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A New Algorithm for Non-Negative Sparse Approximation

In this article we introduce a new algorithm for nonnegative sparse approximation problems based on a combination of the approaches used in orthogonal matching pursuit and basis de-noising pursuit towards solving sparse approximation problems. By taking advantage of structural properties inherent to nonnegative sparse approximation problems, a branch and bound (BnB) scheme is developed that enables fast and accurate recovery of underlying dictionary atoms, even in the presence of noise. Detailed analysis of the performance of the algorithm is discussed, with attention specifically paid to situations in which the algorithm will perform better or worse based on the properties of the dictionary and the required sparsity of the solution. Performance on test sets is presented along with possible directions for future research and improvements.

I. INTRODUCTION

Non-negative sparse approximation (NNSA) is a special case of the sparse approximation (SA) problem. In SA we are given a matrix, sometimes referred to as the dictionary, D ∈ R m,n where m < n and a vector y ∈ R m and asked find x ∈ R n such that ||y -Dx|| p , for a given choice of p-norm, and ||x|| 0 are minimized. In NNSA we add the constraints x ≥ 0 elementwise, y -Dx ≥ 01 , D ≥ 0, and y ≥ 0. The Exactly K NNSA (xk-NNSA) and At Most K NNSA (k-NNSA) problems are defined similarly, except we ask for a solution such that ||x|| 0 = k or ||x|| 0 ≤ k respectively. In specroscopy and applied chemistry, this problem is sometimes called mixture analysis because it is often used to analyze unknown chemical mixtures.

Unfortunately, optimization problems involving the 0-norm are known to be NP-Hard in many cases [START_REF] Davis | Adaptive greedy approximations[END_REF], [START_REF] Chen | Hardness of Approximation for Sparse Optimization with L0 Norm[END_REF], and indeed the NNSA problem was formally shown to be NP-Hard in [START_REF] Thi | NP-hardness of L0 minimization problems: revision and extension to the nonnegative setting[END_REF] so we must generally make do with methods of approximation [START_REF] Chen | Approximation Hardness for A Class of Sparse Optimization Problems[END_REF]. Commonly chosen methods for this include ℓ 1 regularization (also known as LASSO) [START_REF] Tibshirani | Sparsity and Smoothness via the Fused Lasso[END_REF], elastic net regularization (which includes ℓ 1 and ℓ 2 regularization as special cases) [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF], matching pursuit and its extensions [START_REF] Gill | The In-Crowd Algorithm for Fast Basis Pursuit Denoising[END_REF], and proximal gradient methods [START_REF] Combettes | Signal Recovery by Proximal Forward-Backward Splitting[END_REF].

When D satisfies certain conditions relating to the matrix spark 2 analysis by Donoho and Elad showed that the convex relaxation of the 0-norm formulation are guaranteed to find the optimal solution to the NNSA problem [START_REF] Donoho | Optimally sparse representation in general (nonorthogonal) dictionaries via 1 minimization[END_REF]. Tropp proved similar properties based on the coherence parameter of D [START_REF] Tropp | Greed is Good: Algorithmic Results for Sparse Approximation[END_REF], later expanded upon by Bruckstein, Elad, and Zibulevski [START_REF] Bruckstein | On the Uniqueness of Nonnegative Sparse Solutions to Underdetermined Systems of Equations[END_REF]. Foucart and Koslicki apply similar analysis to methods based on solving a nonnegative least squares formulation, which they show to be equivalent to orthogonal matching pursuit and basis pursuit when the coherence requirements are met, via the Lawton-Hanson active set method [START_REF] Foucart | Sparse Recovery by Means of Nonnegative Least Squares[END_REF]. In a broad sense, these analyses demonstrate that if the columns of D are dissimilar enough the NNSA problem loses its hardness and can be efficiently solved.

However, when D does contain columns that are very similar, the above methods provably break down -in particular, they often result in solutions that contain noticeable residual components. When at least one component of the vector y is small relative to the others 3 , determining whether these residual signals are necessary or extraneous becomes nontrivial. Additionally, when y is noisy there are further complications.

Given a noisy vector y, we can define the noise vector as e = yy, where y is the noiseless (or pure) value of y. For a given choice of p-norm, we define the signal/noise ratio of y as SNR y = ||y||p || e||p . If SNR y is not sufficiently large, methods based on a convex relaxation of the ℓ 0 -norm constraint will lead to extraneous coefficients being nonzero. Empirically, SNR y does not have to be particularly poor in order for this effect to occur; in one of the tests detailed in section 4 the observed value of SNR y is roughly 10 and this effect can be observed.

Throughout this article we shall assume, unless otherwise stated, that we do not have access to a noiseless representation of y, only the noisy vector y. Conversely, we shall assume that even if we do not have access to the noiseless dictionary D, the value of || D -D|| F , where D is the noisy dictionary, is sufficiently small such that we can act as though D = D without consequence. This is a reasonable assumption to make when either the dictionary has been compiled on a more precise instrument than the tool being used to take measurements, or the dictionary atoms are the results of numerous measurements averaged out in order to reduce noise, as is often the case in, for example, applications of handheld spectroscopic tools. Additionally, we assume without loss of generality that the columns of D are scaled such that

||d i || 1 = 1.
We also assume that the noise vector e is drawn from a symmetric random distribution 4 . If the noise is randomly distributed its effects will, on average, be distributed globally across the measured signal and thus the improvement in fit gained by accounting for the noise in one area will be outweighed by the loss introduced elsewhere as a result. When combined with an explicit sparsity constraint, which ensures that extraneous components are not added to the reconstruction in an attempt to account for noise, we can generate a close approximation of the noiseless signal by finding the subset of atoms in the dictionary (which, if || D -D|| F is small, contain minimal noise) that best fits the measured signal. This is the fundamental underpinning of the algorithm presented in this article.

In section 2 we describe the algorithm, prove that it always results in an optimal solution to the NNSA problem, and examine its asymptotic time-complexity. We also prove the first, to the best of our knowledge, nontrivial upper and lower bounds on the parameterized complexity of the NNSA problem. Section 3 contains theoretical analysis of the conditions necessary for the algorithm to perform optimally in terms of speed, as well as detailed exposition on the relevance of the composition of the dictionary atoms when performing sparse approximation in general. Section 4 presents the results of computational tests done using this algorithm with a simulated dictionary as compared to using LASSO and the Lawton-Hanson active set method, with specific emphasis on the relative performances in correctly identifying and weighting smaller components in the measured signal. Section 5 summarizes the conclusions of this article and describes possible areas of improvement and future research.

NOTATION

Capital letters, D, denote a matrix. Boldface lowercase letters, y, denote a vector. Boldface lowercase letters with a subscript, d i , denote the vector formed by taking the ith column of the matrix represented by the respective capital letter. Boldface lowercase letters with a tilde, y, denote a noisy vector. Lowercase letters, k, denote a scalar. ||x|| p denotes the p-norm of x, with p > 0.

II. THE ALGORITHM

Before presenting the algorithm, we shall formally define the variants of the NNSA problem we focus on.

Definition 1. Fixed k Nonnegative Sparse Approximation (k-NNSA): Given a matrix D ∈ R m,n 0+ , a vector y ∈ R m 0+ , a scalar p ∈ R such that 0 < p ≤ 2, a scalar ε ∈ R, and a scalar k ∈ N + , find the vector x ∈ R n 0+ that minimizes ||Dx -y|| p , subject to ||x|| 0 ≤ k and y -Dx ≥ ε. Definition 2. Fixed k Nonnegative Sparse Approximation With Noise Estimation (k-NNSANE): Given a matrix D ∈ R m,n
0+ , a noisy vector y ∈ R m 0+ , a scalar ε ∈ R, and a scalar k ∈ N + , find the vector x ∈ R n 0+ that minimizes ||Dx -y|| p subject to ||x|| 0 ≤ k and y -Dx ≥ ε, and the vector e such that e = yy.

The k-NNSANE problem is clearly undecidable as posed 5 . However, in section II-A we shall give conditions under which the algorithm presented here optimally solves both the k-NNSA and k-NNSANE problems. Given a dictionary, D ∈ R m,n , a vector, y ∈ R m , a 0-norm upper bound, k, a raw noise estimation 6 , ε, and a noise tolerance 7 , η, the algorithm works as follows.

1) Set j = 0 and set the minimum ℓ 1 residual to ||y||1-η k-j . 2) For all atoms in D, minimize ||d i x -y|| 1 , subject to x ≥ 0 and yd i x ≥ ε elementwise. Store the indices of all atoms such that 1

-||d i x -y|| 1 ≥ ||y||1-η k-j . 3) Set j = j + 1 4) If k > j, set the minimum ℓ 1 residual to ||y||1-η
k-j , otherwise return the best value of x and the corresponding index. 5) For each stored index (or combination of indices), iterate over all other atoms in D and minimize ||D S x-y|| 1 subject to x ≥ 0 and y -D S x ≥ ϵ elementwise, where S is the set of atoms being examined and D S is the matrix formed by taking only those columns of D. Store all combinations of indices such that 1-||D S x-y|| 1 ≥

||y||1-η k-j . 6) If k > j, go to step 3, otherwise return the best value of x and the corresponding indices. This algorithm can be seen as an extension of orthogonal matching pursuit, which iterates k times over the atoms in the dictionary greedily tracks the subset of atoms that results in the best least squares fit to the observed signal [START_REF] Tropp | Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit[END_REF]. By taking advantage of the nonnegativity of the data being analyzed, we can use the properties of the ℓ 1 norm to establish an upper bound of goodness of fit for each atom (and combination of atoms) as the algorithm progresses, as well as a minimum goodness of fit bound at each stage, removing candidate solutions whose upper bound does not satisfy the lower bound for an optimal solution. In other words, a breadth-first branch and bound scheme.

Algorithm 1 BnB Algorithm for k-NNSA

Precondition: D is an m by n matrix with m < n, k is an upper bound on the 0-norm of x, ε is an estimate of the maximum absolute magnitude of the noise in y, and η is a noise tolerance.

1: function SPARSEAPPROX(D, k, y, ε, η)

2: λ ← ||y||1-η k 3: S 1 , γ, ρ ← ∅ 4: τ ← ∞ 5:
for i ← 1 to n do 6:

x ← argmin x ||d i x -y|| 1 s.t. x ≥ 0 & y -d i x ≥ ε elementwise 7: if 1 -||D i x -y|| 1 ≥ λ then 8: S 1 ← [S 1 ; i] ▷ [x ;
y]: concatenation of x and y 9:

if ||D i x -y|| 1 < τ then 10: τ ← ||D i x -y|| 1 11: γ ← x 12:
ρ ← i 13:

for i ← 2 to k do 14:

S i ← ∅ 15: λ ← ||y||1-η k-(i-1)
16:

for j ← 1 to |S i-1 | do 17:
for q ← 1 to n do 18:

s ← [S i-1 [j] ; q] ▷ The elements of S i are sets of indices of size i 19:

x

← argmin x ||D s x -y|| 1 s.t. x ≥ 0 & y -D s x ≥ η elementwise 20: if 1 -||D s x -y|| 1 ≥ λ then 21: S i ← [S i ; s] 22:
if ||D s x -y|| 1 < τ then return τ, γ, ρ

A. Proof Of Optimality

First, we state the theorem explicitly.

Theorem II.1. Algorithm 1 is guaranteed to return an optimal solution to the k-NNSA problem.

Proof. To prove the theorem, we will need a lemma, the proof of which we omit due to its simplicity.

Lemma II.2. For vectors with nonnegative entries, the ℓ 1 norm satisfies the triangle-inequality exactly

⇒ ||x|| 1 + ||y|| 1 = ||x + y|| 1 . Now let v ∈ R m 0+ . Assume without loss of generality 8 that ||v|| 1 = 1. It follows that if α 1 v 1 +. . .+α k v k = v, then max (||α i v i -v|| 1 ) ≥ 1-1 k . To see this, note that if max (||α i v i -v|| 1 ) < 1-1 k then by lemma II.2 we would have || k i=1 α i v i || 1 = ||v|| 1 < 1,
which is a contradiction. This also shows that if we select the largest coefficients from the set of α i along with their corresponding vectors v i , ||α S v S -v|| 1 ≥ 1-

1 k-(|S|-1)
, where S is the selected subset.

From the above, we know that the column of D such that r = ||D i x -y|| 1 is minimized will satisfy

r ≥ || y|| 1 (1 - 1 k ) (1) 
Therefore, as the algorithm finds and tracks all atoms of D satisfying that criteria, it cannot miss said atom. Furthermore, because the algorithm tracks all sets of atoms S with sizes up to k satisfying the requirement

max(||D S x -y|| 1 ) ≥ || y|| 1 (1 - 1 k -(|S| -1) ) (2) 
it cannot miss the set of atoms of size k that minimizes ||D S x -y|| 1 . This proves the algorithm is guaranteed to find the optimal solution to the k-NNSA problem.

We can actually go even futher -if y and e satisfy certain conditions, algorithm 1 is guaranteed to return an optimal solution to the k-NNSANE problem, even though it does not have access to the noiseless vector y. Before we do this, we must define one of the properties in question. In other words, two vectors are mutually exclusive with respect to a dictionary if no atom of the dictionary is part of a nontrivial reconstruction of both vectors and no atom is part of a nontrivial reconstruction of the addition of the two vectors unless said atom is also part of a nontrivial reconstruction of one of the two vectors individually. This property neither implies nor is implied by orthogonality or linear independence. For example, the two vectors 1 0 and 0 1 are orthogonal but not mutually exclusive with respect to the matrix 0.5 0.4 0.5 0.6 . Now we are ready to state the theorem. Let u be the minimizer for the k-NNSA problem with inputs D, y = e, and k = 1, v be the minimizer for the k-NNSA problem with inputs D, y, and k = j ≥ 1, and x be the minimizer for the k-NNSA problem with inputs D, y, and k = j ≥ 1.

Theorem II.3. If y and e are mutually exclusive with respect to D, y -Dv = 0, and r|| e|| p < q, where r = max u and q is the minimum nonzero value in v, then x = v and y -Dx = e.

Proof. By y -Dv = 0, we have that y -Dv = e and ||Dv -y|| p = || e|| p . Let {d 1 ...d j } be the set of j = ||v|| 0 columns of D with nonzero coefficients in v and {a i ...a j } be the corresponding set of nonzero coefficients in v.

Clearly, y = j i=1 a i d i and min (a) = q. Now let d r be the column of D corresponding to r and d q be the column of D corresponding to q. Suppose x is the same as v except for having the value corresponding to column d q set to 0 and the value corresponding to the column d r set to r. The best case scenario is that Du -e = 0 and therefore that y -Dx = qd q . However, we know that || e|| p < q, so x is a worse solution than v, which contradicts theorem II.1. As u is the minimizer for the k-NNSA problem with inputs D, y = e, and k = 1 and y and e are mutually exclusive with respect to D, using any other column of D not in {d 1 ...d j } instead of d r will have the same property. Therefore the optimal solution is x = v, which algorithm 1 is guaranteed to return by theorem II.1.

B. Algorithm Time Complexity

To determine the time complexity of the algorithm, we examine each step in sequence. Step 1 requires O(m) time to compute the ℓ 1 norm of y. Step 2 requires O(nm 3 ) time, as solving argmin x ||D i x -y|| 1 s.t. x ≥ 0 & y ≥ D i x elementwise can be done via linear least squares followed by rescaling to meet the constraints, which requires O(m 3 ) time, when only a single atom of D is being examined.

Steps 4 and 5 have unit cost. Step 6 has cost O(ζnL) cost where ζ is the number of stored combinations of indices of size j and L is the time complexity of finding the value x that minimizes

||D S x -y|| 1 subject to x ≥ 0 & y ≥ D S x. Solving argmin x ||D S x -y|| 1 s.t. x ≥ 0 & y ≥ D S x
elementwise is equivalent to performing constrained least absolute deviation regression (LADR) on a selected subset s of D with respect to the signal vector y. LADR can be solved via Linear Programming (LP), and all of the constraints in this case are linear, so clearly L is polynomial. Steps 4 through 6 are repeated a further k -2 times, giving a total cost of O(kζL + nm 3 ).

In the worst case, every combination of atoms in D will satisfy the ℓ 1 residual constraints, which gives the algorithm a time complexity of

O( n k L + n 2 ). For a fixed value of k not dependent on n, O( n k ) = O(n k ) ⇒ O(n k L + nm 3 ) (3) 
When taken as a function of n and k, this is not a polynomial time running bound. It is not even fixed parameter tractable (FPT), because the definition of FPT excludes functions of the form f (n, k) = n k . However, it does belong to the complexity class XP uniform , which contains all problems solvable via a uniform algorithm 9 in time O(n f (k) ) [START_REF] Downey | Provable Intractability: The Class X P[END_REF]. XP uniform contains many problems that are fundamentally intractable 10 , but because in this case the function f (k) is linear, this algorithm is feasible when k is small. However, for values of k not substantially smaller than ⌊n/2⌋, where n k achieves its maximum value, this algorithm can be very slow.

There is strong evidence that this algorithm's asymptotic complexity cannot be significantly improved upon. It can be shown that the k-NNSA problem over the rationals lies in the class W[P] at the top of the W hierarchy. W[P] can be described as the class of problems that can be decided by a nondeterministic Turing machine that makes at most O(f (k)log(n)) nondeterministic choices and runs in time h(k)|x| O(1) time [START_REF] Abrahamson | Fixed-Parameter Tractability and Completeness IV: On Completeness for W[P] and PSPACE Analogues[END_REF].

Theorem II.4. k-NNSA ∈ W[P].
Proof. We can encode an answer to the k-NNSA problem as a list of k integers indicating which dictionary elements have nonzero coefficients. The integers k can be at most size ⌈log 2 (n)⌉ in bits, so determining them can be done in O(k log(n)) nondeterministic choices. Calculating the coefficients once the correct subset of dictionary elements is known can be done in O(m 2 ϵ -1 )) time, which we will prove in the next section, so the entire algorithm runs in

O(k log(n) + m 2 ϵ -1 )) nondeterministic time, which places k-NNSA in W[P].
Further refining the computational complexity of k-NNSA, it can be shown that k-NNSA over the rationals is W [START_REF] Abrahamson | Fixed-Parameter Tractability and Completeness IV: On Completeness for W[P] and PSPACE Analogues[END_REF]-Hard. This shows that unless FPT equals at least W [START_REF] Abrahamson | Fixed-Parameter Tractability and Completeness IV: On Completeness for W[P] and PSPACE Analogues[END_REF], k-NNSA is not in FPT.

Theorem II.5. k-NNSA is W[1]-Hard Proof. k-NNSA is W[1]-Hard via reduction from k-Exact Cover (k-EC), which is known to be W[1]-Complete.
We define k-EC as follows. Given an instance of k-EC, we can reduce it to an instance of k-NNSA via the following procedure. Set y =

[1, 1, ..., 1] T ∈ R m 0+ .
For each entry of the matrix D, d i,j we set d i,j = 1 if s i ∈ c j and d i,j = 0 otherwise. Then the k-NNSA instance that corresponds to the k-EC instance is

arg min x ||Dx -y|| p p , p ≥ 1 s.t. ||x|| 0 ≤ k x ≥ 0 y -Dx ≥ 0 (4) 
First, we prove that this reduction is correct. Assume there is a subcollection

C ′ of C, |C ′ | ≤ k which covers S. Let x = [x 1 , x 2 , ...,
x n ] T where x j = 1 if c j ∈ C ′ and x j = 0 otherwise. By construction, ||x|| 0 ≤ k and Dx = y.

To see this note that for a given row of D, d j , if an element of S is present in more than one subset of C ′ then d j • x > 1, and if it is not present in any subset of C ′ then d j • x = 0. Therefore, if and only if each element of S is present in exactly one subset of C ′ will Dx = y hold. By equation 4 we have ||Dx -y|| p p = 0. ||Dx -y|| p p is a p-norm with p ≥ 1 and therefore cannot be negative over the rationals. As such, 0 is the optimal value of ||Dx -y|| p p . and therefore a solution of the k-NNSA instance is a solution of the k-EC instance.

The final step is to prove that this reduction is an FPT-reduction. Setting the values of y trivially requires m operations, while at most kz entries of D are nonzero, where z is the maximum cardinality of the subsets in C ′ . We can bound z as 1 ≤ z ≤ |S|, |S| = m, so the reduction runs in time linear in the parameter and polynomial in the size of the input, which conforms to the definition of an FPT-reduction.

Collectively, these proofs show that k-NNSA is at best in W [START_REF] Abrahamson | Fixed-Parameter Tractability and Completeness IV: On Completeness for W[P] and PSPACE Analogues[END_REF] and at worst in W[P]. Therefore, even if we assume that k-NNSA ∈ W [START_REF] Abrahamson | Fixed-Parameter Tractability and Completeness IV: On Completeness for W[P] and PSPACE Analogues[END_REF], unless FPT = W [START_REF] Abrahamson | Fixed-Parameter Tractability and Completeness IV: On Completeness for W[P] and PSPACE Analogues[END_REF], k-NNSA is not in FPT. A consequence of this is that unless NP ⊆ DTIME(2 o(n) ) the k-NNSA problem can not have an FPT algorithm.

C. Minimizing the ℓ 1 -norm Residual

As noted in the previous section, solving argmin x ||D S x -y|| 1 s.t. x ≥ 0 & y ≥ D S x elementwise can be done via Linear Programming. That said, it is inefficient to repeatedly call a LP solver in code when a more specific method can be used. By taking advantage of how the constraints restrict the set of feasible solutions, we can formulate a gradient descent method.

The absolute value function is not differentiable over R, specifically at 0, so in general gradient descent methods are not applicable to ℓ 1 -norm minimization problems. However, the constraint that y -D S x ≥ 0 elementwise allows us to look only at the nonnegative orthant R 0+ , over which the absolute value function is differentiable. Using this, we use a Lagrangian relaxation approach to re-frame the optimization function as

F (x, λ 1 , λ 2 ) =    ||D S x -y|| 1 + λ 1 sum(-log(x)) + λ 2 sum(-log(y -D S x)) x ≥ 0 & y ≥ D S x ∞ x < 0 ∞ y < D S x (5) 
where D S is the subset of the dictionary being examined, λ 1 is the Lagrange multiplier for the nonnegativity constraint, and λ 2 is the Lagrange multiplier for the elementwise constraint y ≥ D S x. The gradient of F (x, λ 1 , λ 2 ) is, with some abuse of notation,

∇F (x, λ 1 , λ 2 ) =                  D ′ S sgn(D S x -y) -λ 1 n i 1 x[i] + λ 2 n i D S [i, :] (y[i] -D S [i, :] • x) x ̸ = 0 & y ̸ = D S x D ′ S sgn(D S x -y) + λ 2 n i D S [i, :] (y[i] -D S [i, :] • x) x = 0 & y ̸ = D S x -λ 1 |S| i 1 x[i] x ̸ = 0 & y = D S x 0 x = 0 & y = D S x (6) 
The abuse of notation is that the piece-wise constraints for the gradient change the formula per element of x, whereas if any of the elements of x fail to satisfy the constraints in equation 5 the entire function evaluates to ∞. Therefore, if x = [1, 0] and y > D S x the gradient will be

D S [:, 1] • sgn(D S [:, 1] -y) -λ 1 + λ 2 n i D S [i, 1] (y[i] -D S [i, 1]) , D s [:, 2] • sgn(-y) + λ 2 n i D S [i, 2] y[i] .
Using the formulas in equations 5 and 6, we can easily devise a gradient descent algorithm.

The function in equation 5 is convex 11 but not strongly convex when x is a feasible solution to the original optimization problem, so we get a convergence rate of O( 1 ϵ ), assuming a small enough step-size parameter, where ϵ is the desired accuracy of the solution. All function evaluations within this algorithm take O(m 2 ) at worst, so the running time of algorithm 1 when utilizing algorithm 2 is

O(n k m 2 ϵ -1 + nm 3 ) (7) 
Empirical testing indicates that good starting values for λ, α, δ, and ϵ are [0.1, 0.1], 0.125, 0.8, and 0.001 respectively.

In an actual implementation of algorithm 2 it is advised to implement a maximum number of iterations, as the accuracy vs speed trade-off is questionable near the minimum.

Algorithm 2 Gradient Descent for ℓ 1 residual minimization Precondition: D s is an |s| by n subset of a dictionary D with |s| < n, λ is a pair of Lagrange multipliers, α is a step-size parameter, δ is a step-size adjustment factor, and ϵ is a stopping criteria 1: function GRADIENTDESCENT(D s , y, λ, α, δ, ϵ)

2:

x ← 0 |s| ▷ 0 |s| : 0 vector of length |s| 3:

g ← 0 |s| 4: τ ← ∞ 5:
while τ > ϵ do 6:

g prev ← g 7:
g ← ∇F (x, λ)

8:

x ← x -gα return x

III. PERFORMANCE ANALYSIS

While the asymptotic performance of algorithm 1 is exponential in terms of n and k, the performance on specific problem instances is more nuanced. We shall make two basic assumptions about the dictionary: first, it does not contain the 0 vector, and second all atoms are pair-wise independent. The 0 vector is not relevant in NNSA contexts, any dictionary atom generating no signal can't be distinguished in the first place, and dictionary atoms that are rescalings of one another cannot be quantitatively distinguished, so we rule out these two cases as irrelevant.

A. Combinatorial Bounds

The optimal scenario is that the k atoms from the dictionary that are present in the measured signal are orthogonal to all other atoms in the dictionary 12 , and that the coefficients are such that only one atom will be considered viable at each step. In this scenario, the algorithm will perform a pass over all n atoms of the dictionary to determine the optimal first component, then use the bounds determined in that step to rule out all but one component in each of the k -1 subsequent passes, requiring only nm 3 + (k -1)m 2 ϵ -1 operations. This scenario is actually realized when, assuming the atoms comprising y form an orthogonal subset of D, if the ith atom, in descending order of ℓ 1 norm explained, explains ||yi-1||1 ||y||1 ( 2 3 ) except 13 for the final atom, which explains all of the remaining signal at that point, algorithm 1 will have only one viable atom to consider at every stage after the first.

The actual worst case scenario, where every atom satisfies the minimum bounds at each step of the algorithm, can be ruled out if the measured signal is guaranteed to be composed of atoms of the dictionary and the dictionary has certain properties. We start with the simplest case that allows us to rule out worst case performance.

Theorem III.1. If the dictionary D contains an orthogonal basis of dimension m ⊥ and the measured signal y is composed of k dictionary atoms, then at least m ⊥ -k -1 atoms will be ruled out.

Proof. By definition, dictionary atoms that are orthogonal to the measured signal will have a dot-product of 0 with the measured signal and so have optimal coefficients of 0, as will any dictionary atoms that are linear combinations of those m ⊥ -k -1 atoms. Thus the initial step of algorithm 1 will rule out all of those dictionary atoms.

When n >> m ⊥ this is a very weak bound that provides little in the way of performance guarantees. However, we can use the constraints x ≥ 0 and y ≥ Dx to derive stronger bounds. Taken together, these constraints imply that any dictionary atom that has a nonzero value where the measured signal is 0 will have an optimal coefficient of 0.

Theorem III.2. If the mean ℓ 0 norm of dictionary atoms is 0 ≤ z ≤ m and the number of 0 values in the measured signal is 0 ≤ w ≤ m, then assuming the likelihood that each individual index of the dictionary atoms and measured signal is nonzero conforms to a Bernoulli distribution, then

P (D[i, j] > 0 | y[j] = 0) = wz m 2 . Proof. Given two independent probabilities, P (A | B) = P (A)P (B). If E(||D[i, :]|| 0 ) = z and P (D[i, j] = 0) is independent from P (D[i, k] = 0) when j ̸ = k, then P (D[i, j] > 0) = z m . Similarly, if m -||y|| 0 = w then P (y[j] = 0) = w m .
As we are assuming that the distribution of nonzero values within the dictionary atoms and measured signal are independent, P (D[i, j] > 0 | y[j] = 0) = P (D[i, j] > 0)P (y[j] = 0), which completes the proof.

Corollary III.2.1. E(g(D, y)) = n( wz m 2 ), where g(D, y) is the number of atoms of D that have a nonzero value where y has a zero value.

Proof. Follows immediately from the assumption that the distributions of nonzero values per dictionary atom and the measured signal are both independent and follow a Bernoulli distribution with mean q = m -z.

Even if

wz m 2 is small, if n >> m there is a strong likelihood that E(g(D, y)) > m, giving a tighter bound than theorem III.1. That said, in practical applications, it is unlikely that the probability of each individual index of a dictionary atom being nonzero is identical. Additionally, it may be that the probability of each index being nonzero are not independent; a more detailed analysis of probabilities in such a circumstance requires knowledge of the context in which the data was generated.

B. Bounds For Spectroscopic Applications

In most spectroscopy applications signals are rarely point-like. Such signals are commonly modeled as Cauchy, Gaussian, or some combination of the two [START_REF] Dodd | Curve-Fitting: Modeling Spectra[END_REF] [START_REF] Pitha | A COMPARISON OF OPTIMIZATION METHODS FOR FITTING CURVES TO INFRARED BAND ENVELOPES[END_REF]. In order to determine bounds in these conditions we will use the probability density function (pdf) and cumulative density function (cdf) of the Cauchy and Gaussian distributions to estimate the likelihood that an index is nonzero based on the location of the observed peak maximum and the modeled width of the peak.. For a Cauchy distribution with location x 0 and scale γ, the pdf is

φ C (x) = 1 πγ(1 + ( x-x0 γ ) 2 ) (8)
and the cdf is

Φ C = 1 π arctan( x -x 0 γ ) + 1 2 (9) 
For a Gaussian distribution with mean µ and variance σ 2 the pdf is

φ G (x) = 1 σ √ 2π e -1 2 ( x-µ σ ) 2 (10) 
and the cdf is

Φ G = 1 2 [1 + erf( x -µ σ √ 2 )] (11) 
The mapping of the pdf and cdf values to indices depends on the meaning of the indices themselves. Typically, if the dictionary atoms and measured signal are spectroscopic data, the indices will be mapped to a wavelength of light, with the resolution of the instrument used to collect the data determining both the dimension of the data and the distance in wavelength between each index [START_REF] Carter | Frequency/Wavelength Calibration of Multipurpose Multichannel Raman Spectrometers. Part I: Instrumental Factors Affecting Precision[END_REF]. For this analysis we shall assume a uniform index to wavelength mapping of W (I) = 5I 6 -1 6 where I is the numerical index ranging from 1 to m.

Given that neither equation 8 nor 10 ever actually evaluate to 0, but spectral signals do reach a point where they are undetectable by the instrument being used to measure them, we shall truncate the peak at a suitable point.

If the full width at half max (FWHM) of a peak is 1nm, we shall set any values further than 2nm away from the peak center to be 0 (ignoring noise). We shall further assume that any negative values in a dictionary atom or the measured signal are set to 0, as negative values are unphysical in this context. Assuming the noise present in each dictionary atom follows a Gaussian distribution with mean 0 and standard deviation σ 2 n , we can determine the probability that a given index in a dictionary atom is 0.

We begin the analysis with a lemma.

Lemma III.3. For a dictionary atom or measured signal ν with either a single peak or multiple peaks that do not overlap, and a peak center at index x 0 ,

P (ν[j] > 0) = 1 2 [1 + erf( -φ C (W (j)) σ √ 2 )] |W (j) -W (x 0 )| ≤ 2 1 2 |W (j) -W (x 0 )| > 2
Proof. When |W (j) -W (x 0 )| ≤ 2 the probability that ν[j] > 0 is equivalent to the probability that the noise is both negative and equal or larger in magnitude to the pure signal of that index. P (N (0,

σ 2 ) ≤ -φ C (W (j))) = Φ G (-φ C (W (j))) = 1 2 [1 + erf( -φ C (W (j)) σ √ 2 
)]. When |W (j) -W (x 0 )| > 2 we are truncating the peak to 0, meaning that the probability that the observed value of ν[j] being 0 is equal to the probability that the noise is less than or

equal to 0. P (N (0, σ 2 ) ≤ 0) = Φ G (0) = 1 2 [1 + erf( 0 σ √ 2 )] = 1 2 .
Corollary III.3.1. Over a single, nonoverlapping peak region with a = W -1 (W (x 0 )-1) and b = W -1 (W (x 0 )+1)

P (ν[a : b] > 0) = b j=a 1 2 [1 + erf( -φ C (W (j)) σ √ 2 
)].

Proof. Follows immediately from

P (ν[j] > 0) = 1 2 [1 + erf( -φ C (W (j)) σ √ 2 )] when |W (j) -W (x 0 )| ≤ 2.
Theorem III.4. Given two independent dictionary atoms or measured signals ν 1 and ν 2 each with a single peak or multiple peaks that do not overlap,

P (ν 1 [j] = 0 | ν 2 [j] < 0) =            (1 -1 2 [1 + erf( -φC (W (j)) σ √ 2 )])( 1 2 [1 + erf( -φC (W (j)) σ √ 2 )]) (|W (j) -W (x 0ν 1 )| ≤ 2) | (|W (j) -W (x 0ν 2 )| ≤ 2) 1 2 -1 4 [1 + erf( -φC (W (j)) σ √ 2 )] (|W (j) -W (x 0ν 1 )| ≤ 2) | (|W (j) -W (x 0ν 2 )| > 2) 1 2 -1 4 [1 + erf( -φC (W (j)) σ √ 2 )] (|W (j) -W (x 0ν 1 )| > 2) | (|W (j) -W (x 0ν 2 )| ≤ 2) 1 4 (|W (j) -W (x 0ν 1 )| > 2) | (|W (j) -W (x 0ν 2 )| > 2)
Proof. By lemma III.3, we know that P (ν

1 = 0) = 1 -1 2 [1 + erf( -φ C (W (j)) σ √ 2 
)] when |W (j) -W (x 0ν 1 )| ≤ 2, and that P (ν

2 > 0) = 1 2 [1 + erf( -φ C (W (j)) σ √ 2 
)] when |W (j) -W (x 0ν 2 )| ≤ 2. As ν 1 and ν 2 are independent,

P (ν1 = 0 | ν 2 > 0) = P (ν 1 = 0)P (ν 2 > 0) = (1 - 1 2 [1 + erf( -φ C (W (j)) σ √ 2 )])( 1 2 [1 + erf( -φ C (W (j)) σ √ 2 )])
when |W (j) -W (x 0ν 1 )| ≤ 2 and |W (j) -W (x 0ν 2 )| ≤ 2, which proves the first case.

Reusing lemma III.3, when |W (j) -W (x 0ν 1 )| > 2, P (ν 1 > 0) = 1 2 . Therefore,

P (ν 1 = 0 | ν 2 > 0) = P (ν 1 = 0)P (ν 2 > 0) = 1 2 (1 - 1 2 [1 + erf( -φ C (W (j)) σ √ 2 )]) = 1 2 - 1 4 [1 + erf( -φ C (W (j)) σ √ 2 )]
which proves cases two and three. The final case follows simply from the lemma as well.

C. Possible Pitfalls

In spectroscopic contexts, peak-shifting and distortion is a source of difficulties in analysis. Peak shifts can be caused by a variety of physical and chemical phenomena [START_REF] Flanagan Frederick | Infrared spectroscopy as a tool to characterise starch ordered structure-a joint FTIR-ATR, NMR, XRD and DSC study[END_REF][23] [START_REF] Gilkes | Direct observation of sp3 bonding in tetrahedral amorphous carbon using ultraviolet Raman spectroscopy[END_REF], and can be accounted for using several types of methods. When time is not a factor and the nature of the sample is known, manual analysis of the collected spectra can deal with these issues. However, when the nature of a sample is unknown and the dictionary being used is large, it is entirely possible that there will be multiple dictionary atoms with similar or identically shaped peaks separated by very few wavenumbers. In this case, such peak shifts may cause misidentification of sample components, particularly if the components have only one peak, and algorithm 1 may break down.

Peak shifts of this type will cause similar problems in most algorithms typically used for sparse approximation applications, so this is a major issue that will have to be addressed in a preprocessing step for any such algorithm to be successful. Chatzidakis and Botton [START_REF] Chatzidakis | Towards calibration-invariant spectroscopy using deep learning[END_REF] propose a deep learning based framework to promote calibration free 14 analysis of spectra, but to the best of our knowledge this has not yet been widely adopted.

Another major driver of computational expense for algorithm 1 is the proportion of the atoms comprising the measured signal. Recall equation 2, which states that the optimal subset S of D must account for at least |S| k of the ℓ 1 norm of the measured signal y. If all atoms comprising y are in equal proportion then the bound in equation 2 is exact and there will be a minimum of k elements remaining at each stage of the algorithm. Furthermore, when there is a large disparity between the amount of the measured signal that is comprised by the dictionary atoms, the choice of stopping criteria for the algorithm becomes more important. If the stopping criteria is too permissive it is possible that a dictionary atom comprising a small amount of the measured signal will be missed, whereas if the criteria is too strict the algorithm will spend additional time attempting to fit atoms to what is likely to be noise (or signal too small to be distinguished from noise). This makes it crucial for an accurate estimate of the signal to noise ratio to be determined if the identification of small magnitude components of the measured signal is important to the application.

IV. COMPUTATIONAL TESTS

A dictionary with 1000 atoms of dimension 500, each generated as combinations of gaussian peaks of varying mean and standard deviation, was randomly generated (see figure 1). The atoms were then scaled to have an ℓ 2 -norm of 1, and tested to ensure that no atoms were exact linear scalings of any other atom. The coherence parameter µ is 0.999817401463998, the Babel function 15 value for m = 2 is 1.99442536272711, meaning that for signals composed of greater than one dictionary atom the conditions specified in [START_REF] Donoho | Optimally sparse representation in general (nonorthogonal) dictionaries via 1 minimization[END_REF], [START_REF] Tropp | Greed is Good: Algorithmic Results for Sparse Approximation[END_REF], and [START_REF] Bruckstein | On the Uniqueness of Nonnegative Sparse Solutions to Underdetermined Systems of Equations[END_REF] are not satisfied, and convex relaxations of the sparseness condition are not guaranteed to find the optimal solution.

A. Experiment Setup and Results

The dictionary atoms were generated this way in order to mirror the sort of spectrum library present when performing NNSA with a device utilizing raman or mass spectroscopy, where peaks are roughly gaussian in shape but have varying widths and relative magnitudes.

Testing was performed on a Dell Precision 7520 laptop with a 3.10GHz Intel Xeon E3-1535M processor and 64GB of RAM. The pure signal used for this test was generated by randomly choosing 5, shown in figure 2a, atoms of D and randomly generating mixing coefficients between 0.01 and 100. The mixing coefficients used to generate the pure 14 Without dependence on the index to wavelength mapping discusses in the previous section 15 See [START_REF] Tropp | Greed is Good: Algorithmic Results for Sparse Approximation[END_REF] for the definition of this function. After multiplying by the mixing coefficients, the selected dictionary atoms are shown in figure 2b. The smallest contribution is clearly made by dictionary atom 130, which accounts for less than 2.5% of the total signal present. Correspondingly, any appreciable amount of noise will make this signal very difficult to detect. The "measured" signal was generated by calculating the mean of the pure signal (figure 3a) and adding gaussian noise with a mean of 0 and a standard deviation of the mean of the pure signal divided by 10, shown in figure 3b. Visually, while this level of noise does not appear to impact the primary features present in the signal, it does mean that some of the subtler features are noticeably obscured.

As can be seen in figures 4 and 5, all of the reconstructions are smoother than the noisy signal, appearing The root of this behavior can be seen in figures 6a and 6b, which compare the reconstruction coefficients of the two methods. Neither the LASSO method nor the Lawton-Hanson method have explicit constraints on the number of nonzero coefficients, instead relying on the underlying mathematical properties of the data to guarantee that the convex relaxation of the ℓ 0 -norm constraint will result in a minimally sparse set of coefficients. As this test instance does not have the necessary mathematical properties for this guarantee to hold, the LASSO and Lawton-Hanson reconstructions contain several extraneous coefficients that are a result of the influence of the noise present in the "measured" signal. Furthermore, the LASSO method incorrectly assigns roughly half of atom 130's contribution to atom 151, while the Lawton-Hanson reconstruction assigns all of atom 130's contribution to atom 151. This demonstrates a potential pitfall of convex relaxations when the optimality conditions are not met -components with small relative magnitudes may be improperly accounted for.

B. Speed Comparison

While the accuracy and sparseness of algorithm 1 on the test dataset were better than either LASSO or the Lawton-Hanson based methods, it was also slower. When run with thresholds that guarantee the optimal answer it was two orders of magnitude slower than the Lawton-Hanson method and the LASSO method with looser tolerance. Recall that algorithm 1 has an asymptotic complexity of O(n k m 2 ϵ -1 + nm 3 ), which is dominated by the n k term. For this test, n = 1000, k = 5, m = 500, and ϵ = 0.1, so it would seem that the vast majority of time is being spent looping over possible combinations of dictionary atoms.

A closer analysis of the execution bears this out. At the first stage of the algorithm 3 dictionary atoms passed stage one, 1026 combinations of two dictionary atoms were checked in stage two of which 994 combinations passed, 781 combinations of three dictionary atoms were checked in stage three of which 114 combinations passed, 3346 combinations of four dictionary atoms were checked in stage four of which 27 combination passed, and 1765 combinations of five dictionary atoms were checked in the final stage. In total, the O(m 2 ϵ -1 ) time algorithm for solving the ℓ 1 norm minimization subproblem was run 6918 times.

In contrast, when run with parameters tuned to the expected proportions of the dictionary atoms algorithm 1 is roughly equivalent in speed to LASSO with tighter tolerance and a single order of magnitude slower than LASSO with looser tolerance the Lawton-Hanson method. In this case, 1 dictionary atom passed stage one, 20 combinations of two dictionary atoms were checked in stage two of which 5 combinations passed, 53 combinations of three dictionary atoms were checked in stage three of which 2 combinations passed, 156 combinations of four dictionary atoms were checked in stage four of which 1 combination passed, and 255 combinations of five dictionary atoms were checked in the final stage. The ℓ 1 norm minimization algorithm was run only 484 times, explaining the order of magnitude increase in speed. This analysis exhibits a weakness of algorithm 1 -if the relative magnitudes of the dictionary elements that make up the measured signal are close, the ℓ 1 norm based bounding scheme will not be able to reduce the number of possible dictionary element combinations as significantly as when the relative magnitudes differ substantially. That being said, if maintaining the sparsity of the proposed solution is important, algorithm 1 is clearly the best option of the methods surveyed here. Additionally, algorithm 1 provides the best reconstruction of the pure signal, reflecting the properties detailed in section II-A.

V. CONCLUSIONS

Given the optimality guarantees described in section 2, the performance bounds given in section 3, and the results of computational tests described in section 4, it is clear that the algorithm presented in this article is a strong tool for solving k-NNSA problems when the solution is required to be very sparse. This is particularly true in contexts where robustness to noise and ability to identify smaller components of the measured signal are paramount.

As the guarantee of optimality rests on simpler assumptions than convex relaxation based methods -namely that all components of the measured signal be present in the dictionary and that the dictionary atoms and measured signal are nonnegative -algorithm 1 is broadly applicable, even when the dictionary being used has otherwise undesireable properties. Furthermore, fine-grained performance analysis can be performed based on basic statistical properties of the dictionary being utilized, in contrast to convex relaxation which relies on properties of the matrix spark which are computationally intensive to determine for large dictionaries.

In a practical sense, this algorithm is both relatively simple to implement and relies on only one black box module (a LAPACK implementation) for functionality. An implementation in Julia is available for testing and evaluation here. A C++ implementation, which is noticeably faster, using the Eigen framework was created but is not available publically at this time.

While the nonnegativity requirements may seem restrictive, analysis of physical quantities almost always results in nonnegative data, providing numerous fields where the NNSA problem is potentially important to solve. Natural Language Processing (NLP) is one possible field for which the sparse approximation problem is relevant and the nonnegativity constraints are generally satisfied. Algorithm 1 may be a powerful tool there, but we do not explore this possibility in detail here.

Definition 3 (

 3 Mutual Exclusivity). Two vectors a, b are said to be mutually exclusive with respect to a matrix D if for any column d i of D, arg min α ||d i α -a|| p > 0 implies arg min α ||d i α -b|| p = 0, and arg min α ||d i α -(a + b)|| p > 0 implies either arg min α ||d i α -a|| p > 0 or arg min α ||d i α -b|| p > 0.

Definition 4 .

 4 k-Exact Cover: Given a set S containing m elements {s 1 , s 2 , ..., s m }, and a disjoint collection of subsets C = {c 1 , c 2 , ..., c n }, does there exist a subcollection C ′ of C such that each element in S is contained in exactly one the subsets of C ′ and |C ′ | ≤ k, where |C ′ | is the number of subsets in |C ′ |?
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 56 Fig. 5: Comparison of measured, pure, and reconstructed signals

  signal were [35.0079, 28.7156, 92.7495, 5.1409, 59.2708] for dictionary atoms [745, 893, 243, 130, 226] respectively.
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TABLE I :

 I Results of computational tests closer to the form of the pure signal. However, it is clear from figure 5a that both the LASSO and Lawton-Hanson reconstructions contain deviances from the pure signal that appear to be the result of attempting to account for noise. Conversely, the BnB reconstruction does not contain similar deviances.
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This constraint prevents overexplaining of the signal vector and is not strictly necessary, but is included here due to both empirically improving results and simplifying some of the analysis.

The minimum integer k such that there exists a set of k columns of D that are linearly independent.

If x is the optimal solution vector, min (x) max (x) ≤ 1 10 .

Meaning, there exists a value c such that P ( e i ≤ c) = P ( e i ≥ c), where e i is the ith value of e.

There is no way to even verify that your answer is correct without additional information.

An estimate of max (| y -y|).

An estimate of the fraction of || y|| 1 attributable only to noise.

We can rescale any vector v without this property by dividing by ||v|| 1 .

The same algorithm is used for all values of k, though the algorithm can accept k as a parameter.

Any problem with an algorithm having time-complexity of the form O(n 2 2 2 k ), for example, is in XP uniform .

The ℓ 1 norm and logarithm are both convex functions, and convex functions are closed under addition.

Meaning that no other atom in the dictionary is a linear combination of any atom present in the measured signal.

||y i || 1 denotes the ℓ 1 norm residual when the i best fitting atoms are included in the solution