Experimental and kinetic modeling study of the pyrolysis and oxidation of diethylamine - Archive ouverte HAL
Article Dans Une Revue Fuel Année : 2020

Experimental and kinetic modeling study of the pyrolysis and oxidation of diethylamine

Résumé

The pyrolysis and oxidation chemistry of diethylamine (DEA), a nitrogen-containing bio-oil model compound, is investigated theoretically and experimentally at low to intermediate temperatures. The pyrolysis of DEA is studied using two experimental units, i.e. a jet-stirred reactor and a tubular reactor. Oxidation experiments are performed at three different equivalence ratios, i.e. φ = 1.0, 2.0 and 0.5 in the jet-stirred reactor unit. The temperature ranges from 500 K to 1100 K, at a pressure of 1.07 bar, and with a space time of 2 s. An elementary step kinetic model for DEA pyrolysis and oxidation is built using the automatic kinetic model generator Genesys with a base mechanism extracted from Glarborg et al. (2019) which describes the oxidation of the small nitrogen-containing species. Important thermodynamic and kinetic parameters for the DEA decomposition chemistry are obtained from quantum chemical calculations. The experimental trends are well predicted by the model, even without any fitting of the model thermodynamic or kinetic parameters. Rate of production analyses reveal the important pathways for the pyrolysis and low-and intermediate-temperature oxidation to hydrogen cyanide, acetonitrile, NOx and others.
Fichier principal
Vignette du fichier
2020 Fuel DEA.pdf (1.14 Mo) Télécharger le fichier
DEAmodel_CHEMKIN.pdf (1.2 Mo) Télécharger le fichier
SM1.pdf (969.57 Ko) Télécharger le fichier
SM2 Exp Data.xlsx (38.37 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02888498 , version 1 (03-07-2020)

Identifiants

Citer

Cato A.R. Pappijn, Nicolas Vin, Florence H Vermeire, Ruben van de Vijver, Olivier Herbinet, et al.. Experimental and kinetic modeling study of the pyrolysis and oxidation of diethylamine. Fuel, 2020, 275, pp.117744. ⟨10.1016/j.fuel.2020.117744⟩. ⟨hal-02888498⟩
62 Consultations
483 Téléchargements

Altmetric

Partager

More