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The aim of this article is to study a Cahn-Hilliard model for a multicomponent mixture with cross-diffusion effects, degenerate mobility and where only one of the species does separate from the others. We define a notion of weak solution adapted to possible degeneracies and our main result is (global in time) existence. In order to overcome the lack of a-priori estimates, our proof uses the formal gradient flow structure of the system and an extension of the boundedness by entropy method which involves a careful analysis of an auxiliary variational problem. This allows to obtain solutions to an approximate, time-discrete system. Letting the time step size go to zero, we recover the desired weak solution where, due to their low regularity, the Cahn-Hilliard terms require a special treatment.

Introduction

The aim of this work is to study a Cahn-Hilliard model with degenerate mobility for a multicomponent mixture where cross-diffusion effects between the different species of the system are taken into account, and where only one species does separate from the others. The motivation for considering such a model stems from the fact that there exist multiphase systems where miscible entities may coexist in one single phase of the system, [START_REF] Klinkert | Comprehension and optimisation of the co-evaporation deposition of Cu (In, Ga) Se2 absorber layers for very high efficiency thin film solar cells[END_REF][START_REF] Wenisch | Nickel-enhanced graphitic ordering of carbon ad-atoms during physical vapor deposition[END_REF]. In the latter phase, cross-diffusion effects between the different miscible chemical species may have to be taken into account in order to correctly model the evolution of the concentrations or of the volumic fractions of each species.

More precisely, let Ω be a regular open bounded subdomain of R d with d = 1, 2, 3. We assume that the mixture is composed of n + 1 species for some positive n ∈ N \ {0}, occupying the domain Ω. Let T > 0 be some final time. For all 0 ≤ i ≤ n, we denote by u i (t, x) the volumic fraction of the i th species at time t ∈ [0, T ] and point x ∈ Ω. We are interested in proving the existence of weak solutions u := (u 0 , u 1 , . . . , u n ) to a system of the form:

∂ t u = div (M (u)∇µ) , (1.1) 
that satisfy ∀ 0 ≤ i ≤ n, 0 ≤ u i (t, x) ≤ 1, and n i=0 u i (t, x) = 1 for a.e. t ∈ [0, T ], x ∈ Ω.

Here, for all u ∈ R n+1 + , M (u) ∈ R (n+1)×(n+1) is a degenerate mobility matrix whose precise expression is given in Section 2, while µ is the chemical potential, defined as

µ = D u E(u).
In this work, the energy functional E : L ∞ (Ω) n+1 → R ∪ {±∞} is given by

E(u) := Ω n i=0 (u i ln u i -u i + 1) + ε 2 |∇u 0 | 2 + βu 0 (1 -u 0 )dx, if u 0 ∈ H 1 (Ω), +∞, otherwise, (1.2) 
for some constants ε > 0 and β > 0. The logarithmic terms in this energy functional account for diffusion while the other two terms are responsible for phase separation: the gradient term penalizes transitions while the last term encourages u 0 to be either one or zero. Note that in contrast to most other multi-phase

Cross-diffusion systems with size exclusion. Systems of partial differential equations with cross-diffusion have gained a lot of interest in recent years [START_REF] Küfner | Invariant regions for quasilinear reaction-diffusion systems and applications to a two population model[END_REF][START_REF] Chen | Analysis of a multidimensional parabolic population model with strong cross-diffusion[END_REF][START_REF] Chen | Analysis of a parabolic cross-diffusion population model without self-diffusion[END_REF][START_REF] Lepoutre | Global Well-Posedness of a Conservative Relaxed Cross Diffusion System[END_REF][START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF] and appear in many applications, for instance the modeling of population dynamics of multiple species [START_REF] Burger | Lane formation by side-stepping[END_REF] or cell sorting or chemotaxis-like applications [START_REF] Painter | Volume-filling and quorum-sensing in models for chemosensitive movement[END_REF][START_REF] Painter | Continuous models for cell migration in tissues and applications to cell sorting via differential chemotaxis[END_REF]. One major difficulty in the analysis of such strongly coupled systems is the lack of a priori estimates. Maximum principles are not available in general and since such systems are often only degenerate parabolic, classical energy estimates obtained by (formally) testing with the solution itself do not work. In particular it is not possible to obtain L ∞ bounds (e.g. non-negativity) by choosing suitable test functions as done in [START_REF] Elliott | Diffusional phase transitions in multicomponent systems with a concentration dependent mobility matrix[END_REF] for a multi-species Cahn-Hilliard system. For some cross-diffusion systems that feature an entropic or formal gradient flow structure, these issues can be overcome. More precisely, for systems that can be written as

∂ t u = div(M (u)∇∂ u e(u)),
where e : Z → R is the entropy density corresponding to the entropy functional

E(u) = Ω e(u) dx, with Z := u := (u 0 , . . . , u n ) ∈ R n+1 + , n i=0 u i = 1 ,
and for all u := (u 0 , . . . , u n ) ∈ Z, ∂ u e(u) = (∂ u0 e(u), . . . , ∂ un e(u)). If the mobility matrix is positive semi-definite, a formal calculation immediately shows that the entropy is non-increasing since d dt E(u) = -Thus all quantities appearing in the entropy remain bounded if the entropy of the initial configuration is finite. The lack of maximum principles can be compensated by introducing entropy variables defined as partial derivatives of the entropy density. More precisely, one defines h : Z → R n as h(u) := ∂ u e(u) = (∂ u0 e(u), . . . , ∂ un e(u)) for all u ∈ Z. It turns out that, under appropriate assumptions, h is a one-to-one mapping and thus for arbitrary w its inverse satisfies h -1 (w) ∈ Z. This idea was first applied in [START_REF] Burger | Nonlinear Cross Diffusion with Size Exclusion[END_REF] and later extended to more general systems in [START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF] and coined boundedness by entropy.

In our case, the method is not directly applicable due to the gradient term in the entropy density and one of our contributions is its extension through the analysis of an auxiliary variational problem.

Finally, let us remark that the question of regularity and uniqueness for cross-diffusion systems with entropic structure is mostly open except for a few works that, however, require additional assumptions, [START_REF] Zamponi | Analysis of degenerate cross-diffusion population models with volume filling[END_REF][START_REF] Zamponi | Corrigendum to Analysis of degenerate cross-diffusion population models with volume filling[END_REF][START_REF] Berendsen | Uniqueness of strong solutions and weak-strong stability in a system of cross-diffusion equations[END_REF].

Contribution and structure of the paper. In this article we prove the existence of global weak solutions to system (1.1) with energy (1.2) and supplemented with appropriate initial-and boundary conditions.

The novelty of our work lies in the following contributions.

(a) This is, to the best of our knowledge, the first attempt to a cross-diffusion Cahn-Hilliard system. (b) We are able to treat of an energy that only involves Cahn-Hilliard terms acting on u 0 but not separately on the other species which yields to a transport term with low regularity in these equations. This is done by an appropriate definition of weak solution and a careful analysis when performing the limit of an approximate time-discrete system. A similar situation has so far only been studies in the case of a non-degenerate mobility [START_REF] Dai | Analysis of a diffuse interface model of multispecies tumor growth[END_REF]. (c) We generalize the boundedness-by-entropy to some case when one cannot explicitly invert h but instead has to solve a system of elliptic PDEs with logarithmic non-linearities. The literature on such systems is rather sparse (see [START_REF] Montenegro | Existence and regularity to an elliptic equation with logarithmic nonlinearity[END_REF][START_REF] Alves | An elliptic system with logarithmic nonlinearity[END_REF]) but using variational methods we obtain existence of positive solutions.

This manuscript is organized as follows. In Section 2, we give a precise definition of our mobility matrix, introduce our notion of weak solution and state the main existence theorem. The proof is based on the introduction of a regularized time discrete approximate problem, depending on a positive time step τ , which is presented in Section 3. We derive a priori estimates and prove the existence of time-discrete iterates via a Schauder fixed point argument. Finally, in Section 5 we exploit the regularity properties obtained in Section 4 in order to pass to the limit τ → 0 + and obtain a solution to (1.1).

We intend to study the sharp-interface limit of this model in a future work.

Preliminaries and main result

Let us first introduce some notation used in the manuscript, give a precise definition of (1.1) and state our notion of weak solution together with the main existence result.

2.1. Notation. We assume in all the sequel that Ω is an open, bounded subset of R d with d ≤ 3 so that the embedding H 2 (Ω) ֒→ L ∞ (Ω) is compact and fix a final time T > 0. By N * := N \ {0} we denote the set of positive integers. For a vector a ∈ R n , diag(a) denotes the n × n matrix that has the components of a on its diagonal.

For any ψ, φ ∈ H 2 (Ω), we denote by

φ, ψ H 2 (Ω) := Ω φψ + ∇φ • ∇ψ + ∆φ∆ψdx,
and by φ H 2 (Ω) := φ, φ H 2 (Ω) . Similarly, for all l = 0, 1, 2, and for all φ = (φ i ) 1≤i≤n , ψ = (ψ i ) 1≤i≤n ∈ (H l (Ω)) n , we denote by

φ, ψ H l (Ω) n = n i=1 φ i , ψ i H l (Ω) , with φ (H l (Ω)) n := φ, φ (H l (Ω)) n
and, for all φ = (φ i ) 1≤i≤n ∈ (L ∞ (Ω)) n , we set

φ (L ∞ (Ω)) n := n i=1 φ i 2 L ∞ (Ω) .
Finally, we define the mapping κ : R

+ × R + → R by κ(a, b) = a 1-b if 1 -b = 0, 0 otherwise. (2.1)
2.2. Cahn-Hilliard cross-diffusion system. Let us present the system we consider in this article in full detail. Let ε > 0 and β > 0 and for all u = (u 0 , . . . ,

u n ) ∈ L ∞ (Ω) ∩ H 1 (Ω) × (L ∞ (Ω)) n consider the energy E(u) = Ω n i=0 (u i ln u i -u i + 1) + ε 2 |∇u 0 | 2 + βu 0 (1 -u 0 )dx.
For all 0 ≤ i ≤ n let us introduce the chemical potentials, defined (on the formal level at this point) via

µ i = D ui E(u) = ln u i ∀ i = 1, . . . , n,
as well as

µ 0 = D u0 E(u) = ln u 0 -ε∆u 0 + β(1 -2u 0 ),
so that µ := (µ 0 , µ 1 , . . . , µ n ) = DE(u). Let us also introduce the auxiliary variables

w i := ln u i -ln u 0 ∀ i = 1, . . . , n, (2.2) 
and

w 0 := -ε∆u 0 + β(1 -2u 0 ).
To specify the mobility matrix let, for 0 ≤ i = j ≤ n, K ij denote some positive real number satisfying n+1) be the matrix

K ij = K ji . Then for u ∈ R n+1 , let M (u) := (M ij (u)) 0≤i,j≤n ∈ R (n+1)×(
M ij (u) := -K ij u i u j ∀ i = j = 0, . . . , n, M ii (u) := 0≤j =i≤n K ij u i u j ∀ i = 0, . . . , n. (2.3) 
With these definitions, system (1.1) can be written, formally, in the scalar form:

∂ t u i = div 1≤j =i≤n K ij u i u j ∇(µ i -µ j ) + K i0 u i u 0 ∇(µ i -µ 0 ) = div 1≤j =i≤n K ij u i u j ∇(w i -w j ) + K i0 u i u 0 ∇(w i -w 0 ) = div 1≤j =i≤n K ij (u j ∇u i -u i ∇u j ) + K i0 (u 0 ∇u i -u i ∇u 0 ) -K i0 u i u 0 ∇w 0 , (2.4) 
for 1 ≤ i ≤ n and

∂ t u 0 = div   1≤i≤n K i0 u i u 0 ∇(µ 0 -µ i )   . = div   1≤i≤n K i0 u i u 0 ∇(w 0 -w i )   = div   1≤i≤n K i0 (u i ∇u 0 -u 0 ∇u i ) + K i0 u i u 0 ∇w 0   .
(2.5)

From this set of equations it is clear, at least formally, that

∂ t n i=0 u i = 0. (2.6)
Let us introduce an initial condition

u 0 = (u 0 0 , . . . , u 0 n ) ∈ H 2 (Ω; R n+1 ) of the system which is assumed to satisfy u 0 i (x) ≥ 0 ∀ 0 ≤ i ≤ n, n i=0 u 0 i (x) = 1, and u(0, x) = u 0 (x) (2.7) 
for a.e. x ∈ Ω. In view of (2.6) we expect that solutions to system (1.1) satisfy

u 0 = 1 - n i=1 u i , a.e. in (0, T ) × Ω, (2.8) 
and it can be easily checked that, if u satisfies (2.4) and (2.8), then necessarily (2.5) has to be satisfied as well. We make a last remark. As 0

≤ u i ≤ 1 -u 0 = n j=1 u j for all 1 ≤ i ≤ n, denoting κ i (t, x) := κ(u i (t, x), u 0 (t, x)), (2.9) 
it holds that

u 0 u i ∇w 0 = u i 1 -u 0 u 0 (1 -u 0 )∇w 0 = κ i J,
where

J := u 0 (1 -u 0 )∇w 0 .
Then, supplementing this set of equations with no-flux boundary conditions, we obtain that ((u i ) 0≤i≤n , J) is a solution to

∂ t u i = div 1≤j =i≤n K ij (u j ∇u i -u i ∇u j ) + K i0 (u 0 ∇u i -u i ∇u 0 ) -K i0 κ i J in (0, T ) × Ω, u 0 = 1 - n i=1 u i in (0, T ) × Ω, J = u 0 (1 -u 0 )∇ (-ε∆u 0 + β(1 -2u 0 )) in (0, T ) × Ω, 1≤j =i≤n K ij (u j ∇u i -u i ∇u j ) + K i0 (u 0 ∇u i -u i ∇u 0 ) -K i0 κ i J • n = 0 in (0, T ) × ∂Ω, u i (0, •) = u 0 i in Ω, (2.10) 
where n denotes the normal unit vector pointing outwards the domain Ω.

2.3. Notion of weak solution and main result. The aim of our work is to prove the existence of a weak solution to system (2.10) in the following sense.

Definition 2.1. We say that ((u i ) 0≤i≤n , J) is a weak solution to (2.10) if (1) 0 ≤ u i ≤ 1 for every i = 0, . . . , n;

(2) n i=0 u i = 1 a.e. in (0, T ) × Ω;

(3)

u i ∈ L 2 ((0, T ); H 1 (Ω)) for all 1 ≤ i ≤ n; (4) u 0 ∈ L 2 ((0, T ); H 2 (Ω)); (5) ∂ t u i ∈ L 2 ((0, T ); (H 1 (Ω)) ′ ) for all 0 ≤ i ≤ n; (6) u i (0, •) = u 0 i for all 0 ≤ i ≤ n; (7) J ∈ (L 2 ((0, T ) × Ω)) d ; (8) J = (1 -u 0 )u 0 ∇ (-ε∆u 0 + β(1 -2u 0 )) in the following weak sense T 0 Ω J • η = - T 0 Ω (-ε∆u 0 + β(1 -2u 0 )) div((1 -u 0 )u 0 η)dxdt for all η ∈ L 2 ((0, T ); (H 1 (Ω)) d ) ∩ L ∞ ((0, T ) × Ω; R d ) which satisfy η • n = 0 on ∂Ω × (0, T ); (9) for all 1 ≤ i ≤ n, for all φ i ∈ L 2 ((0, T ); H 1 (Ω)), T 0 ∂ t u i , φ i (H 1 (Ω)) ′ ,H 1 (Ω) dt = - T 0 Ω   1≤j =i≤n K ij (u j ∇u i -u i ∇u j ) + K i0 (u 0 ∇u i -u i ∇u 0 -κ i J)   • ∇φ i dxdt,
where κ i (t, x) := κ(u i (t, x), u 0 (t, x)), with κ defined in (2.1).

Note that due to κ, our definition of weak solution is related (but stronger) than the one introduced in [START_REF] Dai | Weak solutions for the cahn-hilliard equation with degenerate mobility[END_REF] for a scalar, degenerate Cahn-Hilliard equation. Our main result is then the following. Theorem 2.2. Let u 0 = (u 0 0 , . . . , u 0 n ) ∈ H 2 (Ω; R n+1 ) be an initial condition satisfying (2.7). Then, there exists at least one weak solution u to (2.10) in the sense of Definition 2.1.

The rest of the article is devoted to the proof of Theorem 2.2 which is structured as follows. We first prove the existence of solutions to a regularized time discrete version of system (2.10). The proof of the existence of solutions to this auxiliary problem is the object of Section 3 and is done using Schauder's fixed point theorem and an extension of the boundedness-by-entropy method, while Section 4 is dedicated to estimates on various norms of such solutions. Finally, these estimates enable us to identify the limit of the solution to the auxiliary problem as the time step goes to 0 + as a weak solution to (2.10) in the sense of Definition 2.1. This last step is detailed in Section 5.

Existence of solutions to a regularized discrete in time system

For further use we introduce the sets

A := u := (u i ) 1≤i≤n ∈ (L ∞ (Ω)) n : u i ≥ 0, i = 1, . . . , n, u 0 := 1 - n i=1 u i ≥ 0 , and 
B := φ = (φ i ) 1≤i≤n ∈ (L ∞ (Ω)) n : φ 0 := - n i=1 φ i ∈ H 1 (Ω) .
Let us point out here that A is a closed convex non-empty subset of (L ∞ (Ω)) n . Moreover, it is clear from the definition that for u ∈ A every u i satisfies the box constraints 0 ≤ u i ≤ 1, i = 0, . . . , n.

The aim of this section is to prove the existence of a solution to a time-discrete regularized version of the system introduced in the previous section. More precisely, for every positive time step τ > 0, we want to give a rigorous sense to a regularized semi-discretization of our system formally defined as follows. For all p ∈ N, given u p := (u p 1 , . . . , u p n ) ∈ A ∩ (H 2 (Ω)) n we look for a set of functions u p+1 := (u p+1 1 , . . . , u p+1 n ) ∈ A that is weak solution to the following nonlinear system:

Ω u p+1 i -u p i τ φ i dx = - Ω 1≤j =i≤n K ij u p+1 i u p+1 j ∇(w p+1 i -w p+1 j ) + K i0 u p+1 i u p+1 0 ∇(w p+1 i -w p+1/2 0 ) • ∇φ i dx -τ w p+1 i -w p+1/2 0 , φ i H 2 (Ω) , (3.1) 
for all 1 ≤ i ≤ n, where

u p+1 0 := 1 - n i=1 u p+1 i , u p 0 = 1 - n i=1 u p i , w p+1/2 0 := -ε∆u p+1 0 + β(1 -2u p 0 ), (3.2) 
and

w p+1 i := ln u p+1 i -ln u p+1 0 , i = 1, . . . , n.
Let us emphasize that we use a semi-implicit discretization as we consider the terms arising from the concave part of the entropy at the previous time step p. We will see below that this ensures that the discrete energy is non-increasing.

To give a rigorous sense to this nonlinear system we will make use of a fixed-point argument. First of all, let us point out that, defining

wp+1 i := w p+1 i -w p+1/2 0 = ln u p+1 i -ln u p+1 0 + ε∆u p+1 0 -β(1 -2u p 0 ), for all 1 ≤ i ≤ n, system (3.1) boils down to Ω u p+1 i -u p i τ φ i dx = - Ω 1≤j =i≤n K ij u p+1 i u p+1 j ∇( wp+1 i -wp+1 j ) + K i0 u p+1 i u p+1 0 ∇ wp+1 i • ∇φ i dx -τ wp+1 i , φ i H 2 (Ω) . (3.3) 
The auxiliary variables wp+1 = ( wp+1 1 , . . . , wp+1 n ) will play a central role in the proof of the existence of solutions to this semi-discretized regularized system. We have the following result. Theorem 3.1. Let τ > 0 be a discrete time step, let p ∈ N, and let u p ∈ A ∩ (H 2 (Ω)) n . Then, there exists a solution (u p+1 , wp+1 ) ∈ (A ∩ (H 2 (Ω)) n ) × (H 2 (Ω)) n to the following coupled system: for all 1 ≤ i ≤ n, for all

φ i ∈ H 2 (Ω), Ω u p+1 i -u p i τ φ i dx = - Ω 1≤j =i≤n K ij u p+1 i u p+1 j ∇( wp+1 i -wp+1 j ) + K i0 u p+1 i u p+1 0 ∇ wp+1 i • ∇φ i dx -τ wp+1 i , φ i H 2 (Ω) , (3.4 
)

and for all ψ = (ψ i ) 1≤i≤n ∈ B ∩ (L ∞ (Ω)) n , n i=1 Ω (ln u p+1 i -ln u p+1 0 )ψ i + ε∇u p+1 0 • ∇ψ 0 dx = n i=1 Ω wp+1 i + β(1 -2u p 0 ) ψ i dx, (3.5) 
where u p 0 is given by (2.8). Moreover, the function u p+1 satisfies the following property: there exists δ p > 0 such that

u p+1 i ≥ δ p ,
for all 1 ≤ i ≤ n, and u p+1 0

:= 1 - n i=1 u p+1 i ≥ δ p , a.e. in (0, T ) × Ω. (3.6)
Remark 3.2. The weak formulation (3.5) implies that, for all

1 ≤ i ≤ n, Ω (ln u p+1 i -ln u p+1 0 )ψ i -ε∇u p+1 0 • ∇ψ i dx = Ω wp+1 i + β(1 -2u p 0 ) ψ i dx (3.7) for all ψ i ∈ L ∞ (Ω) ∩ H 1 (Ω). Besides, since ln u p+1 i , ln u p+1 0 , wp+1 i , and β(1 -2u p 0 ) belong to L ∞ (Ω)
, the first three thanks to (3.6) and the last one by assumption, and since the set

L ∞ (Ω) ∩ H 1 (Ω) is dense in H 1 (Ω), we obtain that (3.7) holds for all ψ i ∈ H 1 (Ω). As a consequence, u p+1 0 is the unique solution in H 1 (Ω) to the problem -∆u p+1 0 = wp+1 i + β(1 -2u p 0 ) -ln u p+1 i + ln u p+1 0 in D ′ (Ω), ∇u p+1 0 • n = 0 on ∂Ω.
From now on and in all the rest of Section 3, we fix τ > 0,

u p := (u p 1 , . . . , u p n ) ∈ A ∩ (H 2 (Ω)) n and denote by u p 0 := 1 - n i=1 u p i .
The proof of Theorem 3.1 makes use of Schauder's fixed point theorem as follows. We first show that for any ũ = (ũ 1 , . . . , ũn ) ∈ A there exists a unique solution w = ( w1 , . . . , wn ) ∈ (H 2 (Ω)) n to the linearised problem: for all 1 ≤ i ≤ n and all

φ i ∈ H 2 (Ω), Ω ũi -u p i τ φ i dx = - Ω 1≤j =i≤n K ij ũi ũj ∇( wi -wj ) + K i0 ũi ũ0 ∇ wi • ∇φ i dx -τ wp+1 i , φ i H 2 (Ω) , (3.8) 
with ũ0 := 1 -

n i=1
ũi . We then prove that the map S 1 : A → (H 2 (Ω)) n which associates to ũ ∈ A the unique solution w to (3.8) is continuous. This is the object of Section 3.1.

We then show that for all w ∈ (H 2 (Ω)) n , there exists a unique solution

u ∈ A ∩ (H 2 (Ω)) n to n i=1 Ω (ln u i -ln u 0 )ψ i + ε∇u 0 • ∇ψ 0 dx = n i=1 Ω ( wi + β(1 -2u p 0 )) ψ i dx, (3.9) 
for all ψ = (ψ i ) 1≤i≤n ∈ B ∩ (L ∞ (Ω)) n , with u 0 given by (2.8). Problem (3.9) is to be interpreted as a weak formulation associated to the relation

ln u i -ln u 0 = wi -ε∆u 0 + β(1 -2u p 0 ). The map S 2 : (H 2 (Ω)) n → A which to each w ∈ (H 2 (Ω)
) n associates the unique solution u ∈ A to (3.9) is then shown to be continuous. These results are proved in Section 3.2.

We finally conclude by showing that the map S = S 2 •S 1 : A → A is such that S(A) is a relatively compact subset of (L ∞ (Ω)) n , so that Schauder's fixed point theorem can be used. This is the object of Section 3.3.

3.1.

Definition and continuity of the map S 1 . Lemma 3.3. For any ũ ∈ A, there exists a unique solution w ∈ (H 2 (Ω)) n to the problem: for all

1 ≤ i ≤ n, for all φ i ∈ H 2 (Ω), Ω ũi -u p i τ φ i dx = - Ω 1≤j =i≤n K ij ũi ũj ∇( wi -wj ) + K i0 ũi ũ0 ∇ wi • ∇φ i dx -τ wi , φ i H 2 (Ω) , (3.10) 
where ũ0 satisfies (2.8). Furthermore, there exists a constant M 0 > 0, depending only on n, τ , and

Ω, such that w (H 2 (Ω)) n ≤ M 0 . (3.11)
Proof. We fix ũ := (ũ i ) 1≤i≤n ∈ A and introduce the matrices

G(ũ) := (G ij (ũ)) 1≤i,j≤n and H(ũ) := (H ij (ũ)) 1≤i,j≤n ∈ R n×n defined by G ij (ũ) := -K ij ũi ũj ∀ i = j = 1, . . . , n, G ii (ũ) := 1≤j =i≤n K ij ũi ũj ∀ i = 1, . . . , n,
and H(ũ) = diag(K 10 ũ1 ũ0 , . . . , K n0 ũn ũ0 ). Then, system (3.10) can be equivalently written as

- 1 τ Ω (ũ -u p ) • φdx = Ω ∇φ • G(ũ)∇ wdx + Ω ∇φ • H(ũ)∇ wdx + τ φ, w (H 2 (Ω)) n , (3.12 
)

for all φ ∈ (H 2 (Ω)) n . Let us point out that 0 ≤ G(ũ) ≤ nKI n and 0 ≤ H(ũ) ≤ KI n (3.13)
almost everywhere in Ω, in the sense of symmetric matrices, with K := max 0≤i =j≤n K ij and I n being the identity matrix of R n×n . The existence and uniqueness of a solution to (3.12) is then a consequence of Lax-Milgram's theorem. In particular, taking φ = w in (3.12) gives

τ w 2 (H 2 (Ω)) n ≤ 1 τ n i=1 ũi -u p i L 2 (Ω) wi L 2 (Ω) ≤ 1 τ n i=1 ũi -u p i 2 L 2 (Ω) 1/2 w H 2 (Ω) .
Since ũ and u p belongs to A, this implies that w (H 2 (Ω)) n ≤ 1 τ 2 2 n|Ω|, which yields estimate (3.11).

Let us denote by S

1 : A ⊂ (L ∞ (Ω)) n → (H 2 (Ω)
) n the application that associates to each ũ ∈ A the unique solution w to (3.10). We have the following result.

Lemma 3.4. The map S

1 : A ⊂ (L ∞ (Ω)) n → (H 2 (Ω)) n is continuous.
Proof. Let ũ1 , ũ2 ∈ A and set w1 = S 1 (ũ 1 ) as well as w2 = S 1 (ũ 2 ). For all 1 ≤ i = j ≤ n we have

G ij (ũ 1 ) -G ij (ũ 2 ) = -K ij ũ1 i (ũ 1 j -ũ2 j ) + ũ2 j (ũ 1 i -ũ2 i ) , G ii (ũ 1 ) -G ii (ũ 2 ) = 1≤j =i≤n K ij ũ1 i (ũ 1 j -ũ2 j ) + ũ2 j (ũ 1 i -ũ2 i ) , H ii (ũ 1 ) -H ii (ũ 2 ) = K i0 ũ1 i (ũ 1 0 -ũ2 0 ) + ũ2 0 (ũ 1 i -ũ2 i ) ,
which yield the Lipschitz estimates

G ij (ũ 1 ) -G ij (ũ 2 ) L ∞ (Ω) ≤ K ũ1 j -ũ2 j L ∞ (Ω) + ũ1 i -ũ2 i L ∞ (Ω) , G ii (ũ 1 ) -G ii (ũ 2 ) L ∞ (Ω) = K   (n -1) ũ1 i -ũ2 i L ∞ (Ω) + 1≤j =i≤n ũ1 j -ũ2 j L ∞ (Ω)   , H ii (ũ 1 ) -H ii (ũ 2 ) L ∞ (Ω) = K ũ1 0 -ũ2 0 L ∞ (Ω) + ũ1 i -ũ2 i L ∞ (Ω) . Since ũ1 0 -ũ2 0 L ∞ (Ω) ≤ n i=1 ũ1 i -ũ2 i L ∞ (Ω)
, there exists a constant C > 0, only depending on n and K, such that

-C n i=1 ũ1 i -ũ2 i L ∞ (Ω) I ≤ G(ũ 1 ) -G(ũ 2 ) ≤ C n i=1 ũ1 i -ũ2 i L ∞ (Ω) I (3.14)
and

-C n i=1 ũ1 i -ũ2 i L ∞ (Ω) I ≤ H(ũ 1 ) -H(ũ 2 ) ≤ C n i=1 ũ1 i -ũ2 i L ∞ (Ω) I, (3.15) 
almost everywhere in Ω, in the sense of symmetric matrices. Then, for all φ ∈ (H

2 (Ω)) n , 1 τ Ω (ũ 1 -ũ2 ) • φdx = - Ω ∇φ • G(ũ 1 )∇ w1 -G(ũ 2 )∇ w2 dx - Ω ∇φ • H(ũ 1 )∇ w1 -H(ũ 2 )∇ w2 dx -τ φ, w1 -w2 (H 2 (Ω)) n .
Choosing φ = w1 -w2 in the above equality and using (3.11), (3.14), (3.15), and (3.13) gives the existence of a constant C ′ > 0, depending only on n, K, |Ω|, and τ such that

τ w1 -w2 2 (H 2 (Ω)) n = - 1 τ Ω (ũ 1 -ũ2 ) • ( w1 -w2 )dx - Ω ∇( w1 -w2 ) • G(ũ 1 )∇( w1 -w2 ) dx - Ω ∇( w1 -w2 ) • G(ũ 1 ) -G(ũ 2 ) ∇ w2 dx - Ω ∇( w1 -w2 ) • H(ũ 1 )∇( w1 -w2 ) dx - Ω ∇( w1 -w2 ) • H(ũ 1 ) -H(ũ 2 ) ∇ w2 dx ≤ - 1 τ Ω (ũ 1 -ũ2 ) • ( w1 -w2 )dx - Ω ∇( w1 -w2 ) • G(ũ 1 ) -G(ũ 2 ) ∇ w2 dx - Ω ∇( w1 -w2 ) • H(ũ 1 ) -H(ũ 2 ) ∇ w2 dx ≤ C ′ n i=1 ũ1 i -ũ2 i L ∞ (Ω) w1 -w2 (H 2 (Ω)) n . Thus, w1 -w2 (H 2 (Ω)) n ≤ C ′ n i=1 ũ1 i -ũ2 i L ∞ (Ω) ,
which yields the continuity of S 1 .

3.2. Definition and continuity of the map S 2 . The aim of this section to prove the existence and uniqueness of a solution u ∈ A to the problem

wi = ln u i -ln u 0 + ε∆u 0 -β(1 -2u p 0 ), i = 1, . . . , n, (3.16) 
when w ∈ (H 2 (Ω)) n is given.

In the case when ε = β = 0, there is an algebraic relation which allows to explicitly express u in terms of w and ensures that u ∈ A (the boundedness-by-entropy method [START_REF] Burger | Nonlinear Cross Diffusion with Size Exclusion[END_REF][START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF]). In our case, the situation is more involved, since, due to gradient term in the entropy, the densities u i are solutions to the nonlinear coupled elliptic system (3.16).

More precisely, we will identify the solution u to (3.16) as the unique weak solution in A ∩ B to the variational problem

n i=1 Ω (ln u i -ln u 0 )φ i + ε∇u 0 • ∇φ 0 dx = n i=1 Ω ( wi + β(1 -2u p 0 )) φ i dx, (3.17) 
for all φ ∈ B ∩ (L ∞ (Ω)) n which will be equivalently characterized as the unique solution to the minimization problem min

v∈A F w(v) (3.18)
where for all v ∈ A we define

F w (v) =    +∞ if v / ∈ B Ω n i=0 v i ln v i + ε 2 |∇v 0 | 2 - n i=1 v i f i dx otherwise, with f i := wi + β(1 -2u p 0 ) for all 1 ≤ i ≤ n.
The goal of this section is to rigorously prove all these claims. To this aim, we will proceed into three steps: first we show that minimizers to (3.18) exist, then that these minimizers are solutions to (3.17), and finally that the solution to (3.17) is unique. Lemma 3.5. For all w ∈ (H 2 (Ω)) n , problem (3.18) admits at least one minimizer u ∈ A.

Proof. Let w ∈ (H 2 (Ω)) n . For all 1 ≤ i ≤ n, let f i := wi + β(1 -2u p 0 ) ∈ H 2 (Ω) ⊂ L ∞ (Ω). Let us first show that F w is bounded from below on A. Fix u = (u i ) 1≤i≤n ∈ A. Since x ln x -x + 1 ≥ 0 for all x ∈ [0, 1] and since - Ω u i ≥ -|Ω| for all i = 0, . . . , n, we have Ω n i=0 u i ln u i dx ≥ Ω n i=0 (u i -1)dx = -n|Ω|. (3.19) Moreover, 
-

Ω u i f i dx ≥ -f i L ∞ (Ω) |Ω|, (3.20) 
for all 1 ≤ i ≤ n. Collecting these estimates gives the existence of a constant C > 0, which only depends on n and Ω, such that

F w(u) ≥ -C 1 + n i=1 f i L ∞ (Ω) .
This shows that F w is bounded from below on A. Thus, inf A F w > -∞. Besides, inf A F w ≤ F w(0) = 0, as 0 ∈ A. Thus, there exists a minimizing sequence (u (m) ) m∈N ⊂ A such that (F w (u (m) )) m∈N is bounded and

lim m→∞ F w (u (m) ) = inf A F w .
Using estimates (3.19) and (3.20) we obtain that ∇u

(m) 0 L 2 (Ω) m∈N
is bounded as well. Thus, up to the extraction of a subsequence that we still denote by u (m) for the sake of simplicity, there exists u ∈ A ∩ B such that, as m → +∞,

u (m) i → u i weakly-* in L ∞ (Ω)
, strongly in L p (Ω) for all 1 ≤ p < +∞ and a.e. in Ω,

u (m) 0 → u 0 := 1 - n i=1
u i strongly in L p (Ω) for all 1 ≤ p < +∞ and a.e. in Ω,

∇u (m) 0 ⇀ ∇u 0 weakly in (L 2 (Ω)) d .
Since the function [0, 1] ∋ x → x ln x is continuous and bounded in [0, 1], the Lebesgue dominated convergence theorem yields that for all 0

≤ i ≤ n Ω u (m) i ln u (m) i dx → Ω u i ln u i dx, as m → +∞.
Furthermore, it holds that

Ω |∇u 0 | 2 dx ≤ lim inf m→+∞ Ω |∇u (m) 0 | 2 dx,
and finally

Ω f i u (m) i dx → Ω f i u i dx, as m → +∞.
This implies

F w (u) ≤ lim inf m→+∞ F w (u (m) ) = inf A F w ,
which entails that u is necessarily a minimizer of F w on A.

Lemma 3.6. For all w ∈ (H 2 (Ω)) n there exists δ w > 0 such that for any minimizer u to (3.18) it holds

u i ≥ δ w ∀ 1 ≤ i ≤ n, 1 -δ w ≥ u 0 := 1 - n i=1 u i ≥ δ w, a.e. in Ω.
Besides, for all N > 0, there exists δ > 0 which only depends on n, Ω, τ , β, and N , such that for all w ∈ (H 2 (Ω)) n with w (H 2 (Ω)) n ≤ N and for any minimizer u to (3.18) it holds that

u i ≥ δ ∀ 1 ≤ i ≤ n, 1 -δ ≥ u 0 := 1 - n i=1 u i ≥ δ a.e. in Ω.
Proof. Let w ∈ (H 2 (Ω)) n and for all 1 ≤ i ≤ n let us denote by

f i := wi + β(1 -2u p 0 ) ∈ H 2 (Ω) ⊂ L ∞ (Ω).
Let u be a minimizer of F w on A.

Step 1: Let us first show that there exists 1 > δ > 0, which only depends on n, Ω, β, τ , and

n i=1 wi L ∞ (Ω) ,
such that δ ≤ u 0 almost everywhere in Ω. The precise value of δ will be specified later in the proof.

We reason by contradiction and assume that the Lebesgue measure of the set

M δ := {x ∈ Ω : u 0 (x) < δ} is positive. Now, let us define u δ 0 := max(u 0 , δ), u δ i := u i -(u δ 0 -u 0 ) u i 1 -u 0 , i = 1, . . . , n, (3.21) 
and

u δ := (u δ 1 , . . . , u δ n ). In (3.21), since 1 -u 0 = n j=1
u j ≥ u i ≥ 0, the function ui 1-u0 is well-defined almost everywhere using the convention that ui 1-u0 = 0 as soon as u i = 0. By definition, it holds that 1 ≥ u δ 0 ≥ 0 and u δ 0 + n i=1 u δ i = 1. Furthermore, u δ i (x) = 0 for all x ∈ Ω such that u i (x) = 0. For all x ∈ Ω such that u i (x) > 0, it follows that 1u 0 (x) ≥ u i (x) > 0 and

u δ i (x) = u i (x) 1 - u δ 0 (x) -u 0 (x) 1 -u 0 (x) ≥ 0, since u δ 0 (x) -u 0 (x) 1 -u 0 (x) ≤ 1 -u 0 (x) 1 -u 0 (x) = 1.
As a consequence, u δ ∈ A and u δ 0 = 1 -n i=1 u δ i . We now prove that for δ sufficiently small, F w (u δ 1 , u δ 2 ) < F w(u 1 , u 2 ). Indeed, using the convexity of the function [0, 1] ∋ x → x ln(x), the fact that

|∇u δ 0 | ≤ |∇u 0 | a.e.
in Ω and that

u δ i = u i on M c δ = {x ∈ Ω : u 0 (x) ≥ δ} yields F w (u δ ) -F w (u) ≤ M δ n i=1 [u δ i ln u δ i -u i ln u i ] + [u δ 0 ln u δ 0 -u 0 ln u 0 ] - n i=1 f i (u δ i -u i )dx ≤ M δ n i=1 [ln u δ i + 1](u δ i -u i ) + [ln u δ 0 + 1](u δ 0 -u 0 ) - n i=1 f i (u δ i -u i )dx = M δ n i=1 -[ln u δ i + 1](u δ 0 -u 0 ) u i 1 -u 0 + [ln u δ 0 + 1](u δ 0 -u 0 )dx - M δ n i=1 f i (u δ i -u i )dx. (3.22)
To estimate the first term we note that

u δ i = u i -(u δ 0 -u 0 ) u i 1 -u 0 = u i 1 -u 0 (1 -u δ 0 ), for all 1 ≤ i ≤ n. Therefore, M δ n i=1 -[ln u δ i + 1](u δ 0 -u 0 ) u i 1 -u 0 dx ≤ M δ n i=1 ln u i 1 -u 0 u i 1 -u 0 + ln 1 -u δ 0 u i 1 -u 0 + u i 1 -u 0 (u δ 0 -u 0 )dx.
Using the fact that max

x∈[0,1]
|x ln x| = 1 e , the fact that u δ 0 ≥ δ and that ui 1-u0 ≤ 1, we obtain that, if δ ≤ 1/2,

M δ n i=1 -[ln u δ i + 1](u δ 0 -u 0 ) u i 1 -u 0 dx ≤ n 1 e + | ln(1 -δ)| + 1 M δ (u δ 0 -u 0 )dx ≤ n 1 e + | ln 2| + 1 M δ (u δ 0 -u 0 )dx.
In addition, it holds that

M δ [ln u δ 0 + 1](u δ 0 -u 0 )dx = (ln δ + 1) M δ (u δ 0 -u 0 )dx.
Finally, the last terms in (3.22) are estimated as follows:

-

M δ n i=1 f i (u δ i -u i )dx ≤ n i=1 f i L ∞ (Ω) M δ (u δ 0 -u 0 )dx ≤ n i=1 wi L ∞ (Ω) + 3nβ M δ (u δ 0 -u 0 )dx, using |u δ i -u i | ≤ u δ 0 -u 0 .
Combining all these estimates gives

F w (u δ ) -F w (u) ≤ (ln δ + C) M δ (u δ 0 -u 0 )dx, with C = n i=1 wi L ∞ (Ω) + 3nβ + n 1 e + ln 2 + 1 .
Finally, we observe that M δ (u δ 0u 0 ) > 0, because the function u δ 0u 0 is assumed to be positive on the set M δ which has positive measure. Thus, if the value of δ is chosen so that δ < min 1 2 , e -C , we have that ln δ + C < 0 which implies F w (u δ ) -F w (u) < 0, the desired contradiction. We have thus proved that, for every minimizer u ∈ A to (3.18), there exists δ w > 0 such that u 0 ≥ δ w, where u 0 = 1 -

n i=1 u i .
Moreover, the value of δ can be chosen so that it only depends on n, β, Ω, τ , and N as soon as w is assumed to satisfy w

(H 2 (Ω)) n ≤ N , since H 2 (Ω) is compactly embedded in L ∞ (Ω).
Step 2: Let us now show that there exists 1 > δ > 0, which only depends on n, Ω, β, τ , and

n i=1 wi L ∞ (Ω) , such that 1 -u 0 = n n=1
u i ≥ δ almost everywhere in Ω. As before, the precise value of δ will be specified later in the proof. As in Step 1, we argue by contradiction assuming that the set

N δ := {x ∈ Ω : 1 -δ < u 0 (x)}
has positive measure. Let us now define

u δ 0 := min(u 0 , 1 -δ),
and u δ i as in (3.21). We still obtain that u δ := (u δ 1 , . . . , u δ n ) ∈ A and that u δ 0 = 1 -n i=1 u δ i . Doing similar calculations as in Step 1 gives

F w (u δ ) -F w(u) ≤ N δ n i=1 [ln u δ i + 1](u δ i -u i ) + [ln u δ 0 + 1](u δ 0 -u 0 )dx - N δ n i=1 f i (u δ i -u i )dx. (3.23)
On the one hand, it holds that

N δ n i=1 [ln u δ i + 1](u δ i -u i )dx = N δ n i=1 -[ln u δ i + 1](u δ 0 -u 0 ) u i 1 -u 0 dx ≤ N δ n i=1 ln u i 1 -u 0 u i 1 -u 0 + 1 (u 0 -u δ 0 )dx + N δ n i=1 u i 1 -u 0 -ln 1 -u δ 0 (u δ 0 -u 0 ) dx ≤ n 1 e + 1 + ln δ N δ (u 0 -u δ 0 )dx, as n i=1 u i = 1 -u 0 and 1 -u δ 0 = δ in N δ . Furthermore, if 1 
2 ≥ δ, we can estimate the second term on the right-hand side of (3.23) as

N δ [ln u δ 0 + 1](u δ 0 -u 0 )dx ≤ (ln 2 + 1) N δ (u 0 -u δ 0 )dx,
while the terms involving f i are estimated with similar calculations as in Step 1. Then we have (ln

F w (u δ ) -F w (u) ≤ (ln δ + C) N δ (u 0 -u δ 0 )dx,
(u i + tφ i ) ln(u i + tφ i ) -u i ln u i t + ε 2 |∇(u 0 + tφ 0 )| 2 -|∇u 0 | 2 t + n i=1 f i φ i dx = Ω n i=1 (ln u i -ln u 0 )φ i + ε∇u 0 • ∇φ 0 + n i=1 f i φ i dx.
u i -ln u 0 )φ i + ε∇u 0 • ∇φ 0 + n i=1 f i φ i dx ≥ 0.
Replacing φ by -φ we obtain that u satisfies (3.24). Finally, for all 1 ≤ i ≤ n, we obtain (3.25) by considering a test function φ = (φ j ) 1≤j≤n such that φ i ∈ D(Ω) and φ j = 0 for all 1 ≤ j = i ≤ n.

Lemma 3.8. System (3.24) has at most one solution u ∈ A ∩ B.

Proof. Let us suppose that there exist two weak solutions u and ũ in A ∩ B to (3.24). Subtracting the respective equations yields

0 = Ω n i=1 (ln u i -ln ũi -(ln u 0 -ln ũ0 ))φ i -(ln u 0 -ln ũ0 )φ 0 + ε∇(u 0 -ũ0 ) • ∇φ 0 dx, for all φ ∈ B ∩ (L ∞ (Ω)) n . Now, choosing φ i = u i -ũi for all 1 ≤ i ≤ n so that φ 0 = - n i=1 (u i -ũi ) = u 0 -ũ0 we obtain 0 = Ω n i=1 (ln u i -ln ũi -(ln u 0 -ln ũ0 ))(u i -ũi ) + ε∇(u 0 -ũ0 ) • ∇(u 0 -ũ0 )dx = Ω n i=1
(ln u iln ũi )(u iũi ) + (ln u 0ln ũ0 )(u 0 -ũ0 ) + ε|∇(u 0 -ũ0 )| 2 dx.

The monotonicity of the logarithm implies (ln xln y)(xy) ≥ 0 for all x, y > 0, which implies that all terms in the above integral are non-negative, so that a.e. in Ω (ln

u i -ln ũi )(u i -ũi ) = 0 ∀ 0 ≤ i ≤ n and ∇(u 0 -ũ0 ) = 0.
The strict monotonicity of the logarithm thus implies that u i = ũi for 0 ≤ i ≤ n, which yields the desired result.

We then let define S 2 : (H 2 (Ω)) n → A as the application which to any w ∈ (H 2 (Ω)) n associates the unique minimizer u of (3.18), which is also the unique solution in A ∩ B to (3.24). Our next aim is to prove that S 2 is a continuous map. To this end, we are going to prove that, if w(m) m∈N is a sequence in (H 2 (Ω)) n which strongly converges in (H 2 (Ω)) n to some w ∈ (H 2 (Ω)) n , then the sequence of minimizers to the functionals (F w(m) ) m∈N converges to the minimizer of F w. We first collect some regularity properties of the minimizers. Lemma 3.9. For all w ∈ (H 2 (Ω)) n , it holds that S 2 ( w) ∈ (H 2 (Ω)) n . Moreover, for all N > 0, there exists a constant M 1 > 0, which only depends on n, Ω, ε, β, and N , such that for all w ∈ (H 2 (Ω)) n with w (H 2 (Ω)) n ≤ N , we have

S 2 ( w) (H 2 (Ω)) n ≤ M 1 .
Proof. Let w ∈ (H 2 (Ω)) n , u := S 2 ( w). We first point out that, since u is a minimizer of F w on A and therefore F w (u) ≤ F w (0) = 0, it holds

ε 2 ∇u 0 2 L 2 (Ω) ≤ n|Ω| sup x∈[0,1] |x ln x| + 3β|Ω| n i=1 wi L ∞ (Ω) , ≤ n|Ω| e + 3β|Ω| n i=1 wi H 2 (Ω) , ≤ n|Ω| e + 3β √ n|Ω| w (H 2 (Ω)) n .
Moreover, from Lemma 3.7 we have

ln u i -ln u 0 + ε∆u 0 = wi + β(1 -2u p 0 ) (3.28)
for all 1 ≤ i ≤ n, in the sense of distributions. How Lemma 3.6 implies ln u i L ∞ (Ω) ≤ | ln δ w| and ln u 0 L ∞ (Ω) ≤ | ln δ w |. This yields ∆u 0 ∈ L 2 (Ω) and

ε ∆u 0 L 2 (Ω) ≤ |Ω| 1/2 2| ln δ w| + wi L ∞ (Ω) + 3β ≤ |Ω| 1/2 2| ln δ w| + C e w (H 2 (Ω)) n + 3β ,
where C e is the embedding constant for H 2 (Ω) ֒→ L ∞ (Ω). Moreover, if w satisfies w (H 2 (Ω)) n ≤ N , there exists δ > 0, whose value only depends on n, Ω, β, and N , such that ln u i L ∞ (Ω) ≤ | ln δ| and ln u 0 L ∞ (Ω) ≤ | ln δ|. Hence, in this case,

ε ∆u 0 L 2 (Ω) ≤ |Ω| 1/2 (2| ln δ| + N + 3β) .
Let us now prove that ∇u i ∈ L 2 (Ω) for all 1 ≤ i ≤ n. Taking into account (3.28) we obtain that wiwj = ln

u i u j ∀ 1 ≤ i, j ≤ n,
which implies that u i = u j e wi-wj . Then, for all 1 ≤ i ≤ n, it holds that

-∇u 0 = ∇   n j=1 u j   = ∇   u i   1 + 1≤j =i≤n e wi-wj     =   1 + 1≤j =i≤n e wi-wj   ∇u i + u i 1≤j =i≤n
e wi-wj ∇( wiwj ), so that

∇u i = -∇u 0 + u i 1≤j =i≤n e wi-wj ∇( wi -wj ) 1 + 1≤j =i≤n e wi-wj = -∇u 0 + 1≤j =i≤n u j ∇( wi -wj ) 1 + 1≤j =i≤n
e wi-wj .

Thus, taking into account that 0 ≤ u j ≤ 1 for all 1 ≤ j ≤ n, we obtain ∇u i ∈ L 2 (Ω) for all 1 ≤ i ≤ n and

∇u i L 2 (Ω) ≤ ∇u 0 L 2 (Ω) + (n -1) ∇ wi L 2 (Ω) + 1≤j =i≤n ∇ wj L 2 (Ω) .
Moreover, using the fact that d ≤ 3 yields the compact embedding H 1 (Ω) ֒→ L 4 (Ω), there exists a constant C > 0 which only depends on Ω and n such that

∇u i L 4 (Ω) ≤ ∇u 0 L 4 (Ω) + (n -1) ∇ wi L 4 (Ω) + 1≤j =i≤n ∇ wj L 4 (Ω) , ≤ C u 0 H 2 (Ω) + w H 2 (Ω) n .
Finally, for all 1 ≤ i ≤ n we have Hence,

-∆u 0 = div     1 +
∆u i = 1 1 + 1≤j =i≤n e wi-wj   -∆u 0 -2 1≤j =i≤n e wi-wj ∇( wi -wj ) • ∇u i   + 1 1 + 1≤j =i≤n e wi-wj   - 1≤j =i≤n u j |∇( wi -wj )| 2 -u j ∆( wi -wj )   ,
which implies that ∆u i ∈ L 2 (Ω) and

∆u i L 2 (Ω) ≤ ∆u 0 L 2 (Ω) + 2 ∇u i L 4 (Ω) ∇( wi -wj ) L 4 (Ω) + =i≤n ∇( wi -wj ) L 4 (Ω) 2 + ∆( wi -wj ) L 2 (Ω) .
Thus, there exists a constant C ′ > 0, which only depends on Ω and n, such that

∆u i L 2 (Ω) ≤ C ′ u 0 H 2 (Ω) + u 0 2 H 2 (Ω) + w (H 2 (Ω)) n + w 2 (H 2 (Ω)) n .
Collecting all these estimates gives the desired result.

Lemma 3.10. The map

S 2 : (H 2 (Ω)) n → A ⊂ (L ∞ (Ω)) n is continuous.
Proof. The continuity of the map S 2 is a consequence of the bounds of Lemma 3.9. Indeed, let w(m) m∈N ⊂ (H 2 (Ω)) n be a sequence strongly converging to some w ∈ (H 2 (Ω)) n . Set u (m) := S 2 ( w(m) ) for all m ∈ N. Let us prove that u (m) m∈N strongly converges in (L ∞ (Ω)) n to u := S 2 ( w). First of all, since the sequence w(m) m∈N is bounded in (H 2 (Ω)) n , then Lemma 3.9 entails that also the sequence u (m) m∈N is bounded in (H 2 (Ω)) n . Up to the extraction of a subsequence (still denoted by u (m) m∈N for the sake of simplicity), there exists ũ ∈ (H 2 (Ω)) n such that u (m) ⇀ ũ weakly in (H 2 (Ω)) n as m → +∞.

Let us prove that necessarily ũ = u, which will imply that the whole sequence u (m) m∈N weakly converges in (H 2 (Ω)) n to u.

Let us observe that the compact embeddings (H

2 (Ω)) n ֒→ (L ∞ (Ω)) n and H 2 (Ω)) n ֒→ (H 1 (Ω)) n imply u (m) → ũ strongly in (L ∞ (Ω)) n and u (m) 0 → ũ0 strongly in H 1 (Ω)
as m → +∞. Thus, we obtain

F w(m) u (m) → F w (ũ)
as m → +∞.

Besides, since for all v ∈ A, F w(m) u (m) ≤ F w(m) (v) and F w(m) (v) → F w(v) as m → +∞, we obtain

F w (ũ) ≤ F w (v) ∀ v ∈ A.
Hence, ũ is the unique minimizer of F w on A, i.e., ũ = u. As a consequence, the whole sequence u (m) m∈N weakly converges to u in (H 2 (Ω)) n . Finally, the compact embedding (H 2 (Ω)) n ֒→ (L ∞ (Ω)) n implies that the sequence u (m) m∈N strongly converges in (L ∞ (Ω)) n to u, which yields the desired convergence. Hence, the continuity of the map S 2 .

Proof of Theorem 3.1.

Proof of Theorem 3.1. Let us define S : A → A as S = S 2 •S 1 , with S 1 : A → (H 2 (Ω)) n defined in Section 3.1 and S 2 : (H 2 (Ω)) n → A defined in Section 3.2. Thanks to Lemma 3.4 and Lemma 3.10 we obtain that S is continuous. Besides, using Lemma 3.3 together with Lemma 3.9 we obtain that S(A) is a bounded subset of (H 2 (Ω)) n and hence a relatively compact subset of (L ∞ (Ω)) n . Since A is a closed convex non-empty subset of (L ∞ (Ω)) n , Schauder's fixed point theorem ensures the existence of a fixed point u p+1 ∈ A such that u p+1 = S(u p+1 ). Gathering the different results proved in Section 3.1 and Section 3.2 yield the desired properties on the fixed-point u p+1 .

Estimates on the solutions of the time discrete regularized system

Let T > 0 be a fixed final time. For all 0 < τ ≤ 1 Theorem 3.1 implies that, for any initial condition u 0 ∈ A ∩ (H 2 (Ω)) n , there exists a sequence (u p ) p∈N ⊂ A ∩ (H 2 (Ω)) n defined by recursion such that (u p+1 , wp+1 ) We then define several piecewise constant in time functions as follows: for all p ∈ N * , for all 1 ≤ i ≤ n and all t ∈ (t p-1 , t p ], we set

∈ (A ∩ (H 2 (Ω)) n ) × (H 2 (Ω)) n
u (τ ) (t) = u p , u (τ ) (t) = u p , u (τ ) i (t) = u p i , u (τ ) 0 (t) = u p 0 , w(τ) = wp , w(τ) i = wp i , w (τ ) i = w p i = ln u p i -ln u p 0 , w (τ ) 0 = w p-1/2 0 , w (τ ) = w p . (4.1)
At time t = 0 we define u (τ ) (0) = u 0 . Let P (τ ) ∈ N * be the lowest integer such that t P (τ ) ≥ T . Furthermore, we introduce the time-shifted solution σ τ u (τ ) as

σ τ u (τ ) (t) = u p-1 for all t ∈ (t p-1 , t p ], p ∈ N * ,
whose components are given by (σ τ u

(τ ) 1 , . . . , σ τ u (τ ) n ), and set σ τ u (τ ) 0 := 1- n i=1 σ τ u (τ ) i . For all u = (u 0 , u 1 , . . . , u n ) ∈ (L ∞ (Ω) ∩ H 1 (Ω)) × (L ∞ (Ω)) n we define E conv (u) = Ω n i=0 u i ln u i + ε 2 |∇u 0 | 2 dx and E conc (u) = Ω βu 0 (1 -u 0 )dx.
For all τ > 0 and t > 0 we define the entropy functional

E (τ ) (t) := Ω u (τ ) i (t) ln u (τ ) i (t) + ε 2 |∇u (τ ) 0 (t)| 2 + βσ τ u (τ ) 0 (t)(1 -σ τ u (τ ) 0 (t))dx = E conv (u (τ ) (t)) + E conc (σ τ u (τ ) (t))
so that, for all p ∈ N,

E (τ ) (t p+1 ) = Ω n i=0 u p+1 i ln u p+1 i + ε 2 |∇u p+1 0 | 2 + βu p 0 (1 -u p 0 )dx = E conv (u p+1 ) + E conc (u p ).
Remark 4.1. It is easy to check that there exists a constant C > 0, independent of τ , such that E u (τ ) (t) ≥ -C for all t > 0.

The objective of this section is to collect some estimates on the solution u (τ ) which will be used in the sequel to pass to the limit as τ → 0 + in the time discrete regularized system. We begin by stating an important property of the mobility matrix M which will be used in the following. Lemma 4.2. Let z ∈ R n+1 and let M be defined as in (2.3). Then, for all u ∈ R n+1 + ,

z T M (u)z ≥ 0.
Proof. Indeed, for all u = (u 0 , . . . , u n ) ∈ R n+1 + and all z = (z 0 , . . . , z n ) ∈ R n+1 we have

z T M (u)z = n i,j=0 j =i z i M ij (u)z j + n i=0 M ii (u)z 2 i = n i,j=0 j =i (-K ij u i u j z i z j ) + 1 2 n i=0 M ii (u)z 2 i + 1 2 n j=0 M jj (u)z 2 j = n i,j=0 j =i (-K ij u i u j z i z j ) + 1 2 n i,j=0 j =i K ij u i u j z 2 i + 1 2 n i,j=0 i =j K ij u i u j z 2 j = n i,j=0 j =i K ij u i u j 1 2 z 2 i + 1 2 z 2 j -z i z j = 1 2 n i,j=0 j =i K ij u i u j (z i -z j ) 2 ≥ 0,
which gives us the conclusion.

We now state the monotonicity of the energy functional E (τ ) .

Lemma 4.3. For all τ > 0, the sequence (E (τ ) (t p )) p∈N * is non-increasing. Moreover, there exists C > 0 such that for all τ > 0 and all t > 0,

Ω |∇u (τ ) 0 (t)| 2 dx ≤ C. (4.2) 
Proof. We test each equation in (3.4) with the test function

φ i = wp+1 i = w p+1 i -w p+1/2 0
and then sum over i = 1, . . . , n. On the left-hand side, exploiting the convexity and concavity properties of the functions [0, 1] ∋ x → x ln x and [0, 1] ∋ x → x(1x), respectively, together with Remark 3.2, we have

Ω u p+1 i -u p i τ (w p+1 i -w p+1/2 0 )dx = n i=1 Ω u p+1 i -u p i τ ln u p+1 i -ln u p+1 0 + ε∆u p+1 0 -β(1 -2u p 0 ) dx = n i=1 Ω u p+1 i -u p i τ ln u p+1 i dx + Ω u p+1 0 -u p 0 τ ln u (p+1 0 -ε∆u p+1 0 + β(1 -2u p 0 ) dx ≥ 1 τ E conv (u p+1 ) -E conv (u p ) + E conc (u p+1 ) -E conc (u p ) = 1 τ E(u p+1 ) -E(u p ) . (4.3) 
On the right-hand side, exploiting Lemma 4.2 and the definition of the matrix M , see (2.3), we have

n i=1 Ω 1≤j =i≤n K ij u p+1 i u p+1 j ∇(w p+1 i -w p+1 j ) + K i0 u p+1 i u p+1 0 ∇(w p+1 i -w p+1/2 0 ) • ∇(w p+1 i -w p+1/2 0 )dx = Ω (∇w p+1 ) T M (u p+1 )∇w p+1 dx ≤ 0. (4.4) From (4.3)-(4.4) 
it follows that

1 τ E(u p+1 ) -E(u p ) ≤ 0 ∀ p ∈ N,
which implies that the sequence (E(u p )) p∈N is non-increasing. In particular, there exists a constant C > 0 such that E(u p ) ≤ E(u 0 ) ≤ C, which in turn entails

ε 2 Ω |∇u p 0 | 2 dx ≤ C,
for every p ∈ N. Taking into account (4.1) yields the desired result.

We now use the monotonicity of the entropy functional in order to establish some a-priori estimates that will be used to pass to the limit as τ → 0 + in the time discrete system. Lemma 4.4. There exists a constant C > 0, independent of τ > 0, such that

n i=0 T 0 Ω |∇u (τ ) i | 2 u (τ ) i dxdt ≤ C, T 0 Ω |∆u (τ ) 0 | 2 dxdt ≤ C, T 0 Ω (1 -u (τ ) 0 )u (τ ) 0 |∇w (τ ) 0 | 2 dxdt ≤ C, (4.5) 
τ n i=1 T 0 w (τ ) i -w (τ ) 0 2 H 2 (Ω) dt ≤ C. (4.6) 
Proof. First of all, let us introduce k := min 0≤i =j≤n K ij . We test each equation of (3.4) with

φ i = wp+1 i = w p+1 i -w p+1/2 0
and sum for i = 1, . . . , n. On the right-hand side we have

A := - n i=1 Ω 1≤j =i≤n K ij u p+1 i u p+1 j ∇(w p+1 i -w p+1 j ) + K i0 u p+1 i u p+1 0 ∇(w p+1 i -w p+1/2 0 ) • ∇(w p+1 i -w p+1/2 0 )dx -τ w p+1 i -w p+1/2 0 2 H 2 (Ω) = - n i=1 Ω 1≤j =i≤n (K ij -k)u p+1 i u p+1 j ∇(w p+1 i -w p+1 j ) + (K i0 -k)u p+1 i u p+1 0 ∇(w p+1 i -w p+1/2 0 ) • ∇(w p+1 i -w p+1/2 0 )dx -k n i=1 Ω 1≤j =i≤n u p+1 i u p+1 j ∇(w p+1 i -w p+1 j ) + u p+1 i u p+1 0 ∇(w p+1 i -w p+1/2 0 ) • ∇(w p+1 i -w p+1/2 0 )dx -τ n i=1 w p+1 i -w p+1/2 0 2 H 2 (Ω) = A + B + C. (4.7) 
First of all observe that

A = - Ω (∇w p+1 ) t M (u p+1 )∇w p+1 dx ≤ 0,
where M is the matrix defined as in (2.3) but with K ij replaced by K ijk and where we used again Lemma 4.2. Let us consider the second term in (4.7). We have

B = -k n i=1 Ω 1≤j =i≤n u p+1 i u p+1 j ∇(w p+1 i -w p+1 j ) + u p+1 i u p+1 0 ∇(w p+1 i -w p+1/2 0 ) • ∇(w p+1 i -w p+1/2 0 )dx = -k n i=1 Ω 1≤j =i≤n u p+1 i u p+1 j ∇(w p+1 i -w p+1 j ) + u p+1 i u p+1 0 ∇w p+1 i • ∇w p+1 i dx + k n i=1 Ω 1≤j =i≤n u p+1 i u p+1 j ∇(w p+1 i -w p+1 j ) • ∇w p+1/2 0 dx + 2k n i=1 Ω u p+1 i u p+1 0 ∇w p+1 i • ∇w p+1/2 0 dx -k n i=1 Ω u p+1 i u p+1 0 |∇w p+1/2 0 | 2 dx =: B 1 + B 2 + B 3 + B 4 .
We estimate the terms of the expression above separately. First of all, taking into account (2.2) we have

B 1 = -k n i=1 Ω   1≤j =i≤n u p+1 i u p+1 j ∇(w p+1 i -w p+1 j ) + u p+1 i u p+1 0 ∇w p+1 i   • ∇w p+1 i dx = -k n i=1 Ω 0≤j =i≤n u p+1 i u p+1 j ∇ ln u p+1 i -∇ ln u p+1 j • ∇ ln u p+1 i -ln u p+1 0 dx = -k n i=1 Ω 0≤j =i≤n (u p+1 j ∇u p+1 i -u p+1 i ∇u p+1 j ) • ∇u p+1 i u p+1 i - ∇u p+1 0 u p+1 0 dx = -k n i=1 Ω ((1 -u p+1 i )∇u p+1 i -u p+1 i ∇(1 -u p+1 i )) • ∇u p+1 i u p+1 i - ∇u p+1 0 u p+1 0 dx = -k n i=1 Ω (∇u p+1 i -u p+1 i ∇u p+1 i + u p+1 i ∇u p+1 i ) • ∇u p+1 i u p+1 i - ∇u p+1 0 u p+1 0 dx = -k n i=1 Ω |∇u p+1 i | 2 u p+1 i - ∇u p+1 i • ∇u p+1 0 u p+1 0 dx = -k Ω n i=1 |∇u p+1 i | 2 u p+1 i - ∇(1 -u p+1 0 ) • ∇u p+1 0 u p+1 0 dx = -k Ω n i=1 |∇u p+1 i | 2 u p+1 i + |∇u p+1 0 | 2 u p+1 0 dx = -k Ω n i=0 |∇u p+1 i | 2 u p+1 i dx.
Exploiting symmetries gives

B 2 = k n i=1 Ω 1≤j =i≤n u p+1 i u p+1 j ∇(w p+1 i -w p+1 j ) • ∇w p+1/2 0 dx = 0.
Moreover, taking into account the definition of w p+1/2 0 , see (3.2), and using again the fact that ∇u p+1 0

• n = 0 on ∂Ω, we have

B 3 = 2k n i=1 Ω u p+1 i u p+1 0 ∇w p+1/2 0 • ∇w p+1 i dx = 2k n i=1 Ω u p+1 i u p+1 0 ∇w p+1/2 0 • ∇u p+1 i u p+1 i - ∇u p+1 0 u p+1 0 dx = 2k n i=1 Ω u p+1 0 ∇u p+1 i -u p+1 i ∇u p+1 0 • ∇w p+1/2 0 dx = 2k Ω u p+1 0 ∇(1 -u p+1 0 ) -(1 -u p+1 0 )∇u p+1 0 • ∇w p+1/2 0 dx = -2k Ω ∇u p+1 0 • ∇w p+1/2 0 dx, = 4kβ Ω ∇u p+1 0 • ∇u p 0 dx -2k Ω ∇u p+1 0 • ∇(-ε∆u p+1 0 )dx ≤ 4kβ ∇u p+1 0 L 2 (Ω) ∇u p 0 L 2 (Ω) -2kε Ω |∆u p+1 0 | 2 dx ≤ C -2kε Ω |∆u p+1 0 | 2 dx,
where in the last two passages we applied the Cauchy-Schwarz's inequality and then (4.2). Finally, by using the constraint (2.8) we get

B 4 = -k n i=1 Ω u p+1 i u p+1 0 |∇w p+1/2 0 | 2 dx = -k Ω (1 -u p+1 0 )u p+1 0 |∇w p+1/2 0 | 2 dx. (4.8) 
From (4.7)-(4.8) we then have

A ≤ -k n i=0 Ω |∇u p+1 i | 2 u p+1 i dx + C -2kε Ω |∆u p+1 0 | 2 dx -k Ω (1 -u p+1 0 )u p+1 0 |∇w p+1/2 0 | 2 dx.
Therefore, reasoning as in the proof of Lemma 4.3 gives

k n i=0 Ω |∇u p+1 i | 2 u p+1 i dx + 2kε Ω |∆u p+1 0 | 2 dx + k Ω (1 -u p+1 0 )u p+1 0 |∇w p+1/2 0 | 2 dx + τ n i=1 w p+1 i -w p+1/2 0 2 H 2 (Ω) ≤ C + 1 τ E(u p ) -E(u p+1 ).
Multiplying this inequality by τ , summing for 0 ≤ p ≤ P (τ ) -1, and then using Remark 4.1 yields

k n i=1 T 0 Ω |∇u (τ ) i | 2 u (τ ) i dxdt + 2kε T 0 Ω |∆u (τ ) 0 | 2 dxdt + k T 0 Ω (1 -u (τ ) 0 )u (τ ) 0 |∇w (τ ) 0 | 2 dx + τ T 0 n i=1 w (τ ) i -w (τ ) 0 2 H 2 (Ω) dt ≤ C(T + 1) + E(u 0 ) + C,
which gives the desired result.

Remark 4.5. From (4.6) we have in particular that √ τ (w

(τ ) i -w (τ ) 0 ) τ >0
is uniformly bounded in L 2 ((0, T ); H 2 (Ω)).

Using similar arguments as in Lemma 4.4, we can obtain further estimates. More precisely, we have the following result. Theorem 4.6. There exists a constant C > 0, independent of τ > 0, such that

T 0 Ω u (τ ) i u (τ ) 0 |∇(w (τ ) i -w (τ ) 0 )| 2 dxdt ≤ C for all 1 ≤ i ≤ n.
Proof. We argue as in the proof of Lemma 4.4. First of all, we test each equation in (3.3) with

φ i = w p+1 i -w p+1/2 0
and sum for i = 1, . . . , n. On the right-hand side we have

- n i=1 Ω 1≤j =i≤n K ij u p+1 i u p+1 j ∇(w p+1 i -w p+1 j ) + K i0 u p+1 i u p+1 0 ∇(w p+1 i -w p+1/2 0 ) • ∇(w p+1 i -w p+1/2 0 )dx - n i=1 τ w p+1 i -w p+1/2 0 2 H 2 (Ω) = - n i=1 Ω 1≤j =i≤n K ij u p+1 i u p+1 j ∇(w p+1 i -w p+1 j ) • ∇(w p+1 i -w p+1/2 0 )dx - n i=1 Ω K i0 u p+1 i u p+1 0 |∇(w p+1 i -w p+1/2 0 )| 2 dx -τ n i=1 w p+1 i -w p+1/2 0 2 H 2 (Ω) ≤ - Ω (∇w p+1 ) T M (u p+1 )∇w p+1 dx - n i=1 Ω K i0 u p+1 i u p+1 0 |∇(w p+1 i -w p+1/2 0 )| 2 dx ≤ - n i=1 Ω K i0 u p+1 i u p+1 0 |∇(w p+1 i -w p+1/2 0 )| 2 dx,
where we applied Lemma 4.2 with the vectors w p+1 and u p+1 and the matrix M given by (2.3). Then reasoning again as in Theorem 4. [START_REF] Berendsen | On a cross-diffusion model for multiple species with nonlocal interaction and size exclusion[END_REF] gives

n i=1 T 0 Ω K i0 u (τ ) i u (τ ) 0 |∇(w (τ ) i -w (τ ) 0 )| 2 dxdt ≤ C,
and hence the conclusion follows.

We finally point out that the a-priori estimates collected in Lemmas 4.4-4.6 allow us to get the following Lemma 4.7. There exists C > 0, independent of τ > 0, such that

T 0 u (τ ) i (t) -σ τ u (τ ) i (t) τ 2 (H 2 (Ω)) ′ dt ≤ C for all 1 ≤ i ≤ n.
Proof. We fix i ∈ {1, . . . , n} and φ i ∈ H 2 (Ω). Then, for all p ∈ N, taking into account the fact that 0 ≤ u p+1 j ≤ 1 for all 1 ≤ j ≤ n and using Cauchy-Schwarz inequality, we obtain

1 τ Ω (u p+1 i -u p i )φ i dx ≤ Ω   1≤j =i≤n |K ij u p+1 i u p+1 j ∇(w p+1 i -w p+1 j )| + |K i0 u p+1 i u p+1 0 ∇(w p+1 i -w p+1/2 0 )|   |∇φ i |dx + τ w p+1 i -w p+1/2 0 , φ i H 2 (Ω) ≤ Ω   1≤j =i≤n K ij u p+1 j |∇u p+1 i | + u p+1 i |∇u p+1 j | + K i0 u p+1 i u p+1 0 |∇w p+1 i -w p+1/2 0 |   |∇φ i |dx + τ w p+1 i -w p+1/2 0 H 2 (Ω) φ i H 2 (Ω) ≤ C   n j=1 u p+1 j H 1 (Ω) + w p+1 i -w p+1/2 0 H 1 (Ω)   φ i H 1 (Ω) + τ w p+1 i -w p+1/2 0 H 2 (Ω) φ i H 2 (Ω) .
Using the previous estimates proved in this section gives the desired result..

5.

Passing to the limit as τ → 0 and proof of Theorem 2.2

The aim of this section is to identify a weak solution to (2.10) in the sense of Definition 2.1 as the weak limit of some extracted subsequence of (u (τ ) ) τ >0 as τ → 0 + . Passing to the limit can be done for most terms of the system using either standard arguments in the analysis of cross-difusion systems by the boundednessby-entropy method (see [START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF]), or of the Cahn-Hillard model with classical degenerate mobility (see [START_REF] Elliott | On the Cahn-Hilliard equation with degenerate mobility[END_REF]). However, some terms appearing in the system require specific arguments, which are new at least up to our knowledge, and which we detail below. Where not differently specified, the limit will be always understood as τ → 0 + .

The different estimates collected in Section 4 yield the existence of u = (u 0 , . . . , u n ) ∈ L 2 ((0, T );

H 2 (Ω)) × (L 2 ((0, T ); H 1 (Ω))) n such that 0 ≤ u i ≤ 1 for all 0 ≤ i ≤ n, u 0 = 1 - n i=1
u i , and such that up to the extraction of a subsequence,

u (τ ) i ⇀ u i weakly in L 2 ((0, T ); H 1 (Ω)), u (τ ) i -σ τ u (τ ) i τ ⇀ ∂ t u i weakly in L 2 ((0, T ); (H 2 (Ω)) ′ ), for all 1 ≤ i ≤ n and u (τ ) 0 (t) ⇀ u 0 weakly in L 2 ((0, T ); H 2 (Ω)), u (τ ) 0 -σ τ u (τ ) 0 τ ⇀ ∂ t u 0 weakly in L 2 ((0, T ); (H 2 (Ω)) ′ ).
Using [15, Theorem 1], we also obtain that u

(τ ) i → u i strongly in L 2 ((0, T ); L 2 (Ω)) and u (τ ) 0 → u 0 strongly in L 2 ((0, T ); H 1 (Ω)) and L 2 ((0, T ); L ∞ (Ω)). This is a consequence of the compact embeddings H 1 (Ω) ֒→ L 2 (Ω), H 2 (Ω) ֒→ L ∞ (Ω), and H 2 (Ω) ֒→ H 1 (Ω). The uniform bound of u (τ ) i τ >0 in L ∞ ((0, T ); L ∞ (Ω)) implies that, up to the extraction of a subsequence u (τ ) i → u i , strongly in L p ((0, T ); L p (Ω)), ∀ 1 ≤ p < +∞, 0 ≤ i ≤ n.
Moreover, the uniform bound of ∇u converges to u 0 weakly in L 2 ((0, T ); H 2 (Ω))

and strongly in L 2 ((0, T ); H 1 (Ω)) and L 2 ((0, T ); L ∞ (Ω)). Finally, Remark 4.5 gives τ w

(τ ) i -w (τ ) 0 → 0 strongly in L 2 ((0, T ); H 2 (Ω)),
for all 1 ≤ i ≤ n.

Equations (3.4) and (3.5) imply that, for all 1 ≤ i ≤ n,

T τ Ω u (τ ) i -σ τ u (τ ) i τ φ i dxdt = - T τ Ω 1≤j =i≤n K ij u (τ ) i u (τ ) j ∇(w (τ ) i -w (τ ) j ) + K i0 u (τ ) i u (τ ) 0 ∇(w (τ ) i -w (τ ) 0 ) • ∇φ i dxdt -τ T τ w (τ ) i -w (τ ) 0 , φ i H 2 (Ω) dt, (5.1) 
for all piecewise constant functions φ i : (0, T ) → H 2 (Ω), with

w (τ ) i = ln u (τ ) i and w (τ ) 0 = -ε∆u (τ ) 0 + β(1 -2σ τ u (τ ) 0 ). (5.2)
Since the set of such φ i is dense in L 2 ((0, T ); H 2 (Ω)), the weak formulation (5.1) also holds for all φ i ∈ L 2 ((0, T ); H 2 (Ω)). Using (5.2) then we can rewrite (5.1) equivalently as follows: for all

φ i ∈ L 2 ((0, T ); H 2 (Ω)), T τ Ω u (τ ) i -σ τ u (τ ) i τ φ i dxdt = - T τ Ω 1≤j =i≤n K ij u (τ ) j ∇u (τ ) i -u (τ ) i ∇u (τ ) j • ∇φ i dxdt - T τ Ω K i0 u (τ ) 0 ∇u (τ ) i • ∇φ i + T τ Ω K i0 u (τ ) 0 u (τ ) i ∇w (τ ) 0 • ∇φ i dxdt -τ T τ w (τ ) i -w (τ ) 0 , φ i H 2 (Ω) dt, (5.3) 
The different convergences identified above enable to easily identify the limit as τ → 0 + , following standard arguments in the study of cross-diffusion systems (see for instance [START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF]). More precisely, for all 1

≤ i = j ≤ n it holds that T τ Ω u (τ ) i -σ τ u (τ ) i τ φ i dxdt → T 0 ∂ t u i , φ i (H 2 (Ω)) ′ ,H 2 (Ω) dt, T τ Ω 1≤j =i≤n K ij u (τ ) j ∇u (τ ) i -u (τ ) i ∇u (τ ) j • ∇φ i dxdt → T 0 Ω 1≤j =i≤n K ij (u j ∇u i -u i ∇u j ) • ∇φ i dxdt, T τ Ω K i0 u (τ ) 0 ∇u (τ ) i • ∇φ i dxdt → T 0 Ω K i0 u 0 ∇u i • ∇φ i dxdt, τ T τ w (τ ) i -w (τ ) 0 , φ i H 2 (Ω) dt → 0. (5.4)
Of course, all these convergences hold up to the extraction of subsequences. Passing to the limit in the term

T τ Ω K i0 u (τ ) 0 u (τ ) i ∇w (τ ) 0 • ∇φ i dxdt
requires specific arguments which is the object of the following lemma. We set w 0 := -ε∆u 0 + β(1 -2u 0 ) and point out that the convergences stated above imply that w (τ ) 0 ⇀ w 0 weakly in L 2 ((0, T ); L 2 (Ω)) as τ → 0 + .

Let now ǫ > 0 and let us introduce the set

M ǫ (t) := {x ∈ Ω, 1 -u 0 (t, x) ≥ ǫ} ,
together with its complementary

M (t) ǫ,c := {x ∈ Ω, 1 -u 0 (t, x) < ǫ} .
For all t > 0 we can write

u (τ ) 0 (t)u (τ ) i (t)∇w (τ ) 0 (t) = χ M ǫ (t) u (τ ) 0 (t)u (τ ) i (t)∇w (τ ) 0 (t) + χ M ǫ,c (t) u (τ ) 0 (t)u (τ ) i (t)∇w (τ ) 0 (t).
(5.8) Let us consider both terms separately. On the one hand, it holds that u

(τ ) i ≤ 1 -u (τ ) 0 . Thus, we have T 0 χ M ǫ,c (t) u (τ ) 0 (t)u (τ ) i (t)∇w (τ ) 0 (t) 2 L 2 (Ω) dt ≤ T 0 u (τ ) 0 (1 -u (τ ) 0 )∇w (τ ) 0 2 L 2 (Ω) dt ≤ C, for some constant C > 0 independent of τ > 0. Hence, if we consider the function h ǫ,(τ ) : (0, T ) × Ω → R such that h ǫ,(τ ) (t, x) = χ M ǫ,c (t) u (τ ) 0 (t, x)u (τ ) i (t, x)∇w (τ ) 0 (t, x), it follows that there exists a function h ǫ ∈ L 2 ((0, T ); (L 2 (Ω)) d ) such that h ǫ,(τ ) ⇀ h ǫ weakly in L 2 ((0, T ); (L 2 (Ω)) d ).
(5.9)

Besides, since h ǫ L 2 ((0,T );(L 2 (Ω)) d ) ≤ C for all ǫ > 0, there exists h ∈ L 2 ((0, T ); (L 2 (Ω)) d ) such that, up to the extraction of a subsequence,

h ǫ ⇀ h weakly in L 2 ((0, T ); (L 2 (Ω)) d ) as ǫ → 0 + .
Let us now show that necessarily h = 0. Equation (5.9) implies that h ǫ,(τ ) ⇀ h ǫ weakly in L 1 ((0, T ); (L 2 (Ω)) d ), and that h ǫ L 1 ((0,T );L 2 (Ω)) ≤ lim inf τ →0 h ǫ,(τ ) L 1 ((0,T );L 2 (Ω))

.

To prove a bound on the right hand side we exploit the fact that u , for some constant C > 0 independent of τ . We further estimate the integrand of the last term of the inequality above as

χ M ǫ,c (t) 1 -u (τ ) 0 (t) L ∞ (Ω)
≤ χ M ǫ,c (t) 1u 0 (t) + |u 0 (t)u ≤ χ M ǫ,c (t) 1u 0 (t)

L ∞ (Ω)
+ χ M ǫ,c (t) |u 0 (t)u + χ E ǫ,τ,c (t) χ M ǫ,c (t) |u 0 (t)u ≤ 2C √ T ǫ.

As a consequence,

h ǫ L 1 ((0,T );L 2 (Ω)) ≤ 2C √ T ǫ,
that is, h ǫ L 1 ((0,T );L 2 (Ω)) → 0 as ǫ → 0 + . Moreover, since h ǫ ⇀ h weakly in L 2 ((0, T ); L 2 (Ω)), then the weak convergence holds also in L 1 ((0, T ); L 2 (Ω)). This implies that h = 0.

Let us now consider the second term in (5.8). Let g ǫ,(τ ) : (0, T ) × Ω → R be defined by g ǫ,(τ ) (t, x) = χ M ǫ,c (t) u ≤ C, then there exists g ǫ ∈ L 2 ((0, T ); L 2 (Ω)) such that, up to the extraction of a subsequence, g ǫ,(τ ) → g ǫ weakly as τ → 0 + . Let us prove that g ǫ (t, x) = χ M ǫ (t) (x) u i (t, x) 1u 0 (t, x) J(t, x) for almost all (t, x) ∈ (0, T ) × Ω.

On the one hand, we have

χ M ǫ (t) (x) u (τ ) i (t, x) 1 -u (τ ) 0 (t, x) → χ M ǫ (t) (x) u i (t, x) 1 -u 0 (t, x)
for almost all (t, x) ∈ (0, T ) × Ω.

Besides, χ M ǫ (x)

u (τ ) i (t) 1-u (τ ) 0 (t)
≤ 1 for almost all t ∈ (0, T ) so that Lebesgue's dominated convergence theorem implies that, up to the extraction of a subsequence, χ M ǫ (x) u (τ ) 0 → J weakly in L 2 ((0, T ); (L 2 (Ω)) d ) yields that g ǫ,(τ ) → f ǫ i J in the sense of distribution. Hence, by uniqueness of the limit, we have g ǫ = f ǫ i J, which was the desired result. Thus, in the distributional sense, → u i almost everywhere it holds that f ǫ i → κ i (t, x) almost everywhere, as ǫ → 0 + , being κ i (t, x) as defined in (2.9). Thus, the Lebesgue dominated convergence theorem gives f ǫ i → κ i strongly in L 2 ((0, T ); L 2 (Ω)) as ǫ → 0 + . Therefore, f ǫ i J → κ i J, so that finally, using the fact that h ǫ ⇀ 0 weakly in L 2 ((0, T ); (L 2 (Ω)) d ), we obtain that u (τ ) 0 u (τ ) i ∇w (τ ) 0 ⇀ κ i J weakly in L 2 ((0, T ); (L 2 (Ω)) d ) as τ → 0 + , which was the desired result.

We are now in a position to complete the proof of our main theorem.

Proof of Theorem 2.2. We pass to the limit τ → 0 + in (5.3) using (5.4) and Lemma 5.1 which enables us to identify the limit

T τ Ω K i0 u (τ ) 0 u (τ ) i ∇w (τ ) 0 • ∇φ i dxdt → T 0 Ω K i0 κ i J • ∇φ i dxdt,
for all 1 ≤ i ≤ n. Thus, for all 1 ≤ i ≤ n and all φ i ∈ L 2 ((0, T ); H 2 (Ω))

T 0 ∂ t u i , φ i H 2 (Ω) ′ ,H 2 (Ω) dt = - T 0 Ω 1≤j =i≤n K ij (u j ∇u i -u i ∇u j ) • ∇φ i dxdt - T 0 Ω K i0 u 0 ∇u i • ∇φ i dxdt + T 0 Ω K i0 κ i J • ∇φ i dxdt.
From the obtained weak formulation, it is clear that ∂ t u i ∈ L 2 ((0, T ); (H 1 (Ω)) ′ ) and that, by density, we can extend the above formulation to all φ i ∈ L 2 ((0, T ); H 1 (Ω)) as follows:

T 0 ∂ t u i , φ i H 1 (Ω) ′ ,H 1 (Ω) dt = - T 0 Ω 1≤j =i≤n K ij (u j ∇u i -u i ∇u j ) • ∇φ i dxdt - T 0 Ω K i0 u 0 ∇u i • ∇φ i dxdt + T 0 Ω K i0 κ i J • ∇φ i dxdt.
Lastly, we obtain that, necessarily, u i (0, •) = u 0 i using similar arguments as in [START_REF] Jüngel | The boundedness-by-entropy method for cross-diffusion systems[END_REF]. Hence ((u i ) 0≤i≤n , J) is a weak solution of system (2.10) in the sense of Definition 2.1, which concludes the proof of Theorem 2.2.

Lemma 3 .

 3 6 and the Lebesgue dominated convergence theorem then give lim t→0 Ω n i=0

ee

  wi-wj ∇( wiwj ) • ∇u i + wi-wj |∇( wiwj )| 2 + e wi-wj ∆( wiwj ).

-ln u p 0 ∀ 1 ≤ 1 ,

 011 is a solution to (3.4)-(3.5) for all p ∈ N. For all p ∈ N * if u p := (u p 1 , . . . , u p n ) and wp := ( wp 1 , . . . , wp n )p := (u p 0 , u p 1 , . . . , u p n ), and w p i := ln u p i i ≤ n.We also denote by w p+1/2 0 := -ε∆u p+1 0 + β(1 -2u p 0 ) and finally set w p+1 := (w . . . , w p+1 n ), for all p ∈ N.

  in L ∞ ((0, T ); (L 2 (Ω)) d ) implies that, up to the extraction of a subsequence, ∇u(τ ) 0 → ∇u 0 strongly in L p ((0, T ); (L 2 (Ω)) d ).Furthermore, up to the extraction of a subsequence, σ τ u

0 χ

 0 M ǫ,c (t) 1u

  χ E ǫ,τ (t) χ M ǫ,c (t) |u 0 (t)u

2 L

 2 E ǫ,τ (t) + √ ǫ ≤ 2 √ ǫ + 2χ E ǫ,τ (t).This givesT 0 χ M ǫ,c (t) 1u ∞ (Ω) dt ≤ 4T ǫ + T 0 χ E ǫ,τ (t)(4 + 4 √ ǫ) dt, ≤ 4T ǫ + (4 + 4 √ ǫ)|E ǫ,τ |.Thus, since |E ǫ,τ | → 0 as τ → 0 + , we obtain that lim inf

L 1 (

 1 (0,T );L 2 (Ω))

  any L p ((0, T ); L p (Ω)) for all p > 1, in particular in L 2 ((0, T ); L 2 (Ω)). This, together with the fact that (1u

  ǫ i J + h ǫ . Now, since 1u (τ ) 0 → 1u 0 strongly in L ∞ (Ω) and u (τ ) i
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with

We then reach the desired contradiction as soon as the value of δ is chosen such that δ < min(1/2, e -C ). Moreover, as in Step 1, we obtain that the value of δ can be chosen so that it only depends on n, β, Ω, τ , and N , as soon as w is assumed to satisfy w (H 2 (Ω)) n ≤ N .

Step 3: It remains to prove that for all 1 ≤ i ≤ n there exists 1 > δ > 0 such that u i ≥ δ a.e. in Ω. Without any loss of generality it is sufficient to prove the claim for i = 1. To this end, let us again reason by contradiction and assume that the set

has positive measure. Denoting by δ 0 the positive lower bound on 1u 0 obtained from Step 2, assuming that 0 < δ ≤ δ 0 2 , we define

Denoting by u δ := (u δ 1 , . . . , u δ n ), we again have u δ ∈ A and that u δ

Arguing as in Steps 1 and 2 gives again the existence of a constant c > 0, which only depends on τ , n, β, and Ω such that, if δ < min 1/2, δ 0 /2 , then

Thus, we obtain that F w (u δ ) -F w (u) < 0 if the value of δ is chosen such that δ < min 1 2 , δ 0 /2, e -C which yields the desired contradiction. Moreover, if w is assumed to satisfy w (H 2 (Ω)) n ≤ N , the value of δ can be chosen such that it only depends on τ , n, Ω, β, and N . Hence the desired result.

We remark that the technique of constructing competitors to the scalar Cahn-Hilliard energy was also used in [START_REF] Gelantalis | Existence and properties of certain critical points of the Cahn-Hilliard energy[END_REF], yet in a different context. Lemma 3.7. Every minimizer u ∈ A of (3.18) belongs to B and is a weak solution to (3.16) in the sense that

for all φ ∈ B ∩ (L ∞ (Ω)) n . In particular,

for all 1 ≤ i ≤ n.

Proof. Fix φ ∈ B∩(L ∞ (Ω)) n . Due to Lemma 3.6 we know that for every t > 0 sufficiently small u+tφ ∈ A∩B. Moreover, since u is a minimizer of (3.18) it holds that

(3.26)

Lemma 5.1. There exists J ∈ L 2 ((0, T ); (L 2 (Ω)) d ) which satisfies J = (1u 0 )u 0 ∇w 0 in the weak sense, i.e.,

and such that, up to the extraction of a subsequence,

for all 1 ≤ i ≤ n.

Remark 5.2. The weak limit (5.5) can be obtained using classical arguments for the standard Cahn-Hilliard system (see [START_REF] Elliott | On the Cahn-Hilliard equation with degenerate mobility[END_REF] for instance). We recall them in the proof below for the sake of completeness. However, obtaining (5.6) is not standard, at least up to our knowledge, and the arguments which yield to this convergence are detailed in the proof below. Let us mention here that one difficulty in the analysis is that the sequence

does not converge a priori in any sense to ui 1-u0 if 1u 0 = 0 in some parts of the domain Ω.

Proof. From (4.5) we know that

for every τ > 0. Then, up to the extraction of a subsequence, there exists ⇀ w 0 weakly in L 2 ((0, T ); L 2 (Ω)), the strong convergence of ∇u (τ ) together with the fact that u (τ ) 0 converges a.e. and is uniformly bounded implies (1 -2u

Integrating by parts gives

0 , weakly in L 1 ((0, T ); L 1 (Ω) d ) and enables us to pass to the limit in the first term on the right hand side of (5.7). For the second term we argue again using the a.e. convergence of u (τ ) 0 and thus obtain (5.5). Let us now prove the weak convergence (5.6). We know that, up to the extraction of a subsequence, u (τ ) 0 → u 0 strongly in L 2 ((0, T ); L ∞ (Ω)). This implies that for almost all t ∈ (0, T ) u 

0 (t)u 0 (t) L ∞ (Ω) > δ}, it holds that the Lebesgue measure of the set E δ,τ goes to 0 as τ goes to 0. We also consider the complementary of E δ,τ , i.e., the set E δ,τ,c := {t ∈ [0, T ], u