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1. Introduction

Inverse trigonometric and inverse hyperbolic functions are very useful in several
areas of applied mathematics. They have important applications in engineering
in particular. In recent years, inequalities concerning these functions have been
studied extensively by many researchers and as a result, there exist a rich literature
on this subject. See for example [1], [2], [3], [4], [5], [6], [7], [8], [9], [11], [13], [17],
[18], [19], [20], [21], [23], [24] and the related references therein.

In a recent work, the authors [15] considered the following generalizations of
the hyperbolic cosine, hyperbolic sine and hyperbolic tangent functions.

(1.1) cosha(z) =
az + a−z

2
,

(1.2) sinha(z) =
az − a−z

2
,

(1.3) tanha(z) =
sinha(z)

cosha(z)
=
az − a−z

az + a−z
= 1− 2

1 + a2z
,

where a > 1 and z ∈ (−∞,∞). Cosequently, the generalized hyperbolic secant,
hyperbolic cosecant and hyperbolic cotangent functions are respectively defined
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as

(1.4) secha(z) =
1

cosha(z)
, cosecha(z) =

1

sinha(z)
, cotha(z) =

1

tanha(z)
,

and in particular, if a = e, where e = 2.71828... is the Euler’s number, then the
above definitions reduce to their ordinary counterparts. For more information on
these generalized functions, one could refer to the works [12], [16] and [14].

Motivated by the above works, the objective of this work is to provide inverses
of the functions (1.1)-(1.4) and to further study some properties of the inverse
functions. We also provide some inequalities (or bounds) for the inverse functions.

2. Results and Discussion

Proposition 2.1. Let arsinha(z), arcosha(z), artanha(z), arcosecha(z), arsecha(z)
and arcotha(z) respectively be the inverses of the functions sinha(z), cosha(z),
tanha(z), cosecha(z), secha(z) and cotha(z). Then

(2.1) arsinha(z) =
1

ln a
ln
(
z +
√
z2 + 1

)
, z ∈ (−∞,∞),

(2.2) arcosha(z) =
1

ln a
ln
(
z +
√
z2 − 1

)
, z ∈ [1,∞),

(2.3) artanha(z) =
1

2 ln a
ln

(
1 + z

1− z

)
, z ∈ (−1, 1),

(2.4)

arcosecha(z) =
1

ln a
ln

(
1

z
+

√
1

z2
+ 1

)
=

1

ln a
ln

(
1 +
√

1 + z2

z

)
, z 6= 0,

(2.5)

arsecha(z) =
1

ln a
ln

(
1

z
+

√
1

z2
− 1

)
=

1

ln a
ln

(
1 +
√

1− z2
z

)
, z ∈ (0, 1],

(2.6) arcotha(z) =
1

2 ln a
ln

(
z + 1

z − 1

)
, z ∈ (−∞,−1) ∪ (1,∞).

Proof. Let u = arsinha(z) so that z = sinha(u). This implies that a2u−2zau−1 =
0 which is a quadratic equation in au. Thus au = z ±

√
z2 + 1. Since au > 0 for

all u, then we consider the root z+
√
z2 + 1 which is positive for all z ∈ (−∞,∞).

Hence u = 1
ln a

ln
(
z +
√
z2 + 1

)
which gives (2.1).

Next, let v = arcosha(z) so that z = cosha(v). Since cosha(v) is not one-to-one,
we have to restrict its domain to [0,∞) in order for the inverse to exist. Now
z = cosha(v) implies that a2v−2zav + 1 = 0 and so av = z±

√
z2 − 1. Here, both

roots are positive for all z ∈ [1,∞). Since ln(z −
√
z2 − 1) = − ln(z +

√
z2 − 1),

then ln(z ±
√
z2 − 1) = ± ln(z +

√
z2 − 1) and because of the restriction, we

consider the positive case. Hence v = 1
ln a

ln
(
z +
√
z2 − 1

)
which gives (2.2).

Next, let w = artanha(z) so that z = tanha(w). This implies that a2w = 1+z
1−z

which is positive for all z ∈ (−1, 1). Hence w = 1
2 ln a

ln
(
1+z
1−z

)
which gives (2.3).
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Next, let r = arcosecha(z) so that z = cosecha(r). This implies that ar =
1±
√
1+z2

z
= 1

z
±
√

1
z2

+ 1. Since 1
z

+
√

1
z2

+ 1 is positive for all z 6= 0, then we

conclude that r = 1
ln a

ln
(

1
z

+
√

1
z2

+ 1
)

which gives (2.4).

Next, let k = arsecha(z) so that z = secha(k). Similarly, since secha(k) is not
one-to-one, we have to restrict its domain to [0,∞) in order for the inverse to exist.

Now z = secha(k) implies that za2k− 2ak + z = 0 and so ak = 1±
√
1−z2
z

. Here too,

both roots are positive for all z ∈ (0, 1]. Since ln(1−
√
1−z2
z

) = − ln(1+
√
1−z2
z

), then

ln(1±
√
1−z2
z

) = ± ln(1+
√
1−z2
z

) = ± ln(1
z

+
√

1
z2
− 1). Because of the restriction, we

consider the positive case. Hence k = 1
ln a

ln
(

1
z

+
√

1
z2
− 1
)

which gives (2.5).

Finally, let δ = arcotha(z) so that z = cotha(δ). This implies that a2δ = z+1
z−1

which is positive for all z ∈ (−∞,−1) ∪ (1,∞). Hence δ = 1
2 ln a

ln
(
z+1
z−1

)
which

gives (2.6). �

Proposition 2.2. The following identities hold.

(2.7) arsinha

(z
r

)
=

1

ln a

∫
dz√
z2 + r2

+ β, z ∈ (−∞,∞), r > 0,

(2.8) arcosha

(z
r

)
=

1

ln a

∫
dz√
z2 − r2

+ β, z > r > 0,

(2.9) artanha

(z
r

)
=

r

ln a

∫
dz

r2 − z2
+ β, |z| < r,

(2.10) arcotha

(z
r

)
=

r

ln a

∫
dz

r2 − z2
+ β, |z| > r > 0,

where β is a constant.

Proof. Let z ∈ (−∞,∞) and r > 0. Then by (2.1), we have

arsinha

(z
r

)
=

1

ln a
ln

(
z +
√
z2 + r2

r

)
,

which implies that
d

dz
arsinha

(z
r

)
=

1

ln a

1√
z2 + r2

,

and this is equivalent to (2.7). Next, let z > r > 0. Then by using (2.2), we
arrive at

d

dz
arcosha

(z
r

)
=

1

ln a

1√
z2 − r2

,

which is equivalent to (2.8). Next let |z| < r. Then by using (2.3), we have

artanha

(z
r

)
=

1

ln a
[ln(r + z)− ln(r − z)] ,
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which implies that
d

dz
artanha

(z
r

)
=

1

ln a

r

r2 − z2
,

and this is equivalent to (2.9). Finally, let |z| > r > 0. Then by using (2.6), we
arrive at

d

dz
arcotha

(z
r

)
= − 1

ln a

r

z2 − r2
,

which is equivalent to (2.10). �

Proposition 2.3. The generalized inverse hyperbolic functions satisfy the following
properties

(2.11) sinha(arcosha(z)) =
√
z2 − 1, |z| > 1,

(2.12) sinha(artanha(z)) =
z√

1− z2
, |z| < 1,

(2.13) cosha(arsinha(z)) =
√
z2 + 1, z ∈ (−∞,∞),

(2.14) cosha(artanha(z)) =
1√

1− z2
, |z| < 1,

(2.15) tanha(arsinha(z)) =
z√
z2 + 1

, z ∈ (−∞,∞),

(2.16) tanha(arcosha(z)) =

√
z2 − 1

z
, |z| > 1.

Proof. Let sinha(arcosha(z)) = y and arcosha(z) = θ. This implies that z =
cosha(θ) and y = sinha(θ). Then by applying identity cosh2

a(z) − sinh2
a(z) = 1,

we obtain z2 − y2 = 1 which implies that y =
√
z2 − 1 where |z| > 1. This gives

(2.11).
Similarly, let sinha(artanha(z)) = y and artanha(z) = φ. Thus, z = tanha(φ)

and y = sinha(φ). Then by the identity, we obtain 1
z2
−1 = 1

y2
which implies that

y = z√
1−z2 where |z| < 1. This gives (2.12).

The proofs of (2.13)-(2.16) follow the same procedure. As a result, we omit
the details. �

Theorem 2.4. The following inequalities are valid.

(2.17)
1

ln a

v − u√
v2 + 1

< arsinha(v)− arsinha(u) <
1

ln a

v − u√
u2 + 1

, 0 ≤ u < v,

(2.18)
1

ln a

v − u√
v2 − 1

< arcosha(v)− arcosha(u) <
1

ln a

v − u√
u2 − 1

, 1 < u < v,

(2.19)
1

ln a

v − u
1− u2

< artanha(v)− artanha(u) <
1

ln a

v − u
1− v2

, 0 ≤ u < v < 1,

(2.20)
1

ln a

v − u
1− u2

< arcotha(v)− arcotha(u) <
1

ln a

v − u
1− v2

, 1 < u < v.
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Proof. Consider the function arsinha(t) on the interval 0 ≤ u < v. Then by the
classical mean value theorem, there exist c ∈ (u, v) such that

arsinha(v)− arsinha(u)

v − u
=

1

ln a

1√
c2 + 1

= ψ(c).

Since ψ(t) = 1
ln a

1√
t2+1

is decreasing for t ≥ 0, then for c ∈ (u, v), we have

ψ(v) < ψ(c) < ψ(u) which yields (2.17).
Next, consider the function arcosha(t) on the interval 1 < u < v. Then by the

mean value theorem, there exist c ∈ (u, v) such that

arcosha(v)− arcosha(u)

v − u
=

1

ln a

1√
c2 − 1

= θ(c).

Since θ(t) = 1
ln a

1√
t2−1 is decreasing for t > 1, then for c ∈ (u, v), we have θ(v) <

θ(c) < θ(u) which yields (2.18).
Next, consider the function artanha(t) on the interval 0 ≤ u < v < 1. Then by

the mean value theorem, there exist c ∈ (u, v) such that

artanha(v)− artanha(u)

v − u
=

1

ln a

1

1− c2
= φ(c).

Since φ(t) = 1
ln a

1
1−t2 is increasing for t ≥ 0, then for c ∈ (u, v), we have φ(u) <

φ(c) < φ(v) which yields (2.19).
Finally, consider the function arcotha(t) on the interval 1 < u < v. Then by

the mean value theorem, there exist c ∈ (u, v) such that

arcotha(v)− arcotha(u)

v − u
=

1

ln a

1

1− c2
= β(c).

Since β(t) = 1
ln a

1
1−t2 is increasing for t > 1, then for c ∈ (u, v), we have β(u) <

β(c) < β(v) which yields (2.20). �

Corollary 2.5. The following inequalities are valid.

(2.21)
1

ln a

z√
z2 + 1

< arsinha(z) <
1

ln a
z, z > 0,

(2.22)
1

ln a

(
ln(2 +

√
3) +

z − 2√
z2 − 1

)
< arcosha(z) <

1

ln a

(
ln(2 +

√
3) +

z − 2√
3

)
, z > 2,

(2.23)
1

ln a
z < artanha(z) <

1

ln a

z

1− z2
, 0 < z < 1,

(2.24)
1

ln a

(
ln 3

2
− z − 2

3

)
< arcotha(z) <

1

ln a

(
ln 3

2
+

z − 2

1− z2

)
, z > 2.

Proof. By letting u = 0 and v = z in (2.17), we obtain (2.21). By letting u = 2
and v = z in (2.18), we obtain (2.22). By letting u = 0 and v = z in (2.19), we
obtain (2.23). By letting u = 2 and v = z in (2.20), we obtain (2.24). �
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Remark 2.6. Inequalities (2.21), (2.22), (2.23) and (2.24) respectively imply the
following results concerning the logarithmic function.

(2.25)
z√
z2 + 1

< ln(z +
√
z2 + 1) < z, z > 0,

(2.26) ln(2 +
√

3) +
z − 2√
z2 − 1

< ln(z +
√
z2 − 1) < ln(2 +

√
3) +

z − 2√
3
, z > 2,

(2.27) 2z < ln

(
1 + z

1− z

)
<

2z

1− z2
, 0 < z < 1,

(2.28) ln 3− 2

3
(z − 2) < ln

(
z + 1

z − 1

)
< ln 3 + 2

(
z − 2

1− z2

)
, z > 2.

Remark 2.7. By letting s = 1+z
1−z in (2.27) and s = z+1

z−1 in (2.28), we respectively
obtain

(2.29) 2

(
s− 1

s+ 1

)
< ln s <

s2 − 1

2s
, s > 1,

and

(2.30) ln 3 + 2

(
s− 3

s− 1

)
< ln s < ln 3 +

(s− 3)(s− 1)

2s
, 1 < s < 3.

By letting s = x+ 1 in (2.29), we recover inequality (3) of [22]. Furthermore, by
letting s = 1 + 1

x
in [10, Problem 3.6.18, p.273], we obtain

(2.31) 2

(
s− 1

s+ 1

)
< ln s <

s− 1√
s
, s > 1.

It is observed that the upper part of (2.31) is stronger than the upper part of
(2.29).

Theorem 2.8. The inequality
(2.32)

1

ln a

(
4(v − u)

4− (u+ v)2

)
< artanha(v)− artanha(u) <

1

2 ln a

(
v − u
1− u2

+
v − u
1− v2

)
,

holds for −1 < u < v < 1 and consequently, the inequality

(2.33)
1

ln a

(
4z

4− z2

)
< artanha(z) <

1

2 ln a

(
z +

z

1− z2

)
, 0 < z < 1,

also holds.

Proof. We employ the Hermite-Hadamard inequality

(2.34) p

(
k1 + k2

2

)
≤ 1

k2 − k1

∫ k2

k1

p(z)dz ≤ p(k1) + p(k2)

2
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for a convex functin p on the interval [k1, k2]. Let p(z) = 1
ln a

1
1−z2 where −1 <

z < 1. Then p is convex. Next, let −1 < u < v < 1. Then by (2.34), we obtain

1

ln a

(
4

4− (u+ v)2

)
<

artanha(v)− artanha(u)

v − u
<

1

2 ln a

(
1

1− u2
+

1

1− v2

)
,

which gives (2.32). Inequality (2.33) is obtained by letting u = 0 and v = z in
(2.32). �

Remark 2.9. Since z < 4z
1−z2 and 1

2

(
z + z

1−z2
)
< z

1−z2 for all 0 < z < 1, then
inequality (2.33) is sharper than inequality (2.23).

Remark 2.10. Inequality (2.33) implies that

(2.35)
8z

4− z2
< ln

(
1 + z

1− z

)
< z +

z

1− z2
, 0 < z < 1,

and by letting s = 1+z
1−z in (2.35), we obtain

(2.36)
8s2 − 8

3s2 + 10s+ 3
< ln s <

s3 + 5s2 − 5s− 1

4s2 + 4s
, s > 1,

which is a better estimate than (2.29). Thus, (2.36) is a refinement of inequality
(3) in [22]. The upper part of (2.36) is however weaker than inequality (22) in
[22]

Theorem 2.11. The inequality

(2.37) a− arcosha(y) < y < aarcosha(y), y > 1,

also holds.

Proof. This follows directly from the inequality [16, (3.3)]

a−z < cosha(z) < az, z > 0,

by letting cosha(z) = y so that z = arcosha(y). �

Theorem 2.12. The inequalities

(2.38)
1

ln a

1√
y2 + 1

<
arsinha(y)

y
<

1

ln a

√
y2 + 1, y 6= 0,

(2.39)
1

ln a

√
y2 − 1

y2
<

arcosha(y)

y
<

1

ln a

√
y2 − 1, y > 1,

are valid.

Proof. We make use of the inequality [16, (3.17)]

(2.40)
ln a

cosha(z)
<

sinha(z)

z
< (ln a) cosha(z), z 6= 0.

Let sinha(z) = y so that z = arsinha(y). The condition that z 6= 0 implies that

y 6= 0. Moreover, cosha(z) = cosha(arsinha(y)) =
√
y2 + 1. Substituting these

into (2.40) yields (2.38).
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Next, let cosha(z) = y so that z = arcosha(y). The condition that z 6= 0 implies

that y > 1. Additionally, sinha(z) = sinha(arcosha(y)) =
√
y2 − 1. Substituting

these into (2.40) yields (2.39). �

Theorem 2.13. For p ≥ 3, the inequalities

(2.41)

(
arsinha(y)

y

)p
<

1√
y2 + 1

, y 6= 0,

(2.42)
arcosha(y)

y
<

√
y2 − 1

y1+1/p
, y > 1,

are valid.

Proof. We use the inequality [12]

(2.43) cosha(z) <

(
sinha(z)

z

)p
, z 6= 0, p ≥ 3.

By letting sinha(z) = y in (2.43), and adopting the technique of the proof of
Theorem 2.12, we obtain (2.41). Likewise, by letting cosha(z) = y in (2.43), we
obtain (2.42). �

Theorem 2.14. The inequality

(2.44) arcosha(y) >
3
√
y2 − 1

(ln a)(2 + y)
, y > 1,

is valid.

Proof. This follows directly from the inequality [12]

sinha(z)

z
<

2 ln a+ (ln a) cosha(z)

3
, z 6= 0,

by letting cosha(z) = y . �

Theorem 2.15. The inequalities

(2.45)

(
y

arsinha(y)

)2

+
1√
y2 + 1

(
y

arsinha(y)

)
> 2, y 6= 0,

(2.46)
1

1− y2

(
y

artanha(y)

)2

+
y

artanha(y)
> 2, y ∈ (−1, 0) ∪ (0, 1),

are valid.

Proof. We use the inequality [12]

(2.47)

(
sinha(z)

z

)2

+
tanha(z)

z
> 2, z 6= 0.

Let sinha(z) = y so that z = arsinha(y) and tanha(z) = tanha(arsinha(y)) =
y√
y2+1

. The condition that z 6= 0 implies y 6= 0. Substituting these into (2.47)

yields (2.45). Also, let tanha(z) = y so that z = artanha(y) and sinha(z) =
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sinha(artanha(y)) = y√
1−y2

. The condition that z 6= 0 implies that y ∈ (−1, 0) ∪
(0, 1). Substituting these into (2.47) yields (2.46). �

Theorem 2.16. The inequalities

(2.48)
3

(ln a)(2 +
√
y2 + 1)

<
arsinha(y)

y
<

1

3 ln a

(
2 +

1√
y2 + 1

)
, y 6= 0,

(2.49)

3

(ln a)(1 + 2
√

1− y2)
<

artanha(y)

y
<

1

3 ln a

(
1 +

2√
1− y2

)
, y ∈ (−1, 0)∪(0, 1),

are valid.

Proof. Here we employ the Huygen’s type inequalities [12]

(2.50) 2
sinha(z)

z
+

tanha(z)

z
> 3 ln a, z 6= 0,

(2.51) 2
z

sinha(z)
+

z

tanha(z)
>

3

ln a
, z 6= 0.

As in the above, let sinha(z) = y so that z = arsinha(y) and tanha(z) =
tanha(arsinha(y)) = y√

y2+1
. Then substituting these into (2.50) and (2.51)

respectively yields the upper and lower bounds of (2.48). In the same way, let
tanha(z) = y so that z = artanha(y) and sinha(z) = sinha(artanha(y)) = y√

1−y2
.

Then substituting these into (2.50) and (2.51) respectively yields the upper and
lower bounds of (2.49). �

3. Concluding Remarks

We have provided inverses for the generalized hyperbolic functions cosha(z),
sinha(z) and tanha(z), where a > 1 and z ∈ (−∞,∞). We have also considered
some properties satisfied by these functions. Furthermore, we have established
some inequalities (or bounds) for the inverse functions and as a by-product, we
obtained some inequalities (or bounds) for the logarithmic function. For the
particular case where a = e, we obtain the corresponding results for the ordinary
inverse hyperbolic functions.
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