

Trace metal elements as paleoenvironmental proxies: Why should we account for sedimentation rate variations?

Vincent Crombez, Sébastien Rohais, Tristan Euzen, Laurent Riquier, François Baudin, Eider Hernandez-Bilbao

▶ To cite this version:

Vincent Crombez, Sébastien Rohais, Tristan Euzen, Laurent Riquier, François Baudin, et al.. Trace metal elements as paleoenvironmental proxies: Why should we account for sedimentation rate variations?. Geology, 2020, 48 (8), pp.839-843. 10.1130/G47150.1 . hal-02888651

HAL Id: hal-02888651 https://hal.science/hal-02888651

Submitted on 15 Oct 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Trace metal elements as paleoenvironmental proxies: Why 2 should we account for sedimentation rate variations?

Vincent Crombez, Sebastien Rohais, Tristan Euzen, Laurent Riquier, François Baudin, Eider Hernandez-Bilbao

► To cite this version:

Vincent Crombez, Sebastien Rohais, Tristan Euzen, Laurent Riquier, François Baudin, et al.. Trace metal elements as paleoenvironmental proxies: Why 2 should we account for sedimentation rate variations?. Environmental Modeling & Assessment, Springer, 2020, 25 (5), pp.611-632. 10.1130/G47150.1. hal-02955233

HAL Id: hal-02955233 https://hal-ifp.archives-ouvertes.fr/hal-02955233

Submitted on 1 Oct 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Trace metal	elements a	as pal	leoenvironm	ental	proxies:	Why
							~

- 2 should we account for sedimentation rate variations?
- 3 Vincent Crombez¹, Sebastien Rohais², Tristan Euzen³, Laurent Riquier⁴, François
- 4 Baudin⁴, and Eider Hernandez-Bilbao⁵
- ⁵ ¹Deep Earth Imaging Future Science Platform (DEI-FSP), Commonwealth Scientific and
- 6 Industrial Research Organisation (CSIRO), Kensington, WA 6151, Australia
- 7 ²*IFP Energies nouvelles, 92852 RHeil-Malmaison Cedex,*
- 8 France
- 9 ³IFP Technologies (Canada) Inc., Calgary, Alberta T2P 3T4, Canada
- ⁴Sorbonne Université, Centre National de la Recherche Scientifique, Institut des Sciences
- 11 de la Terre de Paris (ISTeP), 75005 Paris, France
- 12 ⁵*TOTAL*, 64000 Pau, France

13 ABSTRACT

14 Trace metal elements (TMEs) are commonly used to reconstruct the 15 environmental conditions present during the deposition of organic-rich sediments. For 16 example, TME concentrations controlled by changes in primary productivity and redox 17 conditions are widely used in paleoenvironmental studies. Recently, these proxies have 18 undergone a resurgence of interest and are commonly used in large-scale (10–1000 km) 19 studies. However, applying these geochemical proxies at basin scale while ignoring 20 variations in sedimentation rates (SR) may lead to misinterpretation of 21 paleoenvironmental conditions. Here, we show how SR can affect the geochemical 22 records and may lead to incorrect interpretations of TME evolution. Accounting for SR,

23	we computed the authigenic fraction accumulation rates of key TMEs in the Upper
24	Montney and Doig Phosphate formations (Triassic, western Canada), and we correct the
25	concentration of these elements in the Vaca-Muerta Formation (Jurassic-Cretaceous,
26	Argentina). Our SR-corrected TME proxies require a different interpretation of
27	paleoenvironmental conditions (e.g., primary productivity, basin restriction) compared to
28	conventional TME results and highlight that elementary enrichments commonly
29	interpreted as indicative of anoxic depositional environments may reflect low SR and the
30	formation of condensed intervals. This work also introduces a new workflow to account
31	for SR in paleoenvironmental studies at basin scale and over long time periods.
32	INTRODUCTION
33	The recent development of shale plays requires an understanding of the
34	distribution of organic matter (OM) at both high resolution and basin scale. The OM
35	content in marine sedimentary records is mainly driven by three processes: organic
36	(primary) productivity, preservation of the OM (controlled by redox conditions and the
37	burial efficiency), and its dilution by nonorganic particles (Bohacs et al., 2005). In
38	practice, dilution rates of OM can be approached by using sedimentological and
39	stratigraphic techniques, whereas reconstruction of primary productivity and redox
40	dynamics is facilitated by geochemical proxies such as trace metal element (TME)
41	concentrations (Tribovillard et al., 2006). For instance, variations in U/Th ratios are
42	interpreted to reflect changes in oxygen concentration (Jones and Manning, 1994),
43	whereas variations in Ba/Al ratios are thought to reflect the variation in primary
44	productivity (McManus et al., 1998).

45	To study the authigenic (or paleoenvironment-related) fraction of an element,
46	TME proxy analysis commonly includes: a normalization with immobile elements
47	(Calvert and Pedersen, 1993), and the computation of an enrichment factor using a
48	reference standard (Brumsack, 2006). Limitations of normalizations were presented by
49	Van Der Weijden (2002) and include the effects of low-denominator concentration (e.g.,
50	Al in carbonaceous rocks) and the spurious correlations that can result from
51	normalization to the same elements. Furthermore, many proxies have been defined in
52	case studies with limited vertical/stratigraphic scale (centimeter to decimeter), relatively
53	homogeneous sedimentary facies, and stable sedimentation rates (SRs; within the same
54	order of magnitude; e.g., Warning and Brumsack, 2000; Borchers et al., 2005, etc.).
55	However, it is widely accepted that SR can vary by several orders of magnitude within a
56	sedimentary basin, depending on the distance between the source and the depositional
57	environment.
58	Here, we used two organic-rich intervals with chronostratigraphic frameworks to
59	investigate the impact of SR variability on TME proxy interpretations. In western
60	Canada, the transition between the Lower Triassic Upper Montney Formation and the
61	Middle Triassic Doig Phosphate Zone is marked by a sudden drop in the SR—from 100
62	
	to 29 m/m.y.—accompanied by a twofold increase in the OM
63	to 29 m/m.y.—accompanied by a twofold increase in the OM content. Based on TME concentrations, this OM increase was initially interpreted to
63 64	to 29 m/m.y.—accompanied by a twofold increase in the OM content. Based on TME concentrations, this OM increase was initially interpreted to reflect a rise in primary productivity (Crombez et al., 2017a). However, subsequent,
63 64 65	to 29 m/m.y.—accompanied by a twofold increase in the OM content. Based on TME concentrations, this OM increase was initially interpreted to reflect a rise in primary productivity (Crombez et al., 2017a). However, subsequent, regional process–based models of OM-rich sediment deposition suggested constant

67	al., 2017b). As a consequence, a first-order control of SR on OM abundance was favored
68	(Crombez et al., 2017b). This lack of consideration for the impact of SR is also present in
69	studies on the Vaca-Muerta Formation in Latin America, where several OM-rich intervals
70	associated with variable TME concentrations are present (e.g., Kietzmann et al., 2014;
71	Dominguez et al., 2016; Hernández Bilbao, 2016).
72	While numerous studies have addressed the dependency between the OM content
73	in shales and SR (e.g., Stein, 1990; Tyson, 2001; Burdige, 2007; Passey et al., 2010), the
74	impact of temporal variability of SR on paleoenvironmental proxies has been overlooked
75	(e.g., Lyons and Severmann, 2006; Little et al., 2015). In this contribution, we voluntary
76	used different TMEs from different case studies to show how TME concentrations are
77	affected by SR and suggest two workflows to evaluate paleoenvironmental changes.
78	Furthermore, we discuss the implication of the lack of SR integration in previous works
79	and the limitations of the proposed workflows.
80	DATA AND METHODS
81	The stratigraphic frameworks presented are based on Crombez et al. (2019) and
82	Euzen et al. (2018) for the Upper Montney and Doig Phosphate formations, and on
83	Sattler et al. (2016) for the Vaca-Muerta Formation. SR values were computed using an
84	estimated interval thickness and duration ($SSSS = \frac{\text{Thickness}}{$
85	Duration conducted on samples from (1) a core transecting the Upper Montney and Doig
86	Phosphate formations (well 0/16–17–83–25W6; 67 samples) in
87	British Columbia, and (2) on cuttings from the Vaca-Muerta Formation (well Jaguel del
88	Rosauros X-1, 53 samples; and well Medano de la Mora X-

89 1, 77 samples; where the distance between both wells is \sim 20 km) in

- 90 the Neuquén Basin. Element analyses on the Upper Montney and Doig Phosphate
- 91 formations were conducted by ACT Labs following their 4A-
- 4B protocol. Element analyses on the Vaca-Muerta Formation were conducted using a
- handheld energy-dispersive X-ray fluorescence analyzer and processed following the
- 94 Rowe et al. (2012) method.

95 AUTHIGENIC FRACTION ACCUMULATION RATE

- 96 To illustrate the impact of SR on TME content across the Upper Montney and
- 97 Doig Phosphate formations (offshore to lower shoreface conditions; for sedimentologic
- 98 description, see Crombez et al., 2017a), we computed the authigenic fraction

accumulation rate (AFAR) of Mo and Ni using a high-resolution stratigraphic framework,

100 and we compared their evolution with conventional TME proxies. The computation of

- 101 the AFAR for an element E (in μ g/cm²/yr) requires the estimation of the SR (assuming a
- 102 constant sedimentation rate in an interval), bulk rock density (r, defined here as the
- 103 Bouguer density), and the authigenic element concentration E_{Aut} of a sample:

105
$$AFAR_{EE} = EE_{Aut} SR \rho$$
.(1)106Here, E_{Aut} was determined using a detrital element D by estimating a detrital $(E/D)_{Source}$ 107value (minimum acceptable value in the data set) from an E versus D cross-plot108(assuming a constant chemical nature in the sediment sources) and subtracting the detrital109fraction from the total E concentration of each sample:110 $EE = EE - DD \blacklozenge^{EE} \diamondsuit$.111The SR drop across the Upper Montney–Doig Phosphate boundary is112accompanied by an increase in Mo/Al and Ni/Al ratios (Fig. 1A). In contrast, accounting

113 for SR variations resulted in no increase of the Mo and Ni AFAR. Here, the drop in

114	sediment supply across the boundary decreased the dilution of the authigenic fraction,
115	which resulted in elevated Mo/Al and Ni/Al ratios. It is therefore unlikely that these
116	increases were related to changes in paleoenvironmental condition.
117	A closer look at the AFAR showed significant variations in the proxies in the
118	Upper Montney Formation. In Figure 1A, the SR of the Upper Montney Formation is
119	considered constant; thus, the observed AFAR variations could be related to high-
120	frequency changes in SR and not to paleoenvironmental changes. To test this hypothesis,
121	we used a high-resolution stratigraphic framework (Euzen et al., 2018) highlighting high-
122	frequency SR variations (Fig. 1B). SR values vary from 50 to 75 m/m.y. in parasequences
123	UM1–UM5 and increase to 190–215 m/m.y. in UM6–UM7. The absolute values of the
124	AFAR are low in UM1–UM5 and high in the UM6–UM7 when compared to the AFAR
125	computed using the average Upper Montney Formation SR (Fig. 1A). However, the high-
126	frequency variations of the AFAR in UM1–UM5 and UM6–UM7 are not significantly
127	different (Fig. 1A versus Fig. 1B). The only significant difference occurs across the
128	UM5-UM6 boundary, where the average value of the AFAR increases. We interpret these
129	variations to be related to the amplitude of the change in SR. Across the UM5-UM6
130	boundary, the SR increases from 60 to 190 m/m.y., which causes the significant increase
131	of the AFAR. Within UM1–UM5 and UM6–UM7, the units' average SR does not present
132	sufficient amplitude variation to affect the AFAR or the conventional TME proxies in a
133	way that could bias the interpretation. Based on these observations, we propose that
134	variations in SR of at least one order of magnitude are necessary to affect the
135	interpretation of conventional TME proxies.

136 CORRECTED ELEMENTARY CONCENTRATION

Publisher: GSA

Journal: GEOL: Geology DOI:10.1130/G47150.1 Computation of an element corrected elementary concentration (CEC, in ppm) 137

138 requires reference sedimentation rates (*SR*_{Ref}):

139
$$CEC = \frac{EE_{Aut}}{EE} SSSS + DD$$

$$EE SSSS_{Ref} Source$$

$$DD \qquad (3)$$

140	In the computation, SR_{Ref} relates to the SR in other parts of the basin or to the SR
141	in other case studies The CEC shows what the elementary concentration should be if the
142	SR were equal to $SR_{Ref.}$ This computation assumes $D >> E$, which implies that variations
143	of E will only marginally affect D (e.g., D in % and E in ppm).
144	As in the Upper Montney and Doig Phosphate formations, the Vaca-Muerta
145	Formation shows varying SR. In the two investigated wells, located in the same
146	paleogeographic setting, the SR values vary from 24 m/m.y. (in unit 1) to 90 m/m.y. (in
147	unit 2) along well JDRx1 and from 16 m/m.y. (in unit 1) to 100 m/m.y. (in unit 2) along
148	well MDMEx1. Using JDRx1 unit 2 SR as SR _{Ref} , Figure 2 displays V-Ti and Cu-Ti cross-
149	plots of two well intervals that intersect the basal units of the Vaca-Muerta Formation.
150	The uncorrected data plotted on Figure 2 suggest stronger authigenic enrichments in V
151	and Cu, which are respectively related to redox conditions and primary productivity, in
152	unit 1, with V up to 300 ppm and Cu up to 40 ppm. However, accounting for SR
153	differences between these units by computing the CEC highlights a weaker authigenic
154	enrichment signature in unit 1. Comparable to the Upper Montney and Doig Phosphate
155	formations, the conventional TME proxies are affected by SR in the Vaca-Muerta
156	Formation. Not accounting for SR, the TME records suggest an increase in bottom-water
157	oxygen levels associated with relatively constant primary productivity from unit 1 to unit
158	2 (Calvert and Pedersen, 1993; Tribovillard et al., 2006). Accounting for SR by
159	calculating the CEC shows the opposite, i.e., decreasing bottom-water oxygen levels and

increasing primary productivity, in unit 2. In part of the Vaca-Muerta Formation, the
higher TME authigenic concentration is an artifact of a lower SR, which leads to the
concentration of the authigenic elements.

163 **IMPLICATION FOR PREVIOUS AND FUTURE STUDIES**

164 The influence of SR on TME content is summarized in Figure 3. In this 165 conceptual model, paleoenvironmental variations are assumed to control the TME 166 accumulation rates. It suggests that these variations and the SR will represent the two end 167 members on the control of the authigenic fractions. SR differences exceeding one order 168 of magnitude lead to a significant concentration (i.e., low SR) or dilution (i.e., high SR) 169 of the authigenic fraction of TMEs. In the latter case, normalizing to a detrital element 170 will only increase the effect of the SR. As the relative proportion of the detrital element 171 will increase in tandem with the increasing sediment supply, the ratio will decrease and 172 therefore show variations not caused by paleoenvironmental changes. This phenomenon 173 is illustrated by the vertical evolution of the ratios in Figure 3B, where: (1) the absolute 174 values of the ratios are different yet related to the same paleoenvironmental conditions, 175 and (2) the vertical evolution of the ratios are not representative of paleoenvironmental 176 changes, but instead they result from progradation of the sedimentary system and a 177 progressive increase in SR. 178 These observations have important implications for the use of TMEs as

paleoenvironmental proxies. The elemental ratios that characterize boundaries between
oxic, dysoxic, and anoxic conditions (e.g., Hatch and Leventhal, 1992; Jones and
Manning, 1994) vary depending on SR. In contrast, proxies that are based on ratios of
two authigenic components, for example, total organic carbon and Mo (a measure of

183	basin restriction; Algeo and Lyons, 2006) or Mo and U (a measure of anoxia; Algeo and
184	Tribovillard, 2009), should proportionately be affected by changes in SR, making them
185	more robust indicators of paleoenvironmental change as long as their concentrations
186	exceed those in the detrital fraction (i.e., by at least one order of magnitude).
187	When reconstructing large-scale paleoenvironmental conditions, it is important to
188	consider that the SR values were probably not the same. In studies where absolute
189	durations are not known, but where stratigraphic correlation suggests that sections
190	represent the same time interval, the authigenic fraction should be normalized to the
191	sedimentary thickness to approximately account for different dilutions.
192	It is important to acknowledge the limitations of calculated AFAR and CEC
193	values when studying paleoenvironmental conditions. The main limitations on the
194	interpretation of a TME proxy will also apply, as the studied element might be affected
195	by post- and syndepositional processes independent of the paleoenvironmental
196	conditions. In addition, a well-constrained SR quantification is required. Therefore, it is
197	important to acknowledge the uncertainties related to the compaction of the sediments. In
198	the computation of the AFAR, we recommend using a density representative of the
199	investigated interval compaction state (e.g., higher density for compacted strata and lower
200	density for uncompacted/recent sediments). For the computation of the CEC, if the
201	studied intervals are at the same compaction state, we recommend using the apparent SR
202	(i.e., computed using the compacted thickness); however, if the objective of the study is
203	to compare different sedimentary systems from different basins, we recommend
204	computing the uncompacted thickness of sedimentary strata (Fowler and Yang, 1998;
205	Bahr et al., 2001) to obtain comparable SR values. In addition, Enos (1991) presented a

206	wide range in SR variations across different sedimentary environments, and Droxler and
207	Schlager (1985) demonstrated high-frequency SR variations within one single
208	environment. Unfortunately, in ancient sediments, millimeter-scale SR values are not
209	accessible, and therefore best practice interpretation of the AFAR and the CEC should
210	focus on variation of the trends between units where SR values can be assumed to be
211	constant.
212 213	Last, the AFAR in UM7 (Fig. 1B) presents a "Christmas tree" pattern. High AFAR values are often present above
214	parasequence set boundaries. These intervals are interpreted as flooding surfaces
215	followed by regression (Euzen et al., 2018) and are likely associated with low SR,
216	followed by increasing SR. The "Christmas tree" pattern is thus likely linked to the
217	progressive increase in SR during deposition of the parasequence, and the peaks in AFAR
218	are interpreted to relate to condensed intervals and concentration of TMEs with
219	associated OM.
220	CONCLUSION

221 To avoid misinterpretation of the geochemical record, we suggest calculating the 222 authigenic fraction accumulation rate or the corrected elementary concentration of TMEs, 223 instead of using simple corrections such as elemental normalizations, enrichment factors, 224 or authigenic enrichments. These new proxies account for variations in SR and focus on 225 the temporal fluxes of authigenic elements rather than on their total concentration within 226 a sedimentary unit. With the increasing need to understand the high-resolution 227 distribution of OM, accounting for SR variations will improve the quantification of 228 temporal and spatial variations of anoxia and primary productivity. This will result in an

- 229 improved understanding of the controlling factors for OM accumulation and lead to better
- 230 predictions of the three-dimensional distribution of OM-rich intervals.

231 ACKNOWLEDGMENTS

- Acknowledgments go to N. Vaisblat, for providing the geochemical data on the
- 233 Montney and Doig Phosphate formations; to the Mudrocks and Tight Oil
- 234 Characterization (MUDTOC) Consortium at the Colorado School of Mines (USA) for
- funding the data collection on the Vaca-Muerta Formation; and to the Australian
- 236 Commonwealth Scientific and Industrial Research Organisation for supporting this
- 237 research. Special thanks to M. Kunzmann and C. Johnson for their comments on the
- 238 initial manuscript. P. Sansjofre, A. Riboulleau, and an anonymous reviewer are also
- acknowledged for their helpful comments on the manuscript.

240 **REFERENCES CITED**

- Algeo, T.J., and Lyons, T.W., 2006, Mo-total organic carbon covariation in modern
- anoxic marine environments: Implications for analysis of paleoredox and
- 243 paleohydrographic conditions: Paleoceanography, v. 21, PA1016,
- 244 https://doi.org/10.1029/2004PA001112.
- Algeo, T.J., and Tribovillard, N., 2009, Environmental analysis of paleoceanographic
- systems based on molybdenum-uranium covariation: Chemical Geology, v. 268,
- 247 p. 211–225, <u>https://doi.org/10.1016/j.chemgeo.2009.09.001</u>.
- 248 Bahr, D.B., Hutton, E.W.H., Syvitski, J.P.M., and Pratson, L.F., 2001, Exponential
- 249 approximations to compacted sediment porosity profiles: Computers & Geosciences,
- 250 v. 27, p. 691–700, https://doi.org/10.1016/S0098-3004(00)00140-0.

- 251 Bohacs, K.M., Carroll, A.R., Mankiewicz, P.J., Miskell-Gerhardt, K.J., Schwalbach,
- J.O.N.R., Wegner, M.B., and Simo, J.A.T., 2005, Production, destruction, and
- dilution—The many paths to source-rock development, *in* Harris, N.B., ed., The
- 254 Deposition of Organic-Carbon–Rich Sediments: Models, Mechanisms and
- 255 Consequences: Society for Sedimentary Geology (SEPM) Special Publication 82, p.
- 256 61–101, https://doi.org/10.2110/pec.05.82.0061.
- 257 Borchers, S.L., Schnetger, B., Böning, P., and Brumsack, H.J., 2005, Geochemical
- signatures of the Namibian diatom belt: Perennial upwelling and intermittent anoxia:
- 259 Geochemistry Geophysics Geosystems, v. 6, Q06006,
- 260 <u>https://doi.org/10.1029/2004GC000886</u>.
- 261 Brumsack, H.-J., 2006, The trace metal content of recent organic carbon–rich sediments:
- 262 Implications for Cretaceous black shale formation: Palaeogeography,
- 263 Palaeoclimatology, Palaeoecology, v. 232, p. 344–361,
- 264 <u>https://doi.org/10.1016/j.palaeo.2005.05.011</u>.
- 265 Burdige, D.J., 2007, Preservation of organic matter in marine sediments: Controls,
- 266 mechanisms, and an imbalance in sediment organic carbon budgets?: Chemical
- 267 Reviews, v. 107, p. 467–485, <u>https://doi.org/10.1021/cr050347q</u>.
- 268 Calvert, S.E., and Pedersen, T.F., 1993, Geochemistry of Recent oxic and anoxic marine
- sediments: Implications for the geological record: Marine Geology, v. 113, p. 67–88,
- 270 <u>https://doi.org/10.1016/0025-3227(93)90150-T</u>.
- 271 Crombez, V., Rohais, S., Baudin, F.,
- and Euzen, T., 2016, Facies, well-log patterns, geometries and sequence stratigraphy
- of a wave-dominated margin: Insight from the Montney Formation (Alberta, British

- 274 Columbia, Canada): Bulletin of Canadian Petroleum Geology, v. 64, p. 516–537,
- 275 https://doi.org/10.2113/gscpgbull.64.4.516.
- 276 Crombez, V., Baudin, F., Rohais, S., Riquier, L., Euzen, T., Pauthier, S., Ducros, M.,
- 277 Caron, B., and Vaisblat, N., 2017a, Basin scale distribution of organic matter in
- 278 marine fine-grained sedimentary rocks: Insight from sequence stratigraphy and
- 279 multi-proxies analysis in the Montney and Doig Formations: Marine and Petroleum
- 280 Geology, v. 83, p. 382–401, <u>https://doi.org/10.1016/j.marpetgeo.2016.10.013</u>.
- 281 Crombez, V., Rohais, S., Baudin, F., Chauveau, B., Euzen, T., and Granjeon, D., 2017b,
- 282 Controlling factors on source rock development: Implications from 3D stratigraphic
- 283 modeling of Triassic deposits in the Western Canada Sedimentary Basin: Bulletin de
- la Société Géologique de France, v. 188, p. 30, <u>https://doi.org/10.1051/bsgf/2017188</u>.
- 285 Crombez, V., Rohais, S., Baudin, F., Euzen, T., Zonneveld, J.-P., and Power, M., 2019,
- 3D stratigraphic architecture, sedimentary budget, and sources of the Lower and
- 287 Middle Triassic strata of western Canada: Evidence for a major basin structural
- 288 reorganization: Petroleum Geoscience,
- 289 https://doi.org/10.1144/petgeo2019-024.
- 290 Dominguez, R.F., et al., 2016, Organic-
- rich stratigraphic units in the Vaca Muerta formation, and their distribution and
- 292 characterization in the Neuquen Basin (Argentina), in SPE/AAPG/SEG
- 293 Unconventional Resources Technology Conference 2016,
- 295 https://doi.org/10.15530/urtec-2016-2456851.

- 296 Droxler, A.W., and Schlager, W., 1985, Glacial versus interglacial sedimentation rates
- and turbidite frequency in the Bahamas: Geology, v. 13, p. 799–802,
- 298 <u>https://doi.org/10.1130/0091-7613(1985)13<799:GVISRA>2.0.CO;2</u>.
- Enos, P., 1991, Sedimentary parameters for computer modeling, in Franseen, E.K., ed.,
- 300 Sedimentary Modeling: Computer Simulations and Methods for Improved Parameter
- 301 Definition: Kansas Geological Survey Bulletin 233, p. 63–99.
- 302 Euzen, T., Moslow, T.F., Crombez, V., and Rohais, S., 2018, Regional stratigraphic
- 303 architecture of the Spathian deposits in western Canada—Implications for the
- 304 Montney Resource Play: Bulletin of Canadian Petroleum Geology, v. 66, p. 175–
- 305 192.
- 306 Fowler, A.C., and Yang, X.S., 1998, Fast and slow compaction in sedimentary basins:
- 307 SIAM Journal on Applied Mathematics, v. 59, p. 365–385,
- 308 https://doi.org/10.1137/S0036139996287370.
- 309 Hatch, J.R., and Leventhal, J.S., 1992, Relationship between inferred redox potential of
- 310 the depositional environment and geochemistry of the Upper Pennsylvanian
- 311 (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County,
- 312 Kansas, U.S.A.: Chemical Geology, v. 99, p. 65–82, <u>https://doi.org/10.1016/0009-</u>
- 313 <u>2541(92)90031-Y</u>.
- Hernández Bilbao, E., 2016, High-Resolution Chemostratigraphy, Sequence Stratigraphic
- 315 Correlation, Porosity and Fracture Characterization of the Vaca Muerta Formation,
- 316 Neuquén Basin, Argentina: Golden, Colorado, Colorado School of Mines, 221 p.,
- 317 http://hdl.handle.net/11124/170104.

318	Jones, B., and Manning, D.A.C., 1994, Comparison of geochemical indices used for the
319	interpretation of palaeoredox conditions in ancient mudstones: Chemical Geology,
320	v. 111, p. 111–129, https://doi.org/10.1016/0009-2541(94)90085-X.
321	Kietzmann, D.A., Palma, R.M., Riccardi, A.C., Martín-Chivelet, J., and López-Gómez,
322	J., 2014, Sedimentology and sequence stratigraphy of a Tithonian–Valanginian
323	carbonate ramp (Vaca Muerta Formation): A misunderstood exceptional source rock
324	in the southern Mendoza area of the Neuquén Basin, Argentina: Sedimentary
325	Geology, v. 302, p. 64-86, https://doi.org/10.1016/j.sedgeo.2014.01.002.
326	Little, S.H., Vance, D., Lyons, T.W., and McManus, J., 2015, Controls on trace metal
327	authigenic enrichment in reducing sediments: Insights from modern oxygen-deficient
328	settings: American Journal of Science, v. 315, p. 77–119,
329	https://doi.org/10.2475/02.2015.01.
330	Lyons, T.W., and Severmann, S., 2006, A critical look at iron paleoredox proxies: New
331	insights from modern euxinic marine basins: Geochimica et Cosmochimica Acta, v.
332	70, p. 5698–5722, https://doi.org/10.1016/j.gca.2006.08.021.
333	McManus, J., et al., 1998, Geochemistry of barium in marine sediments: Implications for
334	its use as a paleoproxy: Geochimica et Cosmochimica Acta, v. 62, p. 3453-3473,
335	https://doi.org/10.1016/S0016-7037(98)00248-8.
336	Passey, Q.R., Bohacs, K., Esch, W.L., Klimentidis,
337	R., and Sinha, S., 2010, From oil-prone source rock to gas-producing shale

338 reservoir—Geologic and petrophysical characterization of unconventional shale gas

- 339 reservoirs, in International Oil and Gas Conference and Exhibition in China: Society 340 of Petroleum Engineers, https://doi.org/10.2118/131350-MS. 341 Rowe, H., Hughes, N., and Robinson, K., 2012, The quantification and application of 342 handheld energy-dispersive X-ray fluorescence (ED-XRF) in mudrock 343 chemostratigraphy and geochemistry: Chemical Geology, v. 324–235, p. 122–131, 345 https://doi.org/10.1016/j.chemgeo.2011.12.023. 346 Sattler, F., Dominguez, R.F., Fantín, M., Desjardins, P., Reijenstein, H., Benoit, S., Borgnia, 347 M., Vittore, F., Tomassini, F.G., and Feinstein, E., 2016, Anexo 1, in González, G., 348 et al., eds., Transecta Regional de la Formación Vaca Muerta Integración de Sísmica, 349 Registros de Pozos, Coronas y Afloramientos. 350 Stein, R., 1990, Organic carbon content/sedimentation rate relationship and its 351 paleoenvironmental significance for marine sediments: Geo-Marine Letters, v. 10, 353 p. 37-44, https://doi.org/10.1007/BF02431020. 354 Tribovillard, N., Algeo, T.J., Lyons, T., and Riboulleau, A., 2006, Trace metals as 355 paleoredox and paleoproductivity proxies: An update: Chemical Geology, v. 232, 356 p. 12-32, https://doi.org/10.1016/j.chemgeo.2006.02.012. 357 Tyson, R.V., 2001, Sedimentation rate, dilution, preservation and total organic carbon: 358 Some results of a modelling study: Organic Geochemistry, v. 32, p. 333–339, 359 https://doi.org/10.1016/S0146-6380(00)00161-3. 360 Van Der Weijden, C.H., 2002, Pitfalls of normalization of marine geochemical data using 361 a common divisor: Marine Geology, v. 184, p. 167–187,
- 362 <u>https://doi.org/10.1016/S0025-3227(01)00297-3</u>.

- 363 Warning, B., and Brumsack, H.J., 2000, Trace metal signatures of eastern Mediterranean
- 364 sapropels: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 158, p. 293–309,
- 365 https://doi.org/10.1016/S0031-0182(00)00055-9.

366 FIGURE CAPTIONS

- 367 Figure 1. Gamma ray (GR), sedimentation rate (SR), trace metal element (TME) ratios,
- 368 and authigenic fraction accumulation rates (AFAR) of Mo and Ni in the Upper Montney
- and Doig Phosphate formations, western Canada. AFAR values are presented with
- 370 confidence interval accounting for $\pm 20\%$ incertitude in SR. (A) Variation of TME proxies
- and Mo and Ni AFAR across the Upper Montney–Doig Phosphate boundary. (B)
- 372 Variations of proxies within the Upper Montney Formation, considering high-resolution
- 373 SR changes across seven parasequences. In B, duration of each parasequence is estimated
- to be 0.2 m.y. (Euzen et al., 2018). White dash lines represent moving average on five
- 375 samples.
- 377
- 378 Figure 2. Scatter plots of V versus Ti (A) and Cu versus Ti (B) in units 1 and 2 of the
- 379 Vaca-Muerta Formation (Argentina) from two wells. Uncorrected data are shown in
- 380 shades of gray, and corrected elementary concentrations are shown in shades of blue.
- 381 Here, source trends are identical between wells to reflect same nature of detrital material.
- 382
- Figure 3. Influence of different sedimentation rates on concentration of authigenic
 elements. (A) Conceptual basin where sediment supply at each margin is different. (B)

- DOI:10.1130/G47150.1 385 Variations in dilution of authigenic elements in two locations, each related to different
- 386 sediment supplies. OM—organic matter; SR—sedimentation rate.