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Abstract

An unsteady one-dimensional model of solid propellant combustion, based on a low-Mach assumption, is presented

and semi-discretised in space via a finite volume scheme. The mathematical nature of this system is shown to be

differential-algebraic of index one. A high-fidelity numerical strategy with stiffly accurate singly diagonally implicit

Runge-Kutta methods is proposed, and time adaptation is made possible using embedded schemes. High-order is

shown to be reached, while handling the constraints properly, both at the interface and for the mass conservation

in the gaseous flow field. Three challenging test-cases are thoroughly investigated: ignition transients, growth of

combustion instabilities through a Hopf bifurcation leading to a limit cycle periodic solution and the unsteady

response of the system when detailed gas-phase kinetics are included in the model. The method exhibits high

efficiency for all cases in terms of both computational time and accuracy compared to first- and second-order

schemes traditionally used in the combustion literature, where the time step adaptation is CFL- or variation-based.

1. Introduction

Solid propellant combustion is a key element in rocket propulsion and has been extensively studied since the

1950s [1, 2, 3, 4, 5]. It involves a solid phase and a gas phase, separated by an interface. The solid is heated up by

thermal conduction and radiation from the gas phase. At its surface, the solid propellant decomposes, melts and

evaporates through a pyrolysis process as the interface regresses. The resulting gaseous products react and form a

flame which heats back the solid, allowing for a sustained combustion.

It is essential to understand the physics of this phenomenon to allow for clever combustion chamber designs

leading to efficient solid rocket motors. A key element is the regression speed of the propellant surface and its

dependence on the combustion chamber conditions. This has been extensively studied in a steady-state context

through the use of analytical models [6, 7, 8]. Such models served as initial tools for the ground analysis of unsteady

combustion dynamics, for example with the computation of a linearised frequency response [9], the characterisation

of intrinsic combustion instabilities, and the stability analysis of a combustion chamber [10]. Ignition transients have

originally been treated with analytical models considering only the unsteady heating of the solid phase, with heat

being generated by surface reactions, bulk reactions, or simplified gas flame heat feedback [11, 12]. Unfortunately,
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these simple models are limited in accuracy and struggle to predict the combustion dynamics of a propellant

without extensive experimental data. They are also not suited to the detailed study of transient dynamics. Since

the 1990s, developments have therefore focused on CFD tools, both for steady and unsteady applications. Recent

one-dimensional CFD codes make use of complex chemical mechanisms [13, 14, 15, 16], however such kinetics are

still difficult to evaluate and validate, and the heterogeneity of widely used propellants, such as AP-HTPB, tends

to limit the use of such mechanisms to lower pressures [14] due to an increase of three-dimensional effects involving

diffusion flames at higher pressures. Detailed two- to three-dimensional CFD approaches taking into account the

heterogeneity of the propellant and relying on simplified kinetics [17, 18, 19, 20] have started to emerge, however

they are costly and limited to the simulation of a very small burning area. All these models allow for the precise

analysis of the unsteady combustion of a propellant that is assumed to be semi-infinite in the direction normal to

the surface, and either infinite (for one-dimensional models) or periodic symmetric (for two- and three-dimensional

models) in the directions tangent to the surface. They have been developed to simulate laboratory experiments, for

example the burning of a sufficiently large and thick propellant sample, such that these assumptions are realistic.

Cook-off studies of enclosed samples have also been considered [14, 21].

The previous models cannot be used for large-scale simulations, and there is still a need for a precise and robust

solid propellant combustion model and numerical strategy for the simulation of the ignition of a complete combustion

chamber. A three-dimensional CFD tool can hardly be used to solve the flow field inside the chamber and the surface

combustion, due to extreme computational requirements. Indeed the near-surface combustion typically happens in

a flame that is a few hundred micrometers thick, across which the temperature may increase by 2000K, requiring

mesh cells thinner than 1 micrometers for an adequate resolution. Using such a refined mesh along the complete

length of combustion chamber (on the order of 1-10 meters) would be prohibitive. Therefore, the only viable option

is to use a coarse mesh near the surface, and solve all the surface combustion within a simpler submodel, e.g. a

one-dimensional CFD tool. Such a coupling with a very simplified propellant modelling has been reported [22, 23],

and has been implemented in the CEDRE code [24] at ONERA, with a propellant model based on analytical

formulae [25]. More accurate models are needed to better resolve the coupled dynamics. These models also need

to be as efficient as possible to allow for short restitution times. For instance, the time integration procedure must

be accurate enough without requiring prohibitively small time steps. Eventually, there is a convergent need for a

one-dimensional model, either for the coupling with the previous three-dimensional model for combustion chamber

predictive simulations, or for the parametric / detailed study of flame dynamics and unsteady combustion dynamics

in a purely one-dimensional context. Such a model should involve the proper level of physics, while being amenable

to high-fidelity simulation by relying on a tailored numerical strategy taking into account the fact that most models

involve systems with algebraic constraints.

This is specifically what we wish to investigate in this paper. It is instructive to conduct a short overview of the

various numerical approaches presented in the literature for the time integration of one-dimensional solid propellant

combustion models. One of the earliest detailed one-dimensional model is presented by Erikson and Beckstead [26].

A splitting method is implemented to integrate the gas phase equation, using the ICE scheme [27] to compute the

pressure and velocity fields with an implicit scheme of first-order accuracy in time. The stiff chemical source terms

are handled with DVODE [28]. The solid phase energy equation is integrated implicitly. The surface temperature
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and regression speed are then iterated upon until the interface conditions are met, each time performing the split

integration of both phases. Due to poor computational performance and large splitting errors, they transition in

[29] to a fully implicit resolution of the gas phase, using the TWOPNT [30] algorithm to solve the system discretised

in time with the first-order implicit Euler method. The authors mention the attempt to use DASSL [31] instead,

which is a high-order adaptive method based on a backward-differentiation formula, however difficulties led them

to use TWOPNT most of the time. Both phases still need to be iterated upon at each time step. V. Yang and

his colleagues (see the review [15]) used a similar approach with an iterative coupling of both phases. The solid

phase species equations, the gas phase continuity and species equations are solved explicitly with the fourth-order

RK4 method, while the remaining equations are solved with PREMIX [32], which uses the first-order implicit

Euler scheme. A variant of this approach [33] solves the gas phase implicitly with a dual time step to improve

the convergence of the Newton solver, however implicit Euler is still the method used for the time integration.

Meredith and Beckstead [16] and Smyth [14] use the same iterative approach and the same resolution method for

the condensed phase as Erikson and Beckstead, but the solid phase is allowed to take multiple smaller steps to

improve convergence. The gas phase is solved implicitly with a Newton algorithm and time integration methods

provided in the PETSc library [34]. No precision is given on the order and properties of the chosen methods. To our

knowledge, most of the one-dimensional unsteady CFD codes for the combustion of a solid propellant use a similar

iterative procedure between the different phases, with a time integration based on splitting and/or implicit methods,

which are usually limited to first-order accuracy in time. No mathematical analysis has been reported regarding the

nature of the system of coupled equations obtained after semi-discretisation in space, where the handling of some

variables (e.g. surface temperature) is usually problematic. Besides, relying on low-order integration methods may

prove disadvantageous in terms of accuracy, performance and ability to resolve fine dynamics. High-order methods

are especially important when investigating instabilities and non-linear behaviours, e.g. limit cycles, where growth

of some modes can only be captured by high-fidelity numerical methods [35].

Even if solid propellant combustion brings in additional difficulties and constraints related to the heterogeneous

nature of the flow, homogeneous combustion or two-phase flow combustion for one-dimensional low-Mach flows

involve in fact the same problematic. We briefly mention it since the results provided in this paper can equally

be applied to these fields of research. Solving for steady and unsteady homogeneous and spray combustion in one-

dimensional flame simulations has attracted enormous attention in the combustion community starting with the

seminal work conducted by M.D. Smooke and collaborators between Sandia and Yale University [32, 36, 37, 38, 39].

The main use of low-order time integrators as well as relatively ad hoc treatment of algebraic constraints lead to

similar conclusions compared to the observation in the previous paragraph, except for the work on the dynamics of

non-premixed counterflow flames [40]. In this interesting piece of work, high-order time integrators for differential-

algebraic equations (DAE) were introduced, but the constraint formulation was rather involved (introduction of

compressibility effects - link with the index) and the details of the convergence / efficiency were not the main

purpose of the paper.

The present contribution focuses on the one-dimensional solid propellant combustion in the Low-Mach number

approximation, and introduces a high-order time integration strategy based on singly-diagonally implicit Runge-

Kutta methods, with a fully coupled approach involving algebraic constraints. The accuracy on the algebraic
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variables, i.e. surface variables and flow velocity, is guaranteed by requiring certain specific properties for the

integration scheme.

In the first part of the paper, we focus on the mathematical nature of the set of coupled equations obtained

after semi-discretisation in space. We show that it is a differential-algebraic system of index one. The knowledge of

this particular property is decisive when looking for high-order time integration methods. Many suited methods are

reported in the literature for this particular class of problems1 [42, 31]. In the second part of this paper, a progressive

description of the different requirements for a high-accuracy time integration method is given, leading to the choice

of a family of singly-diagonally implicit Runge-Kutta methods with embedded lower-order solutions providing native

time adaptation capabilities based on objective mathematical criteria. Other methods may be applied, however

Runge-Kutta methods are preferred, as they usually offer strong convergence and stability properties and allow

for a natural treatment of the mass conservation algebraic constraint. A one-dimensional CFD code that can

accurately compute the time-dependent solution of simplified combustion models is then presented and the method

and its implementation are verified on two test-cases, where we have analytic or quasi-analytic solutions: steady-

state solution and response of the solid propellant combustion to pressure oscillations, a classical problem in the

field. In order to investigate the potential and efficiency of the method, we tackle three challenging test-cases.

First, we focus on the simulation of ignition transients with a simplified modelling, showing that the native time

adaptation capability of embedded methods is more performant than traditional CFL- or variation-limited time

step evaluation strategies. High-order adaptive methods provide more accurate results than traditional low-order

methods for similar computational times. Second, we identify physical parameters for which we expect an unstable

behaviour of the steady-state solution through a Hopf bifurcation, thus exhibiting a nonlinear growth toward a

limit-cycle periodic solution. A procedure is detailed for the generation of such a configuration based on the

Zeldovich-Novozhilov (ZN) analysis [2] and an optimisation tool we have designed. Simulations of the growth of

the instability toward the limit cycle show that high-order time integration methods offer a major improvement

over low-order methods, in terms of quality of the result, robustness, and ability to capture such dynamics. If

a precise temporal resolution is sought, these methods also offer important benefits in both computational time

and amount of engineering work required to setup and conduct an accurate simulation of such non-linear systems,

the time response of which is a key issue for applications. Eventually, the proposed numerical strategy is tested

with the unsteady combustion of an ammonium perchlorate (AP) monopropellant with detailed kinetics involving

25 species and 80 reactions in the gas phase. Even if this case is mainly presented as a proof of concept for the

numerical strategy and cannot be considered as a very accurate and relevant model in terms of physics, it allows

us to show that the convergence orders and efficiency of the method are not affected by the increased complexity

and stiffness of the detailed modelling level. Important gains in the quality of the result, ease of simulation setup,

and computational times are also observed. We can then conclude and assess the numerical strategy proposed in

the paper.

1It is important to stress the fact that, when the problem is considered in more than one dimension, the system may become
differential-algebraic of index two, in particular due to the pressure field [31], requiring a deeper analysis of the problem and more
advanced time integration methods [41]. However, the main results of the one-dimensional case should remain applicable.
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2. Formulation of the discrete unsteady problem

In this section, we first present the modelling assumptions and derive a 1D mathematical model of solid propellant

combustion. A method of lines based on finite volumes is used to obtain the set of semi-discrete equations.

2.1. General modelling

The temperature profile of the one-dimensional combustion of a solid propellant is presented schematically in

Figure 1. The space variable is x. The solid phase represents the propellant and is semi-infinite towards x = −∞.

As the surface heats up, it is generally agreed that thermal decomposition occurs inside the solid [14]. However, due

to the high activation energy of this process, the pyrolysis is often assumed to be concentrated in an infinitely thin

zone at the surface, while the propellant remains inert. Experiments have shown that many solid propellants exhibit

a thin liquid layer with gaseous bubbles (“foam” layer), typically a few micrometers thick for AP-based propellants

[14]. For HMX/RDX propellants at ambient pressure, the melt layer can be around 200 micrometers thick [43],

while the gas flame thickness is around 5 millimeters. At higher pressure, both thicknesses decrease [44]. Due to

difficulties with the experimental determination of the melt layer properties, many models have assumed this melt

layer to be infinitely thin as well [45, 13, 46]. Overall, the modelled interface is the location of a singularity, where

all decomposition and gasification phenomena are gathered. We follow the same reasoning for simplicity, however

the addition of a liquid phase and in-depth decomposition reactions should not affect the considerations discussed

in Section 3. Note that due to computational costs, all multi-dimensional tools for the solid propellant combustion

[17, 18, 19, 20] also use these interface assumptions.

Flows near the surface of a solid propellant are generally at high temperatures but slow velocity (1-10 m/s),

therefore the gas phase is modelled as a low-Mach one-dimensional reactive flow with ne species and uniform pressure

P . Radiative emission from the gas phase and surface are neglected. The inert solid phase is simply modelled with

the heat equation.

x
0

T
Tf

T0

Ts

interface

gassolid

Figure 1 One-dimensional model of solid propellant combustion

We recall the equations for both phases and their coupling at the interface. They are originally expressed

in a Galilean reference frame, where the interface position σ varies in time: dtσ = −r with r ≥ 0 the surface
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regression rate. We perform the simple variable change x = xgalilean−
∫
dtσdt, so as to keep the interface at x = 0.

This introduces a convective term in the solid phase heat equation, which represents the interface regression. The

temperature field T in the solid phase at x < 0 is subject to:

ρccc∂tT + ρcccr∂xT − ∂x(λc∂xT ) = 0 (1)

with ρc the propellant density, cc its heat capacity, λc the thermal conductivity. Far below the surface, the solid is

at its resting temperature:

T (−∞) = T0 (2)

The gas phase at x > 0 is subject to the following partial differential equations:


∂tρ+ ∂xρ(v + r) = 0

∂tρYk + ∂x(ρ(v + r)Yk) = −∂xJk + ωk ∀k ∈ [1, ne]

∂tρh+ ∂x(ρ(v + r)h) = −dtP + ∂x(λ∂xT )− ∂x(Σne
1 hkJk)

(3)

(4)

(5)

Here Yk is the mass fraction of k-th species, and Jk is the corresponding diffusion flux, approximated by a generalised

Fick’s law: Jk = ρΣne

j=1Dkj∂xYj, where the Dkj’s are the components of the species diffusion matrix. The volumetric

production rate of the k-th species is ωk. The enthalpy h is the sum of the chemical and sensible enthalpies:

h = Σne

k=1Ykhk, where hk = (∆h0f,k +
∫ T
T0
cp,k(a)da), with cp,k the heat capacity of the k-th species, and ∆hf,k its

formation enthalpy at T0 the standard temperature. Soret and Dufour effects are neglected. The following conditions

are automatically satisfied at infinity if we are looking for smooth enough solutions and cannot be considered strictly

speaking as boundary conditions:

∂xT (−∞) = 0, ∂xT (+∞) = 0, ∂xYk(+∞) = 0 ∀k ∈ [1, ne] (6)

Both phases are coupled at the interface by the following conditions, expressing the continuity of the mass flow rate

and temperature, as well as the thermal and species flux balance around the interface:



ρcr = ρ(0+)(v(0+) + r)

T (0−) = T (0+) = Ts

(mh− λc∂xT )0− = (mh− λ∂xT − Σne
1 hkJk)0+

(mYinj,k)0− = (mYk + Jk)0+ ∀ k ∈ [1, ne]

(7)

(8)

(9)

(10)

with m the mass flow rate (ρcr in the solid, ρ(v + r) in the gas) and Yinj the product mass fractions generated by

decomposition and gasification processes, which can be constant or functions of the surface temperature as in [13].

The ideal gas law relates the various state variables in the gas phase:

ρ = P/

(
RT

ne∑
k=1

Yk
Mk

)
(11)
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with Mk the molar mass of the k-th species. The surface pyrolysis mass flow rate is given by the pyrolysis law:

m(0) = ρcr = f(Ts, P ) (12)

A few remarks may be useful. First, in this one-dimensional framework, the momentum equation is redundant, as

the mass flow rate spatial variation is already determined by the continuity equation from the ρ temporal evolution,

which itself is known from the temporal variations of T and Yk and the thermodynamic pressure P through the

equation of state (11). Hence ρ, although its time derivative is specified by the continuity equation, is not a true

variable. As we will see further on in Section 3, the continuity equation only acts as a constraint that determines the

velocity field. The momentum equation could be used to determine the hydrodynamic pressure field, however it is

known that this pressure perturbation is of the order of Ma2, with Ma the Mach number. In solid propellant flames,

the Mach number is typically of the order of 10−3, hence the pressure perturbation can be completely neglected.

Second, the variable change we have performed is not a change of reference frame, therefore no inertial body

forces appear. Indeed the gas-phase velocity v is still the one observed in the original Galilean reference frame. We

see that all the convective terms involve (v + r) and v never appears on its own. Consequently in the rest of the

paper we replace it with u = v + r, which is the gas velocity relative to the interface. Furthermore, using the gas

mass flow rate m = ρu further simplifies the notations.

Third, all the partial differential equations presented above are in conservative form, which we will rely on for

the finite volume discretisation. However, for the theoretical analysis, we will replace equation (5) for the enthalpy

h with the simpler non-conservative equation for the temperature, allowing for a more direct analysis:

ρcp∂tT + ρcp(v − r)∂xT − ∂x(λ∂xT ) +

ne∑
k=1

Jk∂xhk = −
ne∑
k=1

hkωk (13)

The interface thermal balance equation (9) is also replaced by an equivalent equation for the temperature T :

(λc∂xT )0− = mQs + (λ∂xT )0+ (14)

with Qs the heat of reaction associated with the pyrolysis and gasification processes (surface reactions), which

depends on the temperature Ts and surface mass fractions Ys,k.

2.2. Concept of eigenvalue in steady-state

In the case where the kinetic mechanism is reduced to two species with one potentially reversible reaction, and if

the gas phase has a unitary Lewis number, we have shown in [47] that the steady-state travelling wave solution exists

and is unique. The steady-state problem belongs to the class of nonlinear eigenvalue problems. The eigenvalue is

the regression speed r, or equivalently the surface temperature Ts, as both are related through the pyrolysis law

(12). The associated eigenfunction is the temperature profile T (x). The problem can be solved separately in each

phase for any value of r, but the interface condition (14) can only be satisfied for a unique value of r. This interface

boundary condition can be considered an algebraic constraint and, as we will see later on, understanding this notion

in steady-state allows for a proper mathematical interpretation of the unsteady problem.
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xs xg,i+ 1
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xg,i− 1
2
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Figure 2 Localisation of the discretised variables in the finite volume mesh. The thick vertical line represents the interface.

2.3. Discretisation with a finite volume approach

For the numerical implementation of a solid propellant combustion model, we apply the method of lines to obtain

a set of discrete evolution equations. The semi-discretisation in space is obtained with a finite volume approach,

however other approaches could be applied without affecting the conclusions drawn in this paper.

2.3.1. Gas phase

The set of conservative equations for the gas phase is semi-discretised in space with a finite volume approach:

the domain is split in Ng cells (control volumes). The discretised variables are the temperature T , the mass fractions

Yk, the mass flow rate m = ρu. The temperature and mass fractions are taken at the centers of each cell, while the

mass flow rate is taken at the left face of each cell. This staggered-grid approach helps decreasing the numerical

discretisation error, and is convenient for the free boundary problem with a flux defined at the surface. The surface

temperature Ts, the surface mass fraction of the k-th species Ys,k are taken at x = 0 (rightmost face of the solid

domain, leftmost face of the gas domain). The localisation of each variable is sketched in Figure 2.

Using the notation q to identify any of the conservative variables: ρYk and ρh, or ρ, and the subscript i as the

index of the mesh cell considered, the conservative equations (3) to (5) become:

dqi
dt

= [Fd,q + Fc,q]
i+ 1

2

i− 1
2

+ sq,i (15)

with Fd,q the diffusive fluxes, Fc,q the convective fluxes and sq,i the source term.

Thermodynamic and transport properties are evaluated at the cell centers, and their values at the interface are

taken as averages of the adjacent cells values. The gradient at the (i− 1
2 )-th interface of a variable q discretised at

the cell centers is:

∇qi− 1
2

=
qi − qi−1
xi − xi−1

The interface values of the transported variables are computed via a numerical scheme. For any conservative

variable q, its interface value at the abscissa xi− 1
2

is defined as:

qi− 1
2

= Φ−
i− 1

2

qi−1 + Φ+
i− 1

2

qi

where Φ−
i− 1

2

and Φ+
i− 1

2

are the scheme coefficients and sum up to one. If both these coefficients are equal to 0.5,

the scheme is centered. This scheme is the only second-order accurate scheme with a 2 point stencil. MUSCL-

type scheme need at least a 3 point stencil. Due to stability requirements, the centered scheme needs to be locally
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upwinded if the flow is convection-dominated, ensuring stability at the expense of falling back to first-order accuracy.

This is done dynamically via a Péclet-weighted average of the first order upwind and second order centered schemes,

similar to what is done in [48] with the concept “mesh Reynolds number”. The local Péclet number at the center

of the i-th cell is Pei = cp,imi/λi, where the reference length is chosen unitary. The Péclet number at the (i− 1
2 )-th

interface is computed as:

Pei− 1
2

=
1

2
(Pei + Pei−1) (xi − xi−1)

i.e. it is an average Péclet number with a reference length taken as the distance between the centers of the

neighbouring cells. If |Pei− 1
2
| < 0.5, we use the centered scheme: Φ+ = Φ− = 0.5, i.e. the centered scheme is used

as the thermal diffusion is locally the dominating form of energy transfer compared to convection. If |Pei− 1
2
| > 1,

we use the upwind scheme: Φ+ = 0 if Pe > 0, else Φ+ = 1. The transition between these two cases is smooth with

respect to Pei− 1
2
, so as to not cause numerical issues later on. This allows to use a second-order accurate scheme

where the mesh is sufficiently refined. The first order scheme is only used in poorly resolved areas far away from

the surface, where precise representation of the flow is not required.

Convective fluxes are then computed as:

Fc,q,i− 1
2

= mi qi− 1
2

Diffusive fluxes are approximated by a second-order centered scheme. Source terms are evaluated at the cell centers.

The final semi-discrete equations for the evolution of the conservative variables in the i-th cell read as follows:

∆xi
dρi
dt

= mi −mi−1, ∆xi = xi+ 1
2
− xi− 1

2
(16)

∆xi
dρiYk,i
dt

= +mi

(
Φ+

i− 1
2

Yk,i + Φ−
i− 1

2

Yk,i−1

)
−mi+1

(
Φ+

i+ 1
2

Yk,i+1 + Φ−
i+ 1

2

Yk,i

)
+ Jk,i− 1

2
− Jk,i+ 1

2
+ ∆xiωk,i ∀k ∈ [1, ne]

(17)

∆xi
dρihi
dt

= ∆xidtP +mi

(
Φ+

i− 1
2

hi + Φ−
i− 1

2

hi−1

)
−mi+1

(
Φ+

i+ 1
2

hi+1 + Φ−
i+ 1

2

hi

)
− λi−1 + λi

2

Ti − Ti−1
xi − xi−1

+
λi + λi+1

2

Ti+1 − Ti
xi+1 − xi

+

ne∑
k=1

(
hk,i + hk,i−1

2
Jk,i− 1

2
− hk,i+1 + hk,i

2
Jk,i+ 1

2

) (18)

2.3.2. Solid Phase

The solid phase energy equation (1) is replaced by a conservative equation for the enthalpy and discretised in

the same way as the conservative equations in the gas phase. The solid mesh contains Nc cells. As explained further

in Section 4.3, the block-tridiagonal Jacobian of the complete system leads to an improved computational efficiency.

In order to keep a consistent Jacobian structure between the gas and solid phases, the mass flow rate field m and
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the species profile Yk are kept as dummy variables. As the solid propellant is assumed inert and incompressible,

the continuity equation is equivalent to dxm = 0 which is discretised as mi = mi+1, with the boundary condition

mNc+1 = m(Ts, P ). Species evolution is not considered in the solid phase, therefore the simple equation Yk,i = 0 is

used, for all i ∈ [1, Nc], and k ∈ [1, ne].

2.3.3. Surface

The surface variables are the surface temperature Ts and the surface mass fractions Ys,k on the gas side. The

surface matching conditions (7), (10) and (14) and the continuity equation (3) are discretised as follows, with a

first-order approximation of the gradients:


0 = gth :=− λc

Ts − Tc,−1
xs − xc,1

+ λ
Tg,1 − Ts
xg,1 − xs

+m(Ts)Qs(Ts)

0 = gsp,k := m(Ts)(Yinj,k − Ys,k) + Js,k ∀k ∈ [1, ne]

(19)

(20)

with Tc,−1 the temperature in the last cell of the solid phase below the surface, and Tg,1 the temperature in the

first cell of the gas phase, just above the surface. The species surface diffusion fluxes are computed as:

Js,k = ρ(Ts, Ys, P )

ne∑
j=1

Dkj(Ts)
Yg,j,1 − Ys,j
xg,1 − xs

3. Differential-algebraic nature of the semi-discretised system

We aim at developing a 1D unsteady CFD tool for high-fidelity simulations of transient phenomena. Relying on

a finite-volume space discretisation, we have obtained a system of ODEs. In this section, we show that a difficulty

arises from the nature of this system: some variables are not defined by differential, but only through algebraic

equations. The system thus belongs to the class of Differential-Algebraic Equations (DAE). We refer the reader to

[42, 31] for details on DAEs. Only the necessary aspects of this class of problem will be discussed hereafter.

3.1. Identification of the constraints

The discretised surface variables Ys,k and Ts only appear in equations (19) and (20), however no time derivative

appear. Such variables are called algebraic and will “instantly” adapt to the variations of the other variables in the

cells adjacent to the surface, i.e. they are not directly affected by their time histories.

The remaining algebraic equations come from the discrete gas continuity equation (16), which we recall here:


0 = gm,1 :=m1 −m(Ts)

0 = gm,i :=
dρi
dt

+
mi −mi−1

xi − xi−1
∀i ∈ [2, Ng]

(21)

(22)

Equation (21) is the boundary condition for the gaseous mass flow rate field and is equivalent to equation (7).

As underlined in Section 2.1, the density ρi in the i-th cell is a function of Ti and Yk,i via the ideal gas law (11).

These variables are governed by the discretised form of equations (4) and (13) and by the pressure P , assumed

spatially constant and given as an input to the model. Therefore ρi is not a true differential variable. Its time
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derivative dtρi appearing in equation (22) is entirely determined from the variations of the other gas-phase variables

Ti and Yk,i. The continuity equation is solely used to constrain the flow rate field in the gas phase m, the time

derivative of which does not appear in this one-dimensional low-Mach model. As a consequence, the discrete values

of the mass flow rate are also algebraic variables, which adapt instantly to variations of the other variables in

coherence with the parabolic nature of the low-Mach number limit, where all pressure waves propagate at infinite

speed and are relaxed instantly.

3.2. Analogy with a singular perturbation problem

To better understand the origin of the appearance of this algebraic character, and for the sake of the example,

let us focus on the surface temperature. If we relax the tacit assumption that no accumulation of mass or energy

takes place at the surface, we can derive a differential equation for Ts. Let us for instance assume that the interface

is a thin volume of thickness δx with uniform temperature Ts, heat capacity cs and density ρs, and is able to

accumulate energy. The interface energy condition (14) becomes:

dt(ρscsTs) =
1

δx

[
−λc∂xT (0−) + λ∂xT (0+)−m(Ts)Qs(Ts)

]
(23)

If we consider the surface properties ρs and cs constant, and introduce the parameter ε = ρscsδx, we obtain:

εdtTs = −λc∂xT (0−) + λ∂xT (0+)−m(Ts)Qs(Ts) (24)

When δx tends to 0 (infinitely thin interface), we perform a singular perturbation on the previous equations

(ε → 0). The time derivative of Ts disappears and the interface thermal balance reduces to equation (14). The

equation, originally of the differential type, becomes algebraic; this is a classical result of singular perturbation

theory, which is also valid for the surface mass fractions Ys,k. This simplified analysis helps to clarify the origin

of the algebraic character of equations (10) and (14): no accumulation of mass or energy in the infinitely thin

interface. The algebraic nature of the gas-phase mass flow rate ρu = m comes from the zero-Mach limit with

uniform thermodynamic pressure.

3.3. Index of the algebraic equations

The presence of algebraic equations usually brings in various types of additional difficulties in the numerical

resolution of the system of equations. A useful mathematical criterion, the “index”, is used to classify the different

types of algebraic equations and is essential in order to chose the proper numerical method. It is defined as the

number of times a given algebraic equation must be differentiated with respect to time to obtain a differential

equation for the corresponding algebraic variable [31]. Algebraic equations obtained via singular perturbations are

generally of index 1, therefore following the reasoning of Section 3.2 we expect Ts and Ys,k to be defined by index

1 algebraic equations.

We can verify that it is indeed the case by deriving our discretised equations (19) to (22) with respect to time.

We see that terms in dtTs, dtYs,k and dtmi appear, and that an explicit expression can be obtained for each of them.
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Figure 3 Sparsity pattern of the Jacobian of g, the vector of constraints

Therefore the index is 1. Note that when differentiating equation (22) with respect to time, the second-derivative

dttρi appears. It can however be expressed by differentiating the ideal gas law and the other conservation equations.

Another approach is to reorganise our system by clearly separating the algebraic equations from the differential

ones. Let W be the vector of differential variables, containing the discretised values of T and Yk in each cell, and

let Z be the vector containing our algebraic variables Ts, Ys,k and mi: W = (T, Yk)
t and Z = (Ts, Ys,k,mi)

t. The

system of DAEs can be recast into the following semi-explicit form:

{
dtW =f(W,Z)

0 =g(W,Z)

(25)

(26)

with g = (gth, gsp,1..gsp,ne , gm0 ..gmNg
)t the vector of algebraic equations. In this form, the index of the DAE is

known to be 1 if the Jacobian ∂Zg is non-singular [42]. We can verify this by forming this Jacobian, however for the

sake of simplicity, we only show in Figure 3 its sparsity pattern when considering only 2 species. The labels on the

vertical axis describe the constraint being derived, and the labels on the horizontal axis denote the differentiation

variable. We can decompose the matrix into smaller blocks following the red lines. The first block on the diagonal

corresponds to the Jacobian of the nonlinear system (gth, gsp,1..gsp,ne)
t = 0. A numerical investigation has shown

that in all studied cases, the corresponding solution is unique and the Jacobian, invertible. The second block on

the diagonal is lower triangular with non-zero elements on the diagonal, therefore it is invertible. Overall we claim

that the Jacobian can be considered as invertible, hence the index of the corresponding algebraic equations is 1.

As previously stated, for readability reasons, we have used the thermal interface balance (14) involving the

temperature, instead of eq. (9) involving the enthalpy. This however does not change the nature of the system.

Here a parallel may be drawn with the eigenvalue found when investigating the steady-state problem shortly

addressed in Section 2.2 and detailed in [47]. In the steady-state problem, the unitary Lewis assumption allows us

to drop the mass fractions in the gas phase and at the interface, as they are directly related to the temperature

through enthalpy conservation. The continuity equation simply tells us that the mass flow rate in the gas phase
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is uniform and equal to the pyrolysis mass flow rate given by the pyrolysis law. The thermal interface condition

(14) in the steady case determines the single value of the regression speed r at the interface, or equivalently the

surface temperature Ts, since both are linked through the pyrolysis law (12), and we thus call it the eigenvalue of

the problem. In the unsteady case, the constraints involve a larger number of surface variables (the surface mass

fractions Ys,k are added to the surface temperature), but also lead to a single regression speed, which can still be

called an eigenvalue of the problem. The semi-discretised mass conservation equation (16) leads to a vector of

algebraic variables, the discretised mass flow rate values in all the domain, which are directly determined from the

regression rate and constitute a vector of eigenvalues evolving with time and uniquely determined as a function of

time. This parallel allows to shed some light on the unsteady problem as another nonlinear eigenvalue problem.

4. Requirements for the time integration method

We have shown that our semi-discretised problem is an index 1 differential-algebraic system of equations. We

are now looking for a high-order time integration method to maximise the performance of our code, while ensuring

high-accuracy. Adaptive time stepping is an additional capability that we seek, so as to minimise the computational

time. We focus on Runge-Kutta methods and shortly discuss the applicability of other methods.

4.1. Ensuring high order of convergence for DAEs

4.1.1. Theoretical formulation

Let us consider a generic s-stage Runge-Kutta integration method applied to equations (25) and (26):



wni =Wn + ∆t

s∑
j=1

aijf(wnj , znj)

0 =g(wni, zni)

Wn+1 =wn + ∆t

s∑
i=1

bif(wni, zni)

Zn+1 =(1−
∑
i,j=1

biωij)Zn +

s∑
i,j=1

biωijznj

(27)

(28)

(29)

(30)

where wni and zni represent the values of W and Z at stage i, and aij , bi and ci are the coefficients of the Runge-

Kutta method, and ωij are the coefficients of the inverse of A = (aij), which we assume to exist, i.e. we temporarily

restrict ourselves to implicit methods. The same system is obtained in [42], on page 375. Equation (28) indicates

that, at each stage, the algebraic variables gathered in Z are determined such that the constraints are all verified.

This can be interpreted as a systematic projection of the algebraic variables onto the set {z | g(W, z) = 0}. After

all stages are computed, the advancement to the next time step is performed via equations (29) and (30).

An issue arises from equation (30) which does not necessarily ensure that g(Wn+1, Zn+1) = 0, hence a deviation

from the correct solution may occur. Runge-Kutta methods that are stiffly accurate satisfy the following conditions:

Wn+1 = wns, Zn+1 = zns, i.e. the last stage is the solution at the next time step. With such methods, we directly

obtain 0 = g(Wn+1, Zn+1). Non-stiffly accurate methods have their order of convergence severely reduced or might

even become unstable when applied to index 1 DAEs [42], whereas stiffly accurate methods retain the same order of
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convergence as for ODEs. Therefore such methods are of particular interest for our problem. Implicit Runge-Kutta

methods also allow for a natural treatment of the mass conservation constraint, preserving the order of convergence

on both differential and algebraic variables; the details are provided in Appendix B.

Finally, to ensure proper convergence in the case of a stiff system, L-stability is a very advantageous property.

It ensures that modes with time scales much shorter than the time step are instantaneously relaxed. The singular

perturbation analogy from Section 3 shows that DAEs of index 1 may correspond to modes that are infinitely fast

(ε → 0), hence L-stability is also beneficial when integrating DAEs. On the opposite, non L-stable methods may

relax these modes on multiple time steps, thus altering the dynamics of the system, or may even diverge.

4.1.2. Examples

The most widely used implicit method is implicit Euler (or backward Euler), which is first-order accurate, stiffly-

accurate and L-stable. It is a single-stage method with coefficients a11 = 1, b1 = 1, c1 = 1. If we apply it following

the previous formulation, we obtain:

{
Wn+1 =Wn + ∆tf(Wn+1, Zn+1)

0 =g(Wn+1, Zn+1)

(31)

(32)

A classical second-order scheme is the Crank-Nicolson method [49], which yields:

 Wn+1 =Wn +
∆t

2
(f(Wn+1, Zn+1) + f(Wn, Zn))

g(Wn+1, Zn+1) =− g(Wn, Zn)

(33)

(34)

Equation (34) may be surprising, however it shows that this method is sensitive to error accumulation on the

algebraic variables. In particular, it is crucial that the initial condition satisfies g(Y0, Z0) = 0. This method is not

L-stable and may encounter difficulties when applied to stiff systems.

4.2. Optimising the computational cost

When advancing forward in time, equations (27) and (28) must be solved, usually via a Newton algorithm,

which iterates on the values wni and zni for i ∈ [1, s]. Fully implicit Runge-Kutta methods are such that all the

stages must be solved simultaneously. The very popular stiffly accurate method Radau5 [42], a 3-stage fifth-order

fully implicit method based on Gauss-Radau quadrature points, is one such method. It possesses very interesting

properties, however if the problem has N unknowns, each time step requires solving a 3N × 3N system, which can

be rather costly. An interesting subclass of Runge-Kutta methods is the class of diagonally-implicit Runge-Kutta

methods (DIRK) [50]. These methods are such that the summations in equations (27) and (28) for the i-th stage

only go up to i instead of s, i.e. any stage can be solved by knowing the values at the previous stages. Such

methods require more stages (typically twice as many) to reach the same order of convergence as fully implicit

methods, however a complete time step only requires the resolution of s systems of size N × N , which is usually

more computationally efficient. Therefore we narrow down our choices to DIRK methods.
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4.3. Newton algorithm

For DIRK methods, the stages can be solved sequentially. For each stage we need to solve equations (27) and (28)

for the unknowns wni and zni. These equations can be combined to form the nonlinear problem F (X) = 0, with

X = (wni, zni)
t the vector of unknowns. This problem is solved iteratively using a modified Newton-Raphson

method with damping, simply referred to as Newton method in the rest of the article. Starting from an initial

guess, the method generates a sequence of iterates (Xα) such that:

Xα+1 = Xα − ταJ−1F (Xα) (35)

The Jacobian J = ∂XF is only updated when the convergence is poor or if the iterates diverge. It is computed

by finite differences. The damping coefficient τα is initially set to 1. It is reduced as long as the norm of the Newton

step is not decreasing, i.e. if ||J−1F (Xα+1)|| > ||J−1F (Xα)||. An error is raised if the Jacobian is computed more

than a maximum allowed number of times (typically 5), or if the number of iterations is too high.

The Newton increment ∆Xα = J−1F (Xα) is obtained by solving the linear system J∆Xα = F (Xα). As

explained in Section 2.3, the computation of the interface fluxes only relies on two adjacent cells, therefore J is block-

tridiagonal. A Thomas algorithm is used to solve this system, after having performed a block LU-decomposition.

Being able to reuse the Jacobian as many times as possible is important to save computational time. Let us take

the example of a simple nonlinear problem F (X) = 0 representing the residuals of a discretised ODE, for instance

dtX = f(X), with X the vector of variables. The equation for the i-th stage of a DIRK method is:

Xni = Xn + ∆t

i∑
j=1

aijf(Xnj)

We can rearrange this equation by regrouping terms involving the unknown Xni to one side:

Xni − aii∆tf(Xni) = Xn + ∆t

i−1∑
j=1

aijf(Xnj)︸ ︷︷ ︸
R, independent of Xni

The corresponding nonlinear problem is F (Xni) = 0 with: F (X) = X − aii∆tf(X)−R.

For each stage, this nonlinear problem is solved via the Newton method, which generates a sequence of iterates

(Xα) defined recursively by equation (35), taking Xn as initial condition, or a more precise extrapolation based on

former steps. The Jacobian of the nonlinear problem is:

J =

(
∂F

∂X

)
= I− aii∆t

(
∂f

∂X

)

If the original ODE is not too nonlinear, it is highly likely that (∂f/∂X) will not vary much as y changes from

one iteration to the next. However, if the method is composed of multiple stages and the coefficients aii are not

equal, the Newton algorithm will need to update the Jacobian at each stage. That is the reason why we focus on

singly-diagonally implicit Runge-Kutta methods (SDIRK), which satisfy the property aii = ajj ∀ (i, j) ∈ [1, s].
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4.4. Time adaptation

4.4.1. Motivation

A typical ignition transient is shown in Figure 6a for a solid propellant ignited by a laser source. The evolution

of the surface temperature is very rapid at the beginning of the propellant heating, before slowing down. At the

time of ignition, the temperature rises again quickly before settling to its steady-state value. The ignition transient

can be split into successive phases with very different time scales. Consequently, ensuring the time step is adapted

to the time scale of each phase is very important to guarantee a precise resolution and to save computational time.

Some simulations presented in the literature use a constant time step, taken as sufficiently low compared to the

ignition time [26, 51]. When time adaptation is used, it usually relies on a CFL criteria [14]. CFL limitation may

be irrelevant before ignition, as the gas-phase flow velocity is negligible, therefore it may be supplemented with an

additional requirement that the relative variation of the solution between two successive time steps is sufficiently

small (e.g. 1%). However such an approach requires fine-tuning and does not provide any guarantee regarding

the accuracy of the solution. Embedded Runge-Kutta methods provide a local error estimate by comparing two

solutions at different orders. The process is described in [52] and is briefly recalled here for completeness.

4.4.2. Embedded methods

An embedded Runge-Kutta method provides two approximations of different orders for the solution. Let us

consider a generic scalar ODE y′ = f(y), with the Runge-Kutta method providing a first approximation yn+1

of order p, and a second one ŷn+1 of order q < p. Let us denote as y(t) the exact solution. Assuming we

start with the exact solution y(tn) as initial condition for the time step n, the local errors for the two Runge-

Kutta solutions are: yn+1 = y(tn+1) + O(∆tp+1) and ŷn+1 = y(tn+1) + O(∆tq+1). Therefore the difference is

ε(∆t) = |yn+1− ŷn+1| = |O(∆tp+1)−O(∆tq+1)| ≈ O(∆tq+1) = α∆tq+1, with α > 0 a constant. We can assume the

time evolution of the solution is sufficiently well resolved when this difference is smaller than a specified tolerance:

ε(∆t) ≤ tol. Defining the integration error as err(∆t) = ε(∆t)/tol, this is equivalent to err(∆t) ≤ 1. If we choose

a time step ∆t1 such that this condition is not met, we can estimate a time step ∆topt such that the error matches

the tolerance:

ε(∆t1) = α∆tq+1
1 > tol, ε(∆topt) = α∆tq+1

opt = tol

Dividing the second equation by the first one yields: (∆topt/∆t1)
q+1

= tol/ε(∆t1), therefore ∆topt = ∆t1 (tol/ε(∆t1))
1/(q+1)

.

If ∆t1 is such that the asymptotic regime of convergence for the integration method is already reached, then the

estimated local integration error for ∆t = ∆topt will be close to the prescribed tolerance. This allows the time step

to be dynamically reduced or increased, ensuring that the solution is solved at least as precisely as specified, while

minimising computational cost. In practice, to avoid overcorrecting the time step, we do not allow it to change by

a factor lower than 0.2 or higher than 5 between two successive error estimations. A safety factor of 0.9 is also

applied to ∆topt to ensure the tolerance is strictly satisfied. If a time step fails due to floating arithmetic errors

or results in non-convergence of the Newton iterates, the current step is started over again with a decreased step

length. If the time step becomes smaller than 10−15 s, an error is raised to avoid important numerical rounding

errors.
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In the case of ODEs, the estimated integration error is defined as in [52]. Relative tolerances rtol and absolute

tolerances atol are defined as scalars and a tolerance vector is defined as tol = atole + rtol|yn|, yn the solution at

the former time step and e the vector of ones (same size as yn). The integration error is then estimated as:

err =

∣∣∣∣∣∣∣∣yn+1 − ŷn+1

tol

∣∣∣∣∣∣∣∣
2

(36)

where the fraction stands for division element by element. In this article we use the 2-norm.

4.5. Final choice of the method

Considerations on the accuracy of the method for a system of DAE of index 1 has led us to consider stiffly-

accurate Runge-Kutta methods. Minimisation of the computational cost due to Newton iterations is ensured by

using singly-diagonally implicit methods. Finally, the requirement of native time adaptation capabilities favours

embedded methods. Overall, based on the criteria presented so far, we look for embedded stiffly-accurate SDIRK

methods. Additionally, improvements in the error estimation for stiff system and DAEs can be obtained it the

lower-order embedded method is stiffly-accurate as well, as discussed in [53]. This reference introduces several such

schemes with an additional interesting property, which is that the first stage values are equal to the former time

step values. This allows to have a “free” stage to improve the accuracy of the method without any additional cost.

We retain three schemes from this reference:

• ESDIRK-32A, a four-stage, third-order method with a second-order embedded scheme

• ESDIRK-43B, a five-stage, fourth-order method with a third-order embedded scheme

• ESDIRK-54A, a seven-stage, fifth-order method with a fourth-order embedded scheme.

Other methods may be applicable. Rosenbrock and multistep methods can be applied directly to the semi-

explicit form of the system. In particular the DASSL algorithm [31] has been extensively applied to DAE systems

of index 1 with great success and may be an interesting alternative to our approach. Another possibility is to take

advantage of the fact that the DAE system is of index 1, thus the algebraic variables can be uniquely determined

from the differential variables, i.e. we can consider that there exists a function p such that Z = p(W ) satisfies

g(W,Z) = 0. Usually this relation is not explicitly known, therefore Z is determined iteratively via a Newton

method. The differential variables W are then governed by the differential equation dtW = f(W,p(W )), which

can be integrated with any ODE solver, in particular explicit ones. However we have found that our fully implicit

approach is able to produce accurate results while having CFL numbers much higher than 1, therefore explicit

integration algorithms would be relatively inefficient due to stability requirements. A partially implicit algorithm,

e.g. IMEX methods [54], could be used to remove such numerical instabilities induced by the convection operator,

however diffusion and reaction operators would also cause stability issues if treated explicitly, thus defeating the

purpose of IMEX methods. Splitting methods could be used so that each phenomena (diffusion, convection, reaction)

is integrated with an adequate efficient method, however the order of accuracy in time would generally not exceed

2, and additional difficulties may appear when handling the interface conditions.
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5. Numerical verification

In this section, the complete one-dimensional code is verified in two steps. First, the spatial discretisation is

verified in terms of steady-state profiles by comparing it to a semi-analytical model and enforcing the same level of

modelling. Second, the time integration is then verified by comparing the numerically determined response of the

surface mass flow rate to pressure oscillations with the classical linearised response.

5.1. Steady-state solution

We use a simple test case to validate the finite volume discretisation in steady-state. In the case of temperature

independent properties in both phases, surface reaction, unitary Lewis number in the gas phase and equal properties

(molar mass, heat capacity) for both gaseous species, we have developed a semi-analytical model [47], which solves

the complete problem in steady-state and determines the regression speed, surface temperature and solution profiles

with arbitrary precision. We use this model to generate a reference steady-state solution, and we observe how the

CFD solution converges to this reference as the mesh is refined. This comparison has been presented in details in

[47] and we only summarise the most important aspects here for the sake of completeness.

5.1.1. Model parameters

We consider a simple one-dimensional model of an AP-HTPB-Al propellant [47]. The main characteristics of

the simplified model are summarised hereafter.

Solid phase. The solid phase is composed of the solid species P and has the following properties: ρc = 1806 kg.m2,

∆hof (P ) = 0 J/kg at T = 0 K, cc = 1253 J/kg/K, λc = 0.65 W/m/K. The initial temperature is T0 = 300 K.

Surface. The pyrolysis mass flow rate is computed as: m = Ap exp(−Tap/Ts), with Ap = 6.07 × 107 kg/s/m2 and

Tap = 15082 K. The pyrolysis process converts the solid phase into the gaseous species G1.

Gas phase. Two global species are considered: the reactant G1 and product G2, which have the same properties

except standard enthalpies. Their molar mass is M = 74 g/mol, and their heat capacities are cp = cc. The

standard enthalpies at T = 0 K are ∆hof (G1) = −1.80 × 105 J/kg et ∆hof (G2) = −4.06 × 106 J/kg. The unique

global reaction is G1 → G2 and irreversible. The reaction rate is computed as: ω = A[G1] exp(−Ta/T ), with

A = 435.5 s−1, Ta = 7216 K, and [G1] the concentration of G1. The diffusion coefficients are equal for both species

and taken as a linear function of T such that the Lewis number is one throughout the gas phase. The thermal

conductivity is λ = 0.464 W/m/K.

5.1.2. Verification process

First, the complete steady-state problem is solved with the semi-analytical model. Multiple meshes are then

generated for the one-dimensional CFD code: knowing the temperature profile from the semi-analytical solution

and starting from an initial grid point at x = 0 (interface), the other grid points are placed such that the difference

in interpolated temperature between two successive grid points is equal to or below a given threshold. By varying

this threshold (from 0.05K to 50K), grids with varying levels of refinement are obtained, whose point distribution

is relatively well adapted to the problem. The finite volume mesh is then generated by taking these grid points as
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the positions of the cell faces. In this reference case, the thermal layer in the solid phase and the flame in the gas

phase both have a thickness close to 10−4m. The generated meshes are extended by adding cells with gradually

increasing sizes so that the abscissa of the outer cells are ten times greater than this thickness in order to minimise

the influence of the Neumann boundary conditions. It has been verified that extending the mesh further does not

change the result. The semi-analytical solution is taken as the initial state and advanced forward in time, until it

stabilises on the steady-state solution corresponding to the discrete system relying on the finite-volume method of

Section 2.3. This is done efficiently by taking large time steps with implicit Euler, as the initial state is very close

to the CFD steady-state solution.

5.1.3. Results

We show in Figure 4 the convergence of the CFD result towards the semi-analytical solution for the reference

case, as a function of the number of cells. Second-order accuracy in space is attained, and the relative errors reach

10−8 on Ts (10−7 on r and similar results are obtained on temperature profiles) at around 4000 adapted mesh cells.

Achieving a relative error lower than 10−8 on Ts is difficult as this level of error is very close to the tolerance on the

Newton step (relative precision of the CFD solution obtained by the Newton solver) and to the precision at which

the Jacobian used by the Newton method is approximated. Overall, the error is sufficiently small so that we can

consider that the CFD solution is converged in terms of spatial mesh and Newton iterations. The resolution of the

steady-state is coherent between the two approaches, thus verifying the spatial schemes used in the finite volume

approach.

Figure 4 Convergence of the steady-state CFD solution to-
wards the semi-analytical solution [47]

Figure 5 Bode diagram of the response function Rmp to
pressure fluctuations

5.2. Verification in unsteady regime

We now wish to verify the time integration algorithm implemented in the CFD code. No analytical solution

is available in the general unsteady regime, however linear frequency responses to pressure oscillations have been

available since decades [9]. They constitute a very interesting benchmark, and will be used here as a point of

comparison for the response function evaluated numerically with our CFD code.

5.2.1. Process

The linearised response can be constructed analytically using coefficients that represent the sensitivity of the

steady-state solution to certain parameters. These sensitivities can be easily generated with finite differences, using
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the semi-analytical model or the CFD code. This provides a reference linear response function. The one-dimensional

CFD code is then initialised with the steady-state profile and a sinusoidal pressure oscillation P (t) = p+p′ sin(2πft)

is forced in the gas phase, with f a given frequency. The mean pressure P is set to = 50×105Pa, and the amplitude

is set to p′ = 0.001P . This pressure oscillation leads to fluctuations in the pyrolysis mass flow rate m(t) = m+m′(t).

After a few periods, these oscillations stabilise and we can determine the response function Rmp = (m′/m)/(p′/p)

at the corresponding frequency. If we assume that the gas phase is quasi-steady, a linearisation of the heat equation

in the solid and of the pyrolysis law yields an expression for the response function:

Rmp(f) =
nAB

s+
A

s
− (1 +A) +AB

with s = 1
2

(
1 +

√
1
2 (y + 1) + i

√
1
2 (y − 1)

)
and y =

√
1 + 16Ω2, where Ω = 2πfDc/r

2, Dc is the solid phase thermal

diffusivity, and r is the steady-state regression rate. The coefficients A and B are defined as:

A = (Ts − T0)

(
∂ln(m)

∂Ts

)
P

, B =
1

(Ts − T0)σp
, σp =

(
∂ln(m)

∂T0

)
P

5.2.2. Results

Figure 5 shows the comparison of the linearised and numerical frequency responses. We see that the agreement

between both methods is excellent up to approximately 500 Hz, where the gas phase no longer has a quasi-steady

behaviour, thus introducing a larger error in the linear response function. This serves as a global verification of

our unsteady model. The secondary peak at high frequencies in the response can be obtained analytically if the

unsteady gas phase equations are also linearised, as in [55], however this is a much more involved process.

An additional verification of the orders of convergence in time for unsteady simulations is presented in Ap-

pendix C, thus completing the verification process in terms of both spatial and temporal discretisations. In par-

ticular, algebraic constraints do not hinder the high-order convergence. We now wish to tackle three much more

challenging test-cases and investigate the behaviour of the proposed strategy in terms of accuracy and computational

efficiency.

6. Simulation of ignition transients

To simulate the ignition of a solid propellant, we add a laser heat flux of 1 MW.m−2, which is partially absorbed

at the surface, as an additional heat flux in equation (14), and partially absorbed in-depth inside the solid as an

additional source term in equation (1).

6.1. Setup

We use the same simplified model as previously described in Section 5.1.1. The initial solution is a uniform

temperature field at 300 K, with only combustion products in the gas phase, as a simpler alternative to adding

nitrogen as initial gas, without much effect on the ignition process itself. The mesh has 99 cells in the solid phase

and 291 in the gas phase. The cells are distributed such that the steady-state temperature profile is well resolved.
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name number of stages L-stable order
ESDIRK-54A 7 (6) yes 5
ESDIRK-43B 5 (4) yes 4
ESDIRK-32A 4 (3) yes 3

CKN (Crank-Nicolson) 2 (1) no 2
IE (Implicit Euler) 1 yes 1

Table 1 Selected Runge-Kutta methods. The numbers in brackets correspond to the number of stages actually solved.

We compute the ignition transient with the methods listed in Table 1. The three ESDIRK methods are taken

from [53], and they use the time adaptation strategy presented in Section 4.4. We also test the classic schemes

implicit Euler (IE) and Crank-Nicolson (CKN), with a time adaptation based on the requirement that the solution

has a relative variation that is below a certain value between two consecutive time steps. A discussion on a CFL-

based time adaptation is presented at the end of this section. We use the abbreviation “tol” to refer to the relative

integration error tolerance for ESDIRK methods, and to the allowed relative variation of the solution between

consecutive time steps for IE and CKN. The maximum time step allowed is 0.1 s.

6.2. Physical interpretation of the ignition

Figure 6a shows the evolution of the surface temperature during ignition as computed by ESDIRK-54 with

tol= 10−6. The first phase is the inert heating of the solid propellant. The constant laser heat flux with partial

in-depth absorption results in an evolution of Ts which is very close to being proportional to
√
t, that is coherent

with the analytical solution of the surface temperature for a solid under a constant surface heat flux.

When Ts is sufficiently high, the pyrolysis mass flow rate given by (12) increases rapidly, causing the release

of gaseous pyrolysis products in the gas phase, which chemically react and form a flame that heats up the solid

even more. Typically at this point, more thermal energy is stored in the solid as compared to steady-state. This

results in a momentarily higher regression rate at ignition, seen here near t ≈ 0.355 s, which evacuates this excess

of solid phase thermal energy. The temperature profile then converges to the augmented steady-state solution,

with “augmented” indicating that the laser flux slightly increases the burning rate as compared to the steady-state

solution without laser.

6.3. Result

We compare mainly the evolution of Ts, the computational time, and the physical time tign at which the surface

temperature first exceeds 1000 K. Although not shown here, the curves of Ts for each method are very similar, except

for IE simulations with large tolerances that deviate slightly during the inert heating and ignite a few milliseconds

earlier. Figure 6b shows the evolution of the time step for some of the simulations. We observe that, for ESDIRK

embedded methods, increasing the order of the method allows for higher time steps to be used throughout the

integration while maintaining the same accuracy. For example, the fifth-order method ESDIRK-54A is capable of

taking steps 5 times bigger in average than the third-order method ESDIRK-32A. Finally, it is clear that IE needs

many more steps to achieve a similar result as the ESDIRK methods.

To more quantitatively assess the efficiency of each method in precisely determining the ignition time, multiple

simulations were run with each scheme. For the ESDIRK methods, the relative integration error tolerance was
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(a) Surface temperature (b) Time step variation

Figure 6 Ignition transient computed with various methods.

(a) (b)

Figure 7 Work-precision diagram for the determination of tign: (a) coarse mesh (400 cells), (b) fine mesh (2049 cells).

varied from 10−1 to 10−6. For IE and CKN, the relative solution variation allowed between successive time steps

was varied from 10−1 to 10−4, without any CFL-limitation. For each simulation the value of tign is evaluated and

a relative error on this value can be inferred by comparing it to the ignition time obtained with ESDIRK-54A and

the tightest tolerance. Figure 7a shows the computational time required by each method to achieve a given level of

relative error on the initial mesh. Figure 7b shows the computational time required by each method on a refined

mesh with 734 cells in the solid phase and 1315 cells in the gas phase. Overall in both cases, if a relatively large error

on the ignition time, on the order of 1% is deemed sufficient, IE is a relevant choice. If however greater precision is

required, ESDIRK schemes with adaptive time stepping as described in Section 4.4 are much more efficient. CKN

does not perform well for the simulation of an ignition transient.

The black dashed curve in Figure 6b shows the time step evolution corresponding to CFL = 1 for the coarse

mesh. We clearly see that the CFL-limitation is irrelevant during the inert heating phase, as the mass flow rate is

very low. If, after the inert heating, the CFL is to be limited to low values (1 to 100) as is usually done, many more

time steps would be performed. ESDIRK methods are able to give very accurate results without any such limitation.

We have determined that, if a simulation was to be performed with a maximum CFL of 10 with ESDIRK-54A and

rtol = 10−6 on the physical time interval [0, 0.35] s, i.e. only up to Ts ≈ 820 K before the ignition, the simulation
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would take 4 times more steps than required without CFL-limitation. If the final physical time is increased to 0.4

s to include most of the transient, the ratio of the number of steps would be 160. Knowing that the simulation

without CFL-limitation already achieves an error smaller than 10−6 on the ignition time and on the rest of the

evolution, this clearly shows that a CFL-constraint is not a good choice in terms of computational efficiency.

The great advantage of embedded methods is that only a relative integration tolerance needs to be specified. No

tuning of a CFL-criterion, maximum relative variation or fixed time step is required, hence such methods speed up

the engineer task of simulating different scenarios, while still ensuring a controlled error. One interesting observation

we made is that the time step values taken by ESDIRK methods were almost identical with both meshes. In all

our testing, no correlation was found between the time step evolution of the embedded methods and the mesh

refinement. This would not be the case if a CFL-criterion was used.

7. Investigation of limit cycles

The effort made in terms of time integration strategy can be used to accurately study the non-linear behaviour

of the propellant combustion, and in particular potential departures from an unstable steady-state travelling wave

solution. Indeed, the time step is dynamically refined so as to closely follow the behaviour of the system, avoiding

the excessive numerical damping encountered in low-order schemes, e.g. implicit Euler.

We use an optimisation algorithm in order to generate unstable variants of the simplified combustion model

used in Section 6. The process is detailed in Appendix A. Starting from the initial model, physical parameters are

varied until a Hopf bifurcation is reached, i.e. a point at which the steady-state travelling wave solution becomes

unstable. Around the locus of this type of bifurcation, dynamical systems usually exhibit a limit cycle. We have

iteratively determined a configuration that, while retaining realistic characteristics, produces such a limit cycle. The

corresponding physical parameters are listed in Appendix A, and the unstable steady-state temperature profile is

plotted in Figure 8a. Using this profile as initial condition and enforcing a small pressure perturbation, an unsteady

simulation has been performed with time adaptation, with a relative integration error tolerance 10−6. The resulting

history of surface temperature is plotted in Figure 8b clearly exhibiting a limit cycle, the discrete Fourier Transform

of which is presented in Figure 8c. The limit cycle oscillations are a sum of sinusoidal harmonic oscillations, with

a fundamental frequency close to 452 Hz, which is close to the analytical propellant natural frequencies defined in

[9] and [45], at 518 Hz and 348 Hz respectively.

As reported in the literature for other applications [35], high-order methods are often needed to be able to

numerically reproduce such a dynamical and nonlinear behaviour. It is therefore instructive to compare the methods

from Table 1 already used for the ignition transient in Section 6, to see how each of these affects the unsteady result.

Namely, it is expected that the integration methods will, depending on their order and the time step used, dampen

the oscillating nature of the system and potentially cause a non-physical stabilisation of the solution.

First, constant time steps simulations are performed with the ESDIRK methods and other classical schemes.

Comparisons are made based on the ability to reproduce the initial amplification of the oscillations, the fundamental

frequency of the limit cycle and its amplitude. Second, simulations with adaptive ESDIRK methods are presented.

The quality of the results and the computational efficiency are assessed, both with fixed or variable time steps.

23



(a) Steady-state temperature profile (b) Limit cycle

(c) Discrete Fourier Transform of the limit cycle

Figure 8 Main features of the studied configuration

7.1. Method

7.1.1. Simulation setup

The integrators used are the stiffly-accurate Runge-Kutta methods described in Table 1. Included are implicit

Euler and Crank-Nicolson. The latter has been historically praised for its damping properties. Crank-Nicolson’s

absolute stability domain exactly contains all physically stable configurations and this scheme does not damp purely

oscillating linear systems. This method actually is part of the ESDIRK class, as its first stage is explicit. Its main

drawback is the lack of L-stability, a property which is very advantageous for index 1 DAE problems.

As described in Appendix A, the simulations are performed on a non-uniform mesh based on the temperature

profile of the steady-state solution with 55 cells for the solid phase and 146 for the gas phase. It has been verified

that additional refinement would not affect the solution dynamics.

7.1.2. Comparison process

We focus on several aspects. First we analyse visually the envelope curve of the surface temperature time history.

For each simulation, this curve is constructed as the junction of the successive maxima of Ts. Unfortunately, for

large values of the time step dt, the sampling frequency 1/dt can be insufficiently high compared to the fundamental

frequency of the limit cycle, causing artefacts to appear in the form of an oscillation of the envelope. This can be
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improved by using a cubic interpolant of Ts to determine the successive maxima with greater precision, however

envelope oscillations are still present, for example in Figure 9e.

Second, we analyse the growth of the linear instability near t = 0. For each simulation, the best exponential fit

for the envelope of the evolution of Ts is determined, i.e. the curve joining the successive maxima of Ts. Such a fit

is of the form Tfit(t)− Ts(0) = A exp(bt), with b the fitted amplification factor.

Third, the established limit cycle is considered, on the time window 1 ≤ t ≤ 1.5 s. A discrete Fourier transform

of the surface temperature signal is computed via an FFT algorithm, as shown for the reference simulation in

Figure 8c. Interpolation of the solution on a uniform time grid is performed if the simulation was not conducted

with a constant time step. This FFT helps determine the approximate frequencies of the different harmonics with

a precision of approximately 1-10 Hz. For each of these peaks in the spectrum, the peak frequency is then precisely

computed by maximising the correlation between Ts(t) and exp(2iπft), from which we can also determine the

precise amplitude of the corresponding peak. These values offer a trustworthy and precise indication of how well

the limit cycle is captured.

Finally, work-precision diagrams are given which represent the computational time required to achieve a spe-

cific level of relative error on the quantitative results, i.e. fitted amplification factor, fundamental frequency and

amplitude. Relative errors are computed relative to the values obtained with the most refined solution.

7.2. Analysis of schemes efficiency for a constant time step

7.2.1. Envelope of the surface temperature history

We first observe the envelope curves of Ts for various time step values in Figure 9. We see that all methods

dampen out the oscillations when the time step is too big, except CKN which stabilises at a small oscillating

amplitude. However, if we gradually decrease the time step, each method eventually produces a limit cycle. We

see that ESDIRK-54A has the best behaviour in terms of reproducing the actual reference limit cycle. It generally

seem that the higher the order of the method, the larger the time step can be while still resolving the limit cycle.

An interesting behaviour is observed for the CKN method: though it is second-order accurate, it finds a relatively

correct initial amplification with larger time steps than required by the fourth- and third-order methods. However

it has the drawback that the solution diverges unless the time step is further reduced. A non-diverging solution

with CKN is obtained with time steps for which all higher-order methods already provide better results. It seems

that the lack of L-stability favours the initial destabilisation, but leads to the divergence of the solution. On the

opposite, all L-stable methods dampen the oscillations when the time step is too big, and none of them diverges.

Finally, we see that the first-order IE is not able to correctly reproduce the limit cycle, even with the smallest time

step of 10−6 s. Using such a time step is already prohibitive, therefore lowering it further cannot be considered a

viable solution to achieve an accurate result. Convergence results presented hereafter are obtained on the range

dt ∈ [10−5, 10−1] s, where IE never produces an initial amplification and established limit cycle, therefore its results

are omitted for the sake of readability.

7.2.2. Initial growth

Figure 10a shows the evolution of the fitted exponential amplification factor b as the time step is lowered. We

see that all methods converge to the same value, however ESDIRK-54A and CKN are the first methods that manage
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(a) dt = 1 × 10−6 s (b) dt = 3.79 × 10−5 s

(c) dt = 1.13 × 10−4 s (d) dt = 3.36 × 10−4 s

(e) dt = 4.83 × 10−4 s (f) dt = 1 × 10−3 s

(g) dt = 5 × 10−3 s

Figure 9 Envelopes of the surface temperature histories computed for different time steps and integration methods
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to capture a growth (crossing the line b = 0), and also the quickest to converge to the correct value.

Figure 10b shows the relative error of the amplification factor with respect to the reference solution. We see once

again the same ranking in terms of ability to find the correct factor. At any time step ∆t ≤ 5×10−4 s, ESDIRK-54A

yields the best accuracy. Moreover we can observe that each method has an asymptotic convergence region where

the order of convergence is close to the order of the method. In particular CKN, which initially performs well for

moderate time steps, is quickly overtaken by the other methods that possess a higher convergence rate.

For low time step values, the flattening of the convergence curves can be simply explained. The amplification

factor is defined as a coefficient from an exponential fit, however this fit is only an approximation, as the nonlinear

behaviour will let the unsteady evolution slightly deviate from the theoretical exponential initial growth. Also, the

fit is based only on the successive maxima, not on the complete oscillating curve, which induces additional errors,

e.g. imprecision in the abscissas of the maxima. Therefore there is a point at which the precision achieved with an

exponential approximation cannot be improved further.

7.2.3. Limit cycle

The fundamental frequency of the established limit cycle is f ≈ 452 Hz. Figure 11a shows how the relative

error on this frequency evolves with the time step, and Figure 11b shows the convergence of the amplitude of the

fundamental frequency. The brown crossed curve for CKN is interrupted in the intermediate range of time step

values, as the solution diverges, thus not allowing for an established limit cycle to be analysed. We can observe that

ESDIRK-43B and ESDIRK-54A yield the most precise solutions at any given time step. In particular, ESDIRK-

43B is able to capture a non-zero oscillation amplitude with larger time steps than required by the other methods.

The frequency-finding process is not able to achieve unlimited accuracy in the determination of the fundamental

frequency, hence the flattening of the convergence curves when the relative error reaches 10−6.

(a) Value (b) Convergence of relative error

Figure 10 Fitted amplification factor

7.2.4. Computational cost

Based on the previous analysis, the high-order methods ESDIRK-54A and ESDIRK-43B seem particularly

promising, as they require fewer time steps to achieve good results. However, due to the fact that these methods

have more stages than the low-order methods, this does not mean that the actual computational times will be
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(a) Fundamental frequency (b) Amplitude of the fundamental

Figure 11 Convergence of the limit cycle properties

(a) Amplification factor (transient-only) (b) Amplitude of the fundamental of the established
limit cycle

Figure 12 Work-precision diagrams for fixed time step simulations

advantageous. Figure 12a shows the computational times versus the achieved relative error on the amplification

factor. Note that these simulations were run only on the physical time interval t ∈ [0, 0.1] s, so that computational

times are truly representative. We see that CKN is the fastest method for a relative error higher than 5 × 10−3,

however this roughly corresponds to the zone were the solution diverges in finite time. ESDIRK-32A is not a very

good performer, whereas ESDIRK-43B and ESDIRK-54A are performing well and have similar error levels.

Figure 12b shows the computational time required for a given level of relative error on the fundamental amplitude

in the established limit cycle. Computational times are those of simulations run on the physical time interval

t ∈ [0, 1.5] s. ESDIRK-43B is only marginally better than the other methods, no clear winner is to be picked.

Overall, when using constant steps, the high-order methods ESDIRK-54A and ESDIRK-43B are almost identical

and offer overall a very good performance. The Crank-Nicolson method is slightly misleading: its lack of stability

when applied to DAEs leads to an easier destabilisation of the initial solution. However the method diverges quickly,

unless the time step is very small, thus falsely leading to the conclusion of an unstable physical configuration.
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7.3. Numerical experiment with time adaptation

The previous study with constant steps has shown that high-order methods are interesting for the simulation of

a limit cycle. We now compare the embedded ESDIRK schemes with time adaptation enabled, to see if additional

computational gains can be obtained. Following the methodology exposed in Section 4.4, the time step is controlled

by the relative integration error tolerance rtol, which is varied between 10−1 and 10−7. We first focus on the relative

error achieved on the quantitative criteria used in the previous section. Finally, a comparison of the computational

times and relative errors is presented, considering both fixed time step and adaptive simulations.

7.3.1. Initial growth

Figure 13a shows the convergence of the fitted amplification factor b when rtol is decreased. We see that with

fine tolerances, all three methods resolve the transient quite well. However, each method has a different onset of the

convergence, for example ESDIRK-43B starts to properly resolve the transient amplification with rtol ≈ 3.5×10−4,

whereas as ESDIRK-54A needs at least rtol ≈ 8 × 10−5. In Figure 13b, we plot the accuracy achieved on the

amplification factor (which is not equal to rtol) versus the computational time. We clearly see that, when the

tolerance is sufficiently low, the computational cost decreases as the order of the method increases. For example,

if we require a relative error of 10−3, ESDIRK-54A is twice as fast as ESDIRK-43B , and three times as fast as

ESDIRK-32A. Only for high levels of error (> 10−1) is ESDIRK-43B slightly more efficient than ESDIRK-54A.

(a) Convergence of the initial growth factor (b) Work-precision diagram

Figure 13 Convergence and computation cost for the amplification factor

7.3.2. Limit cycle

We now compare the computational cost of each method when considering the resolution on the time interval

t ∈ [0, 1.5] s. We have observed that the frequency of the fundamental and its amplitude converge equally well,

therefore we only focus on the amplitude. Figure 14a shows how the relative error on the fundamental amplitude

evolves with rtol. ESDIRK-43B has, for a given rtol, the lowest error, however there is an unexplained oscillation

of the relative error. Figure 14b is the corresponding work-precision diagram. ESDIRK-32A is the worst performer

by far, whereas ESDIRK-54A is the most efficient method.
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(a) (b)

Figure 14 Limit cycle with adaptive time stepping: (a) convergence of the fundamental amplitude, (b) work-precision diagram

7.3.3. Comparison with fixed time step results

We now wish to assess the performance gain achieved with time adaptation. To this end, we compare the

computational times between fixed time step simulations and adaptive simulations for a given level of relative

error. Figure 15a shows how the relative error on the amplification factor b during the initial growth evolves with

computational time. The simulations were run for only 0.1 s of physical time, i.e. only for the initial growth. We

observe that fixed time step simulations are always more efficient in this context. In particular, fixed time step

implementations of the ESDIRK methods are faster than their adaptive counterparts. It has been assessed that

this was due to an advantage in terms of number of Jacobian evaluations for the Newton method. Fixed time steps

solutions only required up to 3 evaluations of this matrix, while adaptive solutions required up to 100 evaluations

due to the repeated changes in time step.

The performance for the computation of the full limit cycle (initial growth and established cycle) is assessed in

Figure 15b. The criteria is the relative error on the amplitude of the fundamental in the established limit cycle.

One may think that the lightweight second-order Crank-Nicolson method could outperform the other methods for

the established limit cycle, as this method is known to have good damping properties for oscillating systems, while

only requiring one stage to be computed per time step. Indeed the method is the fastest among the fixed time

step ones, and the fastest overall for relative error levels around 10−2. For lower error levels however, the adaptive

high-order methods ESDIRK-54A and ESDIRK-43B are the most efficient methods. ESDIRK-32A in adaptive

mode is generally slower than in fixed time step mode, unless very low errors are sought. Although not shown here,

adaptive simulations require more Jacobian evaluations due to the successive changes in time step, but they require

many fewer steps and Newton iterations overall, which, for the complete simulation, far outweighs the drawback

of evaluating the Jacobian more often. This is supported by the observation that the slopes of CPU time versus

relative error are smaller for adaptive methods compared to fixed time step implementations. Any additional cost,

e.g. Jacobian evaluation, is overcome by the ability to take fewer steps. Still, adaptive methods are at a slight

disadvantage in this test case, as the solution oscillates smoothly: the characteristic time scale of the system stays

roughly constant throughout the simulation, therefore fixed time step simulations, with dt sufficiently low compared

to this time scale, will be favoured by this consistency.
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An interesting observation can be made: the adaptive methods always capture the correct limit cycle, unless rtol

is too high, leading to a stabilisation of the solution. This is seen in Figure 15b, as all adaptive methods have a jump

from important errors (≈ 1) to much lower ones as rtol is lowered. On the opposite, fixed time step implementations

do not have such a jump in error and are more likely to capture a non-accurate limit cycle (typically with an error

higher than 10−2) for an intermediate range of time step values. Overall, ESDIRK-54A and ESDIRK-43B seem to

be the most reliable methods in this comparison.

(a) Fitted amplification factor (b) Fundamental amplitude in established limit cycle

Figure 15 Comparison of the computational cost for a given level of relative error

Another practical consideration is that the time step corresponding to CFL = 1 lies around 10−6 s, which is

approximately 100 times smaller than the time step necessary to obtain a very precise simulation with the fifth-order

method ESDIRK-54A (see Figures 10b and 11b). The CFL-controlled time step is based on a stability analysis of

the convection operator with an explicit time integration, which is not relevant for implicit integration and does

not guarantee any level of error on the solution. As already discussed for the ignition transient in Section 6, use of

a CFL-limitation would result in an important increase in computational time, without any valuable improvement

on the solution accuracy. Finally, the constant time step simulations that yield accurate results more efficiently

than with adaptive methods correspond to CFL ≈ 100, which would usually not be expected to produce accurate

unsteady results. One would rather safely choose a time step such that CFL = 1. This highlights one practical

benefit of the time adaptation: precision is ensured based on a reliable mathematical criterion, and time step values

can be used such that CFL� 1, while still ensuring a precise solution.

8. Application to unsteady combustion with detailed chemistry

We have now verified that the high-order adaptive methods perform well on relatively simple test problems.

The next step is to test how they perform for the simulation of a propellant combustion with detailed chemistry.

Additional stiffness is usually observed when a complex kinetic mechanism is used, thus it is useful to check the

behaviour of the proposed numerical strategy in this context. The test case is the unsteady combustion of the

AP monopropellant in a one-dimensional approach. The gas-phase kinetics is based on the AP-HTPB mechanism

developed successively by Jeppson [56] and Tanner [57], initially for steady-state combustion. All reactions involving

31



carbonated species were removed to account for the absence of HTPB, resulting in a pure AP combustion mechanism

involving 25 species and 80 reactions. Gas-phase molecular transport is treated in a simplified manner by using

mixture-averaged approximations. Species diffusion fluxes are expressed by a Fickian formula with effecive diffusion

coefficients and are corrected to ensure they sum up to zero. Thermodynamic and transport properties are computed

before-hand by CHEMKIN routines [58] and stored as lookup tables.

The solid phase and the surface are handled as in [45]: the solid is assumed inert, and all decomposition and

gasification reactions occur at the surface. There are two global surface reactions: a direct dissociative sublimation,

and a quasi-equilibrium decomposition. The regression speed is defined by a pyrolysis law taken from [45], and

the proportions of gaseous products generated by the surface reactions are adjusted to obtain the experimentally

measured regression rates at 20 atm, following the approach of Meynet [13]. These modelling choices allow for the use

of detailed combustion kinetics while remaining within the simplified framework of solid and surface representation

used in the present paper.

The computational mesh has 49 cells for the solid phase, and 126 cells for the gas phase, distributed in a

non-uniform manner so that steady-state gradients are well resolved. Starting from a steady-state solution at

P = 20.265× 105 Pa, we study the transient occurring after a pressure step to P = 20× 105 Pa.

The goal in this Section is not to demonstrate a physically realistic model, but rather to test the proposed

numerical strategy on a case that is representative of complex solid-propellant simulations.

8.1. Order of convergence with fixed time steps

The orders of convergence of the methods from Table 1 have already been verified for the simple test case

of Section 5.1 and are presented in Appendix C. We now want to verify that the orders are not affected by the

additional complexity and stiffness induced by detailed kinetics. We simulate the unsteady evolution for t ∈ [0, 0.2]

s and perform multiple integrations with various time steps.

To quantify the accuracy of the overall time integration, we define the following error: εTs
=

1

tf

∫ tf
0
|Ts−Ts,ref |dt,

with ref designating the reference simulation and tf the final physical time. Cubic interpolation is used to compare

both solutions on the same time grid.

Figure 16a shows the evolution of this error when the time step is varied. We see that each method attains

its theoretical order of convergence. Similar results have been obtained for the other variables, both differential or

algebraic, e.g. discrete mass flow rate field, cell temperatures. No order reduction is observed due to the stiffness of

the chemical reactions with detailed kinetics. The ESDIRK methods perform well in this more complex scenario.

Figure 16b shows for each method the computational time required to achieve a given integration error εTs . By

analysing the different simulations, it was determined that the curve of Ts is visually converged when εTs
≤ 10−2.

ESDIRK-43B and ESDIRK-54A are the most efficient methods on this error range, and the speedup achieved by

these high-order methods increases with the precision achieved. They are about 1.5 times faster than ESDIRK-32A

and CKN for εTs = 10−2, and approximately 5 times faster than CKN for εTs = 10−4.

8.2. Computational performance with time step adaptation

Now that we have verified that the convergence of the methods is not affected by the stiffness induced by

complex kinetics, we use the ESDIRK methods with time step adaptation to see how they compare in terms of
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(a) (b)

Figure 16 Accuracy of the integration with fixed time steps: (a) Convergence of εTs , (b) Work-precision diagram for εTs

results. Different values of the relative integration tolerance rtol are used between 10−1 and 10−7.

Figure 17a shows the complete transient for the surface temperature and the time step evolution for various

values of rtol. We see that the change in time step is smooth, except for low tolerances when the time step becomes

large, causing convergence issues. The temporal evolution of the surface temperature is well resolved even with

relatively large values of rtol. Figure 17b shows the comparison of the computational time required to achieve a given

level of error εTs , both with fixed time steps (blue lines) and adaptive time stepping (orange lines). Here, adaptive

schemes do not seem to improve the performance globally. ESDIRK-54A is the best performing adaptive method,

however it only becomes the fastest method overall for a very low level of error εTs
≤ 10−5. Its computational time

is relatively close to the one of its fixed time step implementation. We observe that, for a given increase in accuracy,

adaptive methods have a lower increase in computational time compared to their fixed time step counterparts.

(a) (b)

Figure 17 Integration with adaptive time stepping: (a) time step evolution for ESDIRK-43B, (b) work-precision diagram for the time
integral error εTs

This comparison is slightly unfair, because we had no a priori knowledge of the time step needed to properly

resolve the transient. Without dynamic time adaptation, the time step would have typically been limited so that

the CFL number is reasonably low, e.g. 1 to 10. The time step corresponding to CFL = 1 is around 7 × 10−8

s, which is much lower than the time step required to achieve a good accuracy with most methods. A simulation
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has been carried out only on the first 0.03 s of the transient, with CKN and a time step set such that CFL = 10.

The computational time was 660 s. An equivalently well resolved transient can be obtained with ESDIRK-54A

and rtol = 10−5 in only 11 s. As we can see in Figure 17a, even a less stringent tolerance would also be sufficient.

From an engineering point of view, this represents a 60 times speedup, due to the fact that the time adaptation

will automatically choose the relevant time step values. This adaptation ensures the problem is well resolved,

while reaching CFL numbers that one would usually never trust to yield accurate unsteady results. Finally, time

adaptation based on embedded methods automatically detects a slowdown of the dynamics as the solution stabilises

and is able to increase the time step accordingly, whereas the CFL number stays roughly constant and cannot be an

efficient time-step controlling criterion in that situation. This gain in engineering time is not quantifiable precisely,

however it is definitely important.

9. Conclusion

This contribution presents the development of a high-fidelity one-dimensional model for the combustion of a

solid propellant. The emphasis is on the numerical strategy choice to integrate in time the set of semi-discretised

equations. It has been shown that the system is differential-algebraic in nature. Multiple test cases show that

stiffly accurate singly-diagonally implicit Runge-Kutta methods are highly efficient for the time integration of

such a system, in particular the embedded ESDIRK methods presented in [53]. Applications have been presented

for ignition transients and limit cycle development with a simplified modelling, and appreciable computational

gains have been observed. High-order methods can reliably capture dynamics which are practically impossible to

reproduce with traditional low-order methods. It has also been verified that the proposed numerical strategy is

robust and performs well when the modelling is much more complex, e.g. detailed kinetics in the gas phase.

Dynamic time step variation based on objective mathematical criteria ensures proper resolution of the unsteady

phenomena. From an engineering point of view, the single parameter that controls the time step is the relative

integration error tolerance rtol. In all our test cases, we have observed that rtol = 10−5 is sufficient to accu-

rately resolve all unsteady phenomena. Using this value as standard tolerance liberates from the need of iterating

over other practical criteria such as CFL limitation or maximum relative variation. The authors believe that a

high-order adaptive method like ESDIRK-54A therefore allows for perceivable gains both in computational time,

trustworthiness of the results, and the engineering time spent parametrising the time integration for a simulation.

Future work includes applying the presented framework to one-dimensional models involving a multiphase foam

layer at the surface, and also the coupling of the one-dimensional code with a 2D or 3D CFD tool to more ac-

curately describe surface phenomena in detailed heterogeneous solid propellant simulation codes, e.g. COMPAS

from ONERA [20], or as an accurate dynamic boundary condition for combustion chamber simulations with the 3D

multiphysics CFD tool CEDRE from ONERA [24], avoiding costly mesh refinement near the propellant surface.
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Appendix A. Generating configurations with various degrees of instability

In order to highlight the benefit of the high-order adaptive time integration, we search for configurations which

are linearly unstable around the corresponding steady-state solution. We generate such configurations with the
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stable simplified model from Section 5.1.1 as baseline, by varying its parameters. We use existing theoretical tools

to approximately evaluate the stability of the steady-state solution.

Appendix A.1. Theoretical indicator of intrinsic instability

The Zeldovich-Novozhilov (ZN) framework is a useful tool to study the stability of a steady-state solid propellant

combustion. This theory was originally developed to only use sensitivity parameters which can be experimentally

determined from a batch of steady-state experiments, without any modelling of the gas-phase phenomena. Con-

sidering a surface pyrolysis and an inert material, the solid phase is modelled with equation (1) and the boundary

conditions T (−∞) = T0 and T (0) = Ts. The pyrolysis mass flow rate m and the surface temperature Ts are linked

in steady-state via laws of the form:

m = m(T0, P ), Ts = Ts(T0, P ) (A.1)

Such relations can be obtained via theoretical modelling or numerical investigations for solid propellant models, or

via experiments for real propellants.

The ZN approach consists in assuming that the steady-state relations (A.1) remain valid under unsteady con-

ditions. However, T0 is generally a constant and, if P is also constant, these relations would result in a con-

stant surface temperature and regression speed. To circumvent this issue, let us consider the steady-state profile

temperature profile: T (x) = T0 + (Ts − T0) exp (xmcc/λc). The temperature gradient just below the surface is

φ = ∂xT (0−) = mcc(Ts − T0)/λc. We can then replace T0 in equation (A.1) by T0 = Ts−φλc/mcc. In the unsteady

regime, this value is different than the actual value used to compute the steady-state profile. It is usually called the

“apparent” or “effective” initial temperature, e.g. the initial temperature that would correspond to an hypothetical

steady-state for the given values of Ts and φ. We can now formulate the previous steady-state laws (A.1) as:

m = m(φ, P ), Ts = Ts(φ, P ) (A.2)

These laws are supposed to be valid in the unsteady regime. This is usually accepted, as long as the apparent

initial temperature remains within acceptable bounds. It is also required that data for this initial temperature be

available, or at least reasonably extrapolated.

The next core step of the ZN approach is to linearise the heat equation in the solid and the laws (A.2) around

the steady-state solution. A mathematical study of the amplification of small compact perturbation leads to

the definition of a stability criteria, which depends on two steady-state sensitivity coefficients: r =
(
∂T0

Ts
)
P

,

k = (Ts−T0) (∂T0 ln(m))P , with · denoting steady-state values. Steady-state combustion is always stable if k < 1.

If k > 1, the steady-state is stable only if r > (k− 1)2/1 + k. The line r = (k− 1)2/1 + k is the locus of a Hopf

bifurcation, where the steady-state solution becomes linearly unstable in a oscillating manner, with the possibility

of stabilising on a limit cycle. If r > (
√

k− 1)2, the instability grows purely exponentially. The associated stability

diagram is shown in Figure A.18a: the leftmost parabola is the first stability limit, the second one is the onset of

purely exponential instability. It has been shown that unsteady gas-phase phenomena tend to widen the stability

area, however this first simplified analysis remains a good indicator of the stability bounds. We refer the reader
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to [2] for extensive details on the ZN analysis and its extensions. This stability is called “intrinsic” because it is a

property of the solid propellant as an isolated system, as opposed to other types of instabilities, for instance those

that might appear when coupling the solid propellant combustion with a chamber [10], whose pressure varies in

time based on the propellant regression rate.

Appendix A.2. Optimisation problem

We use these ZN stability criteria to generate configurations whose coefficients (r, k) are at various positions in

the stability diagram. To do so, we setup an optimisation problem. Let us denote as X the vector containing the

parameters of the simple combustion model that we have chosen as free variables. For a given value of X, we can

find the corresponding value of (r, k) by performing three steady-state simulations with the semi-analytical tool: one

baseline simulation, one simulation with a perturbed initial temperature T0, and one simulation with a perturbed

pressure P . Then, by means of finite differences, r and k may be evaluated. This process can be summarised as the

function frk : X → (r, k). The optimisation problem is then formulated as:

min
x

fobj(x) (A.3a)

subject to g(X) ≤ 0 (A.3b)

h(X) = 0 (A.3c)

where the objective function f is defined as fobj : X → ||frk(X) − (r, k)target||22 with (·, ·) denoting a vector

formulation. The inequality constraints are gathered in the vector function g, and equality constraints are gathered

in h. This problem is simply the constrained minimisation of the distance to the target (r, k) coefficients. Inequality

constraints g are used to ensure the different physical parameters remain within realistic bounds. They can be

supplemented with equality constraints h to enforce certain properties of the steady-state solution, e.g. surface

temperature, regression speed...

Regarding practical implementation, the Sequential Quadratic Programming algorithm SLSQP of the Python

library Scipy [59] is used. The Jacobians of the objective function and constraints are obtained via finite differences.

The Hessian of fobj is built iteratively through a BFGS update. Note that we use the semi-analytical tool to perform

the simulation, as it is fast, very precise, does not need any specific mesh generation, and is ensured to converge.

For more complex combustion models, the simulations can be carried out with the one-dimensional CFD code,

however it is important that the steady-state solutions are converged with sufficient accuracy, so as not to introduce

important errors in the Jacobian estimation.

Appendix A.3. Numerical assessment of intrinsic stability

We use the previous optimisation problem to generate configurations which have their sensitivity coefficients r

and k distributed regularly on a segment defined as r = 0.137 (baseline value) and k ∈ [1.5, 1.75], thus crossing

the ZN stability limit. The optimisation is constrained as to preserve physically sound characteristics (surface

temperature at 1000 K, regression speed of 1 cm/s at 50 atm, 3540 K final flame temperature). The segment and

the corresponding targeted points are displayed in Figure A.18a.
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For each point, we numerically assess the stability of the corresponding steady-state combustion. Based on the

stationary temperature profile provided by the semi-analytical tool, we generate a non-uniform mesh, such that the

increase in temperature between each cell center is a chosen constant ∆T (e.g. 10 K). Cells are then added to push

the “infinity” boundaries further away, so as to minimise the impact of the Neumann boundary conditions. We

typically use ∆T = 20K, as we found that the steady-state surface temperature would then match up to less than

1% between the semi-analytical tool and the one-dimensional CFD code. After the mesh has been generated, a

slight constant pressure perturbation (typically 0.1% of the prescribed pressure) is applied and the one-dimensional

tool is run with implicit Euler and large time steps so as to converge to a perturbed initial steady-state. The

pressure is then set back to its original value and an unsteady simulation is performed with ESDIRK-54A and a

relative tolerance of 10−6 on the integration error. The stability of the combustion can then be assessed numerically

by analysing whether the perturbation is damped out or not.

The unsteady simulations for a few points are shown in Figure A.18b. We see that, up to the 4-th point, the

system is stable. Starting from the 5-th point, the system diverges. Overall we observe that the numerical stability

limit is slightly further to the right than predicted by the ZN method with quasi-steady gas phase, as already

discussed. Refining the search between points 4 and 5 allows us to find a configuration that can exhibit a limit

cycle. The corresponding model parameters are the same as in Section 5.1.1, except for the following changes:

Tap = 14668 K, cp = 692.8 J/kg/K, cc = 1253 J/kg/K, T0 = 182.4K, λc = 0.65 W/m/K, λ = 0.362 W/m/K,

M = 57.9 g/mol, ∆h0f (G1) = −2.28× 105 J/kg, ∆h0f (G2) = −2.22× 106 J/kg, A = 340.4.

The corresponding steady-state temperature profile is shown in Figure 8a, as computed by the semi-analytical

tool. If we slightly perturb it and compute the unsteady evolution of the system, we obtain the surface temperature

evolution plotted in Figure 8b. The linear instability causes the system to diverge near t = 0, however nonlinear

effects allow for stabilisation on a limit cycle after t ≈ 0.5 s, where the oscillation amplitude remains constant.

(a) (b)

Figure A.18 Generation of unstable configurations: (a) Segment travelled in the (r, k) stability diagram, (b) Unsteady simulations of
some configurations (ESDIRK-54A with rtol = 10−6)

Appendix B. Further clarification regarding the continuity equation

Here, we show how the Runge-Kutta formulation can be used in order to provide an original treatment of the

mass flow rate constraint in the gas phase. Let us recall that in our one-dimensional low-Mach approach, the density
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ρ cannot be considered a true variable of our problem, as it is uniquely determined from the temperature, mass

fractions and pressure. Consequently, the continuity equation (16) should not be considered as an ODE on ρ, but

rather as a constraint on the mass flow rate field coming from its PDE counterpart: ∂xm = −∂tρ. This source

term is itself a function of m and can be obtained by differentiating the logarithm of the equation of state (11) with

respect to time:

∂xm = −∂tρ = −ρ

(
∂tlogP − ∂tlog T − ∂tlog

(
ne∑
k=1

Yk
Mk

))

as classically done in the combustion community (see for example [60, 61, 39, 62]). In the right hand-side, ∂tP is an

input (e.g. constant pressure, or evolution based on a combustion chamber model). Using the continuous equations

(4) and (5), the terms involving ∂tT and ∂tYk can be gathered as a single function f of T , Y , P and m:

∂xm = −ρ(P, T, Y1, ..Yne
)

(
∂tP

P
+ f(P, T, Y1, ..Yne

,m)

)

We could semi-discretise this equation in space to obtain a discrete constraint on the mass flow rate [62]. In our

one-dimensional approach, it would replace the continuity equation (3). However this would require evaluating f ,

which, albeit entirely possible, would bring additional complexity to the code.

An alternative and original approach of this paper is to apply the Runge-Kutta scheme to the semi-discrete

continuity equation (16) directly. Let ρin be the density in the i-th cell at time step n, and ρin,i the same density at

the i-th stage of time step n. For the i-th stage of any DIRK method, we obtain:

ρin,i = ρin + ∆t

s∑
j=1

aij
(
dtρ

i
)
n,j

(B.1)

The term
(
dtρ

i
)
n,j

is the time derivative of ρi at time t = tn + cj∆t (i.e. at the j-th stage). The semi-discrete

mass conservation equation (16) allows to reinterpret it as the numerical approximation of the mass flow rate spatial

gradient at this stage. This equation is a constraint on m, as can be seen if we rearrange the terms:

−
mi
n,i −m

i−1
n,i

xi − xi−1
=
ρin,i − ρin
aii∆t

−
s∑

j=1,j 6=i

aij
aii

(
dtρ

i
)
n,j

(B.2)

The right hand-side is the approximation of the source term
(
dtρ

i
)
n,i

as given by the Runge-Kutta method, which

can be entirely expressed in terms of the mass flow rates at various stages. As a consequence, we only express the

mass constraint in terms of ρin,i, which are functions of the other variables as explained above, as well as in terms of

the mass flow rates at various stages. This approximation is constructed automatically by the Runge-Kutta scheme

and relies on the fact that the time derivative of the density is involved as a source term. We have seen that it

enables a high-order temporal resolution for the mass flow rate and other variables, without having to insert in the

mass conservation equation the time evolution of the various variables as classically done.
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Appendix C. Verification of the order of convergence

To verify that a high order of convergence in time can indeed be attained on all variables, a simple test case is

set up, using the simplified model presented in Section 5. A steady-state is computed at pressure P = 5.5× 106 Pa

and is given as initial solution for an unsteady simulation with a lower pressure at P = 5× 106 Pa. The simulation

is then run for a physical time of 10−4 s with fixed time steps2. The curves of Ts obtained for various time step

values are plotted in Figure C.19. The cyan curve represent the most refined solution.

Figure C.19 Surface temperature histories obtained with IE
when gradually lowering the time step

Figure C.20 Global error ερu on the mass flow rate field

The convergence of the algebraic variables is analysed for the surface temperature Ts as the difference between

the value obtained at the final physical time for a given time step and the one for the smallest time step. A relative

error is obtained by normalising by the latter. Additionally, an average error is considered for the mass flow rate field

at final time (N global number of cells and ref for reference simulation): ερu =

√
N∑
0

1
N (mi(tf ; dt)−mi(tf ; dtref ))2.

The corresponding relative errors are plotted in Figure C.20. The theoretical order of convergence is attained as long

as we are not limited by the precision of the Newton algorithm and, although not reported here, similar convergence

rates were observed for the differential variables.

2We start the simulation by performing a single step with IE and dt = 10−12 s, allowing all constraints to be satisfied.

43


	Introduction
	Formulation of the discrete unsteady problem
	General modelling
	Concept of eigenvalue in steady-state
	Discretisation with a finite volume approach
	Gas phase
	Solid Phase
	Surface


	Differential-algebraic nature of the semi-discretised system
	Identification of the constraints
	Analogy with a singular perturbation problem
	Index of the algebraic equations

	Requirements for the time integration method
	Ensuring high order of convergence for DAEs
	Theoretical formulation
	Examples

	Optimising the computational cost
	Newton algorithm
	Time adaptation
	Motivation
	Embedded methods

	Final choice of the method

	Numerical verification
	Steady-state solution
	Model parameters
	Verification process
	Results

	Verification in unsteady regime
	Process
	Results


	Simulation of ignition transients
	Setup
	Physical interpretation of the ignition
	Result

	Investigation of limit cycles
	Method
	Simulation setup
	Comparison process

	Analysis of schemes efficiency for a constant time step
	Envelope of the surface temperature history
	Initial growth
	Limit cycle
	Computational cost

	Numerical experiment with time adaptation
	Initial growth
	Limit cycle
	Comparison with fixed time step results


	Application to unsteady combustion with detailed chemistry
	Order of convergence with fixed time steps
	Computational performance with time step adaptation

	Conclusion
	Generating configurations with various degrees of instability
	Theoretical indicator of intrinsic instability
	Optimisation problem
	Numerical assessment of intrinsic stability

	Further clarification regarding the continuity equation
	Verification of the order of convergence

