{j}.

Now, since {Wk}k∈Sc\{j} are i.i.d. with distribution P0 by Assumption 1 , the law of
large numbers implies that, for all u ∈ R,

F̂m(u) a.s.−−−−→
p→+∞

F0(u) .

Since we assume limp→+∞ |S| /p = 0, limp→+∞ αp = 1 and we get that for all u ∈ R,

1
αp
F̂m(u) a.s.−−−−→

p→+∞
F0(u) .

Since Wj is independent from {Wk}k∈Sc\{j}, this result also holds true conditionally
to Wj , with u = −Wj . Given that almost sure convergence implies convergence in
distribution, we have: conditionally to Wj ,

(A.22) 1
αp
F̂m(−Wj)

(d)−−−−→
p→+∞

F0(−Wj)
(d)= F0(Wj)

where the latter equality comes from the fact that Wj has a symmetric distribution, as
shown in Remark 1.

So, when Wj > 0, for every t ∈ [0, 1),

lim sup
p→+∞

P(πj ≤ t |Wj) ≤ lim sup
p→+∞

P
(
F̂m(−Wj)

αp
≤ t

∣∣∣Wj

)
by Eq. (A.21)

≤ 1F0(Wj)≤t(A.23)

by Eq. (A.22) combined with the Portmanteau theorem.

Therefore, for every t ∈ [0, 1),

lim sup
p→+∞

P(αpπj ≤ t) = lim sup
p→+∞

{
P(αpπj ≤ t and Wj > 0) + P(αpπj ≤ t and Wj ≤ 0)︸ ︷︷ ︸

=0 since αp≥1>t
and πj=1 when Wj≤0

}

= lim sup
p→+∞

E[P(αpπj ≤ t |Wj)1Wj>0]

≤ E
[

lim sup
|Sc|→+∞

{P(αpπj ≤ t |Wj)1Wj>0)}
]

≤ P
(
F0(Wj) ≤ t

)
by Eq. (A.23)

≤ t ,

which concludes the proof.
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A.4 A General FDR Control with Quantile-aggregated P-values

The proof of Theorem 1 relies on an adaptation of results proved by [MMB09, Theorems
3.1 and 3.3] about aggregation of p-values. The results of [MMB09], whose proof relies
on the proofs of [BY01], are stated for randomized p-values obtained through sample
splitting. The following lemma shows that they actually apply to any family of p-values.

Lemma A.4. Let (π(b)
j )1≤j≤p,1≤b≤B be a family of random variables with values in

[0, 1]. Let γ ∈ (0, 1], ᾱ ∈ [0, 1] and N ⊂ [p] be fixed. Let us define

∀j ∈ [p] , Qj
∆= p

γ
qγ
(
{π(b)

j : 1 ≤ b ≤ B}
)

where qγ(·) is the γ-quantile function,

ĥ
∆= max

{
i ∈ [p] : Q(i) ≤ iᾱ

}
where Q(1) ≤ · · · ≤ Q(p) ,

and Ŝ
∆=
{
j ∈ [p] : Qj ≤ Q(̂h)

}
.

Then,

E
[
|Ŝ ∩N|
|Ŝ| ∨ 1

]
≤

p−1∑
j=1

(1
j
− 1
j + 1

)
F (j) + F (p)

p
(A.24)

where ∀j ∈ [p] , F (j) ∆= 1
γ

1
B

B∑
b=1

∑
i∈N

P
(
π

(b)
i ≤

jᾱγ

p

)
.

As a consequence, if some C ≥ 0 exists such that

(A.25) ∀t ≥ 0,∀b ∈ [B] , ∀i ∈ N , P
(
π

(b)
i ≤ t

)
≤ Ct ,

then we have

(A.26) E
[
|Ŝ ∩N|
|Ŝ| ∨ 1

]
≤ |N |C

p

 p∑
j=1

1
j

 ᾱ .
Let us emphasize that Lemma A.4 can be useful in general, well beyond knockoff ag-
gregation. To the best of our knowledge, Lemma A.4 is new. In particular, the recent
preprint by [RD19], that studies p-values aggregation procedures, focuses on FWER
controlling procedures, whereas Lemma A.4 provides an FDR control for a less conser-
vative procedure.

Proof. For every i, j, k ∈ [p], let us define

pi,j,k =

P
(
Qi ∈

(
(j − 1)ᾱ, jᾱ

]
, i ∈ Ŝ and |Ŝ| = k

)
if j ≥ 2

P
(
Qi ∈ [0, ᾱ] , i ∈ Ŝ and |Ŝ| = k

)
if j = 1 .
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Then,

|Ŝ ∩N|
|Ŝ| ∨ 1

=
p∑

k=1
1|Ŝ|=k

∑
i∈N 1

i∈Ŝ
k

=
∑
i∈N

p∑
k=1

1
k
1|Ŝ|=k and i∈Ŝ

=
∑
i∈N

p∑
k=1

1
k
1|Ŝ|=k and i∈Ŝ and 0≤Qi≤kᾱ

since i ∈ Ŝ and |Ŝ| = k implies that Qi ≤ Q(̂h) ≤ ĥᾱ = kᾱ. Taking an expectation and
writing that

10≤Qi≤kᾱ = 1Qi∈[0,ᾱ] +
k∑
j=2

1Qi∈((j−1)ᾱ,jᾱ] ,

we get —following the computations of [MMB09, proof of Theorems 3.3], which them-
selves rely on the ones of [BY01]—,

E
[
|Ŝ ∩N|
|Ŝ| ∨ 1

]
≤
∑
i∈N

p∑
k=1

1
k

k∑
j=1

pi,j,k =
∑
i∈N

p∑
j=1

p∑
k=j

1
k
pi,j,k

≤
∑
i∈N

p∑
j=1

p∑
k=j

1
j
pi,j,k =

p∑
j=1

1
j

∑
i∈N

p∑
k=j

pi,j,k︸ ︷︷ ︸
=F (j)−F (j−1)1j≥2

where ∀j ∈ {1, . . . , p} , F (j) ∆=
∑
i∈N

j∑
j′=1

p∑
k=1

pi,j′,k .

Since the above upper bound is equal to

F (1) +
p∑
j=2

1
j

[
F (j)− F (j − 1)

]
=

p∑
j=1

(1
j
− 1
j + 1

)
F (j) + F (p)

p
,

we get that E
[
|Ŝ ∩N|
|Ŝ| ∨ 1

]
≤

p∑
j=1

(1
j
− 1
j + 1

)
F (j) + F (p)

p
.(A.27)

Notice also that

F (j) =
∑
i∈N

P(Qi ≤ jᾱ and i ∈ Ŝ) ≤
∑
i∈N

P(Qi ≤ jᾱ) .

Now, as done by [MMB09, proof of Theorems 3.1], we remark that Qi ≤ jᾱ is equivalent
to

1
B

∣∣∣∣∣
{
b ∈ [B] : pπ

(b)
i

γ
≤ jᾱ

}∣∣∣∣∣ = 1
B

B∑
b=1

1
pπ

(b)
i ≤jᾱγ

≥ γ
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so that

P(Qi ≤ jᾱ) = P
(

1
B

B∑
b=1

1
pπ

(b)
i ≤jᾱγ

≥ γ
)

≤ 1
γ
E
[

1
B

B∑
b=1

1
pπ

(b)
i ≤jᾱγ

]
by Markov inequality

= 1
γ

1
B

B∑
b=1

P
(
pπ

(b)
i ≤ jᾱγ

)
.

Therefore,

F (j) ≤
∑
i∈N

1
γ

1
B

B∑
b=1

P
(
pπ

(b)
i ≤ jᾱγ

)
= F (j) ,

so that Eq. (A.27) implies Eq. (A.24).

If condition (A.25) holds true, then, for every j ∈ [p],

F (j) ≤ |N |C
γ

jᾱγ

p
= |N |Cᾱ

p
j ,

hence Eq. (A.24) shows that

E
[
|Ŝ ∩N|
|Ŝ| ∨ 1

]
≤

p−1∑
j=1

F (j)
j(j + 1) + F (p)

p
≤ |N |Cᾱ

p

p−1∑
j=1

1
j + 1 + |N |Cᾱ

p
= |N |Cᾱ

p

 p∑
j=1

1
j

 ,

which is the desired result.

A.5 Proof of Theorem 1

We can now prove Theorem 1. We apply Lemma A.4 with ᾱ = β(p)α, N = Sc, so
that Ŝ = ŜAKO+BY . Since the π(b)

j , b = 1, . . . , B, have the same distribution as πj ,
by Lemma 2, condition (A.25) holds true with C = κp/|Sc|, and Eq. (A.26) yields the
desired result.

Note that an FDR control for AKO such as Theorem 1 cannot be obtained straightfor-
wardly from the arguments of [BC15] and [CFJL18]. One key reason for this is that their
proof relies on a reordering of the features according to the values of (|Wj |)j∈[p] [BC15,
Section 5.2], such a reordering being permitted since the signs of the Wj are iid coin
flips conditionally to the (|Wj |)j∈[p] [CFJL18, Lemma 2]. In the case of AKO, we must
handle the (W (b)

j )j∈[p] simultaneously for all b ∈ [B], and conditioning with respect
to (|W (b)

j |)j∈[p],b∈[B] may reveal some information about the signs of the (W (b)
j )j∈[p] as
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soon as B > 1. At least, it does not seem obvious to us that the key result of [CFJL18,
Lemma 2] can be proved conditionally to the (|W (b)

j |)j∈[p],b∈[B] when B > 1, so that the
proof strategy of [CFJL18] breaks down in the case of AKO with B > 1.

APPENDIX B: ADDITIONAL EXPERIMENTAL RESULTS

B.1 Demonstration of Aggregated Multiple Knockoff vs. Simultaneous Knockoff

Using the same simulation settings as in Section 5.1 with n = 500, p = 1000 and
varying simulation parameters to generate Figure 2 in the main text, we benchmark
only aggregation of multiple knockoffs (AKO) with 5 and 10 bootstraps (B = 5 and
B = 10) and compare with simultaneous knockoffs with 2 and 3 bootstraps (κ = 2
and κ = 3). Results in Figure B.5 show that while increasing the number of knockoff
bootstraps makes simultaneous knockoffs more conservative, doing so with AKO makes
the algorithm more powerful (and in the worst case retains the same power with fewer
bootstraps).

B.2 Empirical Evidence on the Independence of Aggregated P-values π̄

Using the same simulation settings as in Section 5.1 with n = 500, p = 1000, ρ =
0.6, snr = 3.0, sparsity = 0.06 we generate 100 observations of aggregated p-values π̄.
Then, we compute the Spearman rank-order correlation coefficient of the Null π̄j for
these 100 observations along with their two-sided p-value (for a hypothesis test whose
null hypothesis is that two sets of data are uncorrelated).

The results are illustrated in Figure B.6: the Spearman correlation values are concen-
trated around zero, while the distribution of associated p-values seems to be a mixture
between a uniform distribution and a small mixture component consisting of mostly
non-null p-values. This indicates near independence between the aggregated p-values
using quantile-aggregation [MMB09], hence justifies our use of BH step-up procedure
for selecting FDR controlling threshold in the AKO algorithm.

Remark B.5. Again, it is worth noticing that the empirical evidence we have shown
is only done in a setting with a Toeplitz structure for the covariance matrix. However,
as explained in the main text, this correlation setting is usually found in neuroimaging
and genomics data. Hence, we believe that assuming short-distance correlations between
the (Xj)j∈[p] is a mild assumption, which should be satisfied in the practical scenarios
where we want to apply our algorithm.

The decoding maps returned by the KO, AKO and DL inference procedures are pre-
sented in Figure B.7. As quantified by the Jaccard index in the main text, we observe
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that the AKO solution is typically closer to an external method based on the despar-
sified lasso (DL). Moreover, AKO is also typically more sensitive than KO alone.

The seven classification problems are the following:

• Emotion: predict whether the participant watches an angry face or a geometric
shape.

• Gambling: predict whether the participant gains or loses gambles.
• Motor foot: predict whether the participant moves the left or right foot.
• Motor hand: predict whether the participant moves the left or right hand.
• Relational: predict whether the participant matches figures or identified feature

similarities.
• Social: predict whether the participant watches a movie with social behavior or

not.
• Working Memory: predict whether the participant does a 0-back or a 2-back task.
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Figure B.5: Aggregation of multiple knockoffs (B = 5 and B = 10) vs. simulta-
neous knockoffs (κ = 2 and κ = 3). A clear loss in statistical power is demonstrated
in the latter method when increasing the number of bootstraps κ, while the former
(AKO) shows the opposite: with B = 10 bootstraps there are small, yet consistent
gains in the number of true detections compared to using only B = 5 bootstraps.
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Figure B.6: Left: Histogram of Spearman correlation values for 100 samples
of null aggregated p-values π̄j. Right: Histogram of corresponding p-values
for the Spearman correlation
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Figure B.7: Decoding maps obtained for seven classification tasks. Emotion,
gambling, motor foot, motor hand, relational, social and working memory refer to 7
binary tasks that were considered based on the HCP900 dataset. We observe that AKO
is typically more sensitive than KO, and yields solution closer to that of an independent
solution based on a desparsified-Lasso (DL) estimator.
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