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Abstract 

Human genetic variation in the nicotinic receptor gene cluster CHRNA5/A3/B4, in particular the non-

synonymous and frequent CHRNA5 variant rs16969968 (α5SNP), has an important consequence on 

smoking behavior in humans. A number of genetic association studies have additionally implicated the 

CHRNA5 gene in addictions to other drugs, and also body mass index (BMI). Here, we model the 

α5SNP, in a transgenic rat line, and establish its role in alcohol dependence, and feeding behavior. 

Rats expressing the α5SNP consume more alcohol, and exhibit increased relapse to alcohol seeking 

after abstinence. This high relapsing phenotype is reflected in altered activity in the insula, linked to 

interoception, as established using c-Fos immunostaining. Similarly, relapse to food seeking is 

increased in the transgenic group, while a nicotine treatment reduces relapse in both transgenic and 

control rats. These findings point to a general role of this human polymorphism in reward processing, 

and multiple addictions other than smoking. This could pave the way for the use of medication 

targeting the nicotinic receptor in the treatment of alcohol use and eating disorders, and comorbid 

conditions in smokers. 
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Introduction 

 

Addiction is a psychiatric disorder defined by a loss of control over drug taking and seeking, 

characterized by chronic relapsing following attempts to quit [1]. Therapies and treatments to alleviate 

withdrawal symptoms can assist patients in maintaining abstinence, yet there is a critical need for 

more effective medication addressing relapse prevention [1]. Tobacco and alcohol addictions are the 

two leading causes of premature death among all main causes of excess mortality [2]. They show 

strikingly high rates of comorbidity and individuals with these two addictions represent the largest 

group of polysubstance abusers, although there is a strong lack in both the understanding of the 

biological basis and therapeutic approaches of such comorbidity [3,4]. Nicotine, the main psychoactive 

substance of tobacco smoke responsible for its addictive properties, acts on the nicotinic acetylcholine 

receptors (nAChRs). They are pentameric ligand-gated ion channels widely expressed in the brain, 

where they are composed of α (α2– α6, α7, α9, α10) and β (β2– β4) subunits that co-assemble 

according to various combinations exhibiting distinct brain localizations and functional properties [5]. 

Over the past ten years, a plethora of human genetic studies, including Genome-Wide Association 

Studies (GWAS), have identified a consistent association between a single nucleotide polymorphism 

(rs16969968) of the CHRNA5 gene encoding the α5 nAChR subunit (α5SNP) and the risk for higher 

scores for nicotine dependence [6-10]. The α5SNP, very frequent in the general population, is non-

synonymous, changing an aspartic acid into an asparagine, and doubles the risk to develop heavy 

smoking in homozygous carriers [11-13]. We have recently created transgenic rats constitutively 

expressing the α5SNP, and notably identified increased relapse to nicotine seeking after abstinence in 

these rats using self-administration (SA) procedures [14]. Because of the strong co-occurrence of 

tobacco and alcohol dependence, several human candidate gene studies have attempted to identify 

possible links between the α5SNP and alcohol abuse but with discordant results [15-18]. Such 

incongruity in human studies can be attributed to several factors, such as varying linkage 

disequilibrium, population heterogeneity, cohort design including patients with multiple substance 

addiction and criteria for phenotyping.  

Here, we investigated the impact of the α5SNP on multiple behaviors related to alcohol abuse using 

drug-naive transgenic rats in complementary preclinical models of alcohol addiction. We notably 

assessed reinstatement of alcohol seeking after extinction of alcohol SA, a model of relapse with 

strong translational value [19], in combination with c-Fos immunostaining to correlate neuronal 

responses to relapse intensity. We also verified whether the addiction-like phenotypes observed in 

α5SNP rats could be due to impaired alcohol metabolism, locomotor activity or anxiety.  

Drug addiction has been proposed to partially result from maladaptive motivation and reward 

processing, associated with dysfunctions in mechanisms important for the pursuit of natural reinforcers 

[1]. nAChRs are key players in reward-related mechanisms [20,21], and in vitro studies have shown 

that the α5SNP causes a partial loss of nAChR function [7,22,23], notably within the reward pathway 

[24]. We further hypothesized that the α5SNP may impact reward-related mechanisms not only in the 

context of drug intake but also in physiological conditions, i.e. during natural reward processing. 

Interestingly, the α5SNP has been associated with higher body mass index (BMI) in never smokers, 
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but lower BMI in current smokers, suggesting that this variant may cause alterations in food 

responding that could be counteracted by smoking [25]. Thus, we also examined the consequences of 

the α5SNP on appetence and motivation for food in a SA procedure, and assessed the effects of 

nicotine exposure on food seeking relapse behavior.  

 

Materials and Methods 

 

Animals 

Adult male Wild-Type (WT) rats and rats and constitutively carrying the rs16969968 SNP (α5SNP rats) 

[14], on a Long-Evans background, were used. All experimental procedures were approved by the 

institutional Animal Care Committee (agreements N°0355.02 and 180021). All efforts were made to 

minimize animal suffering, and to reduce the number of animals. Details are given in Supplementary 

Methods. 

 

Intermittent ethanol two-bottle choice paradigm 

Drug-naïve rats were given one bottle with 20% ethanol (EtOH) v/v (Sigma Aldrich, Saint Quentin 

Fallavier, France) and one bottle with tap water in their home cages according to a weekly intermittent 

schedule. The acquisition was followed by a quinine adulteration phase (quinine hydrochloride, Sigma-

Aldrich, Saint Quentin Fallavier, France) to test aversion-resistant alcohol intake (adapted from [26]). A 

subgroup of animals was then submitted to four months of withdrawal and re-exposed to EtOH for two 

choice sessions. Details are given in Supplementary Methods. 

 

Ethanol operant oral self-administration procedure 

Drug-naïve rats were submitted to operant oral SA of 12% EtOH v/v (Fisher Scientific, llkirch, France) 

in chambers equipped with two levers (Med Associates, St. Albans, Vt., USA). Habituation: Rats were 

exposed to progressively increased concentrations of EtOH for habituation. Acquisition: Rats 

acquired EtOH SA under fixed ratio (FR) schedules of reinforcement from FR1 to FR5. The unit dose 

was a 0.1 mL drop of 12% EtOH, associated with a 10s presentation of a visual cue (light) above the 

active lever (AL). Progressive Ratio responding: Rats were switched to a progressive ratio (PR) 

schedule of reinforcement during three consecutive sessions wherein the response requirement 

increased with each successive EtOH reinforcement. Dose-response curve: Rats were switched 

back to FR5 for a few days before being tested for SA of different doses of EtOH (6%, 12%, 18% and 

30%). Extinction: Rats were then submitted to an extinction phase where responses on levers were 

recorded, but did not result in EtOH or visual cue delivery. Reinstatement of EtOH seeking: A cue-

induced reinstatement test was conducted. Rats were submitted to another extinction, and tested for 

"EtOH+cue"-induced reinstatement of EtOH seeking. Rats were then submitted to a last extinction, 

and a part of them, was tested again for "EtOH+cue"-induced reinstatement of EtOH seeking while the 

other part was submitted to an extinction session. Details are given in Supplementary Methods. 

 

Immunofluorescence and c-Fos counting 
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Following the last "EtOH+cue"-induced reinstatement of EtOH seeking or extinction sessions, brains 

were extracted and processed for c-Fos immunofluorescence and quantification. Details are given in 

Supplementary Methods. 

 

Blood ethanol concentration measurements 

Drug naïve rats received an intraperitoneal injection of EtOH (2 g/kg) and were sacrificed at different 

time points post-injection (15, 30, 90 and 180 minutes) just before blood collection. Serum was 

assayed for EtOH content using an Ethanol Assay Kit (MAKO76, Sigma-Aldrich, Saint Quentin 

Fallavier, France). Details are given in Supplementary Methods. 

 

Locomotor activity and anxiety-like behavior measurement 

Locomotor activity of rats was recorded for 30 min in a square open-field. Anxiety-like behavior was 

evaluated for 5 min in the dark-light box (DLB) test in the same drug-naïve rats. Details are given in 

Supplementary Methods. 

 

Food operant self-administration procedure 

Drug-naïve rats were submitted to operant SA of food (45 mg pellets, rodent purified diet F0021, Bio-

Serv, Morangis, France) in chambers similar to those used for EtOH SA. Acquisition: Rats acquired 

food SA under FR schedules of reinforcement and the unit dose was one food pellet delivered into a 

magazine between the two levers associated with a 10s presentation of a visual cue (light) above the 

AL. Progressive Ratio responding: Rats were switched to a PR schedule of reinforcement during 

three consecutive sessions wherein the response requirement increased with each successive 

reinforcement. Extinction: Rats were switched back to FR5 for a few days before being submitted to 

an extinction phase where responses on the levers were recorded, but did not result in food or visual 

cue delivery. Reinstatement of food seeking: rats were submitted to a food-induced reinstatement 

test, and to another extinction, before being tested for cue-induced reinstatement. Rats were then 

submitted to a last extinction phase before being tested again for food-induced reinstatement. For this 

last reinstatement session, half of the rats received a sub-cutaneous injection of nicotine ((-)Nicotine 

hydrogen tartrate, Sigma-Aldrich, St Louis, Mo., USA) dissolved in NaCl 0.9%, at the dose of 0.1mg/kg 

(free base), while the other half received only NaCl 0.9%, 5 minutes before starting the session. 

Details are given in Supplementary Methods. 

 

Statistics 

All data were analyzed with Statistica (StatSoft, Inc., France). For two-group comparisons, data were 

analyzed with unpaired Student’s t or Mann-Whitney U tests when normality and variance 

homogeneity conditions were not met for parametric test use. Two- and three-way repeated measures 

ANOVAs were used (results reported in Supplementary Tables 1-5). Significant main effects (p < 0.05) 

were further analyzed using Bonferroni for multiple comparisons post-hoc tests. Details are given in 

Supplementary Methods. 
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Results 

 

Ethanol intake and preference in an intermittent two-bottle choice procedure in α5SNP and WT 

rats  

To examine the impact of the α5SNP on voluntary alcohol consumption, we first submitted rats 

carrying the α5SNP and WT rats to an intermittent two-bottle choice paradigm with limited access to 

EtOH (Fig. 1a). On the first day, EtOH preference was higher in α5SNP rats with a similar trend 

observed for EtOH intake (Fig. S1a). EtOH preference and intake progressively increased, reaching a 

plateau of ± 60% for EtOH preference (Fig. 1b). Global EtOH preference and intake were not different 

between genotypes (see Table S1 for all ANOVA results). Yet, there was a significant groupXsession 

interaction for both parameters, indicating different patterns of EtOH consumption over time between 

groups. No evolution over time nor group differences were observed on the preference for the EtOH 

side on days where only water was available (Fig. S1b). Rats were then submitted to several sessions 

of adulterated EtOH consumption induced by concomitant exposure to quinine, a procedure proposed 

to model pathological consumption of alcohol [26] (Fig. 1c,d). Quinine dose-dependently decreased 

EtOH preference and intake. No global differences were obtained between genotypes, but α5SNP and 

WT rats differentially adapted their EtOH consumption according to increasing quinine doses. Post-

hoc tests showed that EtOH preference was decreased from the medium dose in WTs while this was 

only the case at the highest dose of quinine in α5SNP rats (Fig. 1c, left). The % of decrease in EtOH 

preference was higher at 0.2g/L compared to 0.1g/L, but lower in α5SNP rats compared to WTs (Fig. 

1c, right). EtOH intake was decreased from the medium dose in both groups (Fig. 1d, left). Yet the % 

of decrease in EtOH intake, higher at 0.2 g/L compared to 0.1 g/L, was lower in α5SNP rats compared 

to WTs (Fig. 1d, right). A much stronger effect of quinine was observed on the preference for the EtOH 

side on days where only water was available, with no differences between groups, suggesting that the 

resistance to quinine adulteration observed in α5SNPs was EtOH-specific (Fig. S1c). Rats then 

underwent 4 months of abstinence before being re-exposed to EtOH during two choice sessions. 

Preference for EtOH was higher during the first re-exposure as compared to the last session before 

withdrawal in both groups (Fig. 1e, left). Such difference was not observed for EtOH intake (Fig. 1e, 

right), because of a parallel increase in animals’ weight (Fig. S1d). Finally, EtOH intake was lower 

during the second re-exposure session compared to both pre- and first post-abstinence sessions, and 

α5SNP rats consumed more EtOH than WTs overall (Fig. 1e, right).  

 

Ethanol operant self-administration in α5SNP and WT rats  

To further characterize the impact of the α5SNP on EtOH addiction-like behaviors, we next submitted 

drug-naïve α5SNP and WT rats to a chronic EtOH oral SA procedure in operant chambers, which 

examines multiple aspects of EtOH abuse with good face validity [27] (Fig. 2a). Both groups acquired 

EtOH SA with a progressive increase in AL presses to obtain a drop of a 12% EtOH solution (0.1 mL) 

(see Table S2 for all ANOVA results). However, α5SNP rats self-administered more EtOH than WTs, 



7 
 

with increased number of lever presses (Fig. 2b, left), and higher EtOH intake (Fig. 2b, right). When 

tested under a PR schedule of reinforcement to further measure EtOH motivational effects, α5SNP 

rats reached a higher break point than WTs (Fig. 2c). Rats were then tested for SA of multiple doses 

of EtOH. α5SNP and WT rats both increased but differentially adapted their EtOH intake with an 

increase in dose (Fig. 2d). Post-hoc tests showed that EtOH intake was still increased from the next-

to-last to the last doses in α5SNP rats while it was stabilized in WTs. An extinction was then 

conducted where AL presses no longer resulted in EtOH or visual cue delivery, inducing a progressive 

decrease of AL responding in both groups, with the global number of lever presses remaining higher in 

α5SNP rats as compared to WTs (Fig. 2e). After stabilization of lever responding, rats were submitted 

to several sessions of reinstatement of EtOH seeking. WTs and α5SNPs exhibited a similar cue-

induced reinstatement of EtOH seeking as observed on AL presses (Fig. 2f, left), and on relapse 

index, (calculated as the subtraction of the number of AL presses averaged for the three last extinction 

sessions from the number of AL presses during the relapse session) (Fig. 2f, right). In contrast, 

α5SNPs had a significantly higher level of reinstatement than WTs when re-exposed to EtOH 

additionally to the cue, as observed on both AL presses (Fig. 2g, left) and relapse index (Fig. 2g, 

right). Post-hoc confirmed increased number of AL presses in both groups after EtOH+Cue re-

exposure and higher AL responding in α5SNP rats compared to WTs in relapse conditions. These 

data confirm that the rs16969968 enhances addiction-like behaviors for EtOH, and particularly the 

intensity of relapse to EtOH seeking after extinction, similarly to what we previously observed for 

nicotine [14]. 

 

Neuronal activation associated with EtOH+Cue induced reinstatement of EtOH seeking in 

α5SNP and WT rats  

To identify the brain structures implicated in the impact of the rs16969968 on relapse to EtOH seeking, 

we examined the expression of the c-Fos immediate early gene product, a marker of neuronal 

activation [28], associated with EtOH+cue induced reinstatement of EtOH seeking in multiple areas. 

Rats underwent a new phase of extinction before being submitted to either a session of relapse or a 

session of extinction for subsequent c-Fos quantification. We confirmed higher level of EtOH+cue 

induced reinstatement in α5SNP rats compared to WTs (Fig. 3a) (see Table S3 for all ANOVA results). 

In rats submitted to an extinction session, AL responding was still different between groups, but there 

was no session effect (Fig. 3b). EtOH+Cue induced reinstatement of EtOH seeking was associated 

with an increase of c-Fos expression in several areas in both groups compared to extinction, namely 

the cingulate cortex, area 2 (Cg2), the prelimbic cortex (PrL), the nucleus accumbens core (NAcbC) 

and shell (NAcbS), the paraventricular thalamus (PVTh), and the lateral hypothalamus (LH) (Fig. 3c). 

Moreover, a strong increase in c-Fos expression was observed in the anterior agranular insula (AI) of 

α5SNP rats during EtOH seeking relapse compared to extinction, while this area was not activated in 

relapsing WT rats (Fig. 3c, d). Furthermore, the number of c-Fos-positive cells in the AI was correlated 

with the level of reinstatement of EtOH seeking (Fig. 3e). 

 

EtOH metabolism, locomotor activity and anxiety levels in α5SNP and WT rats 
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Since possible direct interactions between EtOH and nACHRs have been reported [29,30], we verified 

in drug-naïve animals that the EtOH addiction-like phenotypes observed in α5SNP rats were not due 

to differences in EtOH metabolism. Blood EtOH concentrations were similar between groups at all 

time-points following a 2 g/kg EtOH injection (Fig. 4a) (see Table S4 for ANOVA results). High 

response to novelty and trait-anxiety have been shown to confer vulnerability to drug SA and 

addiction, including to alcohol abuse where alcohol may be used as a form of emotional self-

medication [31]. Thus we next examined whether locomotor reactivity to novelty and anxiety-like 

behaviors were altered in drug naïve α5SNP rats. The open-field distance travelled and velocity, 

reflecting locomotor activity, and % of time spent in the center, more related to anxiety-like behaviour, 

were similar between genotypes (Fig. 4b). Anxiety-like behaviors in the DLB were not altered in 

α5SNP rats as suggested by similar % of time spent in the light side, number of transitions and latency 

to first entry into the light side (Fig. 4c). Thus, the EtOH addiction-like profile observed in α5SNP rats 

does not seem due to an impact of the rs16969968 on EtOH metabolism or on predisposing 

behavioral endophenotypes.  

  

Operant self-administration of food in α5SNP and WT rats  

Our data indicate that the rs16969968 impacts addiction-like processes not only for nicotine, as 

previously observed [14], but also for alcohol. We therefore wanted to establish whether this variant 

may alter reward processing in general and examined if the increased appetitive behavior observed for 

both nicotine and EtOH in α5SNP rats may be extended to natural reward. Drug-naïve rats were 

submitted to a chronic food SA procedure in operant chambers (Fig. 5a). Both groups similarly 

acquired food SA (Fig. 5b) (see Table S5 for all ANOVA results). Rats were next tested under a PR 

schedule of reinforcement as another measurement of food reinforcing efficacy. α5SNP rats showed a 

trend towards higher break point (Fig. 5c). Food SA behavior was then extinguished during a phase 

where AL presses no longer resulted in food or visual cue delivery, inducing a progressive decrease of 

AL responding in both groups. However, the number of AL presses was globally higher in α5SNP rats 

as compared to WTs suggesting a resistance to extinction in α5SNP rats (Fig. 5d). Rats were next 

submitted to several sessions of reinstatement of food seeking. α5SNPs had a significantly higher 

level of reinstatement than WTs in response to food priming, as observed on both AL presses (Fig. 5e, 

left) and relapse index (Fig. 5e, right). Post-hoc confirmed increased AL pressing in both groups after 

food priming and higher AL responding in α5SNP rats compared to WTs in relapse conditions. Re-

exposure to the visual cue previously associated with food delivery also differentially affected AL 

pressing in WT and α5SNP rats (Fig. 5f, left), with increased AL pressing observed only in α5SNPs. 

Cue-induced relapse index was also higher in α5SNPs compared to WTs (Fig. 5f, right). Nicotine was 

shown to regulate appetite and food intake [32]. To test whether nicotine could regulate food-seeking 

relapse and "rescue" the high-relapsing phenotype observed in α5SNPs, we exposed rats to nicotine 

(or saline) before submitting them to a last food priming-induced reinstatement of food seeking session 

(Fig. 5g). Again, we found that food-priming significantly induced relapsing only in α5SNPs, as 

observed on both AL press number and relapse index. Nicotine decreased AL pressing in response to 

food priming in both groups. The relapse index was also found significantly decreased by nicotine in 
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both groups. These data reveal that the rs16969968 not only influences behaviors oriented towards 

drugs of abuse but is also associated with impairments in food-reward processing, including increased 

relapse to food seeking after extinction, which can be regulated by nicotine intake.     

 

Discussion 

Evidence for a link between the α5SNP (rs16969968), a frequent coding variant at a highly conserved 

site in the nAChR second intracellular loop, and smoking risk is extremely robust. Here we show that 

this variant impacts responses to other reinforcers than nicotine, enhancing appetence for food and 

increasing alcohol addiction-like behaviors in rats. This polymorphism may have multiple phenotypic 

consequences contributing to several reward related disorders and their comorbidity.  

 

The α5SNP was previously shown to cause a partial loss of function of α5 containing nAChRs 

(α5*nAChRs) in response to nicotinic agonists [7,22,23,33], including in human induced pluripotent 

stem cell  (iPSC)-derived midbrain dopaminergic (DA) neurons [24], and was associated with 

consumption of increased amounts of high dose nicotine and increased relapse to nicotine seeking 

after extinction of nicotine SA in rodents [14,34]. Here, we demonstrate that α5SNP-induced addiction-

like phenotypes, in particular increased relapse after extinction, are not specific to nicotine but are also 

observed for alcohol and food. Alcohol and tobacco use are highly correlated. Alcoholics are three 

times more likely to smoke than the general population [3], and at higher risk to die from smoking–

related illnesses than from alcohol–related causes [35]. Several mechanisms have been proposed to 

underlie alcohol and tobacco addiction comorbidity, including cross-cue conditioning, cross-tolerance 

and -reinforcement [36,37] and nicotinic modulation of alcohol effects [30,38,39]. Both alcohol and 

nicotine can modulate signalling pathways implicated in addiction through both distinct and common 

molecular targets. In fact, EtOH has been shown to act as an allosteric modulator of nAChRs and 

suggested to alter the balance between activation and desensitization of nAChRs caused by nicotine 

[30]. Previous studies reported no alterations in EtOH intake in α5 knock-out (KO) mice in a drinking-

in-the-dark paradigm [38,40], although EtOH intake was actually decreased in these mice, in a similar 

paradigm, after a restraint stress [38]. The same study also reported decreased EtOH-induced 

conditioned place preference in α5 KO mice. We previously found that α5 KO mice display increased 

anxiety-like behaviours [41], a phenotype we did not observe in α5SNP rats. Differences in stress and 

anxiety levels may contribute to differences in the response to EtOH reward. It would be of interest to 

further study a possible impact of the variant on the link between stress response and drug intake. 

Importantly, the partial loss of function of α5*nAChRs resulting from the α5SNP [7,22,23,33] is likely to 

have different consequences compared to the complete absence of such receptors in a KO animal. 

Here, we show that α5SNP rats exhibit greater appetence and motivation for EtOH and increased 

relapse to EtOH seeking after extinction, the latter being associated with increased activation of the 

insula. The insula was proposed to integrate internal and external stimuli into interoceptive states to 

control motivated behavior, including drug craving [42-44]. It was previously implicated in alcohol 

interoceptive effect, SA and seeking behavior [43,45,46]. The α5SNP may potentiate alcohol 

addiction-like behaviors through direct alteration of alcohol-nAChR interaction, or indirectly through the 
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modulation of acetylcholine control of neuronal activity, notably within the insular cortex. Interestingly, 

the anterior agranular insula has also been implicated in relapse to nicotine seeking [47]. Since the 

agranular insula receives multi-modality sensory inputs, including from the primary olfactory cortex 

[48], sensitivity to EtOH may be altered in α5SNP rats through altered olfactory processing. It has also 

been established that the α5SNP decreases the sensitivity to nicotine aversive effects in humans [49], 

an effect further supported by preclinical studies [14,34]. It may be the case that aversive effects of 

alcohol are also diminished in α5SNP carriers, which may contribute to the higher EtOH drinking 

observed during the first two-bottle choice session in α5SNP rats and to their propensity for EtOH self-

administration, notably at high doses. Moreover, even though anxiety and locomotor activity in a novel 

environment were found unaltered in α5SNP rats in the present study, other behavioural traits 

previously associated with vulnerability to drug abuse, such as novelty preference [31,50], may be 

altered in these rats and contribute to their initial preference for ethanol, which will need further 

investigation. It is well characterized that alcohol consumption is an important cause of relapse to 

smoking following smoking cessation [51,52]. An impact of the α5SNP on alcohol drinking may thus 

also partly explain the strong influence of this polymorphism on smoking dependence, in addition to its 

direct consequences on nicotine effects. Further investigation for a possible association between the 

α5SNP and alcohol abuse, notably focusing on relapse rates and delays, may be of great importance. 

 

Our present study further reveals an impact of the α5SNP on the response to natural reward, beyond 

its influence on nicotine and alcohol addiction-like behaviors. This suggests that the nAChR 

dysfunction associated with this variant alters acetylcholine modulation of reward pathways, affecting 

reinforcer processing in general. This polymorphism may also contribute to aberrant learning 

processes and to stronger associative memories that underlie reinforcer seeking [53]. Here, we 

demonstrate that the α5SNP is associated with resistance to previously acquired operant behavior 

extinction and increased food seeking relapse. Many smokers report that they consume tobacco to 

control appetite [32,54]. Weight control is cited as the primary reason to start smoking in teenage girls 

in the United States [55], and weight gain is perceived as a significant impediment for smoking 

cessation [32,54,56,57]. Nicotine also decreases food intake and body weight in mice [58]. 

Accordingly, we further show that nicotine reduces the intensity of food seeking relapse after 

extinction. To our knowledge, there is no study to date assessing a possible link between the α5SNP 

and eating behavior or disorders in humans. However, an increased BMI in non-smoking α5SNP 

carriers has been reported, while the BMI was decreased in carriers who are smokers [25]. Higher BMI 

increases the risk for tobacco dependence [59]. Our present data raise the hypothesis of an additional 

operating mode of the α5SNP for increased risk for heavy smoking, by contributing to a sub-population 

of comorbid eating and tobacco use disorders [60].  

  

The present study demonstrates that the rs16969968 impacts alcohol addiction-related processes and 

appetence for food in rats, in addition to direct consequences on the brain's response to nicotine. 

These data call for new human genetics studies to refine our knowledge of the influence of this variant 

in psychiatric sub-populations including alcohol addicts and patients with eating disorders. Here we 
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restricted our preclinical investigations on male subjects from one genetic background to limit the 

number of animals used. It would be important, in future human studies, to assess the effect of this 

variant according to gender and genetic ancestry. Finally, since this polymorphism decreases the 

response of α5*nAChRs to agonists, positive allosteric modulators (PAMs) of these receptors, by 

potentiating the effects of their primary ligands, may represent novel therapeutic strategy to address 

several psychiatric disorders. Such novel therapeutic approach could also lead to more favorable 

outcomes for comorbid issues in smokers.  
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Figure legends 

 

Fig. 1. Ethanol intake and preference in a two-bottle choice procedure. a Scheme of the 

procedure. b % of EtOH preference (left) and total intake (right) during acquisition in WT (n=15) and 

α5SNP (n=14) rats [2-way repeated measure ANOVAs]. c % of EtOH preference (left) [2-way 

repeated measure ANOVAs and Bonferroni post hoc. WTs: 0 vs. 0.1g/L: p<0.0001, 0 vs. 0.2g/L: 

p<0.0001; α5SNPs: 0 vs. 0.2g/L: p<0.001] and % of decrease in EtOH preference (right) [2-way 

repeated measure ANOVAs] during quinine adulteration in WT (n=15) and α5SNP (n=13) rats. d Total 

EtOH intake (left) [2-way repeated measure ANOVAs and Bonferroni post hoc. WTs: 0 vs. 0.1g/L: 

p<0.0001, 0 vs. 0.2g/L: p<0.0001; α5SNPs: 0 vs. 0.1g/L: p<0.05, 0 vs. 0.2g/L: p<0.0001] and % of 

decrease in EtOH intake (right) [2-way repeated measure ANOVAs] during quinine adulteration in WT 

(n=15) and α5SNP (n=13) rats. e % of EtOH preference (left) [2-way repeated measure ANOVAs and 

Bonferroni post hoc. pre- vs. 1st post-abstinence: p<0.01] and total intake (right) [2-way repeated 

measure ANOVAs and Bonferroni post hoc. pre- vs. 2nd post-abstinence: p<0.01, 1st post- vs. 2nd post-

abstinence: p<0.05] during pre-, 1st and 2nd post-abstinence re-exposure sessions in WT (n=8) and 

α5SNP (n=6) rats. Data are mean+s.e.m. Group effect (WT vs. α5SNP): *p<0.05, **p<0.01. Session 

effect (quinine vs. no quinine for each dose): #p<0.05, ###p<0.001 in WT (black) or α5SNP rats (gray). 

Quinine dose or session effect (pre- vs. post-abstinence, or post-abstinence 1st vs. 2nd) in both groups: 
$p<0.05, $$p<0.01, $$$p<0.001.  

 

Fig. 2. Ethanol (EtOH) operant self-administration. a Scheme of the procedure. b Number of active 

(AL) and inactive (IL) lever presses (left) [3-way repeated measure ANOVAs] and total EtOH intake 

(right) [2-way repeated measure ANOVAs] during acquisition in WT (n=15) and α5SNP (n=16) rats. c 

Number of reinforcements and last ratio completed in WT (n=15) and α5SNP (n=16) rats under 

progressive ratio [Mann-Whitney. z=-2.095, p<0.05]. d Dose-response curve of the amount of EtOH 

consumed under FR5 schedule in WT (n=15) and α5SNP (n=16) rats [2-way repeated measure 

ANOVAs and Bonferroni post hoc. α5SNPs: 18% vs. 30%, p<0.01]. e Number of AL presses during 

extinction in WT (n=15) and α5SNP (n=16) rats [2-way repeated measure ANOVAs].  f Number of AL 

presses (left) [2-way repeated measure ANOVAs] and relapse index (right) [Unpaired Student’s t-test. 

t28=0.555, NS] in WT (n=15) and α5SNP (n=15) rats during cue-induced EtOH seeking reinstatement. 

g Number of AL presses (left) [2-way repeated measure ANOVAs and Bonferroni post hoc. WT: ext. 

vs. rel., p<0.001; α5SNPs: ext. vs. rel., p<0.0001; Relapse: WT vs. α5SNP, p<0.001] and relapse 

index (right) [Unpaired Student’s t-test. t25=-2.566, p<0.05] in WT (n=14) and α5SNP (n=13) rats 

during EtOH+cue-induced EtOH seeking reinstatement. Data are mean+s.e.m. Group effect (WT vs. 

α5SNP): *p<0.05, **p<0.01, ***p<0.001. Session (ext. vs. rel.) or dose effect: $$$p<0.001 in both 

groups, ##p<0.01, ###p<0.001 in WT (black) or α5SNP rats (gray). 

Fig. 3. Neuronal activation associated with Ethanol (EtOH)+Cue induced reinstatement of EtOH. 

a Number of active lever (AL) presses (left) [2-way repeated measure ANOVAs and Bonferroni post 

hoc. α5SNPs: ext. vs. rel., p<0.01; Relapse: WT vs. α5SNP, p<0.05] and relapse index (right) [Mann-
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Whitney. z=-2.130, p<0.05] in WT (n=6) and α5SNP (n=8) rats during EtOH+cue-induced EtOH 

seeking reinstatement in rats used for c-Fos quantification. b Number of AL presses in WT (n=5) and 

α5SNP (n=5) rats during extinction in rats used for c-Fos quantification [2-way repeated measure 

ANOVAs]. c Levels of expression of c-Fos during EtOH+cue-induced reinstatement of EtOH seeking 

or extinction in WT [n=4-6 (rel.) and 4-5 (ext.)] and α5SNP [n=4-6 (rel.) and 4-5 (ext.)] rats [2-way 

repeated measure ANOVAs, and Bonferroni post hoc for Ant. Insula. α5SNPs: ext. vs. rel., p<0.0001; 

Relapse: WT vs. α5SNP, p<0.001]. d Representative c-Fos immunofluorescence (X20) in the anterior 

insula (AI) and Claustrum (Cl) performed on brain slices after reinstatement of EtOH seeking. White 

bar represents 50 μm. e Correlation between the number of c-Fos-positive cells in the AI and the level 

of reinstatement [Two-tailed Spearman R=0.696; p<0.05], WT rats (n=5) and α5SNP (n=4) are shown. 

Data are mean+s.e.m. Group effect (WT vs. α5SNP): *p<0.05, **p<0.01, ***p<0.001. Session (ext. vs. 

rel.) effect: $p<0.05 and $$$p<0.001 in both groups, ##p<0.01 and ###p<0.001 in α5SNP rats (gray).  

Fig. 4. Ethanol (EtOH) metabolism, locomotor activity and anxiety-like behavior. a Blood EtOH 

concentrations in WT and α5SNP rats, at 15 (WT n=4, α5SNP n=4), 30 (WT n=5, α5SNP n=5), 90 

(WT n=3, α5SNP n=4) or 180 (WT n=5, α5SNP n=4) minutes following intraperitoneal EtOH injection 

(2g/kg) [2-way repeated measure ANOVAs]. b Total distance moved (left) [Unpaired Student’s t-test. 

t16=-0.670, NS], mean velocity (middle) [t16=0.304, NS] and % time spent in the center [t15=-1.000, NS] 

(right) in a novel open-field in WT (n=9) and α5SNP (n=8-9) rats. c % Time spent in the light side (left) 

[Unpaired Student’s t-test. t18=-0.093, NS], number of transitions (middle) [t18=0.391, NS] and latency 

to the first entry into the light side (right) [t15=-0.859, NS] in a dark light box in WT (n=12) and α5SNP 

(n=8) rats. Data are mean+s.e.m. 

Fig. 5. Food operant self-administration. a Scheme of the procedure. b Number of active lever (AL) 

and inactive lever (IL) presses during acquisition in WT (n=25) and α5SNP (n=18) rats [2-way 

repeated measure ANOVAs]. c Number of reinforcements and last ratio completed in WT (n=24) and 

α5SNP (n=18) rats under progressive ratio [Mann-Whitney. z=2.312, p=0.068]. d Number of AL 

presses during extinction in WT (n=25) and α5SNP (n=18) rats [2-way repeated measure ANOVAs].  e 

Number of AL presses (left) [2-way repeated measure ANOVAs and Bonferroni post hoc. WTs: ext. vs. 

rel., p<0.05; α5SNPs: ext. vs. rel., p<0.0001; Relapse: WT vs. α5SNP, p<0.001] and relapse index 

(right) [Unpaired Student’s t-test. t41=2.849, p<0.01] in WT (n=25) and α5SNP (n=18) rats during food-

induced food seeking reinstatement. f Number of AL presses (left) [2-way repeated measure ANOVAs 

and Bonferroni post hoc. α5SNPs: ext. vs. rel., p<0.001; Relapse: WT vs. α5SNP, p<0.01] and relapse 

index (right) [Unpaired Student’s t-test. t41=2.420, p<0.05] in WT (n=25) and α5SNP (n=18) rats during 

cue-induced food seeking reinstatement. g Number of AL presses (left) [3-way repeated-measure 

ANOVAs and Bonferroni post hoc. α5SNPs: ext. vs. rel., p<0.001; Relapse: sal. vs. nic., p<0.01] and 

relapse index (right) [2-way repeated-measure ANOVAs] in saline-treated [WT (n=13), α5SNP (n=9)] 

and nicotine-treated [WT (n=12), α5SNP (n=9)] rats during food-induced food seeking reinstatement. 

Data are mean+s.e.m. Group effect (WT vs. α5SNP): *p<0.05, **p<0.01, ***p<0.001. Session (ext. vs. 

rel.) effect: $p<0.05 in both groups, #p<0.05 in WT rats (black), ###p<0.001 in α5SNP rats (gray).  
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