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ABSTRACT
Intelligent machine-tools generate a large amount of digital data. Data mining can
support decision making for operational management. The first step in a data min-
ing approach is the selection of relevant data. Raw data must, therefore, be classified
into different groups of contexts. This paper proposes an original contextual clas-
sification of data for smart machining based on unsupervised machine learning by
Gaussian mixture model. The optimal number of classes is determined by the silhou-
ette method based on the Bayesian information criterion. This method is validated
on real data from four different machine-tools in the aerospace industry. Manual
data mining and k-fold cross validation confirm that the proposed method provides
good contextual classification results. Then, several key performance indicators are
calculated using this contextual classification. They show the relevancy of the ap-
proach.
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Industry 4.0, machining, unsupervised machine learning, GMM, BIC.

1. Introduction

High-Speed Machining (HSM) has significantly increased spindle speed compared to
conventional machining. Production systems are very flexible, especially in the aero-
nautics industry, where hundreds of tools machine several thousands of parts with
different references on the same site. It is not easy for the Manufacturing Department
to identify problematic programs or tools. The main problems are chatter (instabil-
ity during machining), tool breakage and over-vibrations. Therefore, a data mining
system is necessary to protect the machine-tool and work-pieces (especially for aero-
nautical parts which present high value-added). Teti et al. (2010) make an overview of
the existing techniques of machining monitoring and list all measurable and studied
defects. Maleki et al. (2017) proposed a FMEA-based approach for the choice of the
sensors. Quintana and Ciurana (2011) focus on the state of the art on chatter and
existing methods to detect and to avoid it. Zhou and Xue (2018) make a summary of
the methods used to monitor tool wear in milling processes, including sensors, feature
extraction and monitoring models. Godreau et al. (2019) propose a vibration criterion
for the detection of chatter, a source of non-quality.

In the general context of Industry 4.0, large volumes of manufacturing data are
available on instrumented machine-tool. They are interesting to exploit not only to im-
prove machine-tool performance but also to support the decision making of operational

CONTACT Mathieu Ritou. Email: mathieu.ritou@univ-nantes.fr

ritou-m
Zone de texte 
Preprint of: Z. Wang, M. Ritou, C. da Cunha, B. Furet, Contextual classification for smart machining based on unsupervised machine learning by Gaussian mixture model, International Journal of Computer Integrated Manufacturing, Vol. 33 n°10-11, p. 1042-1054, 2020.
https://doi.org/10.1080/0951192X.2020.1775302



management. Lenz, Wuest, and Westkämper (2018) propose a holistic approach to ma-
chining data analysis in order to combine tasks and to group analysis objectives among
different departments within the company. Morgan and ODonnell (2018) present the
design and development of a cyber-physical process monitoring system for machine-
tool. Liu et al. (2018) propose a systematic development method for machine-tool 4.0.
In order to extract data from databases more efficiently and accurately, contextual
classification is necessary to understand the status of the machine-tool and to real-
ize a more relevant calculation of Key Performance Indicators (KPI). Many researches
propose the use of machine learning algorithms directly on the raw data (machine-tool
signals). However, few researches focus on data pre-processing to identify the context.
In this article, machine learning algorithms for contextual classification are developed.
They will permit a more relevant calculation of Key Performance Indicators.

Machine Learning is a field of Artificial Intelligence that relies on statistical ap-
proaches. It can be applied to machine-tool signals analysis. Kim et al. (2018) list and
summarize machining contributions using machine learning algorithms. There are two
categories: supervised and unsupervised machine learning.

- Supervised machine learning learns to classify from already labeled output sam-
ples. It aims at making correct predictions on the data which is not present in
the learning set. For example, El-Mounayri and Deng (2010) designed and im-
plemented a neural networks (ANN) for force prediction to optimize the cutting
parameters in optimizing 21/2 - axis milling; C. Zhang and H. Zhang (2016) show
that the least squares support vector machine (SVM)-based tool wear model is
suitable to predict tool wear at certain range of cutting conditions in milling op-
eration; Rodŕıguez et al. (2017) propose a decision-making tool based on decision
trees for roughness prediction in face milling.

- Unsupervised machine learning learns to classify unlabeled data. There are dif-
ferent types of unsupervised learning: K-means, hierarchical classification (as-
cending or descending), distribution density estimates (e.g., Gaussian Mixing
Model - GMM). Bhinge et al. (2014) build an energy prediction model when
machining a component using the Gaussian regression algorithm. Godreau et al.
(2019) calculate the criteria thresholds by applying the Maximum Likelihood
Estimation method.

In industry, it is challenging to collect labeled output data. As a result, most in-
dustrial applications use unsupervised machine learning methods. In a previous study,
Wang et al. (2019) compared the different methods of unsupervised machine-learning,
and Gaussian Mixture Model (GMM) was the most effective for contextual classifi-
cation. Another challenge of smart-machining comes from the management of time
series; the state of the machine can change whenever and has to be identified every
tenth of a second.

In this article, unsupervised machine learning by Gaussian Mixture Model (GMM)
is used. GMM is a statistical tool used to parametrically estimate the distribution of
random variables by modeling them as a mixture of Gaussian distributions (Reynolds
2015). The distributions’ parameters are estimated from the learning data using the
Maximization Expectation algorithm. The main advantage of GMM is that it can cor-
rectly classify data with unbalanced classes, while its disadvantage is that the results of
GMM directly depend on the choice of parameters. An additional algorithm can there-
fore be useful to determine the necessary number of classes automatically (Schwarz
et al. 1978). The Bayesian Information Criterion (BIC) is particularly recommended.

This paper proposes an original contextual classification of data for smart machining
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based on unsupervised machine learning by Gaussian mixture model. The method is
applied to four machining databases collected in the aeronautics industry. The number
of classes is determined by the BIC method. The classifications are then evaluated using
manual data mining and k-fold validation. This paper is organized as follows. Section 2
introduces the framework of the study as well as the contextual classification method.
Section 3 proposes the method based on Gaussian Mixture Model (GMM). The next
section depicts the silhouette method, which determines the optimal number of classes.
Section 5 applies the proposed method to vibration signals and power signals to know
whether the tool is cutting materials or not. Section 6 verifies the obtained classification
using manual data mining and k-fold cross-validation. Section 7 presents KPIs based
on the obtained contextual classification. These indicators will aid decision-making
within the company.

2. Data analysis process

2.1. Framework of the study

The work presented in this article is a part of the ANR SmartEmma project,
which aims at developing intelligent and connected machine-tools. Fig. 1(a) shows
an overview of the road-map of this project. A device, called Emmatools, collects the
measured data during machining and stores it in a database (De Castelbajac et al.
2014). It is installed on machine-tools in factories of aircraft manufacturers. Fig. 1(b)
presents the schematic diagram of the Emmatools. It collects data every tenth of a
second. The data comes from two information sources: the Computer Numerical Con-
trol (CNC) and the added sensors. By field bus, the CNC provides machining context
data such as the tool name, the current program, machine, and spindle motions. The
sensors integrated into the machine-tool collect the instantaneous power of the spin-
dle, temperatures, as well as the vibrations from 4 accelerometers integrated into the
spindle (radially at each bearing).

Figure 1. Data mining process for machining (a) and schematic diagram of the data collect device (b)

The machine learning methods will be developed on the one hand to perform con-
textual classifications, and on the other, to aggregate the data. The latter concept
can be found in Ritou et al. (2019), which proposes a method to address the issue of
data volume using multi-level aggregation. 1 GB of data is collected per day and per
machine-tool. Contextual classification permits to classify raw data into ordered and
meaningful forms. Using this contextual information, noise is reduced and relevant
KPIs can be calculated. Those KPIs support decisions on the HSM process and the
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global management of the company.

2.2. Contextual classification method

As previously mentioned, contextual classification enables a more relevant evaluation
of KPIs. In the context of our research work, it is interesting to know:

- if the spindle is stopped (S) or rotating at constant speed (CS) or varying speed
(VS);

- if the machine-tool is stopped or moving at constant or varying speed;
- if the tool is cutting materials or not (N), with a constant (CC) or varying tool

engagement (CV).

From these three contextual information, 17 potential states for the machine-tool can
be defined (cf. Table 1). The objective is to determine the state of the machine-tool
at each instant. Indeed, it will enable accurate data selection and analyses dedicated
to the considered state.

Table 1. Classification of the different states of the machine-tool
Feed rate of the machine-tool Vf

Vf=0

Vf>0

∆Vf >T∆Vf ∆Vf ≤ T∆Vf

Arms≤TArms

& P≤Pidle

Arms>TArms or P>Pidle Arms≤TArms

& P≤Pidle

Arms>TArms or P>Pidle

∆P≤T∆P ∆P>T∆P ∆P≤T∆P ∆P>T∆P

S
p
in

d
le

s
p
e
e
d

N

N
=

0 Spindle: S

Machine: S

Cutting: N

Spindle: Stopped (S)

Machine-tool: Varying Speed (VS)

Cutting: No (N)

Spindle: Stopped (S)

Machine-tool: Constant Speed (CS)

Cutting: No (N)

N
>

0 ∆
N

>
T

∆
N

Spindle: VS

Machine: S

Cutting: N

Spindle: VS

Machine: VS

Cutting: N

Spindle: VS

Machine: VS

Cutting: enga.

Constant (CC)

Spindle: VS

Machine: VS

Cutting: eng.

Varying (CV)

Spindle: VS

Machine: CS

Cutting: N

Spindle: VS

Machine: CS

Cutting: eng.

Constant (CC)

Spindle: VS

Machine: CS

Cutting: eng.

Varying (CV)

∆
N

≤
T

∆
N

Spindle: CS

Machine: S

Cutting: N

Spindle: CS

Machine: VS

Cutting: N

Spindle: CS

Machine: VS

Cutting: CC

Spindle: CS

Machine: VS

Cutting: CV

Spindle: CS

Machine: CS

Cutting: N

Spindle: CS

Machine: CS

Cutting: CC

Spindle: CS

Machine: CS

Cutting: CV

aTool cutting with constant tool engagement

These classifications will be performed focusing on a variable X (e.g., feed rate V f ,
spindle speed N or spindle power P ) and also on the variation of X, noted ∆X (e.g.,
∆V f or ∆N), which is defined by the simple derivative:

∆X =
Xn −Xn−1

∆t
(1)

where, Xn is the nth measure; Xn−1 is the measure at the previous instant and ∆t is
the data recording period (0.1s). The objective is to calculate a classification threshold
T∆X by unsupervised machine learning methods. A previous study (Wang et al. 2019)
compared the performance of GMM with the k-means method; GMM performs better
in this context of research work. The classifications are then carried out based on the
following rules:

- There are three clusters for machine-tool movements: stopped (V f = 0), moving
at constant speed (V f > 0 and ∆V f ≤ T∆V f ), or varying speed (V f > 0 and
∆V f > T∆V f );

- There are three clusters for spindle rotation: stopped (N = 0); rotating at con-
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stant speed (N > 0 and ∆N ≤ T∆N ); or varying speed (N > 0 and ∆N > T∆N ).

In order to know if the tool is cutting materials or not, a classification according to
the criteria Arms (root mean square-RMS of vibration acceleration value, in m/s2)
and the spindle power P (kW) is proposed, when the machine is moving (feedrate
V f > 0). In machining, it is known that if the tool is cutting, its vibration (Arms)
is greater than if the tool is not cutting. It is also known that when the tool is not
cutting, the power (P ) will exceed the spindle power corresponding to idle rotation
(Pidle). However, there is a subclass called spindle startup where the Arms is also
greater due to the lubrication spindle startup. This subclass should be identified and
assigned to the cluster tool not cutting. The proposed business rules are:

- if (P > Pidle or Arms > TArms) and V f > 0, except the subclass spindle startup,
the tool is cutting material;

- if P ≤ Pidle and Arms ≤ TArms, including the subclass spindle startup, the tool
is not cutting material.

The following procedure aims to check if the GMM classifications are correct or not:

- Modeling : The contextual classification thresholds are determined, using GMM
on different descriptors (∆N , ∆V f , Arms, P and ∆P ). Each machine-tool has
different characteristics, so it is necessary to perform an initial training for each
machine-tool. One-day data of a machining database is used for this purpose.

- Classifying: The classifications are carried out using GMM threshold and the
business rules.

- Validation: The quality of classifications is assessed by confusion matrix, using
a vector labeled with actual classes of machine-tool states.

3. Gaussian Mixture Model

The Gaussian Mixture Model is a statistical model used to parametrically estimate
the distribution of random variables by modeling them as a mixture of Gaussian
distributions. It has been used in several areas such as audio recognition, measurement
error modeling (Huang et al. 2005). The principle of GMM is to find an approximation
of the probability density f from a sample of n observations of the random vector
X = {x1, x2, x3...xn} (where each observation xi is assumed independent) using a
linear combination of several Gaussian components.

To evaluate the quality of the model parameter θ, the probability density associated
with the observed data is calculated (Maugis, Celeux, and Martin-Magniette 2009):

f(X, θ) =

k∑
j=1

ajNj(xi|µj , σj) (2)

where, k is the number of Gaussian; aj is the weight of the jth Gaussian. It verifies the

probability conditions such as
∑k

j=1 aj = 1, and 0 ≤ aj ≤ 1; Nj(xi|µj , σj) expresses

the probability that a measure xi is associated with the jth Gaussian. In this context,
the parameters of the model are collectively represented as θ = {aj , µj , σj}.

In the literature, there are several methods for estimating these GMM parame-
ters. In the present paper, the Maximum Likelihood method is used to determine the
parameters θ.
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The main idea of Maximum Likelihood Estimation (MLE) is to find a set of pa-
rameter estimates, so that the likelihood of the sample used is maximized. Since the n
observations are independent, the likelihood function L(X|θ) can be written as (Bishop
2006):

L(X|θ) = f(x1, θ)× f(x2, θ)× · · · × f(xn, θ) =

n∏
i=1

f(xi, θ) (3)

Then substitute Eq. (2) into Eq. (3) leads to:

L(X|θ) =

n∏
i=1

k∑
j=1

ajNj(xi|µj , σj) (4)

It is easier to maximize log-likelihood than the likelihood function itself. The log-
likelihood function is written as:

lnL(X|θ) =

n∑
i=1

ln (

k∑
j=1

ajNj(xi|µj , σj)) (5)

The problem of estimation by the maximum likelihood method is therefore to find the
roots of the following equation:

∂ lnL(X|θ)
∂θ

= 0 (6)

In general, maximizing the likelihood function does not have an analytical solution.
It is then necessary to use iterative methods. The most common is to use the EM
algorithm (Expectation-Maximization) (Feng, Lai, and Kar 2016). However, the EM
algorithm needs initial parameters; the most important of them is the number of classes
k.

In general, the larger the number of parameters to be estimated into the model, the
better the model approaches to the data. However, the complexity of the computation
will also increase when there are too many parameters to be estimated. Therefore, a
compromise must be found; this is the goal of the the Bayesian Information Criterion
(BIC). The BIC is defined as follow (Schwarz et al. 1978):

BIC(k) = 2× Max(ln(L(X|θ)))−Nm ln(n) (7)

where, Max(ln(L(X|θ)))is the maximized log-likelihood function, Nm is the number
of parameters to be estimated in this model (3 per Gaussian: weight, mean and
standard deviation), n is the number of observations, and k is the number of classes.In
the BIC, the term (Nm) penalizes the complexity of the model. Therefore, BIC is
maximized for most parsimonious setting, i.e., with small Nm, and larger likelihood.
Consequently, BIC is a good indicator to determine the number of classes required.
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4. Validation of the Gaussian model by silhouette method

In this section, the previously proposed machine learning procedure by GMM is applied
to database from four different machine-tools in two factories producing aeronautical
structural parts:

- The machine-tool #1 is a Forest Aeromill for aluminum machining, in company
#A;

- The machine-tool #2 is a Forest Aerostar for aluminum machining, in company
#A;

- The machine-tool #3 is a Mazak Mazatrol for aluminum machining, in company
#B;

- The machine-tool #4 is a Mazak i800T for titanium machining, in company #B.

An Emmatools device was installed on each machine-tool, and the machining data
were collected for months during industrial productions. The classifications should
determine:

- If the spindle is rotating (at constant or varying speed) or not, according to the
classification on the descriptor ∆N ;

- If the machine-tool is moving (at constant or varying speed) or not, according
to the classification on the descriptor ∆V f ;

- If the tool is removing materials (with constant or varying tool engagement) or
not, according to the classification descriptor of Arms, P and ∆P .

For each machine-tool, the determination of the number of context classes is crucial
and required for the Gaussian model that follows (in order to identify the classification
thresholds for the business rules). The proposed method is:

- Apply GMM for each descriptor (∆N , ∆V f , Arms, P and ∆P ) for different
numbers of classes (1, 2,..., k). For each number of classes, a BIC value can be
determined according to Eq. (7), in order to evaluate the model.

- Compute the BIC in relation to the number of classes for each descriptor. In the
present case, each BIC value converges to a maximum.

- Chose the minimal number of context classes required

In this paper, a class number based on 90% of the BIC maximum is chosen. In this
way, the class number is reduced and enables better interpretability of the results.

4.1. Silhouette method on the variation of spindle speed

The Gaussian model analyzed by BIC on the variation of spindle speed ∆N is done
on the four machine-tools. Fig. 2 shows the results: the BIC value reaches 90% of
the BIC maximum with 2 classes. Thus, ∆N was classified into 2 classes, 2 clusters
that correspond to the constant and varying spindle rotation. The experimental data
confirm what was assumed in Table 1.

4.2. Silhouette method on the variation of axis speed

The Gaussian model analyzed by BIC on the variation on ∆V f are performed on four
machine-tools as shown in Fig. 3. The figure shows that the BIC value reaches 90% of
the BIC maximum with 2 classes. Thus, ∆V f was classified into 2 classes, 2 clusters
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Figure 2. BIC on ∆N issued from the 4 machine-tools

that correspond to constant and varying motion of the machine-tool.

Figure 3. BIC on ∆V f issued from the 4 machine-tools

4.3. Silhouette method on vibrations and power

The descriptors Arms (vibration) and P (spindle power) are used to determine if the
tool is removing materials or not (cf. 1). To determine the number of classes required,
Gaussian model analyses by BIC on Arms as shown in Fig. 4 and P Fig. 5. 4 different
machine-tools are used in order to validate the results.

The figure shows that the BIC value reaches 90% of the BIC maximum with 3
classes. Thus, k=3 and the vibrations Arms and the power P were classified into
3 classes. The 3 classes are interpreted as: not cut, low material removal and high
material removal.

8



Figure 4. BIC on Arms (when N constant et Vf>0) issued from the 4 machine-tools

Figure 5. BIC on P (when N constant et Vf>0) issued from the 4 machine-tools

5. Contextual classification of the material removal

Once the class number determined by BIC, the classification thresholds are identified
from one-day data by GMM. Then, the business rules are applied, leading to the
classification. This section presents the classification. GMM is applied to the collected
data in the context of spindle rotation at constant speed and axis motion (V f > 0) see
Table 1. Two datasets illustrate the approach: machine-tools #2 and #3 for aluminum
machining.

5.1. Modeling and classification for machine-tool #3

The distribution of Arms in this class (N constant and V f > 0) is modeled by 3
Gaussians (see section 4).
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- a Gaussian represents the class tool not cutting (Y1 green),
- another the class tool cutting (Y3 blue),
- the 3rd Gaussian represents ’severe machining vibrations’ (Y2 red).

Figure 6. Distribution of Arms and P (when N constant and Vf>0) modeled by GMM for machine-tool #3

The distribution of Y4 (in cyan) is the sum of these 3 Gaussians (Y4=Y1+Y2+Y3)
as shown in Fig. 6(a). The threshold TArms is defined as the intersection between the
Gaussians Y1 and Y3, in order to minimize classification errors (false positives and
negatives). The threshold is identified: TArms =5.93 m/s2 is obtained.

Applying the same method, P is modeled by 3 Gaussians:

- one Gaussian represents the class tool not cutting (Y1 green),
- another represents the class tool cutting with low material removal (Y3 blue),
- the 3rd Gaussian (Y2 red) models the class tool cutting with high material re-
moval.

The distribution of Y4 (cyan) is the sum of these 3 Gaussians (Y4=Y1+Y2+Y3), as
shown in Fig. 6(b). The threshold is chosen at the intersection between the Gaussian
tool is not cutting and the other Gaussian tool cutting with high material removal, thus
obtaining Pidle =1.68 kW.

A combination of the two sensors measurements is performed. Thus, for data where
spindle is rotating at constant speed and axes are moving (V f > 0) see Table 1, if
Arms > TArms or P > Pidle, the data is assigned to the class tool cutting.

Fig. 7 presents data from machine-tool #3 as well as the result of the classification.
The tool not cutting class is represented by black ”+” signs on the P power curve,
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the tool cutting class is presented by red and blue dots. The tool cutting class can be
classified into two sub-classes: tool cutting with constant engagement (in red points)
and tool cutting with varying engagement (in blue points) by classification on ∆P (see
Table 1). When the spindle has reached its target speed (N=11250 rpm in Fig. 7), the
tool does not cut immediately. There is a subclass called spindle startup. This class
is represented by green ”+”. It is defined by the following rule: from the reach of the
target speed N until the power exceeds the no-load power Pidle (which represents the
beginning of machining). Identify this state permits to eliminate parasitic vibrations
related to lubrication spindle startup, which would otherwise lead to classification
errors. The subclass spindle startup is also assigned to the cluster tool not cutting.

Cyan line represents V f , blue line N , pink line Arms. The tool engagement is
correctly detected.

Figure 7. Classifications of material removal for machine-tool #3

5.2. Modeling and classification for machine-tool #2

The Arms distribution is modeled by 3 Gaussians (see section 4):

- a Gaussian represents the class tool not cutting (Y1 green),
- another the class tool cutting (Y3 blue),
- the 3rd Gaussian represents ’severe machining vibrations’ (Y2 red).

The distribution of Y4 (in cyan) is the sum of these 3 Gaussians (Y4=Y1+Y2+Y3)
as shown in Fig. 8(a). The threshold TArms is defined as the intersection between the
Gaussians Y1 and Y3, in order to minimize classification errors (false positives and
negatives). This enables to identify TArms =5.43 m/s2 for the machine-tool #2.

Applying the same method, P is modeled by 3 Gaussians:

- one Gaussian represents the class tool not cutting (Y1 green),
- another represents the class tool cutting with low material removal (Y3 blue),
- the 3rd Gaussian (Y2 red) models the class tool cutting with high material re-
moval.

The distribution of Y4 (cyan) is the sum of these 3 Gaussians (Y4=Y1+Y2+Y3), as
shown in Fig. 8(b). The threshold is chosen at the intersection between the Gaussian
tool is not cutting and the other Gaussian tool cutting with high material removal.
This leads to Pidle =2.57 kW.
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Figure 8. Distribution of Arms and P (when N constant and Vf>0) modeled by GMM for machine-tool #2

In summary, three classes of the tool engagement are defined.

- tool cutting when Arms > TArms or P > Pidle; it consists of two subclasses : tool
cutting with constant engagement and tool cutting with varying engagement ;

- the tool not cutting when Arms ≤ TArms and P ≤ Pidle by including the subclass
spindle startup.

Fig. 9 plots the N (rpm), V f (m/min), Arms (m/s2) and P (kW) as well as the
classification results in classes (dots and + sign) for machine-tool #2. The material
removal is well classified.

6. Method validation

The estimation of the quality of the classification by machine learning isessential to
choose an optimal descriptor or combining descriptors for a given data set (Wolpert
1992). Two criteria constitute the quality: accuracy and sensitivity.

6.1. Accuracy

To estimate the accuracy of the classification by GMM, manual data mining was used.
In our approach, the classifications based on GMM model conduct to the predicted
classes (tool cutting or tool not cutting). The actual classes correspond to 100% true
classes that were constituted by manual data mining. The main steps are as follows:
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Figure 9. Classifications of material removal for machine-tool #2

- Apply GMM for training on a one-day data and identify the thresholds of TArms

and Pidle. ;

- Choose a data period and use the two thresholds to the set to predict classes:
tool cutting and tool not cutting ;

- Go through manual data mining, one point by one point, to obtain the actual
classes;

- Compare the predicted with the actual classes and calculate the confusion ma-
trix.

Table 2 reports the confusion matrix for 4 hours on the machine-tool #3 and Table
3 the confusion matrix for the machine-tool #2 .

Table 2. Confusion matrix for 4 hours data from the machine-tool #3

Confusion Matrix
Actual Classes

Tool Cutting Tool Not Cutting

Predicted Classes
Tool Cutting TP=51 476 FP=18
Tool Not Cutting FN=67 TN=92 470

Table 3. Confusion matrix for 4 hours data from the machine-tool #2

Confusion Matrix
Actual Classes

Tool Cutting Tool Not Cutting

Predicted Classes
Tool Cutting TP=60 626 FP=292
Tool Not Cutting FN=938 TN=93 707

Accuracy of the Classification (ACC) is the ratio of correct predictions and is com-
puted as follows: ACC = TP+TN

TP+TN+FP+FN
The accuracy is obtained for the machine-tool #3: ACC #3 (4h)=99.94%, as well

as for the machine-tool #2 is: ACC #2 (4h)=99.21%. The classifications obtained
using GMM method are very accurate.

6.2. Sensitivity of the method

In order to test whether the method is sensitive to the training data set , the cross-
validation method can be used. Kohavi et al. (1995) present different cross-validation
methods like ’Holdout’, ’Leave-one-out’, ’k-fold’ and ’Stratification’. In this paper,
the cross-validation method ’k-fold’ is used. The original sample is divided into k
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samples, then one of the k samples is selected as the training set and the (k− 1) other
samples will constitute the validation set. The performance score is calculated. The
operation is repeated k times so that each sub-sample is used once as a training set.
The average of the performance scores is finally calculated to estimate the accuracy of
the classifications. Here 10 days were chosen (k=10) as the original sample. The main
steps are as follow. For each day:

- Apply GMM to the training set to obtain its thresholds of Arms and P ,
- Apply these new thresholds to the validation set (nine other days) to obtain the

predicted classes,
- Compare these predicted classes with the actual classes and calculate the con-

fusion matrix. The accuracy for each days is obtained.

The thresholds of Arms and P for each day in the training sets as well as correspond-
ing accuracy when applying these thresholds to the validation set for the machine-tool
# 3 and the machine-tool # 2 are respectively reported in Fig. 10( a and b). The
horizontal dotted lines are the thresholds of Arms and P as well as the corresponding
accuracy obtained in the validation set in these two machine-tools.

Figure 10. The new thresholds of Arms and P obtained in the training sets as well as these thresholds
obtained in validation sets for (a) machine-tool #3 and (b) machine-tool #2

With 10 sets, the mean accuracy of the classification for the machine-tool
#3: ACC(k-fold) #3 (4h)=97.60%, and for the machine-tool #2: ACC(k-fold) #2
(4h)=96.28%. This shows the robustness of the proposed method. The mean accuracy
is lower than the one using the same set for training and validation. It is because the
thresholds for materials removal or not (TArms and Pidle) may slightly change as time
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goes by, due to the variation of the machine condition (e.g. wear of the spindle).
Nevertheless, the mean accuracy obtained is high enough that the thresholds learned

by GMM during one-day can be used for any other day of production on the same
machine-tool.

7. Application of the contextual classifications for KPIs evaluation on
production data

According to the previous validation steps, the contextual classification made by the
proposed method is accurate and robust. Thus, Key Performance Indicators can be
calculated based on this contextual classification. For example, it is interesting for the
industry to know:

- Smart Overall Equipment Effectiveness (OEE) of the machine-tool.

Fig. 11 stresses the real machine-tool use rate during the complete spindle lifetime (215
days) for machine-tool # 2. The contextual classification enables to determine at each
instant if the machine-tool is stopped (in red), removing material (cyan and yellow) or
not (in pink). Then, during machining, operations dedicated to high material removal
(in cyan) or low material removal (i.e. finishing operations, in yellow) can be aggregated
separately (contrary to classical OEE computations). Note that the factory where data
were collected works in a three-shift system 5 days a week, and that stopped times of
Fig. 11 include week-end.

Figure 11. Machine-tool OEE during the complete spindle lifetime for the machine-tool # 2

- The programs which generate more chatter when cutting materials.
- The tools which induce more chatter when cutting materials.

For the denoising reasons, the criterion for chatter detection Godreau et al. (2019)
should be evaluated only in the context where the tool is cutting. The proposed clas-
sification method is therefore applied. Fig. 12(a) shows the pie chats representing the
faulty work-piece programs in terms of chatter for the complete spindle lifetime of
machine-tool # 2. Fig. 12(b) shows the pie chats representing the chatter occurrences
ratio per tool for the complete spindle lifetime of machine-tool # 2, which is also
evaluated in the context where the tool is cutting.
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Figure 12. Pie charts representing the chatter occurrences per workpiece program (a) and per tool (b) during
the complete spindle lifetime for machine-tool # 2

8. Conclusion

This paper proposes an original contextual classification of data for smart machining
based on unsupervised machine learning by Gaussian mixture model. The following
generic contributions were obtained:

(1) Complete business rules for contextual classification,
(2) A methodology, based on GMM and BIC, to determine the different states of

the machine-tool,

Those proposition were validated on the raw data used in this paper was collected
and stored by the device Emmatools which is installed on four machine-tools in two
factories producing aeronautical structural parts.

- A classification of the tool cutting or not, by combining GMM thresholds of
vibration measurements Arms and power measurements P , was validated on 2
different machine-tools.

- k-fold validation enables to conclude that the thresholds learned by GMM during
one-day can be applied to any other days for the same machine-tool. It was also
found that the thresholds learned by GMM during one-day data may slightly
change due to the variation of the machine condition.

- this contextual classification permit to obatined precisel KPIs that facilitate
decision making.
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The learned values of thresholds given in this paper are specific to a given machine-
tool, but the proposed machine learning methodology is replicable to any machine-tool.
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of K-means and GMM methods for contextual clustering in HSM.” Procedia Manufacturing
28: 154–159.

Wolpert, David H. 1992. “Stacked generalization.” Neural networks 5 (2): 241–259.
Zhang, Chen, and Haiyan Zhang. 2016. “Modelling and prediction of tool wear using LS-SVM

in milling operation.” International Journal of Computer Integrated Manufacturing 29 (1):
76–91.

Zhou, Yuqing, and Wei Xue. 2018. “Review of tool condition monitoring methods in milling
processes.” The International Journal of Advanced Manufacturing Technology 1–15.

18




