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COMPUTATION OF MINIMAL COVARIANTS BASES

FOR 2D COUPLED CONSTITUTIVE LAWS

B. DESMORAT, M. OLIVE, N. AUFFRAY, R. DESMORAT, AND B. KOLEV

Abstract. We produce minimal integrity bases for both isotropic and hemitropic invariant
algebras (and more generally covariant algebras) of most common bidimensional constitutive
tensors and – possibly coupled – laws, including piezoelectricity law, photoelasticity, Eshelby and
elasticity tensors, complex viscoelasticity tensor, Hill elasto-plasticity, and (totally symmetric)
fabric tensors up to twelfth-order. The concept of covariant, which extends that of invariant
is explained and motivated. It appears to be much more useful for applications. All the tools
required to obtain these results are explained in detail and a cleaning algorithm is formulated
to achieve minimality in the isotropic case. The invariants and covariants are first expressed
in complex forms and then in tensorial forms, thanks to explicit translation formulas which
are provided. The proposed approach also applies to any n-uplet of bidimensional constitutive
tensors.
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1. Introduction

The modern assertion that a physics is a group [90] has important consequences regarding the
invariance of the physical quantities. Hence, these questions have to be formulated and studied
within the Mathematical framework of groups and Representation Theory [95]. In d-dimensional
solid mechanics, the invariance properties of constitutive laws are formulated with respect to the
full orthogonal group O(d). Quantities that are invariant with respect to the special orthogonal
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group SO(d) are called hemitropic invariants, while those that are invariant with respect to the
full group O(d) are called isotropic invariants.

In continuum mechanics, constitutive equations, linear or non-linear, are naturally described
using tensors [42, 98]. Yet classical in linear theories, constitutive tensors are also encountered
in non-linear mechanics of materials such as, for instance, anisotropic elasto-plasticity (e.g. Hill
yield tensor [45]), in continuum damage mechanics (for a description of damage anisotropy
see [21, 20, 75, 58, 49, 59]) and in nonlinear piezoelectricity/magnetism (e.g. the magnetostric-
tion morphic tensor [33, 46]).

Orders of constitutive tensors, which are usually lower than four in classical linear elasticity
and piezoelectricity, can however reach six in generalized continuum theories, such as strain
gradient or micromorphic continua [6, 3, 77, 10]. They can be odd orders, forbidding then the
definition of spectral invariants from Kelvin’s matrix representation1 [11, 25, 54, 16]. They can
even rise up beyond order six when fabric tensors are involved [64, 52, 48, 50, 97, 79, 32, 23, 18].
A sound analysis of these tensors, of their invariants and their symmetry classes, gives precious
information and modelling tools for the physics that can be described by them.

Tensors having symmetries can be described using their invariants and covariants [71, 73, 72].
Note however that the invariants must be chosen inside a given class: polynomial, rational or
algebraic (such as the eigenvalues of a matrix). Besides, it is important to describe the tensors
properties by a finite number of such invariants. To do so, mathematical definitions are required.
For instance, one could be interested to describe the algebra of polynomial invariants using a
minimal set of generators of this algebra (usually called an integrity basis), or to find a finite
separating set of invariants —in a given class— which can be used to factor any invariant function
of these tensors (set usually called a functional basis), with the property that an integrity basis
is a functional basis [106]. If the later set is probably more pertinent in practical applications
and of lower cardinality [63, 30, 69], there is however no algorithm to obtain such a set. On the
contrary, there exist general —but complex— algorithms to compute a minimal integrity basis
[105, 27, 66].

The complexity increases with the order of the tensor. In 3D, this complexity is already high,
while it remains reasonable in 2D. For example in 3D, a minimal integrity basis for the elasticity
tensor is constituted of 294 invariants (for both SO(3) and O(3) [70, 72]), while in 2D it is
constituted of 5 invariants for O(2) and of 6 invariants for SO(2) [103]. This huge difference is
roughly due to the following facts:

• The harmonic decomposition of the space of elasticity tensors contains more harmonic
components in 3D than in 2D [8, 13].

• The dimension of the space of harmonic tensors of order n is equal to 2n + 1 in 3D
(like the space of spherical harmonics of degree n) and is equal to 2 in 2D (for n ≥ 1).
The later is the dimension of the space generated by cosnθ and sinnθ in the Fourier
decomposition.

In 3D, the first step consists in determining an integrity basis for harmonic tensors. Such results
are available in the literature but only up to order 5 (i.e., up to degree 10 for binary forms
[60]), due to the exponential growth of the computations with the order n of the tensor. In the
present contribution on the 2D case, we formulate a general method and provide an algorithm
to compute a minimal integrity basis for isotropic/hemitropic invariants and covariants of a
tensor or a family of tensors. In particular, we provide a minimal integrity bases for 2D totally
symmetric tensors —such as fabric tensors [52]— up to order 12, which include the cases of 2D
harmonic tensors of orders 2, 4, 6, 8, 10 and 12.

The structure of 2D constitutive tensors spaces and the determination of their symmetry
classes has already been considered in a previous contribution [4]. Among the remaining open
problems is the formulation of a systematic procedure to determine a minimum integrity basis

1Moreover, the spectral invariants of the Rd(d+1)/2–Kelvin matrix of an elasticity tensor do not characterize the
geometry of its orbits in R

d (with d = 2 in 2D and d = 3 in 3D). They are algebraic invariants of O(d(d+ 1)/2).
Any function invariant with respect to O(d(d + 1)/2) is also invariant with respect to O(d), but the converse is
false.
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for either isotropic or hemitropic polynomial invariant functions on a given tensor space. Such
a set is useful for two reasons; on the one hand, every polynomial invariant can be recast as
a polynomial function of these generating invariants and, on the other hand, it separates the
orbits (i.e. sets of tensors of the same kind), which means that at least one of the generating
invariants takes different values, when evaluated on two tensors which are not of the same kind.
This last property makes it possible to decide whether, or not, two tensors describe the same
material up to an orthogonal transformation.

Let us first present a quick overview of this question in the mechanical community. The
story started in 1946 with Weyl’s pioneering book [105], from which was extracted the methods
and vocabulary still used in continuum mechanics nowadays. It took, however, a few decades
before some basic results, such as the determination of a minimal integrity basis for a n-uplet
of three-dimensional second-order tensors and vectors [92, 93, 88, 85, 53, 82], were published.
In these approaches, a (non necessarily minimal) generating set is obtained first, using for
instance Weyl’s polarization theorem. In a second step, a reduction procedure is achieved, using
polynomial relationships (syzygies) between the polynomial invariants [81, 86], to eventually
obtain a minimal integrity basis. For second-order tensors, these syzygies are essentially derived
from Cayley-Hamilton’s theorem, and are thus useless for higher order tensors. In that case,
only partial results have been obtained [87, 89, 11, 107, 12, 108], until recently.

In this approach [65], the problem of higher order tensors in 3D is recast in the realm of
binary forms, which are complex homogeneous polynomials in two variables. Using a powerful
tool called the Cartan map [19, 8, 30], an integrity basis for the binary form of degree 2n
can then be translated into an integrity basis for the harmonic tensor of degree n [30, 72].
The gain is that invariant theory of binary forms (also know as Classical Invariant Theory) is
an area of mathematics which has been extensively studied by a wide number of prestigious
mathematicians such as Gordan or Hilbert and in which an impressive number of results has
already been produced. Combining these results with the use of the harmonic decomposition [8,
91], integrity bases for the third order totally symmetric tensor and for the fourth-order elasticity
tensor have been obtained recently [68, 65, 70]. In this approach, Gordan’s algorithm for binary
forms [38, 39, 40, 41] is used first to generate a (non necessarily minimal) integrity basis and then,
a reduction process using modern computational means is achieved to obtain minimality [67].

In 2D, the situation is much simpler and integrity bases are known in specific situations. For
instance, regarding its practical importance for plate theory and laminated structures, the bidi-
mensional (plane) elasticity tensor has been widely studied [102, 13, 43, 103, 101, 99, 26, 35, 29].
In [35], a comparative review of the literature on O(2) and SO(2) invariants of the elasticity ten-
sor is provided. Recently, there has been an attempt (unfortunately with mistakes) to determine
an integrity basis for fourth-order tensors of Eshelby type – i.e. photoelasticity type [63] – and
partial results for the piezoelectricity tensor are already known [100]. Nevertheless, analysing
the literature, it appears that a general, effective and systematic method to compute a minimal
integrity basis for coupled constitutive laws and more generally for tensors of any order is still
lacking, and that almost no results are known for the covariant integrity bases [72]. We more-
over point out that the literature results on 2D invariants are rarely expressed using tensorial
expressions.

Concerning practical applications, an integrity basis is required to formulate invariant re-
lations that characterize intrinsic properties of a constitutive law, such as the belonging to a
symmetry class [102, 103, 5, 7, 72], the special (r0) orthotropy [101, 99] or the existence of a
pentamode [62, 51, 28]. Such kind of relations are interesting for optimal design algorithms
since they allow to formulate frame-independent constraints on the sought material [104, 80].
Invariants for higher order tensors will naturally find applications to extend this approach to the
generalized (Mindlin) elasticity models used to describe the effective behaviour of architectured
materials [1, 78, 83].

The goal of the present contribution is to propose a general and effective method to compute
a minimal integrity basis for any O(2) or SO(2) representation and to apply it to continuum
mechanics constitutive laws. To this end, we follow the path traced by Vianello [103] for the
bidimensional elasticity tensor and formulate the problem within the framework of Invariant
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Theory [105, 94, 74, 55, 27]. This allows us to produce a minimal integrity basis for 2D higher
order tensors with or without any particular index symmetry, under both groups O(2) and
SO(2). Minimality of the integrity bases is obtained using a Computer Algebra System and
an algorithm which is explained in details. Integrity bases are first formulated using complex
variables (as in [103]). In a more mechanistic way, we provide an original process allowing to
translate all these expressions into tensorial ones.

This paper intents to be as self-contained as possible, and many illustrating examples are
provided along the lines.

The outline of the paper is the following. In section 2, we recall basic operations on tensors,
some of which are well-known and others are new. The link between totaly symmetric tensors and
homogeneous polynomials is explained. Main concepts from the theory of linear representations
of the orthogonal groups O(2) and SO(2) are presented in section 3. In section 4, we introduce
basic notions of Invariant Theory, such as polynomial invariants and covariants. The main
results of the paper are given in section 5, where integrity bases for bidimensional tensors of any
order (and more generally any linear representation of O(2) and SO(2)) are derived. Hemitropic
(i.e. for SO(2)) integrity bases produced are already minimal but isotropic ones (i.e. for O(2))
are not. A cleaning algorithm to achieve this task is formulated in section 6. The computed
integrity bases are written in terms of complex monomials. It is more useful, in mechanics, to
express them using tensorial operations. These translation rules are formulated in section 7.
In section 8, we illustrate the power of our methods by providing minimal integrity bases for
an extensive list of constitutive tensors (up to twelfth-order) and coupled laws in mechanics of
materials, including Eshelby/photoelasticity tensors, linear viscoelasticity, Hill elasto-plasticity,
linear piezoelectricity and fabric tensors. Besides, four appendices are provided to detail and
deepen some technical points.

2. Tensorial operations

This paper is about tensors polynomial invariants. In this section we recall basic operations
on tensors, some of them are well-known, others are less. We shall denote by T

n(R2) = ⊗n
R
2,

the vector space of 2D tensors of order n. Using the Euclidean structure of R2, we will not make
any difference between covariant, contravariant or mixed tensors. We will encounter tensors
with various index symmetries, among them tensors which are totally symmetric. The subspace
of T

n(R2) of totally symmetric tensors will be denoted by S
n(R2). Given T ∈ T

n(R2), the
total symmetrization (over all subscripts) of T, denoted by Ts is a projector from T

n(R2) onto
S
n(R2). The following tensorial operations will be used (see also [30, 72]).

(1) The symmetric tensor product between two tensors S1 ∈ S
n1(R2) and S2 ∈ S

n2(R2),
defined as

(2.1) S1 ⊙ S2 := (S1 ⊗ S2)
s ∈ S

n1+n2 ,

(2) The r-contraction of two tensors T1 ∈ T
n1(R2) and T2 ∈ T

n2(R2), defined in any
orthonormal basis as

(2.2) (T1
(r)· T2)i1···in1−rjr+1···jn2

:= T 1
i1···in1−rk1···krT

2
k1···krjr+1···jn2

,

which is a tensor of order n1 + n2 − 2r.
(3) The skew-symmetric contraction between two totally symmetric tensors S1 ∈ S

n1(R2)
and S2 ∈ S

n2(R2) is defined as

(2.3) (S1 × S2) := −(S1 · εεε · S2)
s ∈ S

n1+n2−2(R2),

where εεε is the 2D Levi–Civita tensor. In any orthonormal basis (eee1, eee2), we get εij =
det(eeei, eeej) and

(S1 × S2)i1...in1+n2−2 = −
(
εjkS

1
ji1...in1

S2
kin1+1...in1+n2−2

)s
.
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There is a well-known correspondence φ : Sn(R2) → Pn(R2) between totally symmetric tensors
of order n on R

2 and homogeneous polynomials of degree n in two variables. Given T ∈ T
n(R2)

we associate to it the polynomial p = φ(T) in Pn(R2), where

(2.4) p(xxx) = T(xxx, . . . ,xxx).

In components, this writes

p(xxx) = Ti1i2...inxi1xi2 . . . xin , where xxx = (x1, x2) = (x, y).

Note that φ(T) = φ(Ts) and that when restricted to S
n(R2), this correspondence S 7→ p is

a bijection, the inverse operation being given by the polarization of p (see [105, 8, 9, 72]).
Making use of this correspondence, the three tensorial operations defined above are recast into
polynomial operations as follows. Let pi := φ(Si) for i = 1, 2, be the homogeneous polynomials
associated with Si ∈ S

ni(R2). Then,

(1) the symmetric tensor product S1 ⊙ S2 translates as p1p2;

(2) the symmetrized r-contraction (S1
(r)· S2)

s translates as

(2.5) {p1,p2}r :=
(n1 − r)!(n2 − r)!

n1!n2!

r∑

k=0

(
r

k

)
∂rp1

∂xk∂yr−k
∂rp2

∂xk∂yr−k
;

(3) The skew-symmetric contraction S1 × S2 translates as

(2.6) [p1,p2] := − 1

n1n2
det(∇p1,∇p2),

where ∇ denotes the gradient.

3. Real linear representations of 2D orthogonal groups

The full orthogonal group in dimension 2, denoted by O(2), is defined as the set of linear
isometries of the canonical scalar product on R

2. In the canonical basis (eee1, eee2), this group
is represented by the two-by-two matrices g which satisfies gtg = I. In particular, we have
det g = ±1. The subset of matrices g such that det g = 1 is a subgroup of O(2), denoted by
SO(2), which is the rotation group of the Euclidean space R

2, each rotation being represented
by the matrix

(3.1) rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

The full orthogonal group is obtained from SO(2) by adding the reflection with respect to the
horizontal axis

(3.2) σ :=

(
1 0
0 −1

)
.

Besides, each element of O(2) can be written, either as rθ (if det g = 1) or σrθ (if det g = −1),
and we have the relations

σ2 = id, σrθ = r−θσ,

where σrθ = r−θσ is the reflection with respect to the axis

r−θ/2(eee1) = cos

(
θ

2

)
eee1 − sin

(
θ

2

)
eee2.

Next, we recall a few basic concepts in representation theory of groups. More details can be
found, for instance, in [95].

Definition 3.1. A linear representation (V, ρ) of a group G on a vector space V is a linear
action of G on V. More precisely, it is given by a mapping

ρ : G→ GL(V),

where GL(V) is the group of invertible linear mappings on V and such that ρ(g1g2) = ρ(g1)ρ(g2),
for all g1, g2 ∈ G.
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Linear representations of G = SO(2) and G = O(2) play a fundamental role in 2D solid
mechanics. They arise, for instance, when V = Ela is the space of fourth-order plane elasticity
tensors, or when V = Piez is the space of third-order bidimensional piezoelectric tensors.

A linear representation is by definition linear in vvv ∈ V and thus ρ(g) is represented by a matrix
[ρ(g)] once a basis of V is fixed. A basic example is provided by the standard representation of
O(2) on V = T

n(R2), the vector space of n-th order tensors of dimension 2n. In the canonical
basis of R2, (eee1, eee2), the tensor ρ(g)T has for components

(3.3) (ρ(g)T)i1...in =
∑

j1,...,jn

gi1j1 · · · ginjnTj1...jn .

By the way, a natural basis for Tn(R2) is provided by (ei1···in), where

ei1···in := eeei1 ⊗ · · · ⊗ eeein ,

and the lexicographic order has been adopted on multi-index (i1, . . . , in). Thus, the correspond-
ing matrix representation in this basis writes

[ρ(g)T] = [ρ(g)][T],

where, introducing the multi-index I = (i1, . . . , in), J = (j1, . . . , jn),

[ρ(g)]IJ = gi1j1 · · · ginjn .
Three other examples are provided in Appendix A.

Definition 3.2. A representation is irreducible if there is no stable subspace under G other
than {0} and V.

Definition 3.3. Two linear representations (V1, ρ1) and (V2, ρ2) of the same group G are
equivalent if there exists a linear isomorphism ϕ from V1 to V2 such that

ϕ(ρ1(g)vvv1) = ρ2(g)ϕ(vvv1),

for all vvv1 ∈ V1 and g ∈ G.

Real irreducible representations of 2D orthogonal groups are well-known (see for instance [37]).
Each real irreducible representation of SO(2) is either equivalent to the trivial representation on
R, denoted by ρ0 and defined by

ρ0(g)λ = λ,

for all g ∈ SO(2) and all λ ∈ R, or to the two-dimensional representation on R
2 given by

rθ ∈ SO(2) 7→ ρn(rθ) =

(
cosnθ − sinnθ
sinnθ cosnθ

)
∈ GL(R2),

and indexed by the integer n ≥ 1.
Each real irreducible representations of O(2) is either equivalent to the trivial representation

on R, denoted by ρ0, the sign representation on R, denoted by ρ−1 and defined by

ρ−1(g)ξ = (det g)ξ,

for all g ∈ O(2) and all ξ ∈ R (ξ is sometimes called a pseudo-scalar), or to one of the following
representations on R

2 given by

ρn(rθ) =

(
cosnθ − sinnθ
sinnθ cosnθ

)
, ρn(σrθ) =

(
cosnθ sinnθ
sinnθ − cosnθ

)
,

and indexed by the integer n ≥ 1.

Remark 3.4. Besides ρn, one can build a new irreducible representation, called the twisted
representation (associated in 3D with pseudo-tensors). It is defined by

ρ̂n(g) = det(g)ρn(g), g ∈ O(2).

However, and contrary to what happens in 3D, this new representation ρ̂n is equivalent to ρn
for every n ≥ 1. Indeed, if we set

ϕ := rπ/2 : R
2 → R

2,
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one can check that ϕ is an equivariant isomorphism:

ϕ ◦ ρn(rθ) = ρ̂n(rθ) ◦ ϕ, and ϕ ◦ ρn(σrθ) = ρ̂n(σrθ) ◦ ϕ.
For n = 0, we have ρ̂0 = ρ−1, which is not equivalent to ρ0. In other words, there are neither
pseudo-vectors and nor pseudo-tensors in 2D but there exists pseudo-scalars.

There are two models, useful in practice, for 2-dimensional irreducible representations of the
orthogonal groups:

(1) The spaces Hn(R
2) of homogeneous harmonic polynomials (polynomials with vanishing

Laplacian) in two variables x, y of degree n ≥ 1,
(2) The spaces Hn(R2) of nth-order harmonic tensors (totally symmetric tensors with van-

ishing traces).

And, to complete these alternative models for n = 0 and n = −1, we set

H
0(R2) = H0(R

2) = R, with the trivial representation,

and
H

−1(R2) = H−1(R
2) = R, with the sign representation.

Any linear representation (V, ρ) of SO(2) or O(2) can be decomposed into a direct sum of
irreducible representations. This is known as the harmonic decomposition of V and means that

(3.4) V ≃ H
n1(R2)⊕ · · · ⊕H

np(R2),

where ni ∈ {−1, 0, 1, 2, . . . } and where multiplicities are allowed. An explicit method to achieve
such a decomposition for any representation V of SO(2) or O(2), based on the infinitesimal
action of SO(2), is described in Appendix A. It extends, somehow, a method used in [102, 103,
99, 100] for bidimensional elasticity (see also [91, 8] and [24, 9] for 3D elasticity using different
approaches). The harmonic decomposition of the space of totally symmetric tensors is handled
in Appendix B.

Example 3.5. The harmonic decomposition of fourth-order tensors under O(2) are given below,
depending on their index symmetries, as described in [4], and where we have set T = (Tijkl).

Tijkl No index symmetry 3H−1(R2)⊕ 3H0(R2)⊕ 4H2(R2)⊕H
4(R2)

T(ij)kl One minor symmetry 2H−1(R2)⊕ 2H0(R2)⊕ 3H2(R2)⊕H
4(R2)

Tij|kl Major symmetry H
−1(R2)⊕ 3H0(R2)⊕ 2H2(R2)⊕H

4(R2)

T(ij)(kl) Minor symmetries H
−1(R2)⊕ 2H0(R2)⊕ 2H2(R2)⊕H

4(R2)

Tijkl = Tjilk = Tklij Normal Klein sym. 3H0(R2)⊕H
2(R2)⊕H

4(R2)

T(ijk)l Tot. sym. over 3 index H
−1(R2)⊕H

0(R2)⊕ 2H2(R2)⊕H
4(R2)

T(ij)|(kl) Elasticity 2H0(R2)⊕H
2(R2)⊕H

4(R2)

T(ijkl) Totally symmetric H
0(R2)⊕H

2(R2)⊕H
4(R2)

Remark 3.6. Once an explicit harmonic decomposition has been fixed, a given tensor is param-
eterized by scalars, pseudo-scalars and harmonic tensors of order n ≥ 1 (which depend on two
parameters). For instance, in the case of the elasticity tensor, we get

C = (λ, µ,h,H)

where λ, µ ∈ H
0(R2), h ∈ H

2(R2), H ∈ H
4(R2). The remarkable fact is that all the results we

present in section 8 are independent of this choice. All formulas are valid, independently of the
particular choice of an explicit harmonic decomposition.

4. Invariant theory in 2D

Let (V, ρ) be a linear representation of G = O(2) or G = SO(2). The action of G on V induces
a linear representation of G on the algebra R[V] of polynomials functions on V, which will be
denoted by ⋆, and which is given by

(4.1) (g ⋆ p)(vvv) := p(ρ(g)−1vvv).
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4.1. Invariant algebra. The invariant algebra of V under the group G, denoted by Inv(V, G)
(and more usually by R[V]G in the Mathematical community), is defined as

Inv(V, G) := {p ∈ R[V], g ⋆ p = p, ∀g ∈ G} .
It is a subalgebra of R[V], which is furthermore finitely generated, thanks to Hilbert’s theorem [44,
96]. Moreover, since the group action on polynomials preserves vector spaces of homogeneous
polynomials of given degrees, it can always be generated by homogeneous polynomial invariants.

Definition 4.1 (Integrity basis). A finite set ofG-invariant homogeneous polynomials {J1, . . . , JN}
over V is a generating set (also called an integrity basis) of the invariant algebra Inv(V, G) if
any G-invariant polynomial J over V is a polynomial function in J1, . . . , JN , i.e if J can be
written as

J(vvv) = P (J1(vvv), . . . , JN (vvv)), vvv ∈ V,

where P is a polynomial function in N variables. An integrity basis is minimal if no proper
subset of it is an integrity basis.

Remark 4.2. A minimal integrity basis of homogeneous invariants is not unique, several choices
are possible but its cardinality, as well as the degree of the generators are independent of the
choice of a particular basis [31].

Definition 4.3. An homogeneous polynomial invariant is called reducible if it can be written
as the product of two (non constant) homogeneous polynomial invariants, or more generally as
a sum of products of two (non constant) homogeneous polynomial invariants. Otherwise, it is
called irreducible.

Lemma 4.4. Let J := {J1, . . . , JN} be a set of homogeneous polynomial invariants which
generates Inv(V, G). If some Jr ∈ J is reducible, then J \ {Jr} is still a generating set of
Inv(V, G).

Proof. Suppose that Jr ∈ J is reducible. Then, it can be written as a sum of products of two
(non constant) homogeneous polynomial invariants.

Jr =
∑

p,q

IpIq,

where deg(IpIq) = deg Jr, for each pair (p, q). Thus, for each k, deg Ik < deg Jr (because Ik is
not constant). Besides, each Ik writes as

Ik = Pk(J1, . . . , JN ).

But Pk cannot depends on Jr since deg Ik < deg Jr. The conclusion follows, since each Ik,
and thus Jr, can then be rewritten as polynomial functions of the homogeneous invariants in
J \ {Jr}. �

Corollary 4.5. A minimal integrity basis constituted of homogeneous invariants contains only
irreducible invariants.

4.2. Covariant algebra. There is a useful extension of the concept of invariant which is called
a covariant [55, 72]. Its definition involves two representations ρV and ρW of G of the same
group G (see definition 3.1).

Definition 4.6. A mapping vvv 7→ c(vvv) from V to W is a covariant of vvv ∈ V of type W, if

c(ρV(g)vvv) = ρW(g)c(vvv), ∀g ∈ G.

It is called a polynomial covariant of type W if moreover the mapping vvv 7→ c(vvv) is polynomial
in vvv.

Remark 4.7. In the situations we are usually concerned with in mechanics, V and W are tensor
spaces and the condition c(ρV(g)vvv) = ρW(g)c(vvv) is written generally as c(g ⋆ T) = g ⋆ c(T),
where it is understood that the action ⋆ is the usual action of G on tensors. For G = SO(2), it
simply means that the covariant c(T) of T is rotated by g if T is rotated by g.
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Example 4.8. The harmonic components of C ∈ Ela, h and H (see remark 3.6), as well as the

symmetric second-order tensor d2(H) := H ...H introduced in [15], are polynomial covariants of
C of respective type H2(R2), H4(R2) and S

2(R2), for the actions of both groups SO(2) and O(2).

The concept of polynomial covariant is particularly useful when restricted to covariants of
type S

n(R2) endowed with the tensorial representation

(ρn(g)S)(xxx1, . . . ,xxxn) = S(g−1xxx1, . . . , g
−1xxxn), g ∈ O(2).

In that case, to each polynomial covariant c of vvv of type S
n(R2), corresponds an homogeneous

polynomial φ(c(vvv)) of degree n (see section 2), and

pc(vvv,xxx) := φ(c(vvv))(xxx) = c(vvv)(xxx, . . . ,xxx)

is a polynomial function of both vvv and xxx. Moreover, we get

pc(ρV(g)vvv, gxxx) = c(ρV(g)vvv)(gxxx, . . . , gxxx)

= (ρn(g)c(vvv))(gxxx, . . . , gxxx)

= c(vvv)(g−1(gxxx), . . . , g−1(gxxx))

= c(vvv)(xxx, . . . ,xxx)

= pc(vvv,xxx).

Therefore, to every covariant c of type S
n(R2), corresponds a unique invariant polynomial

pc of (vvv,xxx). In other words, the polynomial covariants of type S
n(R2) can be identified with

elements of the invariant algebra

R[V⊕ R
2]G.

This justifies the following definition.

Definition 4.9. The covariant algebra of V, i.e. the algebra generated by the polynomial
G-covariants of V of type S

n(R2), denoted by Cov(V, G), is defined as

Cov(V, G) := Inv(V ⊕R
2, G),

where G acts on V⊕ R
2 as

(vvv,xxx) 7→ (ρ(g)vvv, gxxx), v ∈ V, xxx ∈ R
2, g ∈ G.

Remark 4.10. Polynomial covariants appear to be much more useful than polynomial invariants
to solve many problems in Invariant Theory such as the characterization of symmetry classes
for instance [7, 72] or the characterization of geometric properties [96].

The covariant algebra Cov(V, G) is naturally bi-graded, by the degree d in vvv ∈ V, on one
hand, called the degree of the covariant, and by the degree o in xxx = (x, y) ∈ R

2, on second hand,
called the order of the covariant. The set of covariants of order 0 is a subalgebra of Cov(V, G)
which corresponds exactly to Inv(V, G) (this justifies the fact that the covariant algebra is an
extension of the invariant algebra and contains more information). The set of covariants of
degree d and order o is a finite dimensional vector subspace of Cov(V, G) which is denoted by
Covd,o(V, G).

Example 4.11. The following expressions are SO(2)-covariants of a ∈ S
2(R2) of respective type

S
2(R2), S2(R2) and S

6(R2):

a2, 1× a, a⊙ a⊙ a3,

where the notation an+1 = an ·a has been used. There polynomial counterparts write

a2(xxx,xxx) = xxx · a2 · xxx, (1× a)(xxx,xxx) = det(a · xxx,xxx), (xxx · a · xxx)2 (xxx · a3 · xxx),
and belong respectively to

Cov2,2(S
2(R2),SO(2)), Cov1,2(S

2(R2),SO(2)), Cov5,6(S
2(R2),SO(2)).

The first one and the third one are also O(2)-covariants, but not the second one.
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5. Computing integrity bases

The approach developed in this section has already been applied to plane elasticity by
Vianello [103, 35], following a work of Pierce [76], and in a related way by Verchery some years
before [102]. Our goal is to explain a systematic way to obtain integrity bases for the invariant
algebra Inv(V, G) of any linear representation V of G = SO(2) or G = O(2), the computation
of an integrity basis for Cov(V, G) being a particular case, since it is just the invariant algebra
of V⊕ R

2.

5.1. SO(2) invariant algebras. We will start by studying the case of a representation V of
the rotation group SO(2). To compute an integrity basis for V, the first step is to split V into
irreducible components:

(5.1) V ≃ ν0H
0(R2)⊕H

n1(R2)⊕ · · · ⊕H
nr(R2), ν0 ∈ N, nk ∈ N

∗,

where some nk may be equal (multiplicities of two-dimensional components H
nk(R2) are al-

lowed). An explicit way to accomplish this task is detailed in Appendix A. Using this decom-
position, a polynomial on V writes

p(λ1, . . . , λν0 , a1, b1, . . . , ar, br),

where λj belongs to H
0(R2) = R and (ak, bk) ∈ R

2 are the components of Hk ∈ H
nk(R2) in some

basis.

Remark 5.1. Since each λj is itself an invariant, every invariant polynomial which contains
λj, and which is not reduced to it, is necessarily reducible. Our goal being to compute a
minimal integrity basis, and thus irreducible invariants of V, we can thus consider only invariant
polynomials which depend on

(a1, b1, . . . , ar, br).

Indeed, a minimal integrity basis for V consists of a minimal integrity basis of

H
n1(R2)⊕ · · · ⊕H

nr(R2),

to which we must add λ1, . . . , λν0 .

Following Vianello [103], let us now introduce the complex variable zk := ak+ ibk. Then, any
real polynomial in (a1, b1, . . . , ar, br) can be recast as

∑

αk,βk

cα1,...,αr,β1,...,βrz
α1
1 · · · zαr

r zβ11 · · · zβrr , αi, βi ∈ N,

in which the condition of being real writes

cβ1,...,βr,α1,...,αr = cα1,...,αr ,β1,...,βr ,

where c means the complex conjugate of c. The advantage of this choice of variables is that the
action of SO(2) preserves the monomials, since

ρ(rθ)zk = einkθzk, ρ(rθ)zk = e−inkθzk,

and thus

rθ ⋆
(
zα1
1 · · · zαr

r zβ11 · · · zβrr
)
= ei(n1(α1−β1)+···+nr(αr−βr))zα1

1 · · · zαr
r zβ11 · · · zβrr .

We need, therefore, only to compute invariant monomials.

Lemma 5.2. A monomial

(5.2) m := zα1
1 · · · zαr

r zβ11 · · · zβrr
is SO(2)-invariant if and only if (α1, . . . , αr, β1, . . . , βr) is solution of the linear Diophantine
equation

(5.3) n1α1 + · · ·+ nrαr − n1β1 − · · · − nrβr = 0.
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A solution (α1, . . . , αr, β1, . . . , βr) of (5.3) is called irreducible if it is not the sum of two non-
trivial solutions, and reducible otherwise. It was shown by Gordan [39] (see also [57, Section
6.5] and [96, Section 1.4]) that there is only a finite number of irreducible solutions of (5.3).
Algorithms to compute these irreducible solutions can be found in [56, 17]. As one can expect,
such minimal solutions lead directly to a minimal integrity basis of Inv(V,SO(2)).

Theorem 5.3. Let (V, ρ) be a real linear representation of SO(2) which decomposes as

(5.4) V ≃ ν0H
0(R2)⊕H

n1(R2)⊕ · · · ⊕H
nr(R2), ν0 ∈ N, nk ∈ N

∗.

Then, a minimal integrity basis of Inv(V,SO(2)) consists of the homogeneous invariants

(5.5) λi, |zk|2 , Re(ml), Im(ml),

where 1 ≤ i ≤ ν0, 1 ≤ k ≤ r, and ml are the irreducible solutions of (5.3) such that ml 6= ml.

Proof. Consider first the algebra of complex invariant polynomials

A := C[z1, z1, . . . , zr, zr]
SO(2).

It follows from [96, Lemma 1.4.2], that a minimal integrity basis for A is given by

zkzk, ml, ml,

where 1 ≤ k ≤ r and ml are the irreducible solutions of (5.3) such that ml 6= ml. Thus, A is
also generated by

zkzk, Re(ml) =
1

2
(ml +ml), Im(ml) =

1

2i
(ml −ml),

which is still minimal. Now every real polynomial in

Inv(V,SO(2)) = R[a1, b1, . . . , ar, br]
SO(2)

is a real polynomial in

zkzk, Re(ml) =
1

2
(ml +ml), Im(ml) =

1

2i
(ml −ml).

Hence, this set is a generating set of R[a1, b1, . . . , ar, br]
SO(2) which is also minimal. Otherwise,

one of these invariants could be written as a real polynomial in the others and this would
contradict the fact that this set is minimal as a generating set of A. As already stated (see
remark 5.1), we conclude that

λi, |zk|2 , Re(ml), Im(ml),

is a minimal integrity basis of Inv(V,SO(2)). �

Example 5.4. Aminimal integrity basis for the action of SO(2) on Ela has been computed in [103],
using the harmonic decomposition, and representing an elasticity tensor C = (λ, µ,h,H) (see
remark 3.6) in complex form. The basis writes

λ, µ, |z2|2 , |z4|2 , Re(z22z4), Im(z22z4),

where z2 = h11 + ih12 and z4 = H1111 + iH1112 are the components of H2 := h ∈ H
2(R2)

and H4 := H ∈ H
4(R2) in some orthonormal basis of R2. The tensorial expressions of these

invariants are provided in example 7.5.

5.2. O(2) invariant algebras. Consider now a representation V of the orthogonal group O(2),
which decomposes as

V ≃ m−1H
−1(R2)⊕m0H

0(R2)⊕H
n1(R2)⊕ · · · ⊕H

nr(R2),

where m−1 ≥ 0, m0 ≥ 0 and ni ≥ 1. An integrity basis of Inv(V,O(2)) will be obtained from
one of the invariant algebra of the restriction of the representation of O(2) on V to its subgroup
SO(2). This integrity basis will not be minimal in general and further computations will be
necessary to extract from it a minimal integrity basis.
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Theorem 5.5. Let (V, ρ) be a real linear representation of O(2) which decomposes as

V ≃ m−1H
−1(R2)⊕m0H

0(R2)⊕H
n1(R2)⊕ · · · ⊕H

nr(R2),

where m−1,m0 ∈ N and nk ∈ N
∗. Then, an integrity basis for Inv(V,O(2)) consists of the

homogeneous invariants

(5.6) λk, |zl|2 , Re(ml), ξiξj, ξi Im(ml), Im(mp)Im(mq),

where λk ∈ H
0(R2), ξi ∈ H

−1(R2) and where ml are the irreducible solutions of (5.3) such that
ml 6= ml and only remains the terms Im(mp)Im(mq) for which neither mpmq, nor mpmq

contains a factor zszs for some s ∈ {1, . . . , r}.
The proof of theorem 5.5 requires a useful tool in invariant theory called the Reynolds operator,

which is defined as follows.

Definition 5.6. Given a compact group G and a linear representation V of G, the Reynolds
operator is the linear projector from R[V] onto the invariant algebra Inv(V, G), defined as

(5.7) RG(p) :=

∫

G
(g ⋆ p) dµ, p ∈ R[V],

where dµ is the Haar measure on G.

Definition 5.7. Given a compact group G, the Haar measure is a (bi-invariant) probability
measure on G and is uniquely defined [95]. For G = SO(2), it writes as

∫

SO(2)
f(g) dµ =

1

2π

∫ 2π

0
f(rθ) dθ,

for every continuous function f on SO(2), whereas for G = O(2), it writes as
∫

O(2)
f(g) dµ =

1

4π

∫ 2π

0
f(rθ) dθ +

1

4π

∫ 2π

0
f(σrθ) dθ,

for every continuous function f on O(2).

Proof of theorem 5.5. Consider an O(2)-invariant polynomial p. It is obviously invariant under
SO(2) and we get thus

(5.8) p = RO(2)(p) =
1

2

(
RSO(2)(p) + σ ⋆ RSO(2)(p)

)
=

1

2
(p + σ ⋆ p).

Now as an element of Inv(V,SO(2)) and using theorem 5.3, p can be written as a polynomial
expression

p = P (λk, ξi, |zl|2 ,Re(ml),Im(ml)),

and we have moreover
σ ⋆ λk = λk, σ ⋆ ξi = −ξi,

and
σ ⋆ |zl|2 = |zl|2 , σ ⋆Re(ml) = Re(ml), σ ⋆ Im(ml) = − Im(ml).

We get thus
σ ⋆ p = P (λk,−ξi, |zl|2 ,Re(ml),− Im(ml)).

Now, using (5.8), we have

p =
1

2

(
P (λk, ξi, |zl|2 ,Re(ml),Im(ml)) + P (λk,−ξi, |zl|2 ,Re(ml),− Im(ml))

)
,

and expanding P , we deduce thereby that Inv(V,O(2)) is generated by the homogeneous in-
variants

λk, |zl|2 , Re(ml), ξiξj, ξi Im(ml), Im(mp)Im(mq).

Note however that

Im(mp)Im(mq) = Re(mp)Re(mq)−Re(mpmq)

= Re(mpmq)−Re(mp)Re(mq).
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Hence, we can remove Im(mp)Im(mq) from the list of generators, each time mpmq or mpmq

can be recast as
(zszs)m,

for some s ∈ {1, . . . , r} and m is a monomial which satisfies (5.3). Indeed, then Im(mp)Im(mq)
is reducible and can be removed from the set of generators by lemma 4.4. This applies, in
particular, to each invariant (Im(ml))

2. �

The elimination of Im(mp)Im(mq), each time mpmq or mpmq contains a factor zszs in the
list of generators, does not lead, in general, to a minimal basis, even if it reduces a priori the
number of generators, sometimes drastically.

Remark 5.8. For those of you who have been involved in similar calculations, the problem of
whether such invariants as products Immp Immq could always be removed a priori from a
minimal basis of Inv(V,O(2)) founds here a definitive answer. Indeed, there are examples
in section 8 where such products cannot be removed (even in the case of totally symmetric
tensors, see subsection 8.4, for instance).

A reduction procedure, which we call cleaning and described in section 6 is thus required to
obtain a minimal integrity basis or to check that a given basis is already minimal. In practice,
and the argument will be used when applying the cleaning procedure, it is enough to reduce the
integrity basis

(5.9) B :=
{
|zk|2 ,Re(ml),Im(mi)Im(mj)

}

of Inv(Hn1(R2)⊕ · · · ⊕H
nr(R2),O(2)), to obtain a minimal integrity basis of the full space

m−1H
−1(R2)⊕m0H

0(R2)⊕H
n1(R2)⊕ · · · ⊕H

nr(R2).

The argument is formalized as the following theorem.

Theorem 5.9. Let MB be a minimal integrity basis of

Inv(Hn1(R2)⊕ · · · ⊕H
nr(R2),O(2)),

extracted from B (5.9). Then, a minimal integrity basis for

Inv(m−1H
−1(R2)⊕m0H

0(R2)⊕H
n1(R2)⊕ · · · ⊕H

nr(R2),O(2)),

is given by
MB ∪ {λk, ξiξj, ξi Im(ml)} ,

where 0 ≤ i, j ≤ m−1, 0 ≤ k ≤ m0, and ml are the irreducible solutions of (5.3) such that
ml 6= ml

Proof. The invariant algebra Inv(V,O(2)) is multi-graded; each invariant writes uniquely as a
sum of invariants which are multi-homogeneous relatively to the decomposition

V ≃ m−1H
−1(R2)⊕m0H

0(R2)⊕H
n1(R2)⊕ · · · ⊕H

nr(R2).

In other words,

Inv(V,O(2)) =
⊕

K

InvK(V,O(2)),

where
K := (s1, . . . sm

−1 , e1, . . . em0 , k1, . . . , kr),

is a multi-index in which si indicates the degree in ξi, ek indicates the degree in λk, ki indi-
cates the degree in Hni and InvK(V) is the vector space of multi-homogeneous invariants of
multi-degree K. Any relation among multi-homogeneous invariants happens in one vector space
InvK(V,O(2)). Thus, neither λk, nor ξiξj, can be recast using other invariants from the set (5.6).
This is because the spaces InvK(V,O(2)) which contains either λk or ξiξj are one-dimensional.
This is also true for ξi Im(ml), not because the corresponding space InvK(V,O(2)), to which
it belongs is one-dimensional, but because if it could be recast using other invariants from the
set (5.6), then Im(ml) could be re-written using |zk|2, Re(mi) and Im(mj) (j 6= l), which would
lead to a contradiction. �
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Example 5.10. A minimal integrity basis for the action of O(2) on Ela has been computed
in [103]. It consists in the following five invariants

λ, µ, z2z2, z4z4, Re(z22z4),

where z2 = h11+ ih12 and z4 = H1111 + iH1112. The tensorial expressions of these invariants are
provided in example 7.5.

We finally formulate as a theorem another reduction result, which avoids useless computations.

Theorem 5.11. Let V = H
n1(R2)⊕ · · · ⊕H

np(R2), where nk ≥ −1. Then, any stable subspace
W of V writes

W = H
nk1 (R2)⊕ · · · ⊕H

nkp (R2),

where
{
nk1 , . . . , nkp

}
is a subset of {n1, . . . , np}. Moreover, given any minimal integrity basis

MB of Inv(V,O(2)), which consists only of multi-homogenous invariants, a minimal integrity
basis of Inv(W,O(2)) is obtained by extracting, from MB, multi-homogenous invariants which
depend only on the variables

Hnk1
, . . . ,Hnkp

.

Proof. Let W be a stable subspace of V. Since each H
n(R2) is an irreducible representation, each

stable subspace W ∩H
n(R2) of Hn(R2) is either {0} or Hn(R2). This proves the first assertion.

Consider now a multi-homogenous invariant J on V, then evaluated on W it either vanishes if
it depends on more variables than Hnk1

, . . . ,Hnkp
or is equal to itself overwise. Finally, given

I ∈ Inv(W,O(2)), observe that it extends naturally as a element of Inv(V,O(2)) by setting
variables other than Hnk1

, . . . ,Hnkp
to 0. It can thus be recast as a polynomial in the multi-

homogeneous invariants of MB, but when evaluated on W, each term of MB which depends on
more variables than Hnk1

, . . . ,Hnkp
vanishes, which concludes the proof. �

Remark 5.12. Theorem 5.11 applies, in particular to any stable subspace W of V = T
n(R2),

defined by some index symmetries, and thus in particular to W = S
n(R2). It applies also to the

space W = S
n−2k(R2), which can be considered as a subspace of V = S

n(R2), because there is a
natural and equivariant linear embedding

S
n−2k(R2) → S

n(R2), S 7→ 1⊙ · · · ⊙ 1︸ ︷︷ ︸
k copies

⊙S.

6. Cleaning algorithm

Starting from a finite generating set B (5.9) of the invariant algebra

(6.1) A := Inv(Hn1(R2)⊕ · · · ⊕H
nr(R2),O(2)), nki ≥ 1,

the cleaning algorithm produces a minimal integrity basis MB extracted from B. The invariant
algebraA is multi-graded by the fact that each polynomial invariant can be uniquely decomposed
into a sum of polynomial invariants which are homogeneous into each factor (multiplicities
allowed)

H
n1(R2), . . . ,Hnr(R2),

of respective degrees k1, k2, . . . , kr. This information will be encoded into the multi-index

K := (k1, k2, . . . , kr).

Therefore, the invariant algebra A can be decomposed as the direct sum

A =
⊕

K

AK ,

where each AK is the finite dimensional subspace of A consisting of multi-homogeneous invari-
ants of multi-degree K. The remarkable fact is that the dimension aK of AK can be computed a
priori using the Hilbert series of A (see Appendix C), which writes, by theorem C.2 and remark
C.3,

H(t1, . . . , tr) =
∑

K

aKt
k1
1 · · · tkrr , aK =

1

2
(bK + βK),
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where βK = 0 each time one of the ki is odd and βK = 1 otherwise, and where bK is the number
of solutions (α1, . . . , αr) of the linear Diophantine equation

(6.2) 2α1n1 + · · ·+ 2αrnr = k1n1 + · · · + krnr, αi ≥ 0.

Let now BK := B ∩ AK be the subset of B of homogeneous polynomials with multi-degree
K = (k1, k2, . . . , kr). Choosing a total order� on the set of multi-indexK, leads to a partitioning
of B as

B =

N⊔

i=0

BKi , where Ki ≺ Kj , if i < j.

Remark 6.1. Any finite set S of p homogeneous polynomials inAK is a family of vectors vvv1, . . . , vvvp
in the finite dimensional space AK of dimension aK and we can thus define its rank, Rank(S).

The proposed cleaning algorithm with

• inputs: BKi , aKi , with Ki ≺ Kj, for all i < j,
• output : MB,

consists in:

(1) Initialization : determine a subfamily F0 ⊂ BK0 of linearly independent polynomials
such that Rank(F0) = aK0 .

(2) Iteration step n (1 ≤ n ≤ N): suppose that we have obtained, at step n − 1, the
family Fn−1 = {I1, . . . , Is} and note that Fn−1 may contain homogeneous polynomials
with different multi-indices K(I1), . . . ,K(Is) but all are strictly lower than Kn, where
K(I) stands for the multi-index of homogeneous polynomial I.
(a) Determine the finite set RKn of all reducible homogeneous polynomials of multi-

degree Kn that can be constructed, in two steps, using elements of Fn−1:

(i) Find the p solutions αj1, α
j
2 . . . , α

j
s (1 ≤ j ≤ p) of the linear Diophantine

system

(6.3) α1K(I1) + . . .+ αsK(Is) = Kn,

(ii) If p > 0, RKn =

{
I
αj
1

1 I
αj
2

2 · · · Iαj
s

s ; 1 ≤ j ≤ p

}
, else RKn = ∅,

(b) if Rank(RKn) = aKn , XKn = ∅, go to (d),
(c) Determine a subset XKn ⊂ BKn of minimal cardinal such that

Rank(RKn ∪ XKn) = aKn ,

i.e. check one by one the invariants of BKn that need to be added to match the
dimension aKn . This requires to compute the rank of the new set of vectors in AKn ,
each time we add a new element,

(d) Fn := Fn−1 ∪ XKn ,
(3) Termination: MB := FN .

The cleaning algorithm was applied with the following specifications.

• All minimal solutions of the Diophantine equation (5.3) were obtained using the software
of algebraic geometry Normaliz [17];

• The Diophantine equation (6.2) as well as the linear Diophantine system (6.3) were
solved using Mathematica [47];

• The adopted total order on multi-index K = (k1, . . . , kr) was the lexicographic order

Ki � Kj ⇔ ki1 = kj1, . . . , k
i
q = kjq , kiq+1 < kjq+1, for some 1 ≤ q ≤ r − 1;

• In step (2)(c) of the algorithm, it is necessary to order the element of BKn = B ∩ AKn

to be tested. We have used the Mathematica built-in function Sort.

Remark 6.2. When the covariant algebra is involved, the cleaning algorithm is applied to the
invariant algebra

Inv(R2 ⊕H
n1(R2)⊕ · · · ⊕H

nr(R2),O(2)).
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In that case, the multi-index has been numbered as

K := (k0, k1, k2, . . . , kr),

where k0 represents the degree in xxx, i.e. the order of the associated covariant. The choice of
the adopted lexicographic order implies that the cleaning is processed by increasing the order
of covariants, first. Of course, other total orders on the set of multi-index are possible and they
may be more adapted to other situations considered.

7. From complex monomials to tensor covariants

Regarding mechanical applications, an integrity basis should be expressed in terms of tensors
invariants, rather than in terms of complex monomials. A translation of the real and imaginary
parts Re(ml), Im(ml) of the previous monomials is thus mandatory. As recalled in section 2,
there is a natural correspondence

φ : Sn(R2) → Pn(R2),

which associates to any totally symmetric tensor S of order n, an homogeneous polynomial p of
degree n, which writes as

p(xxx) = S(xxx, . . . ,xxx), xxx = (x, y).

Under this isomorphism, which is O(2)-equivariant, the subspace Hn(R2) of harmonic tensors of
order n (traceless tensors) is sent to the subspace of homogeneous harmonic polynomials Hn(R

2)
(polynomials with vanishing Laplacian). A natural basis for Hn(R

2) is given by the real and
imaginary parts of the complex function zn = (x+ iy)n,

p
(n)
1 = Re(x+ iy)n, p

(n)
2 = Im(x+ iy)n.

This basis corresponds to the image under φ of the following basis of Hn(R2)

(7.1)

K
(n)
1 =

⌊n
2
⌋∑

k=0

(
n

2k

)
(−1)keeen−2k

1 ⊙ eee2k2 ,

K
(n)
2 =

⌊n−1
2

⌋∑

k=0

(
n

2k + 1

)
(−1)keee

n−(2k+1)
1 ⊙ eee2k+1

2 ,

where ⊙ stands for the symmetric tensor product (2.1) and

eeepi := eeei ⊙ · · · ⊙ eeei

means the tensor product of p copies of vector eeei. Thus, any harmonic polynomial h in Hn(R
2)

writes

h = ap
(n)
1 + bp

(n)
2 ,

and the harmonic tensor H = φ−1(h) in H
n(R2) writes

H = aK
(n)
1 + bK

(n)
2 , where

{
a = H11···11
b = H11···12

while the other components [52] of H are

H 1···1︸︷︷︸
n−2p

2···2︸︷︷︸
2p

= (−1)pH1···11 and H 1···1︸︷︷︸
n−2p−1

2···2︸︷︷︸
2p+1

= (−1)pH1···12.

Remark 7.1. In both cases, the matrix form of ρn in these bases is

[ρn(rθ)] =

(
cosnθ − sinnθ
sinnθ cosnθ

)
.

Note however, that none of the defined bases are orthonormal for the natural scalar products
on both spaces. There are however orthogonal and their norms are equal (see remark A.3).
Normalizing the bases, will not change the matrix representation and is thus inessential.
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Consider now a representation

(7.2) V ≃ H
n1(R2)⊕ · · · ⊕H

nr(R2),

of G = SO(2) or G = O(2), where nk ≥ 1 for each k. Generating sets for Inv(V, G) have been
provided in section 5, but in terms of monomials

m = zα1
1 · · · zαr

r zβ11 · · · zβrr ,
whose exponents satisfy the linear Diophantine equation (5.2). Here, zk = ak + ibk corresponds
to the components (ak, bk) of the factor Hk ∈ H

nk(R2) in the direct sum (7.2) relative to the

basis (K
(n)
1 ,K

(n)
2 ), where we have used the correspondence

hk(xxx) = Hk(xxx, . . . ,xxx) ∈ Hnk
(R2),

and recast hk as a polynomial function of the complex variables z = x+ iy and z = x− iy.
It is the goal of this section to translate real and imaginary parts of the monomials m into

tensors invariants. To do so, observe first that

hk = Re(zkz
nk) = Re(zkz

nk) =
1

2
(zkz

nk + zkz
nk) ,

and its conjugate harmonic function h̃k writes as

h̃k = Im(zkz
nk) = − Im(zkz

nk) =
1

2i
(zkz

nk − zkz
nk) ,

where z = x + iy and zk = ak + ibk. We will now provide three theorems which enable to
translate real and imaginary parts of monomials m into tensors invariants. Their proofs are
provided in Appendix D.

Theorem 7.2. Let hk = φ(Hk) ∈ Hnk
(R2), where nk ≥ 1. Then,

h̃k = Im(zkz
nk) = φ(1×Hk).

Theorem 7.3. Let Hj ∈ H
nj(R2) be harmonic tensors where nj ≥ 1 and set φ(Hj) = Re(zjz

nj ).
Then

Re
(
z1 · · · zpzn1+···+np

)
= 2p−1φ

(
(H1 ⊙ · · · ⊙Hp)

′) .

Theorem 7.4. Let Hj ∈ H
nj(R2) be harmonic tensors where nj ≥ 1 and set φ(Hj) = Re(zjz

nj ).
Let N1 = n1 + · · · + np, N2 = np+1 + · · · + np+s and assume that N1 ≤ N2. Then

Re
(
z1 · · · zpzp+1 · · · zp+szN2−N1

)

= 2(p+s−1−N1)φ

(
(H1 ⊙ · · · ⊙Hp)

′ (N1)· (Hp+1 ⊙ · · · ⊙Hp+s)
′
)
,

and

Im
(
z1 · · · zpzp+1 · · · zp+szN2−N1

)

=
2(p+s−2N1)(N1 +N2 − 2)!

(N1 − 1)!(N2 − 1)!
φ
(
tr(N1−1)

(
(H1 ⊙ · · · ⊙Hp)

′ × (Hp+1 ⊙ · · · ⊙Hp+s)
′))

= 2(p+s−1−N1)φ

(
(H1 ⊙ · · · ⊙Hp)

′ (N1)· ([1×Hp+1]⊙ · · · ⊙Hp+s)
′]

)

= −2(p+s−1−N1)φ

(
([1×H1]⊙ · · · ⊙Hp)

′ (N1)· (Hp+1 ⊙ · · · ⊙Hp+s)
′]

)
.

Example 7.5. Let C ∈ Ela be a bidimensional elasticity tensor. Its harmonic decomposition
writes C ≃ (λ, µ,h,H), where h ∈ H

2(R2) and H ∈ H
4(R2) (see example 3.5 and remark 3.6).

Writing

φ(h) = Re(z2z
2), and φ(H) = Re(z4z

4),

the translation of monomial invariants given in 5.4 and 5.10, namely

z2z2, z4z4, Re(z22z4), Im(z22z4)
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write

z2z2 =
1

2
(h

(2)· h) =
1

2
h : h,

z4z4 =
1

23
(H

(4)· H) =
1

8
H :: H,

Re(z22z4) =
1

4
((h⊙ h)′

(4)· H) =
1

4
(h : H : h),

while there are several possibilities to translate Im(z22z4):

Im(z22z4) =
5

8
tr3((h⊙ h)′ ×H)

=
1

4

(
(h⊙ h)′

(4)· (1×H)
)
=

1

4
h : (1×H) : h

= −1

4

(
((1× h)⊙ h)′

(4)· H
)
= −1

4
h : H : (1× h).

We deduce thus the following results.

(1) A minimal SO(2)-integrity basis for C ∈ Ela is

λ, µ, h : h, H :: H, h : H : h, h : H : (1× h).

(2) A minimal O(2)-integrity basis for C ∈ Ela is

λ, µ, h : h, H :: H, h : H : h.

8. Minimal covariant bases for most common constitutive tensors and laws

In this section, we illustrate the power of the method explained in this paper by providing
a minimal integrity basis for an exhaustive list of constitutive tensors and laws which involve
several tensors. More precisely, applying theorems 5.3, 5.5, and 5.9, and using the cleaning
algorithm detailed in section 6, we obtain explicit results in 2D for:

• Third-order tensors with no index symmetry T
3(R2), thus for third-order tensors with

any kind of index symmetries (by theorem 5.11), and in particular for the piezoelectricity
tensor P ∈ Piez;

• Fourth-order tensors with no index symmetry T
4(R2), thus for fourth-order tensors with

any kind of index symmetries (by example 3.5 and theorem 5.11), and in particular for
the elasticity tensor C ∈ Ela and the photoelasticity/Eshelby tensor ΠΠΠ ∈ Gel;

• The complex viscoelasticity tensor, or more precisely its de-complexification, Ela⊕ Ela,
• The Hill elasto-plasticity constitutive equations;
• The linear piezoelectricity constitutive law, which involves three constitutive tensors, the
dielectric permittivity tensor (of order two), the piezoelectricity tensor (of order three)
and the elasticity tensor (of order four);

• Twelfth-order totally symmetric tensors S ∈ S
12(R2) and thus for totally symmetric

fabric tensors [52] of order 4, 6, 8 and 10 (by remark 5.12).

In each case, we provide an harmonic decomposition and a minimal integrity basis of the
covariant algebra (except for S12(R2), for which we provide only an integrity basis for its invariant
algebra due to its very large cardinal), and this both for G = O(2) and G = SO(2).

Remark 8.1. For each produced SO(2)-integrity basis, the generators I satisfy either σ ⋆ I = I
or σ ⋆ I = −I. In the first case, we shall refer to I as an isotropic invariant (since it is O(2)-
invariant), and in the second case, as an hemitropic invariant. Besides, the following notation has
been adopted. For each factor H

n(R2) which occurs in the harmonic decomposition provided,
the corresponding variable is written as zn, if there is only one component H

n(R2) in this
decomposition or zna, znb, znc, . . . if the component Hn(R2) appears with multiplicity.
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8.1. Third-order tensors. The harmonic decomposition of T3(R2) is the same for SO(2) and
O(2) and writes

T
3(R2) ≃ 3H1(R2)⊕H

3(R2).

We will thus write T = (z1a, z1b, z1c, z3), after the choice of an explicit harmonic decomposition
(such as example A.5) and we have the following result.

Theorem 8.2. A minimal integrity basis for Cov(T3(R2),SO(2)) consists in the 57 covariants
(30 invariants) of Table 1 and Table 2. A minimal integrity basis for Cov(T3(R2),O(2)) is
provided by the 31 covariants (17 invariants) of Table 1.

Table 1. Isotropic covariants of T3(R2)

# order degree Formula

1 0 2 z1az1a
2 0 2 z1bz1b
3 0 2 z1cz1c
4 0 2 z3z3
5 0 2 Re[z1az1b]
6 0 2 Re[z1az1c]
7 0 2 Re[z1bz1c]
8 0 4 Re[z31az3]
9 0 4 Re[z31bz3]
10 0 4 Re[z31cz3]
11 0 4 Re[z1az21bz3]
12 0 4 Re[z1bz

2
1cz3]

13 0 4 Re[z21bz1cz3]
14 0 4 Re[z21az1cz3]
15 0 4 Re[z21az1bz3]
16 0 4 Re[z1az21cz3]
17 0 4 Re[z1az1bz1cz3]

# order degree Formula

18 1 1 Re[z1az]

19 1 1 Re[z1bz]
20 1 1 Re[z1cz]
21 1 3 Re[z21az3z]
22 1 3 Re[z21bz3z]
23 1 3 Re[z21cz3z]
24 1 3 Re[z1az1bz3z]
25 1 3 Re[z1az1cz3z]
26 1 3 Re[z1bz1cz3z]

27 2 0 zz
28 2 2 Re[z1az3z2]
29 2 2 Re[z1bz3z

2]
30 2 2 Re[z1cz3z2]

31 3 1 Re[z3z3]

Table 2. Hemitropic covariants of T3(R2)

# order degree Formula

32 0 2 Im[z1az1b]
33 0 2 Im[z1az1c]
34 0 2 Im[z1bz1c]
35 0 4 Im[z31az3]
36 0 4 Im[z31bz3]
37 0 4 Im[z31cz3]
38 0 4 Im[z1az21bz3]
39 0 4 Im[z1bz

2
1cz3]

40 0 4 Im[z21bz1cz3]
41 0 4 Im[z21az1cz3]
42 0 4 Im[z21az1bz3]
43 0 4 Im[z1az21cz3]
44 0 4 Im[z1az1bz1cz3]

# order degree Formula

45 1 1 Im[z1az]
46 1 1 Im[z1bz]
47 1 1 Im[z1cz]
48 1 3 Im[z21az3z]
49 1 3 Im[z21bz3z]
50 1 3 Im[z21cz3z]
51 1 3 Im[z1az1bz3z]
52 1 3 Im[z1az1cz3z]
53 1 3 Im[z1bz1cz3z]

54 2 2 Im[z1az3z2]
55 2 2 Im[z1bz3z

2]
56 2 2 Im[z1cz3z2]

57 3 1 Im[z3z3]

An application of theorem 8.2 concerns the bidimensional piezoelectricity third-order tensor
P (also denoted e in the IEEE Standard on Piezoelectricity, ANSI/IEEE 176 -1987), with index
symmetry Pijk = Pikj. It relates the electric displacement DDD to the stress tensor σσσ ∈ S

2(R2), at
vanishing electric field, as [84]

DDD = P : σσσ, Di = Pijkσjk.

The space of 2D piezoelectricity tensors, noted Piez, has the same harmonic decomposition for
both O(2) and SO(2) and writes [36] 2H1(R2) ⊕ H

3(R2). By theorem 5.11, minimal integrity
bases for Cov(Piez, G) (G = O(2) or G = SO(2)) are obtained by setting z1c = 0 in theorem 8.2
(with z1a, z1b, z3 defined as in example A.6). Using translation formulas of section 7, we deduce
the following corollary, which completes partial results obtained by Vannucci in [100].
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Corollary 8.3. A minimal integrity basis of Cov(Piez,SO(2)), where we have set P = (vvv,www,H),
with vvv,www ∈ H

1(R2) and H ∈ H
3(R2), consists in the 30 covariants (13 invariants) of Table 3. A

minimal integrity basis of Cov(Piez,O(2)) consists in the 17 covariants (8 invariants) of Table 4.

Table 3. A minimal integrity basis for Cov(Piez,SO(2))

# order degree Formula

1 0 2 vvv · vvv
2 0 2 www ·www
3 0 2 vvv ·www
4 0 2 vvv ×www

5 0 2 H
.
.
.H

6 0 4 (vvv ·H · vvv) · vvv
7 0 4 (vvv ·H · vvv) ·www
8 0 4 (www ·H ·www) ·www
9 0 4 (www ·H ·www) · vvv
10 0 4 (vvv ·H · vvv) · (1× vvv)
11 0 4 (vvv ·H · vvv) · (1×www)
12 0 4 (www ·H ·www) · (1× vvv)
13 0 4 (www ·H ·www) · (1×www)

# order degree Formula

14 1 1 vvv
15 1 1 www
16 1 1 1× vvv
17 1 1 1×www
18 1 3 vvv ·H · vvv
19 1 3 www ·H ·www
20 1 3 vvv ·H ·www
21 1 3 vvv ·H · (1× vvv)
22 1 3 www ·H · (1×www)
23 1 3 vvv ·H · (1×www)

24 2 0 1

25 2 2 H · vvv
26 2 2 H ·www
27 2 2 H · (1× vvv)
28 2 2 H · (1×www)

29 3 1 H

30 3 1 1×H

Table 4. A minimal integrity basis for Cov(Piez,O(2))

# order degree Formula

1 0 2 vvv · vvv
2 0 2 www ·www
3 0 2 vvv ·www
4 0 2 H

.

.

.H

5 0 4 (vvv ·H · vvv) · vvv
6 0 4 (vvv ·H · vvv) ·www
7 0 4 (www ·H ·www) ·www
8 0 4 (www ·H ·www) · vvv

# order degree Formula

9 1 1 vvv
10 1 1 www
11 1 3 vvv ·H · vvv
12 1 3 www ·H ·www
13 1 3 vvv ·H ·www

14 2 0 1

15 2 2 H · vvv
16 2 2 H ·www

17 3 1 H

Finally, we will complete our investigations of third-order tensors, in order to be fully ex-
haustive, by adding the space of totally symmetric tensors S3(R3). Its harmonic decomposition
writes S3(R3) ≃ H

1(R2)⊕H
3(R2) and corresponds to the subspace www = 0 of Piez.

Corollary 8.4. A minimal integrity basis for Cov(S3(R2),SO(2)), where we have set S =
(vvv,H), with vvv ∈ H

1(R2) and H ∈ H
3(R2), consists in the 13 covariants (4 invariants) of Table 5.

A minimal integrity basis for Cov(S3(R2),O(2)) consists in the 8 covariants (3 invariants)
of Table 6.

8.2. Fourth-order tensors. The harmonic decomposition of T4(R2) relative to SO(2) writes

6H0(R2)⊕ 4H2(R2)⊕H
4(R2).

We will thus write
T = (λ1, λ2, λ3, λ4, λ5, λ6, z2a, z2b, z2c, z2d, z4),

after the choice of an explicit harmonic decomposition. For O(2), we get

3H−1(R2)⊕ 3H0(R2)⊕ 4H2(R2)⊕H
4(R2),

and we will have
T = (ξ1, ξ2, ξ3, λ1, λ2, λ3, z2a, z2b, z2c, z2d, z4).
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Table 5. A minimal integrity basis for Cov(S3(R2),SO(2))

# order degree Formula

1 0 2 vvv · vvv
2 0 2 H

.

.

.H

3 0 4 (vvv ·H · vvv) · vvv
4 0 4 (vvv ·H · vvv) · (1× vvv)

# order degree Formula

5 1 1 vvv
6 1 1 1× vvv
7 1 3 vvv ·H · vvv
8 1 3 vvv ·H · (1× vvv)

9 2 0 1

10 2 2 H · vvv
11 2 2 H · (1× vvv)

12 3 1 H

13 3 1 1×H

Table 6. A minimal integrity basis for Cov(S3(R2),O(2))

# order degree Formula

1 0 2 vvv · vvv
2 0 2 H

.

.

.H

3 0 4 (vvv ·H · vvv) · vvv

# order degree Formula

4 1 1 vvv
5 1 3 vvv ·H · vvv

6 2 0 1

7 2 2 H · vvv

8 3 1 H

Note that in the present case, there are pseudo-scalars which reduce to additional H0(R2) com-
ponents when restricted to SO(2): ξ1 = λ4, ξ2 = λ5 and ξ3 = λ6.

Theorem 8.5. A minimal integrity basis for Cov(T4(R2),SO(2)) consists in the 62 covariants
(43 invariants) of Table 7 and Table 8. A minimal integrity basis for Cov(T4(R2),O(2)) consists
in the 115 covariants (78 invariants) of Table 7 and Table 9.

Remark 8.6. In the case of O(2), all products Im(mp)Im(mq) disappear after cleaning but the
products ξi Im(ml) remain, of course, and are listed in table Table 9.

Table 7. Isotropic covariants of T4(R2)

# order degree Formula

1 0 1 λ1
2 0 1 λ2
3 0 1 λ3
4 0 2 z2az2a
5 0 2 z2bz2b
6 0 2 z2cz2c
7 0 2 z2dz2d
8 0 2 z4z4
9 0 2 Re[z2az2b]
10 0 2 Re[z2az2c]
11 0 2 Re[z2az2d]
12 0 2 Re[z2bz2c]
13 0 2 Re[z2bz2d]
14 0 2 Re[z2cz2d]
15 0 3 Re[z22az4]
16 0 3 Re[z22bz4]
17 0 3 Re[z22cz4]
18 0 3 Re[z22dz4]

# order degree Formula

19 0 3 Re[z2az2bz4]
20 0 3 Re[z2az2cz4]
21 0 3 Re[z2az2dz4]
22 0 3 Re[z2bz2cz4]
23 0 3 Re[z2bz2dz4]
24 0 3 Re[z2cz2dz4]

25 2 0 zz
26 2 1 Re[z2az2]
27 2 1 Re[z2bz

2]
28 2 1 Re[z2cz2]
29 2 1 Re[z2dz

2]
30 2 2 Re[z2az4z2]
31 2 2 Re[z2bz4z

2]
32 2 2 Re[z2cz4z2]
33 2 2 Re[z2dz4z

2]

34 4 1 Re[z4z4]

Photoelasticity tensor. The 2D photoelasticity tensor ΠΠΠ [22], like the 2D Eshelby tensor, has the
following index symmetry Πijkl = Πjikl = Πijlk. The corresponding tensor space, noted Gel in
[34], has the following harmonic decomposition under SO(2)

3H0(R2)⊕ 2H2(R2)⊕H
4(R2),
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Table 8. Hemitropic covariants of T4(R2)

# order degree Formula

35 0 1 ξ1 = λ4
36 0 1 ξ2 = λ5
37 0 1 ξ3 = λ6
38 0 2 Im[z2az2b]
39 0 2 Im[z2az2c]
40 0 2 Im[z2az2d]
41 0 2 Im[z2bz2c]
42 0 2 Im[z2bz2d]
43 0 2 Im[z2cz2d]
44 0 3 Im[z22az4]
45 0 3 Im[z22bz4]
46 0 3 Im[z22cz4]
47 0 3 Im[z22dz4]
48 0 3 Im[z2az2bz4]
49 0 3 Im[z2az2cz4]

# order degree Formula

50 0 3 Im[z2az2dz4]
51 0 3 Im[z2bz2cz4]
52 0 3 Im[z2bz2dz4]
53 0 3 Im[z2cz2dz4]

54 2 1 Im[z2az2]
55 2 1 Im[z2bz

2]
56 2 1 Im[z2cz2]
57 2 1 Im[z2dz

2]
58 2 2 Im[z2az4z2]
59 2 2 Im[z2bz4z

2]
60 2 2 Im[z2cz4z2]
61 2 2 Im[z2dz4z

2]

62 4 1 Im[z4z4]

Table 9. Isotropic products of hemitropic covariants of T4(R2) (i = 1, 2, 3)

# order degree Formula

35 0 2 ξ 2
1

36 0 2 ξ 2
2

37 0 2 ξ 2
3

38 0 2 ξ1ξ2
39 0 2 ξ1ξ3
40 0 2 ξ2ξ3
41, 42, 43 0 3 ξi Im[z2az2b]
44, 45, 46 0 3 ξi Im[z2az2c]
47, 48, 49 0 3 ξi Im[z2az2d]
50, 51, 52 0 3 ξi Im[z2bz2c]
53, 54, 55 0 3 ξi Im[z2bz2d]
56, 57, 58 0 3 ξi Im[z2cz2d]
59, 60, 61 0 4 ξi Im[z22az4]
62, 63, 64 0 4 ξi Im[z22bz4]
65, 66, 67 0 4 ξi Im[z22cz4]
68, 69, 70 0 4 ξi Im[z22dz4]

# order degree Formula

71, 72, 73 0 4 ξi Im[z2az2bz4]
74, 75, 76 0 4 ξi Im[z2az2cz4]
77, 78, 79 0 4 ξi Im[z2az2dz4]
80, 81, 82 0 4 ξi Im[z2bz2cz4],
83, 84, 85 0 4 ξi Im[z2bz2dz4]
86, 87, 88 0 4 ξi Im[z2cz2dz4]

89, 90, 91 2 2 ξi Im(z2az2)
92, 93, 94 2 2 ξi Im(z2bz

2)
95, 96, 97 2 2 ξi Im(z2cz2)
98, 99, 100 2 2 ξi Im(z2dz

2)
101, 102, 103 2 3 ξi Im[z2az4z2]
104, 105, 106 2 3 ξi Im[z2bz4z

2]
107, 108, 109 2 3 ξi Im[z2cz4z2]
110, 111, 112 2 3 ξi Im[z2dz4z

2]

113, 114, 115 4 2 ξi Im(z4z4)

and

H
−1(R2)⊕ 2H0(R2)⊕ 2H2(R2)⊕H

4(R2),

under O(2). It corresponds to the subspace of T4(R2), where

λ1 = λ, λ2 = µ, ξ1 = ξ, λ3 = ξ2 = ξ3 = 0, z2c = z2d = 0.

In the following corollary, we provide for it a minimal integrity basis of its covariant algebra and
correct, by the way, an error in [63]. Indeed, the O(2)-integrity basis of its invariant algebra
provided there, is of cardinal 10, and omits all the irreducible invariants of Table 12.

Corollary 8.7. A minimal integrity basis for Cov(Gel,SO(2))), where we have set

ΠΠΠ = (ξ, λ, µ,h1,h2,H),

with ξ ∈ H
−1(R2), λ, µ ∈ H

0(R2), h1,h2 ∈ H
2(R2), H ∈ H

4(R2), consists in the 25 covariants
of Table 10 and Table 11 (14 invariants). A minimal integrity basis for Cov(Gel,O(2))) consists
in the 25 covariants (14 invariants) of Table 10 and Table 12.

Remark 8.8. In [63], the authors have forgotten the 4 products ξi Imml of Table 12 which
cannot be removed from any minimal basis of the O(2)-invariant algebra, by theorem 5.5.



COMPUTATION OF MINIMAL COVARIANTS BASES 23

Table 10. Isotropic covariants of the photoelasticity tensor

# order degree Formula Formula

1 0 1 λ λ
2 0 1 µ µ
3 0 2 z2az2a h1 : h1

4 0 2 z2bz2b h2 : h2

5 0 2 z4z4 H :: H
6 0 2 Re[z2az2b] h1 : h2

7 0 3 Re[z22az4] h1 : H : h1

8 0 3 Re[z22bz4] h2 : H : h2

9 0 3 Re[z2az2bz4] h1 : H : h2

# order degree Formula Formula

10 2 0 zz 1

11 2 1 Re[z2az2] h1

12 2 1 Re[z2bz
2] h2

13 2 2 Re[z2az4z2] H : h1

14 2 2 Re[z2bz4z
2] H : h2

15 4 1 Re[z4z4] H

Table 11. Hemitropic covariants of the photoelasticity tensor

# order degree Formula Formula

16 0 1 ξ ξ
17 0 2 Im[z2az2b] h1 : (1× h2)
18 0 3 Im[z22az4] h1 : H : (1× h1)
19 0 3 Im[z22bz4] h2 : H : (1× h2)
20 0 3 Im[z2az2bz4] h1 : H : (1× h2)

# order degree Formula Formula

21 2 1 Im[z2az2] (1× h1)
22 2 1 Im[z2bz

2] (1× h2)
23 2 2 Im[z2az4z2] H : (1× h1)
24 2 2 Im[z2bz4z

2] H : (1× h2)

25 4 1 Im[z4z4] (1×H)

Table 12. Isotropic products of hemitropic covariants of the photoelasticity
tensor

# order degree Formula Formula

16 0 2 ξ2 ξ2

17 0 3 ξ Im[z2az2b] ξ h1 : (1× h2)
18 0 4 ξ Im[z22az4] ξ h1 : H : (1× h1)
19 0 4 ξ Im[z22bz4] ξ h2 : H : (1× h2)
20 0 4 ξ Im[z2az2bz4] ξ h1 : H : (1× h2)

# order degree Formula Formula

21 2 2 ξ Im(z2az2) ξ 1× h1

22 2 2 ξ Im(z2bz
2) ξ 1× h2

23 2 3 ξ Im[z2az4z2] ξH : (1× h1)
24 2 3 ξ Im[z2bz4z

2] ξH : (1× h2)

25 4 2 ξ Im(z4z4) ξ 1×H

Elasticity tensor. The 2D elasticity tensor C has the index symmetry Cijkl = Cjikl = Cijlk =
Cklij. The corresponding tensor space Ela has the following harmonic decomposition

2H0(R2)⊕H
2(R2)⊕H

4(R2),

both for O(2) and SO(2). It corresponds to the subspace of T4(R2), where

λ3 = ξ1 = ξ2 = ξ3 = 0, z2b = z2c = z2d = 0,

and to the subspace of Gel, where

ξ = 0, h1 = h, h2 = 0.

The following corollary completes the already known integrity basis of the invariant algebra of
Ela (see examples 5.4, 5.10 and 7.5) into a minimal integrity basis of its covariant algebra.

Corollary 8.9. A minimal integrity basis for Cov(Ela,SO(2))), where we have set C = (λ, µ,h,H),
with λ, µ ∈ H

0(R2), h ∈ H
2(R2), H ∈ H

4(R2), consists in the 13 covariants (6 invariants)
of Table 13 (A) and Table 13 (B). A minimal integrity basis for Cov(Ela,O(2)) consists in the
9 covariants (5 invariants) of Table 13 (A).

8.3. Viscoelasticity law and Hill elasto-plasticity. In linear viscoelasticity, the application
of a periodic strain tensor at frequency f , seen as the imaginary part of ǫǫǫ = ǫǫǫa exp(2iπft),
generates a periodic stress tensor which is the imaginary part of σσσ = σσσa exp(i(2πft+ϕ)); ǫǫǫa and
σσσa are the assumed constant strain and stress amplitude (symmetric) tensors and ϕ is the phase
shift. A frequency dependent anisotropic viscoelasticity behaviour can then be formulated as

(8.1) σσσ = C∗ : ǫǫǫ,
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Table 13. Covariants of Ela

(a) Isotropic covariants

# order degree Formula

1 0 1 λ
2 0 1 µ
3 0 2 h : h
4 0 2 H :: H
5 0 3 h : H : h

6 2 0 1

7 2 1 h

8 2 2 H : h

9 4 1 H

(b) Hemitropic covariants

# order degree Formula

10 0 3 h : H : (1× h)

11 2 1 1× h

12 2 2 H : (1× h)

13 4 1 1×H

where C∗ = C∗(f) = C1 + iC2 (with C1,C2 ∈ Ela) is the complex viscoelasticity tensor. For
the purpose we are concerned in, we will however still consider this representation as a real
representation of either SO(2) or O(2) and represent it as the (de-complexified) vector space
V = Ela⊕ Ela.

On the other hand, Hill elasto-plasticity constitutive equations [45] can be summarized into
the linear elasticity law

σσσ = C : (ǫǫǫ− ǫǫǫp),

where C ∈ Ela is the elasticity tensor, ǫǫǫp ∈ S
2(R2) is the plastic strain tensor, and into the

(plasticity) yield criterion

f = σσσ : PH : σσσ −R(p) ≤ 0,

where PH ∈ Ela is the Hill fourth-order tensor and R is the hardening function (p being the
so-called accumulated plastic strain). The evolution laws are obtained by generalized normality
(see [58]). Hill elasto-plasticity law is also represented by a pair (C1,C2) of tensors of the
elasticity type, but this time, with C1 = C, and C2 = PH .

The harmonic decomposition of V = Ela⊕ Ela, which is the same for SO(2) and O(2), is

4H0(R2)⊕ 2H2(R2)⊕ 2H4(R2),

and we will write

(C1,C2) = (λ1, λ2, µ1, µ2, z2a, z2b, z4a, z4b) = (λ1, λ2, µ1, µ2,h1,h2,H1,H2).

Theorem 8.10. A minimal integrity basis for Cov(Ela⊕Ela,SO(2)) consists in the 41 covari-
ants (24 invariants) of Table 14 and Table 15. A minimal integrity basis for Cov(Ela⊕Ela,O(2))
consists in the 28 covariants (17 invariants) of Table 14 and Table 16.

Remark 8.11. Note that, in the minimal covariant basis for Cov(Ela⊕ Ela,O(2)), it remains 3
products Im(mp)Im(mq) (see Table 16), which cannot be eliminated after cleaning.

8.4. Piezoelectricity law. The linear piezoelectricity law [84] is a linear relation between the
(symmetric) second-order strain tensor ǫǫǫ, the (symmetric) second-order stress tensor σσσ, the
electric field EEE, and the electric displacement DDD. It writes

{
σσσ = C : ǫǫǫ−EEE ·P,
DDD = P : σσσ + εεεσ0 ·EEE,

{
σij = Cijklǫkl − PkijEk,

Di = Piklσkl + εσ0ikEk,

where C ∈ Ela is the elasticity fourth-order tensor (Cijkl = Cjikl = Cklij), P ∈ Piez is the
piezoelectricity third-order tensor (Pkij = Pkji), and εεε

σ
0 is the (symmetric) second-order dielectric

permittivity tensor (which should not be confused with the Levi-Civita tensor εεε or the strain
tensor ǫǫǫ). The harmonic decomposition of the constitutive tensor (C,P, εεεσ0 ), with respect to
either SO(2) or O(2) writes as

3H0(R2)⊕ 2H1(R2)⊕ 2H2(R2)⊕H
3(R2)⊕H

4(R2),



COMPUTATION OF MINIMAL COVARIANTS BASES 25

Table 14. Isotropic covariants of V = Ela⊕ Ela

# order degree Formula Formula

1 0 1 λ1 λ1
2 0 1 µ1 µ1
3 0 1 λ2 λ2
4 0 1 µ2 µ2
5 0 2 z2az2a h1 : h1

6 0 2 z2bz2b h2 : h2

7 0 2 z4az4a H1 :: H1

8 0 2 z4bz4b H2 :: H2

9 0 2 Re[z2az2b] h1 : h2

10 0 2 Re[z4az4b] H1 :: H2

11 0 3 Re[z22az4a] h1 : H1 : h1

12 0 3 Re[z22bz4a] h2 : H1 : h2

13 0 3 Re[z22az4b] h1 : H2 : h1

14 0 3 Re[z22bz4b] h2 : H2 : h2

15 0 3 Re[z2az2bz4a] h1 : H1 : h2

16 0 3 Re[z2az2bz4b] h1 : H2 : h2

# order degree Formula Formula

17 2 0 zz 1

18 2 1 Re[z2az2] h1

19 2 1 Re[z2bz
2] h2

20 2 2 Re[z2az4az2] H1 : h1

21 2 2 Re[z2az4bz
2] H2 : h1

22 2 2 Re[z2bz4az
2] H1 : h2

23 2 2 Re[z2bz4bz
2] H2 : h2

24 4 1 Re[z4az4] H1

25 4 1 Re[z4bz
4] H2

Table 15. Hemitropic covariants of V = Ela⊕ Ela

# order degree Formula Formula

26 0 2 Im[z2az2b] h1 : (1× h2)
27 0 2 Im[z4az4b] H1 : (1×H2)
28 0 3 Im[z22az4a] h1 : H1 : (1× h1)
29 0 3 Im[z22bz4a] h2 : H1 : (1× h2)
30 0 3 Im[z22az4b] h1 : H2 : (1× h1)
31 0 3 Im[z22bz4b] h2 : H2 : (1× h2)
32 0 3 Im[z2az2bz4a] h1 : H1 : (1× h2)
33 0 3 Im[z2az2bz4b] h1 : H2 : (1× h2)

# order degree Formula Formula

34 2 1 Im[z2az2] 1× h1

35 2 1 Im[z2bz
2] 1× h2

36 2 2 Im[z2az4az2] H1 : (1× h1)
37 2 2 Im[z2az4bz

2] H2 : (1× h1)
38 2 2 Im[z2bz4az

2] H1 : (1× h2)
39 2 2 Im[z2bz4bz

2] H2 : (1× h2)

40 4 1 Im[z4az4] 1×H1

41 4 1 Im[z4bz
4] 1×H2

Table 16. Isotropic products of hemitropic covariants of V = Ela⊕ Ela

# order degree Formula Formula

26 0 4 Im[z2az2b] Im[z4az4b] (h1 : (1× h2))(H1 :: (1×H2))

27 2 3 Im[z4az4b] Im[z2az2] (H1 :: (1×H2)) (1× h1)
28 2 3 Im[z4az4b] Im[z2bz

2] (H1 :: (1×H2)) (1× h2)

and we will write
(C,P, εεεσ0 ) = (λ1, λ2, λ3, z1a, z1b, z2a, z2b, z3, z4).

Theorem 8.12. A minimal integrity basis for the SO(2)-covariant algebra for the triplet (C,P, εεεσ0 )
consists in the 206 covariants (121 invariants) of Table 17 and Table 18. A minimal integrity
basis for the O(2)-covariant algebra for the triplet (C,P, εεεσ0 ) consists in the 123 covariants (71
invariants) of Table 17 and Table 19.

Remark 8.13. In this case also, it remains many products Im(mp)Im(mq) (see Table 19) which
cannot be eliminated from the O(2)-integrity basis .
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Table 17. Isotropic covariants for the triplet (C,P, εεεσ0 )

# order degree Formula

1 0 1 λ1
2 0 1 λ2
3 0 1 λ3
4 0 2 z1az1a
5 0 2 z1bz1b
6 0 2 z2az2a
7 0 2 z2bz2b
8 0 2 z3z3
9 0 2 z4z4
10 0 2 Re[z1az1b]
11 0 2 Re[z2az2b]
12 0 3 Re[z21az2a]
13 0 3 Re[z21az2b]
14 0 3 Re[z21bz2a]
15 0 3 Re[z21bz2b]
16 0 3 Re[z22az4]
17 0 3 Re[z22bz4]
18 0 3 Re[z1az1bz2a]
19 0 3 Re[z1az1bz2b]
20 0 3 Re[z1az2az3]
21 0 3 Re[z1bz2az3]
22 0 3 Re[z1bz2bz3]
23 0 3 Re[z1az2bz3]
24 0 3 Re[z2az2bz4]
25 0 3 Re[z1az3z4]
26 0 3 Re[z1bz3z4]
27 0 4 Re[z31az3]
28 0 4 Re[z21az1bz3]
29 0 4 Re[z1az21bz3]
30 0 4 Re[z31bz3]
31 0 4 Re[z1az22az3]
32 0 4 Re[z1bz

2
2az3]

33 0 4 Re[z1az2az2bz3]
34 0 4 Re[z1bz2az2bz3]
35 0 4 Re[z1az22bz3]
36 0 4 Re[z1bz

2
2bz3]

37 0 4 Re[z21az2az4]
38 0 4 Re[z1az1bz2az4]
39 0 4 Re[z21bz2az4]
40 0 4 Re[z21az2bz4]
41 0 4 Re[z1az1bz2bz4]

42 0 4 Re[z21bz2bz4]
43 0 4 Re[z1az2az3z4]
44 0 4 Re[z1bz2az3z4]
45 0 4 Re[z1az2bz3z4]
46 0 4 Re[z1bz2bz3z4]
47 0 4 Re[z2az23z4]
48 0 4 Re[z2bz

2
3z4]

49 0 5 Re[z32az
2
3]

50 0 5 Re[z22az2bz
2
3]

51 0 5 Re[z2az22bz
2
3]

52 0 5 Re[z32bz
2
3]

53 0 5 Re[z41az4]
54 0 5 Re[z31az1bz4]
55 0 5 Re[z21az

2
1bz4]

# order degree Formula

56 0 5 Re[z1az31bz4]
57 0 5 Re[z41bz4]
58 0 5 Re[z2az23z

2
4]

59 0 5 Re[z2bz
2
3z

2
4]

60 0 5 Re[z21az
2
3z4]

61 0 5 Re[z1az1bz
2
3z4]

62 0 5 Re[z21bz
2
3z4]

63 0 6 Re[z1az33z
2
4 ]

64 0 6 Re[z1bz
3
3z

2
4 ]

65 0 7 Re[z43z
3
4]

66 1 1 Re[z1az]
67 1 1 Re[z1bz]

68 1 2 Re[z1az2az]
69 1 2 Re[z1bz2az]
70 1 2 Re[z1az2bz]
71 1 2 Re[z1bz2bz]
72 1 2 Re[z2az3z]
73 1 2 Re[z2bz3z]
74 1 2 Re[z3z4z]
75 1 3 Re[z21az3z]
76 1 3 Re[z22bz3z]
77 1 3 Re[z21bz3z]
78 1 3 Re[z22az3z]
79 1 3 Re[z2az2bz3z]
80 1 3 Re[z1az1bz3z]
81 1 3 Re[z2az3z4z]
82 1 3 Re[z2bz3z4z]
83 1 3 Re[z1az2az4z]
84 1 3 Re[z1bz2az4z]
85 1 3 Re[z1az2bz4z]
86 1 3 Re[z1bz2bz4z]
87 1 4 Re[z31az4z]
88 1 4 Re[z31bz4z]
89 1 4 Re[z1az23z4z]
90 1 4 Re[z1bz

2
3z4z]

91 1 4 Re[z21az1bz4z]
92 1 4 Re[z1az21bz4z]
93 1 5 Re[z33z

2
4z]

94 2 0 zz
95 2 1 Re[z2az2]
96 2 1 Re[z2bz

2]
97 2 2 Re[z1az3z2]
98 2 2 Re[z1bz3z

2]
99 2 2 Re[z2az4z2]
100 2 2 Re[z2bz4z

2]
101 2 3 Re[z21az4z

2]
102 2 3 Re[z21bz4z

2]
103 2 3 Re[z23z4z

2]
104 2 3 Re[z1az1bz4z

2]

105 3 1 Re[z3z3]
106 3 2 Re[z1az4z3]
107 3 2 Re[z1bz4z

3]

108 4 1 Re[z4z4]
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Table 18. Hemitropic covariants for the triplet (C,P, εεεσ0 )

# order degree Formula

109 0 2 Im[z1az1b]
110 0 2 Im[z2az2b]
111 0 3 Im[z21az2a]
112 0 3 Im[z21az2b]
113 0 3 Im[z21bz2a]
114 0 3 Im[z21bz2b]
115 0 3 Im[z22az4]
116 0 3 Im[z22bz4]
117 0 3 Im[z1az1bz2a]
118 0 3 Im[z1az1bz2b]
119 0 3 Im[z1az2az3]
120 0 3 Im[z1bz2az3]
121 0 3 Im[z1bz2bz3]
122 0 3 Im[z1az2bz3]
123 0 3 Im[z2az2bz4]
124 0 3 Im[z1az3z4]
125 0 3 Im[z1bz3z4]
126 0 4 Im[z31az3]
127 0 4 Im[z21az1bz3]
128 0 4 Im[z1az21bz3]
129 0 4 Im[z31bz3]
130 0 4 Im[z1az22az3]
131 0 4 Im[z1bz

2
2az3]

132 0 4 Im[z1az2az2bz3]
133 0 4 Im[z1bz2az2bz3]
134 0 4 Im[z1az22bz3]
135 0 4 Im[z1bz

2
2bz3]

136 0 4 Im[z21az2az4]
137 0 4 Im[z1az1bz2az4]
138 0 4 Im[z21bz2az4]
139 0 4 Im[z21az2bz4]
140 0 4 Im[z1az1bz2bz4]
141 0 4 Im[z21bz2bz4]
142 0 4 Im[z1az2az3z4]
143 0 4 Im[z1bz2az3z4]
144 0 4 Im[z1az2bz3z4]
145 0 4 Im[z1bz2bz3z4]
146 0 4 Im[z2az23z4]
147 0 4 Im[z2bz

2
3z4]

148 0 5 Im[z32az
2
3]

149 0 5 Im[z22az2bz
2
3]

150 0 5 Im[z2az22bz
2
3]

151 0 5 Im[z32bz
2
3]

152 0 5 Im[z41az4]
153 0 5 Im[z31az1bz4]
154 0 5 Im[z21az

2
1bz4]

155 0 5 Im[z1az31bz4]
156 0 5 Im[z41bz4]
157 0 5 Im[z2az23z

2
4]

158 0 5 Im[z2bz
2
3z

2
4]

# order degree Formula

159 0 5 Im[z21az
2
3z4]

160 0 5 Im[z1az1bz
2
3z4]

161 0 5 Im[z21bz
2
3z4]

162 0 6 Im[z1az33z
2
4 ]

163 0 6 Im[z1bz
3
3z

2
4 ]

164 0 7 Im[z43z
3
4]

165 1 1 Im[z1az]
166 1 1 Im[z1bz]
167 1 2 Im[z1az2az]
168 1 2 Im[z1bz2az]
169 1 2 Im[z1az2bz]
170 1 2 Im[z1bz2bz]

171 1 2 Im[z2az3z]
172 1 2 Im[z2bz3z]
173 1 2 Im[z3z4z]
174 1 3 Im[z21az3z]
175 1 3 Im[z22bz3z]
176 1 3 Im[z21bz3z]
177 1 3 Im[z22az3z]
178 1 3 Im[z2az2bz3z]
179 1 3 Im[z1az1bz3z]
180 1 3 Im[z2az3z4z]
181 1 3 Im[z2bz3z4z]
182 1 3 Im[z1az2az4z]
183 1 3 Im[z1bz2az4z]
184 1 3 Im[z1az2bz4z]
185 1 3 Im[z1bz2bz4z]
186 1 4 Im[z31az4z]
187 1 4 Im[z31bz4z]
188 1 4 Im[z1az23z4z]
189 1 4 Im[z1bz

2
3z4z]

190 1 4 Im[z21az1bz4z]
191 1 4 Im[z1az21bz4z]
192 1 5 Im[z33z

2
4z]

193 2 1 Im[z2az2]
194 2 1 Im[z2bz

2]
195 2 2 Im[z1az3z2]
196 2 2 Im[z1bz3z

2]
197 2 2 Im[z2az4z2]
198 2 2 Im[z2bz4z

2]
199 2 3 Im[z21az4z

2]
200 2 3 Im[z21bz4z

2]
201 2 3 Im[z23z4z

2]
202 2 3 Im[z1az1bz4z

2]

203 3 1 Im[z3z3]

204 3 2 Im[z1az4z3]
205 3 2 Im[z1bz4z

3]

206 4 1 Im[z4z4]

Table 19. Isotropic products of hemitropic covariants for the triplet (C,P, εεεσ0 )

# order degree Formula

109 0 4 Im[z1az1b] Im[z2az2b]
110 0 5 Im[z1az1b] Im[z22az4]
111 0 5 Im[z1az1b] Im[z22bz4]
112 0 5 Im[z1az1b] Im[z2az2bz4]
113 0 5 Im[z2az2b] Im[z1az3z4]
114 0 5 Im[z2az2b] Im[z1bz3z4]

# order degree Formula

115 2 3 Im[z2az2b] Im[z1az]
116 2 3 Im[z2az2b] Im[z1bz]
117 2 4 Im[z22az4] Im[z1az]
118 2 4 Im[z22az4] Im[z1bz]
119 2 4 Im[z22bz4] Im[z1az]
120 2 4 Im[z22bz4] Im[z1bz]
121 2 4 Im[z2az2bz4] Im[z1az]
122 2 4 Im[z2az2bz4] Im[z1bz]
123 2 4 Im[z2az2b] Im[z3z4z]
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8.5. Twelfth-order totally symmetric tensor. Totally symmetric tensors are encountered
for the intrinsic description of directional data [52]. They may represent the directional density
of spatial contacts and grains orientations within granular materials [64], the directional crack
density [52, 75, 61, 97], or the directional description of microstructure degradation by rafting
in single crystal superalloys at high temperature [18].

The harmonic decomposition of S12(R2) is the same under SO(2) or O(2) and writes

H
0(R2)⊕H

2(R2)⊕H
4(R2)⊕H

6(R2)⊕H
8(R2)⊕H

10(R2)⊕H
12(R2),

and we will write
S = (λ, z2, z4, z6, z8, z10, z12),

where λ ∈ R and zk ∈ C. Due to the large number of two-dimensional harmonic components,
only minimal integrity bases for its invariant algebra are detailed (and, as for piezoelectricity
law, translations into tensorial expressions will not be provided).

Theorem 8.14. A minimal integrity basis for Inv(S12(R2),SO(2)) consists in the 211 invariants
of Table 20 and Table 21. A minimal integrity basis for Inv(S12(R2),O(2)) consists in the 113
invariants of Table 20 and Table 22.

Remark 8.15. Again, it remains four products Im(mp)Im(mq) (see Table 22) which cannot be
eliminated from the O(2)-integrity basis .
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Table 20. Isotropic invariants of S12(R2)

# order degree Formula

1 0 1 λ
2 0 2 z2z2
3 0 2 z4z4
4 0 2 z6z6
5 0 2 z8z8
6 0 2 z10z10
7 0 2 z12z12
8 0 3 Re[z4z22]
9 0 3 Re[z8z24]
10 0 3 Re[z12z26]
11 0 3 Re[z12z10z2]
12 0 3 Re[z6z2z4]
13 0 3 Re[z8z2z6]
14 0 3 Re[z10z4z6]
15 0 3 Re[z10z2z8]
16 0 3 Re[z12z4z8]
17 0 4 Re[z6z32]
18 0 4 Re[z12z34]
19 0 4 Re[z26z10z2]
20 0 4 Re[z28z12z4]
21 0 4 Re[z8z22z4]
22 0 4 Re[z10z2z24]
23 0 4 Re[z24z2z6]
24 0 4 Re[z10z22z6]
25 0 4 Re[z210z12z8]
26 0 4 Re[z12z22z8]
27 0 4 Re[z26z4z8]
28 0 4 Re[z28z10z6]
29 0 4 Re[z4z8z10z2]
30 0 4 Re[z10z4z12z2]

31 0 4 Re[z6z8z12z2]
32 0 4 Re[z6z8z10z4]
33 0 4 Re[z10z6z12z4]
34 0 4 Re[z10z8z12z6]
35 0 4 Re[z12z2z4z6]
36 0 4 Re[z4z6z2z8]
37 0 5 Re[z8z42]
38 0 5 Re[z26z

3
4]

39 0 5 Re[z212z
3
8]

40 0 5 Re[z34z10z2]
41 0 5 Re[z28z12z

2
2]

42 0 5 Re[z212z
2
10z4]

43 0 5 Re[z10z32z4]
44 0 5 Re[z210z12z

2
4]

45 0 5 Re[z12z22z
2
4]

46 0 5 Re[z12z32z6]
47 0 5 Re[z10z8z36]
48 0 5 Re[z26z

2
2z8]

49 0 5 Re[z210z
2
6z8]

50 0 5 Re[z210z4z
2
8]

51 0 5 Re[z28z4z
2
6]

52 0 5 Re[z24z6z12z2]
53 0 5 Re[z6z8z10z22]
54 0 5 Re[z10z6z12z22]
55 0 5 Re[z28z10z2z4]

# order degree Formula

56 0 5 Re[z12z6z10z24]
57 0 5 Re[z210z12z2z6]
58 0 5 Re[z10z4z2z26]
59 0 5 Re[z10z6z24z8]
60 0 5 Re[z212z10z6z8]
61 0 5 Re[z12z6z2z28]
62 0 5 Re[z10z12z6z28]
63 0 5 Re[z10z8z12z2z4]
64 0 5 Re[z12z8z10z4z6]
65 0 5 Re[z12z4z2z6z8]
66 0 6 Re[z10z52]
67 0 6 Re[z28z10z

3
2]

68 0 6 Re[z38z
2
10z4]

69 0 6 Re[z12z42z4]
70 0 6 Re[z310z

2
12z6]

71 0 6 Re[z36z10z
2
4]

72 0 6 Re[z38z12z
2
6]

73 0 6 Re[z210z2z
3
6]

74 0 6 Re[z210z
3
4z8]

75 0 6 Re[z36z2z
2
8]

76 0 6 Re[z10z6z44]
77 0 6 Re[z6z28z

2
10z2]

78 0 6 Re[z38z10z12z2]
79 0 6 Re[z210z6z

2
12z2]

80 0 6 Re[z10z8z12z32]
81 0 6 Re[z10z28z

2
12z2]

82 0 6 Re[z12z26z
2
10z4]

83 0 6 Re[z210z8z
2
12z4]

84 0 6 Re[z210z12z
2
2z4]

85 0 6 Re[z212z10z
2
4z6]

86 0 6 Re[z212z2z6z
2
8]

87 0 7 Re[z12z62]
88 0 7 Re[z38z

4
6]

89 0 7 Re[z210z
5
4]

90 0 7 Re[z210z12z
4
2]

91 0 7 Re[z46z
2
10z4]

92 0 7 Re[z312z
3
10z6]

93 0 7 Re[z310z12z
3
6]

94 0 7 Re[z312z
2
10z

2
8]

95 0 7 Re[z310z6z
3
8]

96 0 7 Re[z210z12z
4
8]

97 0 7 Re[z38z
2
10z

2
2]

98 0 7 Re[z210z8z
2
12z

2
2]

99 0 7 Re[z310z
2
12z2z4]

100 0 8 Re[z310z
5
6]

101 0 8 Re[z48z
3
10z2]

102 0 8 Re[z410z
3
12z4]

103 0 8 Re[z310z
2
12z

3
2]

104 0 8 Re[z310z8z
3
12z2]

105 0 9 Re[z410z
5
8]

106 0 9 Re[z410z
3
12z

2
2]

107 0 9 Re[z412z
4
10z8]

108 0 10 Re[z510z
4
12z2]

109 0 11 Re[z512z
6
10]
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Table 21. Hemitropic invariants of S12(R2)

# order degree Formula

110 0 3 Im[z4z22]
111 0 3 Im[z8z24]
112 0 3 Im[z12z26]
113 0 3 Im[z12z10z2]
114 0 3 Im[z6z2z4]
115 0 3 Im[z8z2z6]
116 0 3 Im[z10z4z6]
117 0 3 Im[z10z2z8]
118 0 3 Im[z12z4z8]
119 0 4 Im[z6z32]
120 0 4 Im[z12z34]
121 0 4 Im[z26z10z2]
122 0 4 Im[z28z12z4]
123 0 4 Im[z8z22z4]
124 0 4 Im[z10z2z24]
125 0 4 Im[z24z2z6]
126 0 4 Im[z10z22z6]
127 0 4 Im[z210z12z8]
128 0 4 Im[z12z22z8]
129 0 4 Im[z26z4z8]
130 0 4 Im[z28z10z6]
131 0 4 Im[z4z8z10z2]
132 0 4 Im[z10z4z12z2]
133 0 4 Im[z6z8z12z2]
134 0 4 Im[z6z8z10z4]
135 0 4 Im[z10z6z12z4]
136 0 4 Im[z10z8z12z6]
137 0 4 Im[z12z2z4z6]
138 0 4 Im[z4z6z2z8]
139 0 5 Im[z8z42]

140 0 5 Im[z26z
3
4]

141 0 5 Im[z212z
3
8]

142 0 5 Im[z34z10z2]
143 0 5 Im[z28z12z

2
2]

144 0 5 Im[z212z
2
10z4]

145 0 5 Im[z10z32z4]
146 0 5 Im[z210z12z

2
4]

147 0 5 Im[z12z22z
2
4]

148 0 5 Im[z12z32z6]
149 0 5 Im[z10z8z36]
150 0 5 Im[z26z

2
2z8]

151 0 5 Im[z210z
2
6z8]

152 0 5 Im[z210z4z
2
8]

153 0 5 Im[z28z4z
2
6]

154 0 5 Im[z24z6z12z2]
155 0 5 Im[z6z8z10z22]
156 0 5 Im[z10z6z12z22]
157 0 5 Im[z28z10z2z4]
158 0 5 Im[z12z6z10z24]
159 0 5 Im[z210z12z2z6]
160 0 5 Im[z10z4z2z26]

# order degree Formula

161 0 5 Im[z10z6z24z8]
162 0 5 Im[z212z10z6z8]
163 0 5 Im[z12z6z2z28]
164 0 5 Im[z10z12z6z28]
165 0 5 Im[z10z8z12z2z4]
166 0 5 Im[z12z8z10z4z6]
167 0 5 Im[z12z4z2z6z8]
168 0 6 Im[z10z52]
169 0 6 Im[z28z10z

3
2]

170 0 6 Im[z38z
2
10z4]

171 0 6 Im[z12z42z4]
172 0 6 Im[z310z

2
12z6]

173 0 6 Im[z36z10z
2
4]

174 0 6 Im[z38z12z
2
6]

175 0 6 Im[z210z2z
3
6]

176 0 6 Im[z210z
3
4z8]

177 0 6 Im[z36z2z
2
8]

178 0 6 Im[z10z6z44]
179 0 6 Im[z6z28z

2
10z2]

180 0 6 Im[z38z10z12z2]
181 0 6 Im[z210z6z

2
12z2]

182 0 6 Im[z10z8z12z32]
183 0 6 Im[z10z28z

2
12z2]

184 0 6 Im[z12z26z
2
10z4]

185 0 6 Im[z210z8z
2
12z4]

186 0 6 Im[z210z12z
2
2z4]

187 0 6 Im[z212z10z
2
4z6]

188 0 6 Im[z212z2z6z
2
8]

189 0 7 Im[z12z62]
190 0 7 Im[z38z

4
6]

191 0 7 Im[z210z
5
4]

192 0 7 Im[z210z12z
4
2]

193 0 7 Im[z46z
2
10z4]

194 0 7 Im[z312z
3
10z6]

195 0 7 Im[z310z12z
3
6]

196 0 7 Im[z312z
2
10z

2
8]

197 0 7 Im[z310z6z
3
8]

198 0 7 Im[z210z12z
4
8]

199 0 7 Im[z38z
2
10z

2
2]

200 0 7 Im[z210z8z
2
12z

2
2]

201 0 7 Im[z310z
2
12z2z4]

202 0 8 Im[z310z
5
6]

203 0 8 Im[z48z
3
10z2]

204 0 8 Im[z410z
3
12z4]

205 0 8 Im[z310z
2
12z

3
2]

206 0 8 Im[z310z8z
3
12z2]

207 0 9 Im[z410z
5
8]

208 0 9 Im[z410z
3
12z

2
2]

209 0 9 Im[z412z
4
10z8]

210 0 10 Im[z510z
4
12z2]

211 0 11 Im[z512z
6
10]

Table 22. Isotropic products of hemitropic invariants of S12(R2)

# order degree Formula

110 0 6 Im[z4z22] Im[z12z26]
111 0 6 Im[z12z26] Im[z8z24]
112 0 6 Im[z12z10z2] Im[z8z24]
113 0 6 Im[z12z26] Im[z10z2z8]
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9. Conclusion

In this paper, we have formulated, with full details, a method to compute a minimal integrity
basis for the invariant algebra of any 2D constitutive tensor (and more generally of any linear
representation of the orthogonal groups SO(2) or O(2)). These results are formalized as theo-
rem 5.3 and theorem 5.5. In the second case, a minimal integrity basis is obtained after applying
a “cleaning algorithm” which is explained in section 6. Besides, several reduction lemmas have
been proven in section 5, which allow to reduce a priori the complexity of the computations
required to obtain minimality.

Meanwhile, a new paradigm has also been introduced: the concept of polynomial covariant
which extends the idea of a polynomial invariant. This notion is not really new in mathematics,
since it goes back to the early ages of Classical Invariant Theory in the nineteenth century.
However, it was not clear how to formulate this concept in the framework of tensor spaces
rather than binary forms, for which it was introduced first. This task is now achieved and the
covariant algebra of a representation V of G (where G = O(2) or G = SO(2)), is defined as

Cov(V, G) := Inv(V ⊕R
2, G).

In other words, it is defined as the invariant algebra of the considered vector space V (and thus,
in particular, for any constitutive tensor), to which is added a vector space R

2 (i.e. a vector
xxx = (x, y)). This concept, as exotic as it may sound first for a non specialist, has proven to be
much more useful than the invariant algebra itself to solve, for instance, such a problem as the
characterization of symmetry classes of the elasticity tensor [72] in a simple manner (compared
to invariant characterization of only its fourth-order harmonic part in [5]). It is implicit in the
work of [15] and more generally in the theory of tensorial representations [14].

Therefore, we have computed minimal integrity bases for covariant algebras rather than in-
variant algebras, and this for an exhaustive list of constitutive tensors and laws (a minimal basis
for the invariant algebra is however immediately deduced from a minimal basis of the covariant
algebra but the converse is, of course, not true). The proposed algorithm has proven to be very
effective and this is illustrated by the fact that we have been able to compute a minimal integrity
basis for the covariant algebra of the following constitutive tensors and laws: all third order ten-
sors (including the piezoelectricty tensor), all fourth-order tensors (including the elasticity, the
Eshelby and the photoelasticity tensors), the linear viscoelasticity law, the Hill elasto-plasticity
constitutive equations, the linear (coupled) piezoelectricity law, and (by theorem 5.11) any even
order symmetric tensors up to order 12.

Our method relies first on an explicit harmonic decomposition of the given tensor space. The
means to achieve this first task are explained with full details in Appendix A and Appendix B.
This allows us then to parameterize a tensor by an n-uple of complex numbers (z1, . . . , zr)
together with some real parameters λk (some isotropic invariants) and ξi (some hemitropic
invariants) but which do not enter explicitly in the computing process. A finite integrity basis
is then obtained by solving a Diophantine equation which must be satisfied by the exponents of
the monomials

m = zα1
1 · · · zαr

r zβ11 · · · zβrr .
Integrity bases are thus formulated first using these complex variables (together with the λk
and ξi). Moreover, a rigourous and quite exhaustive process has been achieved in section 7 to
translate all these expressions into tensorial ones, since those are familiar to the mechanical
community. Minimal integrity bases for most common constitutive tensors and laws have been
expressed this way.

Appendix A. An explicit harmonic decomposition

In this appendix, we propose a general method to obtain explicitly an harmonic decomposition
of any linear representation V of the orthogonal groups SO(2) or O(2), the main application
remaining the special case of a tensorial representation. The method exposed here is rather
simple, since it requires only the diagonalization of a matrix. It is however limited to dimension
2 and cannot be generalized to dimension 3 or higher. This is not the only procedure to obtain
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an explicit harmonic decomposition, other approaches are discussed, for instance, in [109]. The
procedure described here follows moreover the same lines as Verchery’s original construction for
the elasticity tensor [102], and applied later to the piezoelectricity tensor by Vannucci [100]. The
methodology consists in the following steps.

(1) Consider first the linearized action of SO(2) on V, or more precisely, the induced repre-
sentation ρ′ of the Lie algebra so(2) of SO(2) on V. The Lie algebra, so(2), is one-dimensional
and spanned by

u :=
d

dθ

∣∣∣∣
θ=0

rθ =

(
0 −1
1 0

)
.

This action is given by

ρ′(u)vvv =
d

dθ

∣∣∣∣
θ=0

ρ(rθ)vvv.

(2) Using an SO(2)-invariant inner-product 〈·, ·〉 on V, we have

〈ρ(g)vvv1, ρ(g)vvv2〉 = 〈vvv1, vvv2〉,
for all vvv1, vvv2 ∈ V and for all g ∈ SO(2) and thus

〈ρ′(u)vvv1, vvv2〉 = −〈vvv1, ρ′(u)vvv2〉.
In other words, ρ′(u) is a skew-symmetric linear endomorphism of V relatively to this invariant
inner product.

Remark A.1. An O(2)-invariant inner-product on T
n(R2) is given, using (2.2), by

〈T1,T2〉 := T1
(n)· T2

and can be extended into an hermitian product on the complexification (Tn)C := T
n ⊕ iTn of

T
n(R2), by

〈T1,T2〉 := T1
(n)· T2.

The matrix representation [ρ′(u)] of ρ′(u) in the basis (eeei1 ⊗ . . .⊗eeein) of Tn(R2) is thus obtained
using the expression

(A.1)
d

dθ

∣∣∣∣
θ=0

ρ(rθ) (eeei1 ⊗ . . . ⊗ eeein) =

n∑

k=1

eeei1 ⊗ . . .⊗ ueeeik ⊗ . . .⊗ eeein ,

so that

(A.2) (ρ′(u)T)i1...in =
n∑

k=1

uikjkTi1...ik−1jkik+1...in .

In practice, we usually consider representations which are stable subspaces V of Tn(R2) rather
than T

n(R2) itself. Typically, V is a subspace of Tn(R2) defined by some index symmetries. An
orthonormal basis of V consists then of linear combinations of eeei1 ⊗ . . .⊗ eeein (see examples A.4,
A.5 and A.6, for instance).

(3) Since ρ′(u) is skew-symmetric, its eigenvalues are pure imaginary complex numbers. More-
over, since we know a priori that ρ decomposes into harmonic factors, we can conclude that these
eigenvalues write i n, where n ∈ Z are relative integers. Each vanishing eigenvalue corresponds
to a factor H

0(R2), while each pair of eigenvalues (i n,−i n) (n ≥ 1) corresponds to a factor
H
n(R2) (with possible multiplicity). Therefore, the de-complexification of an orthonormal basis

(with respect to the hermitian product on the complexification space V
C := V ⊕ iV) of eigen-

vectors for ρ′(u) provides an explicit harmonic decomposition relatively to SO(2). Let denote
by Uk the (real) unit eigenvectors associated with the corresponding vanishing eigenvalues, by
Wl the (complex) unit eigenvectors associated with the eigenvalues i nl (when nl ≥ 1) and by
Wl, their complex conjugates, associated with the eigenvalue −i nl.
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Remark A.2. Note that each real unit eigenvector Uk is defined up to a sign whereas each
complex unit eigenvector Wl is defined up to a phase or in other words up to a complex number
eiψl . This ambiguity is well-known in Quantum Mechanics and discussed, for instance, in [2,
section II.B.1].

(4) When a representation of O(2) is involved, one starts by calculating an harmonic de-
composition relatively to the subgroup SO(2) and then checks, for each vanishing eigenvalue,
whether the corresponding eigenvector Uk satisfies ρ(σ)Uk = Uk or ρ(σ)Uk = −Uk. In the first
case, such an eigenvector will still be denoted by Uk but in the second case, it will be changed
to Vi. Note now that

ρ(rθ)Uk = Uk, ρ(rθ)Vi = Vi, ρ(rθ)Wl = einlθWl,

independently of the choice of the eigenvectors Uk, Wl. However, the problem is slightly more
subtle for σ. Indeed, the C-linear extension of the representation ρ satisfies

ρ(σ)Uk = Uk, ρ(σ)Vi = −Vi, ρ(σ)Wl = Wl,

only if the arbitrary phase ψl in the choice of Wl has been chosen so that

ρ(σ)Wl = Wl,

which happens only for two values of ψl (which differ by π). This must be calculated in order
to produce an explicit harmonic decomposition relative to the group O(2) and fixes, by the way,
the ambiguity. In the following examples, this choice has been made.

Finally, one ends up with the following orthonormal decompositions of T ∈ V ⊂ T
n(R2).

SO(2)-decomposition:

T =

ν0∑

k=1

λkUk +
r∑

l=1

(
zlWl + zlWl

)
,

O(2)-decomposition:

T =

m0∑

k=1

λkUk +

m
−1∑

i=1

ξiVi +

r∑

l=1

(
zlWl + zlWl

)
,

where

λk = 〈T,Uk〉 ∈ R, ξi = 〈T,Vi〉 ∈ R, zl = 〈T,Wl〉 ∈ C.

Remark A.3. Writing zl = al + ibl, we get

zlWl + zlWl = 2 (alRe(Wl) + bl Im(Wl)) .

The factor 2 here is meaningless, since the harmonic components are defined up to a scaling fac-
tor. The basis, (Re(Wl),Im(Wl)) of the factor H

nl(R2) in the decomposition of T is orthogonal
but not orthonormal, since

‖Re(Wl)‖ = ‖Im(Wl)‖ =
1√
2
.

But the same is true for the basis (K
(n)
1 ,K

(n)
2 ) of Hn(R2), as defined in (7.1), it is orthogonal

but not orthonormal, since ∥∥∥K(n)
1

∥∥∥ =
∥∥∥K(n)

2

∥∥∥ = 2
n−1
2 .

Example A.4. Let a ∈ V = S
2(R2) ⊂ T

2(R2) be a symmetric second order tensor and eee1 ⊗ eee1,
eee2⊗eee2, 1√

2
(eee1 ⊗ eee2 + eee2 ⊗ eee1), be an orthonormal basis of V. Then ρ(g)a = gagt writes [ρ(g)a] =

[ρ(g)][a] with [a] = (a11, a22,
√
2 a12)

t and

[ρ(rθ)] =




cos2 θ sin2 θ − sin 2θ√
2

sin2 θ cos2 θ sin 2θ√
2

sin 2θ√
2

− sin 2θ√
2

cos 2θ


 , [ρ′(u)] =




0 0 −
√
2

0 0
√
2√

2 −
√
2 0


 .



34 B. DESMORAT, M. OLIVE, N. AUFFRAY, R. DESMORAT, AND B. KOLEV

The eigenvalues of [ρ′(u)] read 0, 2i,−2i and the associated eigenvectors are respectively [U] =
(U11, U22,

√
2U12)

t = ( 1√
2
, 1√

2
, 0)t, [W2] = ((W2)11, (W2)22,

√
2 (W2)12)

t = (12 ,−1
2 ,− i√

2
)t and

[W2], so that in O(2) case

λ = 〈a,U〉 = 1√
2
tr a, z2 = 〈a,W2〉 = a′11 + ia12,

where a′11 =
1
2 (a11 − a22) is the first component of the deviatoric part a′ = a− 1

2 (tr a)1.

Example A.5. Let V = T
3(R2). Then, an orthonormal basis is given by

e111 = eee1 ⊗ eee1 ⊗ eee1, e221 = eee2 ⊗ eee2 ⊗ eee1, e122 = eee1 ⊗ eee2 ⊗ eee2,

e212 = eee2 ⊗ eee1 ⊗ eee2, e222 = eee2 ⊗ eee2 ⊗ eee2, e112 = eee1 ⊗ eee1 ⊗ eee2,

e211 = eee2 ⊗ eee1 ⊗ eee1, e121 = eee1 ⊗ eee2 ⊗ eee1,

where (eee1, eee2) is an orthonormal basis of R2. Using (A.2) one obtains

(A.3) (ρ′(u)T)ijk = uipTpjk + ujpTipk + ukpTijp.

Setting

[T] = (T111, T221, T122, T212, T222, T112, T211, T121)
t,

and the same for [ρ′(u)T] (as well as for the eigenvectors [Wnk
] of [ρ′(u)]), one gets [ρ′(u)T] =

[ρ′(u)][T], where

[ρ′(u)] =




0 0 0 0 0 −1 −1 −1
0 0 0 0 −1 0 1 1
0 0 0 0 −1 1 0 1
0 0 0 0 −1 1 1 0
0 1 1 1 0 0 0 0
1 0 −1 −1 0 0 0 0
1 −1 0 −1 0 0 0 0
1 −1 −1 0 0 0 0 0




.

[ρ′(u)] is indeed skew-symmetric, with eigenvalues i, i, i, 3i and their four conjugates, with cor-
responding eigenvectors [W1a] =

1
2(1, 0, 0, 1,−i, 0, 0,−i)t , [W1b] =

1
2
√
3
(1, 0, 2,−1,−i, 0,−2i, i)t ,

[W1c] =
1

2
√
6
(1, 3,−1,−1,−i,−3i, i, i)t , [W3] =

1
2
√
2
(1,−1,−1,−1, i,−i,−i,−i)t and their four

conjugates. This corresponds to an harmonic decomposition 3H1(R2)⊕H
3(R2) of T3(R2), where

z1a = 〈T,W1a〉 =
1

2
(T111 + T212) +

i

2
(T222 + T121),

z1b = 〈T,W1b〉 =
1

2
√
3
(T111 + 2T122 − T212)−

i

2
√
3
(T222 + 2T211 − T121),

z1c = 〈T,W1c〉 =
1

2
√
6
(T111 + 3T221 − T122 − T212) +

i

2
√
6
(T222 + 3T112 − T211 − T121),

z3 = 〈T,W3〉 =
1

2
√
2
(T111 − T221 − T122 − T212) +

i

2
√
2
(−T222 + T112 + T211 + T121).

Example A.6. Let V = Piez ⊂ T
3(R2) be the vector space of 2D piezoelectricity tensors P, where

Pijk = Pikj . An orthonormal basis is given by

e111, e122,
1√
2
(e212 + e221),

1√
2
(e112 + e121), e211, e222.

The induced representation of the Lie algebra so(2) on Piez still writes as (A.3). We now set

[P] = (P111, P122,
√
2P212, P222, P211,

√
2P112)

t,
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and the same for [ρ′(u)P] (and the [Wnk
]), so that

[ρ′(u)] =




0 0 0 0 −1 −
√
2

0 0 0 −1 0
√
2

0 0 0 −
√
2

√
2 1

0 1
√
2 0 0 0

1 0 −
√
2 0 0 0√

2 −
√
2 −1 0 0 0




which is indeed skew-symmetric, with eigenvalues i, i, 3i and their three conjugates with corre-
sponding eigenvectors [W1a] =

1√
6
(
√
2, 0, 1,−i

√
2, 0,−i)t, [W1b] =

1
2
√
6
(1, 3,−

√
2,−i,−3i, i

√
2),

[W3] =
1

2
√
2
(1,−1,−

√
2, i,−i,−i

√
2)t and their three conjugates. This corresponds to an har-

monic decomposition 2H1(R2)⊕H3(R2) of Piez, where

z1a = 〈T,W1a〉 =
1√
3
(P111 + P212) +

i√
3
(P222 + P112),

z1b = 〈T,W1b〉 =
1

2
√
6
(P111 + 3P122 − 2P212) +

i

2
√
6
(P222 + 3P211 − 2P112),

z3 = 〈T,W2〉 =
1

2
√
2
(P111 − P122 − 2P212) +

i

2
√
2
(−P222 + P211 + 2P112).

Appendix B. Harmonic decomposition of a totally symmetric tensor

The harmonic decomposition of an homogeneous polynomial p of degree n is unique and
writes

(B.1) p = h0 + qh1 + · · ·+ qrhr,

where r := ⌊n/2⌋ (with ⌊x⌋ the floor function), q(xxx) := x2+y2 and hk ∈ Hn−2k(R
2) are harmonic

polynomials of respective degree n− 2k. These harmonic functions can be calculated iteratively
using the relation

△r(qrh) = 4r
r!(n+ r)!

n!
h,

where h is an homogeneous harmonic polynomial of degree n and r ≥ 0. More precisely, we have

hr =





4−r

(r!)2
△rp, if n is even;

4−r

r!(r + 1)!
△rp, if n is odd.

Then, we compute inductively hk, for k = r − 1, r − 2, . . . , using the relation

(B.2) hk = 4−k
(n − 2k)!

k!(n − k)!
△k


p−

r∑

j=k+1

qjhj




which leads to h0 after r iterations. The harmonic function h0 (of degree n) is called the leading
harmonic part of p and will be denoted by p0 when necessary.

Using now the correspondence between totally symmetric tensors and homogeneous polyno-
mials, we set hk = φ(Hk) and we get

φ(1) = q, φ(Hk) = hk, φ(1⊙ · · · ⊙ 1︸ ︷︷ ︸
k copies

⊙Hk) = qkhk (no sum).

We deduce then the harmonic decomposition of a totally symmetric tensor S ∈ S
n(R2)

(B.3) S = H0 + 1⊙H1 + · · ·+ 1⊙ · · · ⊙ 1︸ ︷︷ ︸
r copies

⊙Hr.
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Moreover, using the identity φ(trr S) = (n−2r)!
n! ∆rφ(S), valid for every symmetric tensor S or

order n, we can explicit the factor Hk, where we have set 1⊙j = 1 ⊙ · · · ⊙ 1 for j copies of 1.
Indeed,

Hr =





4−r
n!

(r!)2
trr S, if n is even;

4−r
n!

r!(r + 1)!
trr S, if n is odd;

and

Hk = 4−k
(
n

k

)
trk


S−

r∑

j=k+1

1⊙j ⊙Hj


 .

The leading harmonic part S′ := H0 of S, such that φ(S′) = φ(S)0, is an harmonic tensor in
H
n(R2).

Appendix C. The Hilbert series of an O(2)-representation

Consider a linear representation (V, ρ) of a compact group G which splits into a direct sum
of stable subspaces

V = V1 ⊕ · · · ⊕ Vp.

Then, each vvv ∈ V can be decomposed uniquely as vvv = (vvv1, . . . , vvvp) and each invariant polynomial
writes

p(vvv) = p(vvv1, . . . , vvvp), vvvi ∈ Vi.

Thus, the invariant algebra Inv(V, G) inherits a multi-graduation

Inv(V, G) =
⊕

k1,...,kp

Invk1,...,kp(V, G),

where Invk1,...,kp(V, G) is the finite dimensional subspace of multi-homogeneous invariant poly-
nomials p which have degree k1 in vvv1, k2 in vvv2, . . . , and kp in vvvp. The dimensions of these vector
spaces are encoded into the multivariate Hilbert series

(C.1) Hρ(t1, . . . , tp) =
∑

k1,...,kp

ak1,...,kp t
k1
1 · · · tkpp ,

where
ak1,...,kp := dim Invk1,...,kp(V, G).

The remarkable fact is that the Hilbert series is a rational function that can be calculated a
priori, using the Molien–Weyl formula [95, 96].

Theorem C.1 (Molien–Weyl formula). The multi-graded Hilbert series (C.1) of Inv(V, G)
writes as

Hρ(t1, . . . , tp) =

∫

G

p∏

k=1

1

det(I − tkρk(g))
dµ(g)

where dµ is the Haar measure on G (see definition 5.7) and ρk is the restriction of the repre-
sentation to Vk.

In the special case where G = O(2) and

V ≃ H
n1(R2)⊕ · · · ⊕H

nr(R2),

which is the important case for us, we have the following more explicit result.

Theorem C.2. Let (V, ρ) be a linear representation of O(2) which decomposes as

V ≃ H
n1(R2)⊕ · · · ⊕H

nr(R2),

where 1 ≤ n1 ≤ · · · ≤ nr. Then, the Hilbert series of Inv(V,O(2)) writes as

Hρ(t1, · · · , tr) =
1

2

{
1

2πi

∫

|z|=1

r∏

k=1

1

(1− tkznk)(1− tkz−nk)
z−1dz +

1

(1− t21) · · · (1− t2r)

}
,
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where

1

2πi

∫

|z|=1

r∏

k=1

1

(1− tkznk)(1− tkz−nk)
z−1dz =

∑

k1,...,kr≥0

bk1,...,kr t
k1
1 · · · tkrr ,

and

bk1,...,kr =
1

2iπ

∑

0≤αi≤ki

∫

|z|=1
z(2α1−k1)n1+···+(2αr−kr)nr z−1dz

is the number of solutions (α1, . . . , αr) of the linear Diophantine equation

(C.2) 2α1n1 + · · ·+ 2αrnr = k1n1 + · · · + krnr, αi ≥ 0.

Remark C.3. Note that

1

(1− t21) · · · (1− t2r)
=

∑

ℓ1,...,ℓr≥0

t2ℓ11 · · · t2ℓrr =
∑

k1,...,kr≥0

βk1,...,krt
k1
1 · · · tkrr ,

where βk1,...,kr = 0 when at least one of the ki is odd and βk1,...,kr = 1 otherwise.

Remark C.4. When the harmonic decomposition of the representation (V, ρ) of O(2) involves
some components H

−1(R2) and/or H
0(R2), then one can easily obtain its Hilbert series by

modifying the series provided in theorem C.2, using the general formula given in theorem C.1
and observing that

det(I − t0ρ0(rθ)) = 1− t0, det(I − t0ρ0(σrθ)) = 1− t0,

det(I − t−1ρ−1(rθ)) = 1− t−1, det(I − t−1ρ−1(σrθ)) = 1 + t−1,

where ρ0 and ρ−1 are defined in section 3.

Remark C.5. For a linear representation V of SO(2), which decomposes as

V ≃ ν0H
0(R2)⊕H

n1(R2)⊕ · · · ⊕H
nr(R2),

where 1 ≤ n1 ≤ · · · ≤ nr, the Hilbert series of Inv(V,SO(2)) writes

H(t0a, t0b, . . . , t1, . . . , tr) =
1

2πi

1

(1− t0a)(1− t0b) · · ·

∫

|z|=1

r∏

k=1

1

(1− tkznk)(1− tkz−nk)
z−1dz.

Proof of theorem C.2. Observe first that

det(I − tnρn(σrθ)) = 1− t2n, ∀n ≥ 1,

where the notation ρn has been introduced in section 3. Now, from Molien–Weyl formulae (see
theorem C.1) and the expression of the Haar measure on O(2) (see definition 5.7), we deduce
that

Hρ(t1, . . . , tr) =
1

2

{
I(t1, . . . , tr) +

1

(1− t21) · · · (1− t2r)

}
,

where

I(t1, . . . , tr) =
1

2π

∫ 2π

0

r∏

k=1

1

det(I − tkρnk
(rθ))

dθ.

But, for all n ≥ 1, we have

det(I − tρn(rθ)) = 1 + t2 − 2t cos(nθ)

= (1− teinθ)(1− te−inθ)

= (1− tzn)(1− tz−n), z = eiθ,

and thus

I(t1, . . . , tr) =
1

2πi

∫

|z|=1

r∏

k=1

1

(1− tkznk)(1− tkz−nk)
z−1dz,
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where

r∏

k=1

1

(1− tkznk)(1 − tkz−nk)
=

r∏

k=1

(
∑

i

(tkz
nk)i

)
∑

j

(tkz
−nk)j




=
∑

α1,β1,...,αr ,βr

z(α1n1+···+αrnr)−(β1n1+···+βrnr)tα1+β1
1 · · · tαr+βr

r .

Setting ki := αi + βi, this latest sum can now be recast as

∑

k1,...,kr


 ∑

0≤αl≤kl
z(2α1−k1)n1+···+(2αr−kr)nr


 tk11 · · · tkrr ,

and we get thus

I(t1, . . . , tr) =
∑

k1,...,kr≥0

bk1,...,krt
k1
1 . . . tkrr ,

where

bk1,...,kr =
1

2iπ

∑

0≤αl≤kl

∫

|z|=1
z(2α1−k1)n1+···+(2αr−kr)nr z−1dz.

Moreover, since

1

2iπ

∫

|z|=1
zm z−1dz =

{
1 if m = 0,

0 otherwise,

bk1,...,kr is the number of solutions of the linear Diophantine equation

2α1n1 + . . .+ 2αrnr = k1n1 + . . . + krnr, αi ≥ 0.

�

Example C.6. Let Ela be the vector space of bidimensional elasticity tensors. Its harmonic
decomposition (see example 3.5) writes

Ela ≃ 2H0(R2)⊕H
2(R2)⊕H

4(R2).

Let us associate to the components (λ, µ,h,H), the formal variables (t0a, t0b, t2, t4). Then, using
theorem C.2, remarks C.4 and C.5, we get

H(Ela,SO(2))(t0a, t0b, t2, t4) =
1 + t22t4

(1− t0a)(1 − t0b)(1− t22)(1− t24)(1− t22t4)
,

and

H(Ela,O(2))(t0a, t0b, t2, t4) =
1

(1− t0a)(1− t0b)(1 − t22)(1− t24)(1 − t22t4)
.

The Taylor expansion of H(Ela,SO(2)) writes

H(Ela,SO(2))(t0a, t0b, t2, t4) = 1 + t0a + t0b + t0at0b + t20a + t20b + t22 + t24 + · · ·
+ 2 t22t4 + · · · + 3 t0at

4
2t

2
4 + · · ·+ 11 t242 t

10
4 + · · ·

We deduce from this expansion that the space of homogeneous invariants of multi-degree (1, 0, 0, 0),
corresponding to t0a, is of dimension 1 (and spanned by λ) and that the space of homogeneous
invariants of multi-degree (0, 0, 2, 0) corresponding to t22 is of dimension 1 (and spanned by tr a2).
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Appendix D. Proofs

It is useful in invariant theory to introduce the following bi-differential operators

△αβ :=
∂2

∂xα∂xβ
+

∂2

∂yα∂yβ
, Ωαβ :=

∂2

∂xα∂yβ
− ∂2

∂yα∂xβ
,

which are known respectively as the polarized Laplacian and the Cayley operator. The polarized
Laplacian △αβ is invariant under O(2) and the Cayley operator Ωαβ is invariant under SL(2,R).
Anyway, they are both SO(2)-invariant. Since we shall use the complex variables (z, z) rather
than the real variables (x, y), we introduce also the complex differential operators

∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
,

and the complex bi-differential operator

Dαβ :=
∂2

∂zα∂zβ
,

and we get

Dαβ =
1

4
(△αβ + iΩαβ) ,

or

△αβ = 2
(
Dαβ +Dβα

)
, Ωαβ = −2i

(
Dαβ −Dβα

)
.

Given two homogeneous polynomials p1, p2 of respective degree n1 and n2, we have then

{p1,p2}r =
(n1 − r)!(n2 − r)!

n1!n2!

(
∆r
αβp1(xxxα)p2(xxxβ)

)
xxxα=xxxβ=xxx

= 2r
(n1 − r)!(n2 − r)!

n1!n2!

((
Dαβ +Dβα

)r
p1(xxxα)p2(xxxβ)

)
xxxα=xxxβ=xxx

= 2r
(n1 − r)!(n2 − r)!

n1!n2!

r∑

k=0

(
r

k

)
∂rp1

∂zk∂z(r−k)
∂rp2

∂z(r−k)∂zk
.

Now, if we apply this formula to two harmonic polynomials h1 = Re(z1z
n1) and h2 =

Re(z2z
n2) with 1 ≤ r ≤ n1 ≤ n2, the only non-vanishing terms in the sum correspond to

k = 0 and k = r. We get thus

(D.1) {h1,h2}r = 2r−1(zz)n1−rRe
(
z1z2z

n2−n1
)
.

On the other hand, we have

[p1,p2] = − 1

n1n2
(Ωαβp1(xxxα)p2(xxxβ))xxxα=xxxβ=xxx

=
2i

n1n2

(
(Dαβ −Dβα)p1(xxxα)p2(xxxβ)

)
xxxα=xxxβ=xxx

=
2i

n1n2

(
∂p1
∂z

∂p2
∂z

− ∂p1
∂z

∂p2
∂z

)
.

Applying this formula, first, to h1 = Re(z1z
n1) and h2 = Re(z2z

n2), where 1 ≤ n1 ≤ n2, we get

(D.2) [h1,h2] = (zz)n1−1
Im
(
z1z2z

n2−n1
)
,

and, then, to the Euclidean metric q := x2 + y2 = zz and h1 = Re(z1z
n1), where 1 ≤ n1, we get

(D.3) [q,h1] = Im(z1z
n1) = h̃1.

Next, observe that given p harmonic polynomials h1, . . . ,hp, where hk = Re(zkz
nk), the

leading harmonic part of the product h1 · · · hp writes

(D.4) (h1 · · · hp)0 = (Re(z1z
n1) · · ·Re(zpz

np))0 =
1

2p−1
Re(zk1 · · · zkpznk1

+···+nkp )
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according to Appendix B. For instance, if 1 ≤ n1 ≤ n2 ≤ n3 and n3 ≤ n1 + n2, we have

Re(z1z
n1)Re(z2z

n2)Re(z3z
n3) =

1

22
{
Re(z1z2z3z

n1+n2+n3) + qn1 Re(z1z2z3z
−n1+n2+n3)

+qn2 Re(z1z2z3z
n1−n2+n3) + qn3 Re(z1z2z3z

n1+n2−n3)
}
,

and its leading harmonic term, of degree n1 + n2 + n3 in z, z, is

(Re(z1z
n1)Re(z2z

n2)Re(z3z
n3))0 =

1

22
Re(z1z2z3z

n1+n2+n3).

Finally, given an homogeneous harmonic polynomial h of degree n and r ≥ 0, we have

△r(qrh) = 4r
r!(n+ r)!

n!
h,

and thus, for n1 ≤ n2, we get by (D.2)

(D.5) △n1−1 [h1,h2] =
4n1−1(n1 − 1)!(n2 − 1)!

(n2 − n1)!
Im
(
z1z2z

n2−n1
)
,

since Im (z1z2z
n2−n1) is of degree n2 − n1.

Proof of theorem 7.2. Let Hk ∈ H
nk(R2), where nk ≥ 1 and set hk = φ(Hk). Then,

h̃k = Im(zkz
nk) = [q,hk] = φ(1×Hk),

by (D.3), and as 1×Hk translates as [q,hk], according to section 2. �

Proof of theorem 7.3. Let Hj ∈ H
nkj (R2) be harmonic tensors where nkj ≥ 1, for 1 ≤ j ≤ p and

set φ(Hj) = hj = Re(zjz
nkj ). Then, φ (H1 ⊙ · · · ⊙Hp) = h1 · · · hp and by (D.4), we get thus

φ
(
(H1 ⊙ · · · ⊙Hp)

′) = (h1 · · · hp)0

=
1

2p−1
Re(z1 · · · zpznk1

+···+nkp ).

�

Proof of theorem 7.4. Let Hj ∈ H
nkj (R2) be harmonic tensors where nkj ≥ 1 for 1 ≤ j ≤ p + s

and set φ(Hj) = hj = Re(zjz
nkj ), Z1 = z1 · · · zp, Z2 = zp+1 · · · zp+s, N1 = nk1 + · · · + nkp and

N2 = nkp+1 + · · · + nkp+s. There is no loss of generality in assuming that N1 ≤ N2. Then,
by (D.1) with r = N1, we get

Re
(
z1 · · · zpzp+1 · · · zp+szN2−N1

)
= Re(Z1Z2z

N2−N1) =
1

2N1−1
{H1,H2}N1

,

where Hi := Re(Ziz
Ni) for i = 1, 2. But, by (D.4), we have

H1 = 2p−1(h1 · · · hp)0 = 2p−1φ
(
(H1 ⊙ · · · ⊙Hp)

′) ,
and

H2 = 2s−1(hp+1 · · · hp+s)0 = 2s−1φ
(
(Hp+1 ⊙ · · · ⊙Hp+s)

′) .
But, according to section 2

{H1,H2}N1
= 2p+s−2φ

(
(H1 ⊙ · · · ⊙Hp)

′ (N1)· (Hp+1 ⊙ · · · ⊙Hp+s)
′
)
.

We get therefore

Re
(
z1 · · · zpzp+1 · · · zp+szN2−N1

)

= 2(p+s−1−N1)φ

(
(H1 ⊙ · · · ⊙Hp)

′ (N1)· (Hp+1 ⊙ · · · ⊙Hp+s)
′
)
,

which is the first identity of theorem 7.4. Next, by (D.5), we get

Im
(
z1 · · · zpzp+1 · · · zp+szN2−N1

)
= Im(Z1Z2z

N2−N1)

=
(N2 −N1)!

4N1−1(N1 − 1)!(N2 − 1)!
△N1−1 [H1,H2] .
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Besides, we have

∆rφ(S) =
n!

(n− 2r)!
φ(trr S),

for every symmetric tensor S or order n. Applying this formula to φ(S) = [H1,H2], of degree
n = N1 +N2 − 2, with r = N1 − 1 and where

S = 2p+s−2
(
(H1 ⊙ · · · ⊙Hp)

′ × (Hp+1 ⊙ · · · ⊙Hp+s)
′) ,

we get

△N1−1 [H1,H2] = 2p+s−2 (N1 +N2 − 2)!

(N2 −N1)!
φ
(
tr(N1−1)

(
(H1 ⊙ · · · ⊙Hp)

′ × (Hp+1 ⊙ · · · ⊙Hp+s)
′)) ,

and thus

Im
(
z1 · · · zpzp+1 · · · zp+szN2−N1

)

=
2(p+s−2N1)(N1 +N2 − 2)!

(N1 − 1)!(N2 − 1)!
φ
(
tr(N1−1)

(
(H1 ⊙ · · · ⊙Hp)

′ × (Hp+1 ⊙ · · · ⊙Hp+s)
′)) ,

which is the second identity of theorem 7.4. It remains to show that

Im(z1 · · · zpzp+1 · · · zp+szN2−N1) = −2(p+s−1−N1)φ

(
([1×H1]⊙ · · · ⊙Hp)

′ (N1)· (Hp+1 ⊙ · · · ⊙Hp+s)
′
)

= 2(p+s−1−N1)φ

(
(H1 ⊙ · · · ⊙Hp)

′ (N1)· ([1 ×Hp+1]⊙ · · · ⊙Hp+s)
′
)
.

To do so, we use the fact that Im z = Re(−iz) and thus that h̃k = Re(izkz
nk). We have therefore

Im(zk1 · · · zkpzkp+1 · · · zkp+sz
N2−N1) = Re

(
(−izk1) · · · zkpzkp+1 · · · zkp+sz

N2−N1
)

= −Re
(
iZ1Z2z

N2−N1
)

= − 1

2N1−1

{
H̃1,H2

}
N1

= −2p+s−2

2N1−1

{
(h̃k1 · · · hkp)′, (hkp+1 · · · hkp+s)′

}
N1

= −2(p+s−1−N1)φ

(
([1 ×H1]⊙ · · · ⊙Hp)

′ (N1)· (Hp+1 ⊙ · · · ⊙Hp+s)
′
)
,

by (D.1) and (D.4). The same way, we deduce that

Im(zk1 · · · zkpzkp+1 · · · zkp+sz
N2−N1) = Re

(
Z1iZ2z

N2−N1
)

=
1

2N1−1

{
H1, H̃2

}
N1

= 2(p+s−1−N1)φ

(
(H1 ⊙ · · · ⊙Hp)

′ (N1)· ([1×Hp+1]⊙ · · · ⊙Hp+s)
′
)
.

�

References

[1] H. Abdoul-Anziz and P. Seppecher. Strain gradient and generalized continua obtained by homogenizing
frame lattices. Mathematics and Mechanics of Complex Systems, 6(3):213–250, July 2018.

[2] A. Ashtekar and T. A. Schilling. Geometrical formulation of quantum mechanics. In On Einstein’s path
(New York, 1996), pages 23–65. Springer, New York, 1999.

[3] N. Auffray, Q. He, and H. L. Quang. Complete symmetry classification and compact matrix representations
for 3d strain gradient elasticity. International Journal of Solids and Structures, 159:197–210, Mar. 2019.

[4] N. Auffray, B. Kolev, and M. Olive. Handbook of bi-dimensional tensors: Part i: Harmonic decomposition
and symmetry classes. Mathematics and Mechanics of Solids, 22(9):1847–1865, may 2016.

[5] N. Auffray, B. Kolev, and M. Petitot. On anisotropic polynomial relations for the elasticity tensor. Journal
of Elasticity, 115(1):77–103, jun 2013.

[6] N. Auffray, H. L. Quang, and Q. He. Matrix representations for 3d strain-gradient elasticity. Journal of the
Mechanics and Physics of Solids, 61(5):1202–1223, May 2013.



42 B. DESMORAT, M. OLIVE, N. AUFFRAY, R. DESMORAT, AND B. KOLEV

[7] N. Auffray and P. Ropars. Invariant-based reconstruction of bidimensional elasticity tensors. International
Journal of Solids and Structures, 87:183–193, June 2016.

[8] G. Backus. A geometrical picture of anisotropic elastic tensors. Reviews of Geophysics, 8(3):633, 1970.
[9] R. Baerheim. Harmonic decomposition of the anisotropic elasticity tensor. Quart. J. Mech. Appl. Math.,

46(3):391–418, 1993.
[10] A. Bertram. Compendium on gradient materials. OvGU, Magdeburg, 2016.
[11] J. Betten. Irreducible invariants of fourth-order tensors. Mathematical Modelling, 8:29–33, 1987. Mathemat-

ical modelling in science and technology (Berkeley, Calif., 1985).
[12] J. Betten and W. Helisch. Integrity bases for a fourth-rank tensor. In Solid Mechanics and Its Applications,

volume 39 of Solid Mech. Appl., pages 37–42. Springer Netherlands, 1995.
[13] A. Blinowski, J. Ostrowska-Maciejewska, and J. Rychlewski. Two-dimensional Hooke’s tensors—isotropic

decomposition, effective symmetry criteria. Arch. Mech. (Arch. Mech. Stos.), 48(2):325–345, 1996.
[14] J.-P. Boehler. Application of tensor functions in solid mechanics. CISM Courses and Lectures. Springer-

Verlag, Wien, 1987.
[15] J. P. Boehler, A. A. Kirillov, and E. T. Onat. On the polynomial invariants of the elasticity tensor. Journal

of Elasticity, 34(2):97–110, Feb. 1994.
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