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In this paper, we provide inverses for some generalized hyperbolic functions. We also study some properties of these inverse functions. Furthermore, by using basic techniques, we establish some inequalities (or bounds) for the inverse functions. As a by-product of the established results, we obtain some inequalities (or bounds) for the logarithmic function.

Introduction

Inverse trigonometric and inverse hyperbolic functions are very useful in several areas of applied mathematics. They have important applications in engineering in particular. In recent years, inequalities concerning these functions have been studied extensively by many researchers and as a result, there exist a rich literature on this subject. See for example [START_REF] Bhayo | On Carlsons and Shafers inequalities[END_REF], [START_REF] Chen | On Shafer and Carlson Inequalities[END_REF], [START_REF] Chen | New inequalities between the inverse hyperbolic tangent and the analogue for corresponding functions[END_REF], [START_REF] Guo | Sharpening and generalizations of Shafer-Fink's double inequality for the arc sine function[END_REF], [START_REF] Guo | Monotonicity results and inequalities for the inverse hyperbolic sine function[END_REF], [START_REF] Guo | Sharpening and generalizations of Carlsons inequality for the arc cosine function[END_REF], [START_REF] Drnovsek | Sharp inequality involving hyperbolic and inverse hyperbolic functions[END_REF], [START_REF] Malesevic | Refinements and generalizations of some inequalities of Shafer-Finks type for the inverse sine function[END_REF], [START_REF] Malesevic | Refined Estimates and Generalizations of Inequalities Related to the Arctangent Function and Shafers Inequality[END_REF], [START_REF] Nantomah | An alternative proof of an inequality by Zhu[END_REF], [START_REF] Nantomah | Monotonicity and Convexity Properties and Some Inequalities Involving a Generalized Form of the Wallis Cosine Formula[END_REF], [START_REF] Neuman | Inequalities involving inverse circular and inverse hyperbolic functions[END_REF], [START_REF] Neuman | Inequalities involving inverse circular and inverse hyperbolic functions II[END_REF], [START_REF] Nishizawa | Refined quadratic estimations of Shafers inequality[END_REF], [START_REF] Qiao | Approximations to inverse tangent function[END_REF], [START_REF] Sun | Shafer-type inequalities for inverse trigonometric functions and Gauss lemniscate functions[END_REF], [START_REF] Zhu | New inequalities of Shafer-Fink type for arc hyperbolic sine[END_REF], [START_REF] Zhu | Inequalities between the inverse hyperbolic tangent and the inverse sine and the analogue for corresponding functions[END_REF] and the related references therein.

In a recent work, the authors [START_REF] Nantomah | On a Generalized Sigmoid Function and its Properties[END_REF] considered the following generalizations of the hyperbolic cosine, hyperbolic sine and hyperbolic tangent functions.

(1.1) cosh a (z) = a z + a -z 2 ,

(1.2) sinh a (z) = a z -a -z 2 ,

(1.3) tanh a (z) = sinh a (z) cosh a (z) = a z -a -z a z + a -z = 1 -

2 1 + a 2z ,
where a > 1 and z ∈ (-∞, ∞). Cosequently, the generalized hyperbolic secant, hyperbolic cosecant and hyperbolic cotangent functions are respectively defined 1 as (1.4) sech a (z) = 1 cosh a (z)

, cosech a (z) = 1 sinh a (z)

, coth a (z) = 1 tanh a (z) , and in particular, if a = e, where e = 2.71828... is the Euler's number, then the above definitions reduce to their ordinary counterparts. For more information on these generalized functions, one could refer to the works [START_REF] Nantomah | Cusa-Huygens, Wilker and Huygens Type Inequalities for Generalized Hyperbolic Functions[END_REF], [START_REF] Nantomah | Some Inequalities for Generalized Hyperbolic Functions[END_REF] and [START_REF] Nantomah | Panaitopol-Bandila-Lascu Type Inequalities for Generalized Hyperbolic Functions[END_REF]. Motivated by the above works, the objective of this work is to provide inverses of the functions (1.1)- (1.4) and to further study some properties of the inverse functions. We also provide some inequalities (or bounds) for the inverse functions.

Results and Discussion

Proposition 2.1. Let arsinh a (z), arcosh a (z), artanh a (z), arcosech a (z), arsech a (z) and arcoth a (z) respectively be the inverses of the functions sinh a (z), cosh a (z), tanh a (z), cosech a (z), sech a (z) and coth a (z). Then

(2.1) arsinh a (z) = 1 ln a ln z + √ z 2 + 1 , z ∈ (-∞, ∞), (2.2) arcosh a (z) = 1 ln a ln z + √ z 2 -1 , z ∈ [1, ∞), (2.3) artanh a (z) = 1 2 ln a ln 1 + z 1 -z , z ∈ (-1 , 1), (2.4) 
arcosech a (z) = 1 ln a ln 1 z + 1 z 2 + 1 = 1 ln a ln 1 + √ 1 + z 2 z , z = 0, (2.5) arsech a (z) = 1 ln a ln 1 z + 1 z 2 -1 = 1 ln a ln 1 + √ 1 -z 2 z , z ∈ (0, 1], (2.6) arcoth a (z) = 1 2 ln a ln z + 1 z -1 , z ∈ (-∞, -1) ∪ (1, ∞).
Proof. Let u = arsinh a (z) so that z = sinh a (u). This implies that a 2u -2za u -1 = 0 which is a quadratic equation in a u . Thus a u = z ± √ z 2 + 1. Since a u > 0 for all u, then we consider the root z + √ z 2 + 1 which is positive for all z ∈ (-∞, ∞). Hence u = 1 ln a ln z + √ z 2 + 1 which gives (2.1). Next, let v = arcosh a (z) so that z = cosh a (v). Since cosh a (v) is not one-to-one, we have to restrict its domain to [0, ∞) in order for the inverse to exist. Now z = cosh a (v) implies that a 2v -2za v + 1 = 0 and so

a v = z ± √ z 2 -1.
Here, both roots are positive for all

z ∈ [1, ∞). Since ln(z - √ z 2 -1) = -ln(z + √ z 2 -1), then ln(z ± √ z 2 -1) = ± ln(z + √ z 2 -1
) and because of the restriction, we consider the positive case. Hence v = 1 ln a ln z + √ z 2 -1 which gives (2.2). Next, let w = artanh a (z) so that z = tanh a (w). This implies that a 2w = 1+z 1-z which is positive for all z ∈ (-1, 1). Hence w = 1 2 ln a ln 1+z 1-z which gives (2.3).

Next, let r = arcosech a (z) so that z = cosech a (r). This implies that a r =

1± √ 1+z 2 z = 1 z ± 1 z 2 + 1. Since 1 z + 1 z 2 + 1
is positive for all z = 0, then we conclude that r = 1 ln a ln 1 z + 1 z 2 + 1 which gives (2.4). Next, let k = arsech a (z) so that z = sech a (k). Similarly, since sech a (k) is not one-to-one, we have to restrict its domain to [0, ∞) in order for the inverse to exist. Now z = sech a (k) implies that za 2k -2a k + z = 0 and so

a k = 1± √ 1-z 2 z
. Here too, both roots are positive for all z ∈ (0, 1]. Since ln( 1-

√ 1-z 2 z ) = -ln( 1+ √ 1-z 2 z ), then ln( 1± √ 1-z 2 z ) = ± ln( 1+ √ 1-z 2 z ) = ± ln( 1 z + 1 z 2 -1)
. Because of the restriction, we consider the positive case. Hence k = 1 ln a ln 1 z + 1 z 2 -1 which gives (2.5). Finally, let δ = arcoth a (z) so that z = coth a (δ). This implies that

a 2δ = z+1 z-1 which is positive for all z ∈ (-∞, -1) ∪ (1, ∞). Hence δ = 1
2 ln a ln z+1 z-1 which gives (2.6).

Proposition 2.2. The following identities hold.

(2.7) arsinh a z r = 1 ln a dz √ z 2 + r 2 + β, z ∈ (-∞, ∞), r > 0, (2.8) arcosh a z r = 1 ln a dz √ z 2 -r 2 + β, z > r > 0, (2.9) artanh a z r = r ln a dz r 2 -z 2 + β, |z| < r, (2.10) arcoth a z r = r ln a dz r 2 -z 2 + β, |z| > r > 0,
where β is a constant.

Proof. Let z ∈ (-∞, ∞) and r > 0. Then by (2.1), we have

arsinh a z r = 1 ln a ln z + √ z 2 + r 2 r , which implies that d dz arsinh a z r = 1 ln a 1 √ z 2 + r 2 ,
and this is equivalent to (2.7). Next, let z > r > 0. Then by using (2.2), we arrive at

d dz arcosh a z r = 1 ln a 1 √ z 2 -r 2 ,
which is equivalent to (2.8). Next let |z| < r. Then by using (2.3), we have

artanh a z r = 1 ln a [ln(r + z) -ln(r -z)] ,
which implies that d dz artanh a z r = 1 ln a r r 2 -z 2 , and this is equivalent to (2.9). Finally, let |z| > r > 0. Then by using (2.6), we arrive at

d dz arcoth a z r = - 1 ln a r z 2 -r 2 ,
which is equivalent to (2.10).

Proposition 2.3. The generalized inverse hyperbolic functions satisfy the following properties

(2.11) sinh a (arcosh a (z)) = √ z 2 -1, |z| > 1, (2.12) sinh a (artanh a (z)) = z √ 1 -z 2 , |z| < 1, (2.13) cosh a (arsinh a (z)) = √ z 2 + 1, z ∈ (-∞, ∞), (2.14) cosh a (artanh a (z)) = 1 √ 1 -z 2 , |z| < 1, (2.15) tanh a (arsinh a (z)) = z √ z 2 + 1 , z ∈ (-∞, ∞), (2.16) tanh a (arcosh a (z)) = √ z 2 -1 z , |z| > 1.
Proof. Let sinh a (arcosh a (z)) = y and arcosh a (z) = θ. This implies that z = cosh a (θ) and y = sinh a (θ). Then by applying identity cosh 2 a (z) -sinh 2 a (z) = 1, we obtain z 2 -y 2 = 1 which implies that y = √ z 2 -1 where |z| > 1. This gives (2.11).

Similarly, let sinh a (artanh a (z)) = y and artanh a (z) = φ. Thus, z = tanh a (φ) and y = sinh a (φ). Then by the identity, we obtain 1 z 2 -1 = 1 y 2 which implies that y = z √ 1-z 2 where |z| < 1. This gives (2.12). The proofs of (2.13)-(2.16) follow the same procedure. As a result, we omit the details.

Theorem 2.4. The following inequalities are valid.

(2.17)

1 ln a v -u √ v 2 + 1 < arsinh a (v) -arsinh a (u) < 1 ln a v -u √ u 2 + 1 , 0 ≤ u < v, (2.18) 1 ln a v -u √ v 2 -1 < arcosh a (v) -arcosh a (u) < 1 ln a v -u √ u 2 -1 , 1 < u < v, (2.19) 1 ln a v -u 1 -u 2 < artanh a (v) -artanh a (u) < 1 ln a v -u 1 -v 2 , 0 ≤ u < v < 1, (2.20) 1 ln a v -u 1 -u 2 < arcoth a (v) -arcoth a (u) < 1 ln a v -u 1 -v 2 , 1 < u < v.
Proof. Consider the function arsinh a (t) on the interval 0 ≤ u < v. Then by the classical mean value theorem, there exist c ∈ (u, v) such that

arsinh a (v) -arsinh a (u) v -u = 1 ln a 1 √ c 2 + 1 = ψ(c). Since ψ(t) = 1 ln a 1 √ t 2 +1
is decreasing for t ≥ 0, then for c ∈ (u, v), we have ψ(v) < ψ(c) < ψ(u) which yields (2.17).

Next, consider the function arcosh a (t) on the interval 1 < u < v. Then by the mean value theorem, there exist c ∈ (u, v) such that

arcosh a (v) -arcosh a (u) v -u = 1 ln a 1 √ c 2 -1 = θ(c). Since θ(t) = 1 ln a 1 √ t 2 -1 is decreasing for t > 1, then for c ∈ (u, v), we have θ(v) < θ(c) < θ(u) which yields (2.18).
Next, consider the function artanh a (t) on the interval 0 ≤ u < v < 1. Then by the mean value theorem, there exist c ∈ (u, v) such that

artanh a (v) -artanh a (u) v -u = 1 ln a 1 1 -c 2 = φ(c). Since φ(t) = 1 ln a 1 1-t 2 is increasing for t ≥ 0, then for c ∈ (u, v), we have φ(u) < φ(c) < φ(v) which yields (2.19).
Finally, consider the function arcoth a (t) on the interval 1 < u < v. Then by the mean value theorem, there exist c ∈ (u, v) such that

arcoth a (v) -arcoth a (u) v -u = 1 ln a 1 1 -c 2 = β(c).
Since β(t) = 1 ln a 1 1-t 2 is increasing for t > 1, then for c ∈ (u, v), we have β(u) < β(c) < β(v) which yields (2.20).

Corollary 2.5. The following inequalities are valid.

(2.21) 1 ln a z √ z 2 + 1 < arsinh a (z) < 1 ln a z, z > 0, (2.22) 1 ln a ln(2 + √ 3) + z -2 √ z 2 -1 < arcosh a (z) < 1 ln a ln(2 + √ 3) + z -2 √ 3 , z > 2, (2.23) 1 ln a z < artanh a (z) < 1 ln a z 1 -z 2 , 0 < z < 1, (2.24) 1 ln a ln 3 2 - z -2 3 < arcoth a (z) < 1 ln a ln 3 2 + z -2 1 -z 2 , z > 2.
Proof. By letting u = 0 and v = z in (2.17 (2.25)

z √ z 2 + 1 < ln(z + √ z 2 + 1) < z, z > 0, (2.26) ln(2 + √ 3) + z -2 √ z 2 -1 < ln(z + √ z 2 -1) < ln(2 + √ 3) + z -2 √ 3 , z > 2, (2.27) 2z < ln 1 + z 1 -z < 2z 1 -z 2 , 0 < z < 1, (2.28) ln 3 - 2 3 (z -2) < ln z + 1 z -1 < ln 3 + 2 z -2 1 -z 2 , z > 2.
Remark 2.7. By letting s = 1+z 1-z in (2.27) and s = z+1 z-1 in (2.28), we respectively obtain

(2.29) 2 s -1 s + 1 < ln s < s 2 -1 2s , s > 1,
and

(2.30) ln 3 + 2 s -3 s -1 < ln s < ln 3 + (s -3)(s -1) 2s , 1 < s < 3.
By letting s = x + 1 in (2.29), we recover inequality (3) of [START_REF] Topsøe | Some Bounds for the Logarithmic Function[END_REF]. Furthermore, by letting s = 1 + 1

x in [10, Problem 3.6.18, p.273], we obtain

(2.31) 2 s -1 s + 1 < ln s < s -1 √ s , s > 1.
It is observed that the upper part of (2.31) is stronger than the upper part of (2.29).

Theorem 2.8. The inequality

(2.32) 1 ln a 4(v -u) 4 -(u + v) 2 < artanh a (v) -artanh a (u) < 1 2 ln a v -u 1 -u 2 + v -u 1 -v 2 ,
holds for -1 < u < v < 1 and consequently, the inequality

(2.33) 1 ln a 4z 4 -z 2 < artanh a (z) < 1 2 ln a z + z 1 -z 2 , 0 < z < 1, also holds.
Proof. We employ the Hermite-Hadamard inequality (2.34)

p k 1 + k 2 2 ≤ 1 k 2 -k 1 k 2 k 1 p(z)dz ≤ p(k 1 ) + p(k 2 ) 2 for a convex functin p on the interval [k 1 , k 2 ]. Let p(z) = 1 ln a 1 1-z 2 where -1 < z < 1. Then p is convex. Next, let -1 < u < v < 1.
Then by (2.34), we obtain

1 ln a 4 4 -(u + v) 2 < artanh a (v) -artanh a (u) v -u < 1 2 ln a 1 1 -u 2 + 1 1 -v 2 ,
which gives (2.32). Inequality (2.33) is obtained by letting u = 0 and v = z in (2.32). Remark 2.9. Since z < 4z 1-z 2 and 1 2 z + z 1-z 2 < z 1-z 2 for all 0 < z < 1, then inequality (2.33) is sharper than inequality (2.23).

Remark 2.10. Inequality (2.33) implies that

(2.35) 8z 4 -z 2 < ln 1 + z 1 -z < z + z 1 -z 2 , 0 < z < 1,
and by letting s = 1+z 1-z in (2.35), we obtain

(2.36) 8s 2 -8 3s 2 + 10s + 3 < ln s < s 3 + 5s 2 -5s -1 4s 2 + 4s , s > 1,
which is a better estimate than (2.29). Thus, (2.36) is a refinement of inequality (3) in [START_REF] Topsøe | Some Bounds for the Logarithmic Function[END_REF]. The upper part of (2.36) is however weaker than inequality [START_REF] Topsøe | Some Bounds for the Logarithmic Function[END_REF] in [START_REF] Topsøe | Some Bounds for the Logarithmic Function[END_REF] Theorem 2.11. The inequality (2.37) a -arcosha(y) < y < a arcosha(y) , y > 1, also holds.

Proof. This follows directly from the inequality [16, (3.3)] a -z < cosh a (z) < a z , z > 0, by letting cosh a (z) = y so that z = arcosh a (y).

Theorem 2.12. The inequalities

(2.38) 1 ln a 1 y 2 + 1 < arsinh a (y) y < 1 ln a y 2 + 1, y = 0, (2.39) 1 ln a y 2 -1 y 2 < arcosh a (y) y < 1 ln a y 2 -1, y > 1,
are valid.

Proof. We make use of the inequality [16, (3.17)]

(2.40) ln a cosh a (z) < sinh a (z) z < (ln a) cosh a (z), z = 0.

Let sinh a (z) = y so that z = arsinh a (y). The condition that z = 0 implies that y = 0. Moreover, cosh a (z) = cosh a (arsinh a (y)) = y 2 + 1. Substituting these into (2.40) yields (2.38).

Next, let cosh a (z) = y so that z = arcosh a (y). The condition that z = 0 implies that y > 1. Additionally, sinh a (z) = sinh a (arcosh a (y)) = y 2 -1. Substituting these into (2.40) Proof. This follows directly from the inequality [START_REF] Nantomah | Cusa-Huygens, Wilker and Huygens Type Inequalities for Generalized Hyperbolic Functions[END_REF] sinh a (z) z < 2 ln a + (ln a) cosh a (z) 3 , z = 0, by letting cosh a (z) = y .

Theorem 2.15. The inequalities

(2.45) y arsinh a (y) 2 + 1 y 2 + 1 y arsinh a (y) > 2, y = 0, (2.46) 1 1 -y 2 y artanh a (y) 2 + y artanh a (y) > 2, y ∈ (-1, 0) ∪ (0, 1), are valid.
Proof. We use the inequality [START_REF] Nantomah | Cusa-Huygens, Wilker and Huygens Type Inequalities for Generalized Hyperbolic Functions[END_REF] (2.47) sinh a (z) z . The condition that z = 0 implies y = 0. Substituting these into (2.47) yields (2.45). Also, let tanh a (z) = y so that z = artanh a (y) and sinh a (z) = sinh a (artanh a (y)) = y √ 1-y 2 . The condition that z = 0 implies that y ∈ (-1, 0) ∪ (0, 1). Substituting these into (2.47) , y ∈ (-1, 0)∪(0, 1), are valid.

Proof. Here we employ the Huygen's type inequalities [START_REF] Nantomah | Cusa-Huygens, Wilker and Huygens Type Inequalities for Generalized Hyperbolic Functions[END_REF] (2.50) 2 sinh a (z) z + tanh a (z) z > 3 ln a, z = 0, . Then substituting these into (2.50) and (2.51) respectively yields the upper and lower bounds of (2.48). In the same way, let tanh a (z) = y so that z = artanh a (y) and sinh a (z) = sinh a (artanh a (y)) = y √ 1-y 2 . Then substituting these into (2.50) and (2.51) respectively yields the upper and lower bounds of (2.49).

Concluding Remarks

We have provided inverses for the generalized hyperbolic functions cosh a (z), sinh a (z) and tanh a (z), where a > 1 and z ∈ (-∞, ∞). We have also considered some properties satisfied by these functions. Furthermore, we have established some inequalities (or bounds) for the inverse functions and as a by-product, we obtained some inequalities (or bounds) for the logarithmic function. For the particular case where a = e, we obtain the corresponding results for the ordinary inverse hyperbolic functions.

2 + tanh a (z) z > 2 ,

 22 z = 0. Let sinh a (z) = y so that z = arsinh a (y) and tanh a (z) = tanh a (arsinh a (y)) = y √ y 2 +1

√ y 2

 2 above, let sinh a (z) = y so that z = arsinh a (y) and tanh a (z) = tanh a (arsinh a (y)) = y +1

  yields (2.39).

	Theorem 2.13. For p ≥ 3, the inequalities
	(2.41)	arsinh a (y) y	p	<	1 y 2 + 1	, y = 0,
	(2.42)	arcosh a (y) y	<	y 2 -1 y 1+1/p , y > 1,
	are valid.					
	Proof. We use the inequality [12]			
	(2.43)	cosh a (z) <	sinh a (z) z	p	, z = 0, p ≥ 3.
	By letting sinh a (z) = y in (2.43), and adopting the technique of the proof of
	Theorem 2.12, we obtain (2.41). Likewise, by letting cosh a (z) = y in (2.43), we
	obtain (2.42).					
	Theorem 2.14. The inequality				
	(2.44)	arcosh a (y) >	3 y 2 -1 (ln a)(2 + y)	, y > 1,
	is valid.					

  yields (2.46).

	Theorem 2.16. The inequalities			
	(2.48)	3 (ln a)(2 + y 2 + 1)	<	arsinh a (y) y	<	1 3 ln a	2 +	1 y 2 + 1	, y = 0,
	(2.49)								
	3 (ln a)(1 + 2 1 -y 2 )	<	artanh a (y) y	<	1 3 ln a	1 +	2 1 -y 2