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Abstract. Task-based paradigm models can be an alternative to MPI.
The user defines atomic tasks with a defined input and output with
the dependencies between them. Then, the runtime can schedule the
tasks and data migrations efficiently over all the available cores while
reducing the waiting time between tasks. This paper focus on comparing
several task-based programming models between themselves using the
LU factorization as benchmark.
HPX, PaRSEC, Legion and YML+XMP are task-based programming
models which schedule data movement and computational tasks on dis-
tributed resources allocated to the application. YML+XMP supports
parallel and distributed tasks with XscalableMP, a PGAS language. We
compared their performances and scalability are compared to ScaLA-
PACK, an highly optimized library which uses MPI to perform com-
munications between the processes on up to 64 nodes. We performed a
block-based LU factorization with the task-based programming model
on up to a matrix of size 49512× 49512. HPX is performing better than
PaRSEC, Legion and YML+XMP but not better than ScaLAPACK.
YML+XMP has a better scalability than HPX, Legion and PaRSEC.
Regent has trouble scaling from 32 nodes to 64 nodes with our algo-
rithm.

Keywords: Parallel and distributed programming paradigms · Task-
based programming models · Supercomputers.

1 Introduction

Task-based programming models are an interesting alternative to the Message
Passing Interface (MPI) [9]. MPI is widely used and very efficient on the current
architectures. However, MPI may not be a solution efficient enough on exascale
machines, especially in terms of fault tolerance and check-pointing [16]. Task-
based approach can help in managing fault tolerance and check-pointing since
the tasks could be restarted on another location and data from tasks saved at
any moment. The goal of this paper is to analyze and compare the task-based
programming models and languages between themselves.
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While MPI focus on exchanging data between processes, other programming
models may be efficient to parallelize applications with good scalability without
being held back by global synchronizations. For instance, Partitioned Global Ad-
dress Space Languages (PGAS) programming models which let the users see the
distributed memory as a global memory address space that is partitioned across
each processing element [5] is an alternative to MPI. Task-based programming
models which allows to define fine-grain tasks (computations) on a specific set
of data (input and output) are also an alternative. Runtime systems which can
optimize execution are another one. Moreover, task-based programming models
(first level of parallelism) combined with coarse-grain tasks implemented in a
PGAS language (second level of parallelism) can also be one of them. Usually,
fine-grain tasks use one process (eventually multi-threaded) whereas coarse-grain
tasks perform on several processes (eventually with distributed memory).

In Section 2, we will describe the languages we are using to implement the
application and how we did it. We focus on a PGAS language, task-based pro-
gramming models and a combination of the two. Furthermore, we will present
the performed experimentations and the results we obtained in Section 3.

2 Programming Paradigms

In this section, we present and use several languages to implement a LU fac-
torization. MPI, a message passing library, and XcalableMP, a PGAS language,
are used to implement a regular and distributed LU factorization (non blocked).
Legion, PaRSEC, HPX and YML+XMP are used to implement the block-based
version in which tasks make matrix operations on the sub-blocks of the matrix
with a subset of the processes allocated to the application. Legion, PaRSEC,
HPX are programming models based on a graph of task and YML+XMP is
based on a graph of parallel and distributed tasks. They will be succinctly de-
scribed afterwards.

2.1 MPI

The Message Passing Interface (MPI) [9] is a standardized norm designed to
work on a wide variety of parallel computers. It defines the syntax of the core
library routines to write message-passing applications. The application uses sev-
eral processes to make computation at the same time on different cores and uses
MPI to send data from one process to another one. MPI has several implemen-
tations (OpenMPI, MPICH2, IntelMPI, . . . ) which consist of a set of routines
that can be called from C, C++ and Fortran.

The MPI library interface includes point-to-point send/receive operations,
aggregate functions involving communication between all processes, synchronous
nodes (barrier operations), one-way communication, dynamic process manage-
ment and I/O operations. MPI provides synchronous and asynchronous routines
as well as blocking and non-blocking operations. Collective routines involve com-
munications between all processes in a group, for instance MPI Bcast (broadcast
that sends an array to all of the other processes).
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MPI can be used with shared memory programming models like OpenMP or
with libraries to send data and make computations on CPUs like CUDA. This
hybrid model is called MPI+X.

2.2 XcalableMP

XcalableMP (XMP) [13] is a directive-based language extension for C and For-
tran, which allows users to develop parallel programs for distributed memory
systems easily and to tune the performance by having minimal and simple nota-
tions. XMP supports (1) typical parallelization methods based on the data-/task-
parallel paradigm under the ”global-view” model and (2) the co-array feature
imported from Fortran 2008 for ”local-view” programming.

The Omni XMP compiler translates an XMP-C or XMP-Fortran source code
into a C or Fortran source code with XMP runtime library calls, which uses MPI
and other communication libraries as its communication layer.

2.3 Legion (Regent)

Legion [1] is a data-centric parallel programming model. It aims to make the
programming system aware of the structure of the data in the program. Legion
provides explicit declaration of data properties (organization, partitioning, priv-
ileges, and coherence) and their implementation via the logical regions. They
are the fundamental abstraction used to describe data in Legion applications.
Logical regions can be partitioned into sub-regions and data structures can be
encoded in logical regions to express locality describing data independence.

Regent [15] is a programming model which simplifies Legion. Regent compiler
translates Regent programs into efficient implementations for Legion. It results
in programs that are written with fewer lines of codes and at a higher level.

2.4 PaRSEC

PaRSEC [3] [2] (Parallel Runtime Scheduling and Execution Controller) is an
engine for scheduling tasks on distributed hybrid environments.

It offers a flexible API to develop domain specific languages. It aims to shift
the focus of developers from repetitive architectural details toward meaningful
algorithmic improvements. Two domain specific languages are supported by Par-
sec, the Parameterized Task Graph [6] (PTG) and Dynamic Task Discovery [11]
(DTD)

2.5 YML+XMP

YML [8] is a development and execution environment for scientific workflow
applications over various platforms, such as HPC, Cloud, P2P and Grid with
multilevel of parallelism. YML defines an abstraction over the different middle-
wares, so the user can develop an application that can be executed on different
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middlewares without making changes related to the middleware used. YML can
be adapted to different middlewares by changing its back-end. Currently, the
proposed back-end [17] uses OmniRPC-MPI [14], a grid RPC which supports
master-worker parallel and distributed programs based on multi SPMD pro-
gramming paradigms. This back-end is developed for large scale clusters such as
Japanese K-Computer [17]. A back-end for peer to peer networks is also avail-
able.

For the experiments, we use XMP to develop the YML components as intro-
duced in [17]. This allows two levels programming. The higher level is the graph
(YML) and the second level is the PGAS component (XMP). In the components,
YML needs complementary information to manage the computational resources
and the data at best : the number of XMP processes for a component and the
distribution of the data in the processes (template). With this information, the
scheduler can anticipate the resource allocation and the data movements. The
scheduler creates the processes that the XMP components need to run the com-
ponent. Then each process will get the piece of data which will be used in the
process from the data repository.

2.6 HPX

High Performance ParalleX (HPX) [12] is a C++ Standard Library for Con-
currency and Parallelism. HPX API implements the interfaces defined by the
C++11/14/17/20 ISO standard and respects the programming guidelines used
by the Boost collection of C++ libraries. It also extends the C++ Standard
APIs to the distributed case. It aims to improve the scalability of current appli-
cations. It also tries to expose new levels of parallelism which are necessary to
take advantage of the future systems.

HPX is an open-source implementation of the ParalleX execution model.
This model focuses on overcoming the four main barriers to achieve scalability
(Starvation, Latencies, Overhead, Waiting for contention resolution).

3 Performance Experiences

3.1 Cluster description

The tests were performed on Poincare, the cluster of La Maison de la Simulation
in France. It is an IBM cluster mainly composed of iDataPlex dx360 M4 servers,
hosted at IDRIS, the CNRS supercomputer centre in Saclay, France. There is
77 compute nodes with 2 Sandy Bridge E5-2670 processors (8 cores each, so
16 cores per nodes) and 32 GB of RAM. The file system is constituted of two
parts : a replicated file system with the homes of the users and a scratch file
system with a faster access from the nodes. The network is based on QLogic
QDR InfiniBand.
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3.2 Experiments details

We performed performance tests on up to 64 nodes of Poincare with the LU fac-
torization implemented via MPI, ScaLAPACK, XMP, YML+XMP, HPX, PaR-
SEC and Regent. We used several sizes of matrices : 16384×16384, 32768×32768
and 49512 × 49512. 16384 × 16384 is the largest size we can use to perform the
tests on one node since YML+XMP cannot perform the LU factorization with
greater sizes of matrices on one node.

In HPX, PaRSEC and Regent, the performances depends on the number of
blocks in each dimension (thus, the size of the blocks). We used several values for
the number of blocks. Table 1, Table 2 and Table 3 show the block parameters
which obtained the fastest execution time for each size of matrix. The execu-
tion times shown here are the case in which we obtained the fastest time for
each number of nodes. We performed those test several times and computed the
execution times mean of the same case. We will compare the results of the task-
based programming languages to those obtained with ScaLAPACK. We will also
compare them to our MPI and XMP implementations. Tests were run on several
number of nodes in order to extract strong scaling information which will be
discussed in Section 3.4. We used 1, 2, 4, 8, 16, 32 and 64 nodes to factorize the
16384 × 16384 values matrix. Then, we used 4, 8, 16, 32 and 64 nodes for the
32768× 32768 values matrix. And finally, we used 8, 16, 32 and 64 nodes for the
49512 × 49512 values matrix.

Table 1. Number of blocks for the fastest case on a 16384×16384 matrix with number
of processes per tasks between parenthesis

1 2 4 8 16 32 64

HPX 902(1) 452(1) 802(1) 452(1) 452(1) 552(1) 552(1)

PaRSEC 1502(1) 2002(1) 702(1) 1202(1) 2102(1) 2402(1) 2502(1)

Regent 502(1) 502(1) 502(1) 352(1) 402(1) 352(1) 302(1)

YML+XMP 42(8) 82(8) 82(16) 82(32) 42(128) 42(128) 42(128)

Our MPI application is MPI-only so we used MPI support for shared memory
and used one MPI rank per core i.e. 16 processes per core.

ScaLAPACK has a MPI only distributed implementation so it is run with
one MPI rank process per core.

Our XMP implementation only uses pure XMP directives which are con-
verted to MPI calls. It is launched as a MPI only application with one MPI rank
process per core.

Regent is a compiler that translates a Lua based code into Legion. Regent
applications are launched by passing the MPI command to Regent launcher
which will compile and run the application. It creates a Legion worker on each
node. Each one of them spawns a process to manage the local tasks, a process to
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Table 2. Number of blocks for the fastest case on a 32768×32768 matrix with number
of processes per tasks between parenthesis

4 8 16 32 64

HPX 902(1) 902(1) 902(1) 752(1) 812(1)

PaRSEC 702(1) 1202(1) 2702(1) 3802(1) 4202(1)

Regent 702(1) 702(1) 602(1) 502(1) 502(1)

YML+XMP 12(64) 42(64) 82(32) 82(128) 82(128)

Table 3. Number of blocks for the fastest case on a 49512×49512 matrix with number
of processes per tasks between parenthesis

8 16 32 64

HPX 1482(1) 1482(1) 1482(1) 1452(1)

PaRSEC 2502(1) 2502(1) 4002(1) 4202(1)

Regent 702(1) 702(1) 702(1) 702(1)

YML+XMP 12(128) 22(128) 42(128) 82(128)

manage data and a process to execute the tasks by default. Then, the user has to
specify the number of processes on which the tasks will be executed by passing
specific arguments to Legion runtime. We used 14 processes on each node to
execute the tasks.

To launch our HPX application, we used the mpirun command to execute
one instance of HPX runtime on each node as one would use MPI to execute
one process per node. Then, HPX is able to infer the node configuration. HPX
runtime spawns a worker process on each core of the node and tasks are run as
light-weight threads on those processes. HPX is able to detect that there is two
sockets on the node and manages them internally.

PaRSEC runtime depends on MPI and is used in the applications. Therefore,
PaRSEC applications has to be run with the mpirun command. We created one
MPI rank per core i.e. 16 MPI processes per node.

YML scheduler is launched with MPI on one core (the first one in the machine
file) which launch XMP tasks with MPI Comm spawn routine on the leftover
cores available.

3.3 Performances

Fig. 1 shows the performances obtained for the LU factorization with HPX,
MPI, PaRSEC, Regent, ScaLAPACK, XMP and YML+XMP on three sizes of
matrices 16384×16384 (top), 32768×32768 (middle) and 49512×49512 (bottom).

On a 16384×16384 matrix, MPI is close to XMP on a small amount of nodes.
When the number of node increases, MPI becomes significantly faster than XMP.
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Indeed, Fig. 1 middle and bottom charts show that MPI is significantly faster
than XMP for each number of node. MPI and XMP applications share the same
algorithm and a similar implementation but expressed with two different models.
This may be due to an overhead from the PGAS description and access of the
data in XMP compared to MPI.

Regent, HPX and PaRSEC are relatively close to one another on a small
number of cores. However, we can outline tendencies. PaRSEC is faster than
HPX on the lower number of node then HPX becomes faster when the number
of node increases. It also seems that when the size of the matrix increases, HPX
and PaRSEC performances are becoming closer and that HPX becomes faster
than PaRSEC on the larger number of nodes. Indeed, HPX becomes faster than
PaRSEC after 4 nodes for a matrix of size 16384 × 16384, after 16 nodes for a
matrix of size 32768 × 32768 and after 64 nodes 49512 × 49512. For the later
value, the difference between the two is very small (330s vs 331) so we expect
HPX to become significantly faster for this size of matrix with a greater number
of nodes.

Regent is a little bit behind HPX and PaRSEC on each number of nodes and
size of matrices except for 2 and 4 nodes on a 16384×16384 matrix where Regent
is very efficient. We can also notice that Regent is taking more time on 64 nodes
than on 32. This may be related to the fact that Regent does not seem to be able
to manage a large number of tasks on a large number of nodes since the number
of sub-matrices is decreasing when the number of cores is increasing as Table 1,
Table 2 and Table 3 are showing. However, other task based languages obtain
better results when the number of sub-matrices they process increase with the
number of cores. It creates more task and parallelism so that the runtime can
use the resources most efficiently.

The YML+XMP applications are the slowest compared to the the appli-
cations implemented with the other models. However, YML+XMP is the only
model where tasks are also parallel and distributed. Moreover, it also uses the file
system to perform the communications between the tasks so the communications
between tasks are not efficient.

Our last application uses the ScaLAPACK library to compute the LU factor-
ization. It performs very well on large number of nodes but HPX, PaRSEC and
Regent are faster on lower number of cores for each size of matrix. They are not
using the same block based algorithm but ScaLAPACK is using a tiled algorithm
that makes computations on rows and columns of the matrix [4]. Therefore, it
is an interesting comparison to our block-based algorithms where the operations
on the blocks are implemented with tasks. For a 16384 × 16384 matrix ScaLA-
PACK and HPX are close on 64 nodes but ScaLAPACK is faster for greater size
of matrices. This may be due to the cyclic distribution of data in ScaLAPACK
which induces a different communication pattern very efficient on this kind of
machine and algorithm.
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Fig. 1. Execution times obtained with the block-based LU factorization implemented
with several task-based programming models on a 16384×16384 matrix (top), a 32768×
32768 matrix (middle) and a 49512× 49512 matrix (bottom)
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3.4 Strong scaling

Fig. 2 shows the speed-up extracted from the performances values from Fig. 1
for HPX, MPI, PaRSEC, Regent, ScaLAPACK, XMP and YML+XMP on three
sizes of matrices 16384×16384 (top), 32768×32768 (middle) and 49512×49512
(bottom). The speed-up corresponds to the ratio tS/tN where tN is the execution
time for N nodes and tF is the execution time of the first number of nodes
considered in the test. In the top chart of Fig. 2, tF is t1 since the experiments
start with 1 node. In the middle (bottom) chart, tF corresponds to 4 (8). It
translates how efficiently we are managing the addition of more resources to
solve the same problem.

Our MPI regular LU factorization is scaling very well as we can see on the
charts. It even exceeds the ideal speed-up with matrices of size 16384 × 16384
(Fig. 2 top chart) and 32768 × 32768 (Fig. 2 middle chart). We think that it
may be due to processes not having enough computations to do on 32 and 64
nodes matrices of size 16384 × 16384. Indeed, when increasing the size of the
matrix to 32768 × 32768, the strong scalability for our MPI application seems
more reasonable. The same situation occurs for 64 nodes when increasing the
size of the matrix from 32768 × 32768 to 49512 × 49512.

Our task based applications obtain better scalability with the increase of the
data size and the number of tasks processed by the applications. Table 1, Table 2
and Table 3 show that the number of tasks for a given number of nodes increases
with the size of the matrix for each task based programming model. It produces
more parallelism and opportunities to optimize the scheduling of the tasks and
improve the use of the computing resources.

Regent strong scalability decreases from 32 to 64 nodes for each size of matrix.
We expect its strong scalability to decrease even more with the increase of the
number of cores.

Our HPX application is scaling better than our PaRSEC application with
matrices of size 16384 × 16384 and 32768 × 32768. It corresponds to the results
we obtained in the previous section. We can also see that PaRSEC and HPX
are very close with matrices of size 49512 × 49512 and that HPX is exceeding
PaRSEC after 32 nodes. It seems that HPX may have a better scalability than
PaRSEC on more than 64 nodes with matrices of size 49512 × 49512 if more
nodes were available.

Finally, our YML+XMP application has the best strong scalability compared
to the other task-based programming models. Therefore, we think that this pro-
gramming model will be well adapted to larger machines with a distributed
system and integrated schedulers.
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32768 matrix (middle) and a 49512× 49512 matrix (bottom) - log2 scale for the y-axis
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3.5 Results summary

As expected on a relatively small cluster, MPI has the best results and scala-
bility on 64 nodes but the application does not use partial pivoting so it is not
comparable to ScaLAPACK. It is also faster than XMP since MPI routines are
highly optimized. Even though, XMP translates its directives into MPI code,
the PGAS model used in XMP is not as efficient as using directly MPI.

ScaLAPACK is faster than the applications implemented with the task based
programming models but it uses very efficient kernel routines to perform compu-
tations and communications internally whereas we are using unoptimized rou-
tines.

In term of task based programming models where we implemented every-
thing (the description of the tasks and the computations executed by the tasks)
with the language of the programming model, HPX is the most efficient on 64
nodes. However, PaRSEC also shows interesting performances in specific cir-
cumstances. Furthermore, Regent applications performances are not improving
while increasing the number of nodes from 32 to 64. We think that the difference
of performances between those programming models comes from their ability to
manage the number of tasks, the dependencies between the tasks, tasks work-
load and the data migrations between nodes. Indeed, Regent performs best with
a smaller amount of tasks than HPX and PaRSEC but its performances are
behind them (see Table 1, Table 2 and Table 3 where we can see the number of
tasks executed with the programming models to obtain their best performances).
HPX and PaRSEC are performing better than Regent and YML+XMP with a
larger number of smaller tasks since the number of tasks increase but not the
data global size. HPX and PaRSEC seem to distribute very efficiently the tasks
on the resources and optimize the data migrations between the nodes whereas
Regent does not seem to be able to do so since the user has to reserve resources
in Legion to manage the data and the computations. We would expect Legion to
be able to reserve those resources by itself. Moreover, we used the default mapper
for data and tasks provided by Regent and Legion. The default mapper may not
be efficient enough to be used on production environment. Implementing a new
mapper more adapted to our use may improve the performances of our Regent
application. However, this means that the responsibility of implementing a good
data and computation mapper is pushed to the user. Therefore, the optimization
of the scheduling of the computations, the data positioning and data migrations
is relegated to the user and not feature of the task based programming model
anymore.

Finally, YML+XMP is the only programming model using tasks which are
also distributed but the data migrations between the tasks are performed by
reading/writing them on the file system which decrease its efficiency compared to
node to node communications. YML+XMP performances may not be impressive
on this number of nodes but with the increase of the number of nodes and
its strong scalability higher than the other task-based programming languages,
YML+XMP could be able to perform better than the other programming models
on a very large scale as already experienced on the K computer [10]. Moreover,
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changing the use of the file system to make the communications between the
tasks to in-memory communications could improve the performances even more.

4 Conclusion and Perspectives

We experimented several programming models on a cluster composed of 77
nodes. Indeed, we performed strong scalability tests on up to 64 nodes (1024
cores) with our implementation of the LU factorization in several programming
paradigms. We implemented it with XMP, a PGAS language, with Regent (Le-
gion), HPX and PaRSEC, three fine-grain task-based programming models and
with YML+XMP, a coarse-grain task-based programming model combined with
a PGAS language. We compared the performances we obtained with the dif-
ferent task-based programming models. We also compared to the ScaLAPACK
library and our MPI implementation.

Our study has shown that ScaLAPACK performed better than task-based
languages with a problem large enough. ScaLAPACK is expected to run better
since it uses high performance libraries (e.g. BLACS and LAPACK) to perform
the inner computations and the data migrations so it may also explain why it is
faster. Moreover, we also showed that HPX is performing better than the other
task-based languages on a large number of cores and that PaRSEC is more effi-
cient than HPX on smaller number of cores. Unfortunately, Regent performances
are close to HPX and PaRSEC but we encountered difficulties to make it scale
from 32 to 64 nodes. However, we expect fine-grain task-based programming
models them to get better performances with the increase of compute nodes and
the use of optimized routines to implement tasks. Finally YML+XMP, is the
less efficient one due to the communications between the tasks being held by the
file system. Furthermore, coarse-grain task-based programming models with two
levels of parallelism (the graph of tasks and the tasks implemented in a PGAS
language) are not adapted to this kind of machine and number of nodes. They
could possibly obtain better results with an adapted scheduler and a greater
number of nodes as shown in [10].

As new perspectives, since, we only used a relatively small amount of nodes
on an already old cluster, the number of cores could be increased as well as the
size of the problem. We think that task-based programming models may get
better performances than MPI+X when the size of the problem, the number
of computing resources and the communication network involved in its solution
will greatly increase. The task approach allows to describe the computations,
the data migrations and the dependencies between them more precisely and at
a finer grain. Therefore, the scheduler will be able to predict and anticipate the
location where the data will be required. The scheduler could also optimize load
balancing in the processes available as well as run different type of task at the
same time compared to MPI where each process does almost the same thing at
the same time. Moreover, the scheduler could be able to launch computations
on resources where the data are stored and place the data in a way that reduces
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their movement during the execution. Other graph of tasks based frameworks
like Pegasus [7] could also be studied.

Finally, our applications could get even better results by using existing and
efficient libraries to perform the operations on the sub-matrices. Another im-
provement is to manage data sizes which are not divisible by the number of
blocks and introduce pivoting to improve numerical stability.

Acknowledgment

Thanks to George Bosilca for his help with PaRSEC. Thanks to Harmut Kaiser
and Mickael Simberg for their answers to my questions about HPX. Thanks
to Elliott Slaughter for his help in installing and in using Regent properly. We
would like to thank TOTAL SA which supported and allowed this work.

References

1. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: Expressing locality and
independence with logical regions. In: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis. pp. 66:1–
66:11. SC ’12, IEEE Computer Society Press, Los Alamitos, CA, USA (2012),
http://dl.acm.org/citation.cfm?id=2388996.2389086

2. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Herault, T., Dongarra, J.J.:
Parsec: Exploiting heterogeneity to enhance scalability. Computing in Science En-
gineering 15(6), 36–45 (Nov 2013). https://doi.org/10.1109/MCSE.2013.98

3. Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Don-
garra, J.: Dague: A generic distributed dag engine for high performance
computing. In: 2011 IEEE International Symposium on Parallel and Dis-
tributed Processing Workshops and Phd Forum. pp. 1151–1158 (May 2011).
https://doi.org/10.1109/IPDPS.2011.281

4. Choi, J., Dongarra, J.J., Pozo, R., Walker, D.W.: Scalapack: a scalable linear alge-
bra library for distributed memory concurrent computers. In: [Proceedings 1992]
The Fourth Symposium on the Frontiers of Massively Parallel Computation. pp.
120–127 (Oct 1992). https://doi.org/10.1109/FMPC.1992.234898

5. Coarfa, C., Dotsenko, Y., Mellor-Crummey, J., Cantonnet, F., El-Ghazawi, T.,
Mohanti, A., Yao, Y., Chavarra-Miranda, D.: An evaluation of global address
space languages: Co-array fortran and unified parallel c. pp. 36–47 (01 2005).
https://doi.org/10.1145/1065944.1065950

6. Danalis, A., Bosilca, G., Bouteiller, A., Herault, T., Dongarra, J.: Ptg: An ab-
straction for unhindered parallelism. In: 2014 Fourth International Workshop on
Domain-Specific Languages and High-Level Frameworks for High Performance
Computing. pp. 21–30 (Nov 2014). https://doi.org/10.1109/WOLFHPC.2014.8

7. Deelman, E., Singh, G., Su, M.H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G.,
Vahi, K., Berriman, G.B., Good, J., Laity, A., Jacob, J.C., Katz, D.S.: Pegasus:
a framework for mapping complex scientific workflows onto distributed systems.
Scientific Programming Journal 13(3), 219–237 (2005), http://pegasus.isi.edu/
publications/Sci.pdf

http://dl.acm.org/citation.cfm?id=2388996.2389086
https://doi.org/10.1109/MCSE.2013.98
https://doi.org/10.1109/IPDPS.2011.281
https://doi.org/10.1109/FMPC.1992.234898
https://doi.org/10.1145/1065944.1065950
https://doi.org/10.1109/WOLFHPC.2014.8
http://pegasus.isi.edu/publications/Sci.pdf
http://pegasus.isi.edu/publications/Sci.pdf


14

8. Delannoy, O., Emad, F., Petiton, S.: Workflow global computing with yml. In:
2006 7th IEEE/ACM International Conference on Grid Computing. pp. 25–32
(Sept 2006). https://doi.org/10.1109/ICGRID.2006.310994

9. Forum, M.P.: Mpi: A message-passing interface standard. Tech. rep., Knoxville,
TN, USA (1994)

10. Gurhem, J., Tsuji, M., Petiton, S.G., Sato, M.: Distributed and parallel pro-
gramming paradigms on the k computer and a cluster. In: Proceedings of
the International Conference on High Performance Computing in Asia-Pacific
Region. pp. 9–17. HPC Asia 2019, ACM, New York, NY, USA (2019).
https://doi.org/10.1145/3293320.3293330

11. Hoque, R., Herault, T., Bosilca, G., Dongarra, J.: Dynamic task discovery in parsec:
A data-flow task-based runtime. In: Proceedings of the 8th Workshop on Latest
Advances in Scalable Algorithms for Large-Scale Systems. pp. 6:1–6:8. ScalA ’17,
ACM, New York, NY, USA (2017). https://doi.org/10.1145/3148226.3148233

12. Kaiser, H., Heller, T., Adelstein-Lelbach, B., Serio, A., Fey, D.: Hpx: A task
based programming model in a global address space. In: Proceedings of the
8th International Conference on Partitioned Global Address Space Program-
ming Models. pp. 6:1–6:11. PGAS ’14, ACM, New York, NY, USA (2014).
https://doi.org/10.1145/2676870.2676883

13. Lee, J., Sato, M.: Implementation and performance evaluation of xcalablemp: A
parallel programming language for distributed memory systems. In: 2010 39th
International Conference on Parallel Processing Workshops. pp. 413–420 (09 2010).
https://doi.org/10.1109/ICPPW.2010.62

14. Sato, M., Hirano, M., Tanaka, Y., Sekiguchi, S.: Omnirpc: A grid rpc facility for
cluster and global computing in openmp. In: International Workshop on OpenMP
Applications and Tools. pp. 130–136. Springer (2001). https://doi.org/10.1007/3-
540-44587-0 12

15. Slaughter, E., Lee, W., Treichler, S., Bauer, M., Aiken, A.: Regent: a
high-productivity programming language for hpc with logical regions. In:
SC ’15: Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis. pp. 1–12 (Nov 2015).
https://doi.org/10.1145/2807591.2807629

16. Snir, M., Wisniewski, R.W., Abraham, J.A., Adve, S.V., Bagchi, S., Balaji, P., Be-
lak, J., Bose, P., Cappello, F., Carlson, B., Chien, A.A., Coteus, P., DeBardeleben,
N.A., Diniz, P.C., Engelmann, C., Erez, M., Fazzari, S., Geist, A., Gupta, R.,
Johnson, F., Krishnamoorthy, S., Leyffer, S., Liberty, D., Mitra, S., Munson, T.,
Schreiber, R., Stearley, J., Hensbergen, E.V.: Addressing failures in exascale com-
puting. The International Journal of High Performance Computing Applications
28(2), 129–173 (2014). https://doi.org/10.1177/1094342014522573

17. Tsuji, M., Sato, M., Hugues, M., Petiton, S.: Multiple-spmd programming envi-
ronment based on pgas and workflow toward post-petascale computing. In: 2013
42nd International Conference on Parallel Processing. pp. 480–485 (Oct 2013).
https://doi.org/10.1109/ICPP.2013.58

https://doi.org/10.1109/ICGRID.2006.310994
https://doi.org/10.1145/3293320.3293330
https://doi.org/10.1145/3148226.3148233
https://doi.org/10.1145/2676870.2676883
https://doi.org/10.1109/ICPPW.2010.62
https://doi.org/10.1007/3-540-44587-0_12
https://doi.org/10.1007/3-540-44587-0_12
https://doi.org/10.1145/2807591.2807629
https://doi.org/10.1177/1094342014522573
https://doi.org/10.1109/ICPP.2013.58

	A Current Task-Based Programming Paradigms Analysis

