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Abstract: Melanoma is the most aggressive skin cancer with an extremely challenging therapy.
The dermal-epidermal junction (DEJ) degradation and subsequent dermal invasion are the earliest
steps of melanoma dissemination, but the mechanisms remain elusive. We previously identified
Tspan8 as a key actor in melanoma invasiveness. Here, we investigated Tspan8 mechanisms of
action during dermal invasion, using a validated skin-reconstruct-model that recapitulates melanoma
dermal penetration through an authentic DEJ. We demonstrate that Tspan8 is sufficient to induce
melanoma cells’ translocation to the dermis. Mechanistically, Tspan8+ melanoma cells cooperate
with surrounding keratinocytes within the epidermis to promote keratinocyte-originated proMMP-9
activation process, collagen IV degradation and dermal colonization. This concurs with elevated active
MMP-3 and low TIMP-1 levels, known to promote MMP-9 activity. Finally, a specific Tspan8-antibody
reduces proMMP-9 activation and dermal invasion. Overall, our results provide new insights
into the role of keratinocytes in melanoma dermal colonization through a cooperative mechanism
never reported before, and establish for the first time the pro-invasive role of a tetraspanin family
member in a cell non-autonomous manner. This work also displays solid arguments for the use of
Tspan8-blocking antibodies to impede early melanoma spreading and therefore metastasis.

Keywords: tumor microenvironment; melanoma invasion; melanoma-keratinocytes crosstalk;
dermal-epidermal junction; dermis; Tetraspanin 8; MMP-9
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1. Introduction

Cutaneous melanoma is the deadliest skin cancer due to its high metastatic propensity and
resistance to most conventional and targeted therapies [1]. It usually progresses from an early radial
growth phase (RGP) confined within the epidermis to a vertical growth phase (VGP) characterized
by dermal invasion, where metastasis risk is high [2]. To date, Breslow thickness remains the most
powerful prognostic factor, as long as metastases are not present at the time of diagnosis. The most
recent AJCC 8th guidelines introduced mitotic rate as an additional criterion for thinner melanomas,
the presence of >1 mitosis/mm2 predicts poorer outcome [3]. Moreover, the ulceration status used
for the sub-classification of thin melanomas [3] emerges as another important histological factor
predicting survival [4]. However, such histological features define prognostic groups but not individual
patient risk. Indeed, even though the survival rate for thin melanomas is high, some patients develop
metastases [3]. Moreover, Werner-Klein et al. [5] recently showed that dissemination occurs shortly after
dermal invasion at a median tumor thickness of ~0.5 mm. Therefore, understanding the mechanisms
that convert RGP melanoma into VGP is crucial to identify reliable predictive biomarkers and novel
therapeutic targets.

Cutaneous melanomas are composed of genotypically and phenotypically distinct subpopulations,
dynamically regulated by the selective pressure imposed from the host tumor microenvironment and
host immune system [6]. This tumor heterogeneity contributes largely to their strong resistance to
standard, targeted and immune therapies [7,8]. Indeed, it appears that cancer/immune cell interactions
are informative of resistance to immunotherapy whereas cancer/stromal cell interactions are informative
of MAPK inhibitors’ resistance [9]. Consistently with the high inter- and intra-tumoral heterogenity
of cutaneous melanomas, we have previously defined a subset of melanoma cells expressing strong
levels of peanut agglutinin-receptors that possesses a high metastatic frequency [10] and correlates
with poor patient survival [11], which simultaneously express Tetraspanin 8 (Tspan8) [12]. Tspan8
belongs to a four-transmembrane-domain protein family called tetraspanins, that organize membrane
microdomains via interactions with other tetraspanins and a variety of transmembrane/cytosolic
proteins to regulate a wide range of cellular functions, including proliferation, motility, metastasis and
angiogenesis [13,14]. Tspan8 is categorized as pro-metastatic in various carcinomas [14] and emerged
as an attractive therapeutic target [15,16] and a blood biomarker [17].

We were the first to reveal that Tspan8 expression is sufficient to transform non-invasive melanoma
cells into invasive cells [12]. Tspan8 is undetectable at both mRNA and protein in healthy skin, but
its expression is acquired by aggressive primary melanomas and lymph node metastases. We also
demonstrated that TSPAN8 is under the transcriptional control of LCMR1 and p53 [18,19] and acts
not only by reducing matrix adherence via the β1-integrin/ILK signaling pathway [20], but also by
promoting invasion through β-catenin activation [21].

It is accepted that reciprocal stroma–tumor interactions contribute to metastatic progression,
especially through the production of matrix degrading enzymes such as MMPs [22,23]. However, the
exact mechanisms governing the interplay between melanoma cells and epidermal microenvironment
in controlling MMP-dependent invasion have not been studied to date. Here, we address how
Tspan8 participates in the dermal–epidermal junction (DEJ) proteolysis during melanoma invasion and
whether it contributes to tumor–keratinocyte crosstalk. To this aim, we used 3D-skin reconstructs (SR)
with an authentic DEJ, which recapitulate early melanoma stages [24,25]. We found that mere Tspan8
gain of expression is sufficient to promote melanoma invasive behavior and acts by driving proMMP-9
activation leading to DEJ proteolysis. More importantly, we showed that Tspan8 function hinges on
the dialog between tumor cells and neighboring keratinocytes. Our work provides strong evidence
of the primary involvement of Tspan8 in melanoma–keratinocyte crosstalk leading to efficient DEJ
degradation. This is, to our knowledge, the first report demonstrating bidirectional interplay between
melanoma cells and epidermal microenvironment to regulate MMP-dependent invasion. This is
also the first study characterizing the role of a tetraspanin family member in a cell non-autonomous
mechanism that controls basement membrane proteolysis and local invasion.
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2. Results

2.1. Tspan8 is Exclusively Expressed in the In Vivo-Selected Highly Metastatic and Invasive Melanoma Subsets

We previously developed an orthotopic rat model for the spontaneous metastasis of human
melanoma [10]. This model allowed the selection from a non-aggressive parental cell line of
subpopulations with low (NM#1, NM#2, NM#3) or high (M#1, M#2, M#3) lung metastatic potential.
Figure 1a depicts a schematic of the selection procedures. M#1, M#2 and M#3 subsets expressed Tspan8
at the mRNA (Figure 1b), protein (Figure 1c), cell-surface (Figure 1d) levels, and displayed a high ability
to invade Matrigel (Figure 1e), unlike the parental line and the non-metastatic NM#1, NM#2, NM#3
subsets. These results showed that the parental line is populated by melanoma cells with heterogeneous
metastatic phenotypes and that Tspan8 is strongly expressed in the invasive/metastatic subsets.
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Figure 1. Generation of potent metastatic cell subpopulations expressing the metastatic-associated
Tspan8 protein. (a) Schematic diagram of the experimental procedure used to sequentially select in
an immunosuppressed new-born rat model cell subpopulations with progressively higher metastatic
ability from a poorly metastatic melanoma cell line. Lower panel, representative photographs of the rat
lungs. (b) The parental human M4Be cell line and its derived non metastatic (NM#1-3) and metastatic
(M#1-3) subpopulations were examined for TSPAN8 mRNA levels by QPCR. Expression normalized
to GAPDH represented a fold change of control sample (n = 3; ± SD); (c) Western blot analysis of
Tspan8 expression with β-Actin as loading control and reference for quantification (one representative
experiment of three), uncropped western blots figures in Figure S1; (d) Tspan8 cell surface expression
by flow cytometry analysis. In red, the specific staining and in blue the isotype-matched control
antibody (one representative experiment of three). Numbers indicate Mean Fluorescence Intensity
(MFI). (e) Matrigel invasion assay using transwell chambers. The total number of invasive cells was
integrally counted by scanning microscopy and normalized to the value from control parental cell line
(n = 3; ± SEM). Representative visual fields are illustrated beneath. ***p < 0.001.
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2.2. Tspan8 Expression in Melanoma Cells Promotes ProMMP-9 Activation, Collagen IV Degradation and
DEJ Crossing

We next determined how Tspan8 expression affects dermal invasion. We used the SR, previously
described [24,25] to accurately recapitulate the early steps of melanoma invasion through a preserved
3D architecture of native DEJ. After 21 days of culture, Tspan8+ cells invaded the dermis and formed
numerous compact nodules (Figure 2a). By contrast, large nests of Tspan8− cells were located exclusively
in the epidermis, along the DEJ. Evidence of collagen IV dissolution, the major DEJ component, was
observed exclusively when Tspan8+ cells were used and integrated within the epidermis (Figure 2b).
These data demonstrate that keratinocytes are required for the penetration of Tspan8+ cells across the
DEJ, and local degradation of collagen IV, both occurring around day 21.

Collagen IV is known to be primarily degraded by MMP-9 and MMP-2. Therefore, we examined
whether Tspan8 regulates MMP-9 and MMP-2 expression and/or activity by using zymographs and
ELISA assays on conditioned media harvested from SR. A time-course study revealed that proMMP-9
became active as early as day 10 of culture and drastically increased until reaching active MMP-9
highest amount at the time of collagen IV dissolution (day 21), exclusively in medium from SR
containing Tspan8+ cells (Figure 2c,d). Indeed, SR integrating Tspan8− cells were capable of producing
proMMP-9, but unable to generate its active form (Figure 2c,d), in accordance with the intact collagen
IV layer (Figure 2b).

Strikingly, melanoma cells were unable to cross the DEJ when keratinocytes were not incorporated,
regardless of their Tspan8 expression levels (Figure 2a), even after 5 weeks of culture (not shown).
This was consistent with the absence of breaks in collagen IV staining (Figure 2b), low levels of
proMMP-9 and absence of active MMP-9 (Figure 2c,d). The MMP-2 proform was detected at very
low levels without noticeable active MMP-2 irrespective of Tspan8 expression, at all times and in all
tested culture conditions (Figure 2c,e). These data demonstrate that Tspan8 is a key determinant in the
activation process of MMP-9, but not of MMP-2, which depends heavily on surrounding keratinocytes.

To further confirm that Tspan8 confers MMP-9-dependent invasive activity, we have generated
stable clones expressing ectopic Tspan8 or depleted of endogenous Tspan8. We confirmed the efficiency
of Tspan8 expression/silencing at the mRNA (Figure 3a), protein (Figure 3b) and cell-surface (Figure 3c)
levels. We observed that non-invasive melanoma cells gained strong invasive properties after the
ectopic expression of Tspan8 in matrigel (Figure 3d) and SR (Figure 3e) concomitantly to the production
of high levels of active MMP-9 (Figure 3f). Conversely, Tspan8 depletion in invasive cells strongly
inhibited matrigel invasion (Figure 3d) and efficiently prevented melanoma cells from crossing the
DEJ (Figure 3e), concurrently to a drastic decrease in proMMP-9 activation (Figure 3f). Overall, these
data show that, by itself, Tspan8 expression was sufficient to trigger proMMP-9 activation process and
collagen IV dissolution, allowing melanoma cells to cross DEJ and invade dermis.
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Figure 2. Tspan8-expressing melanoma cells efficiently invade the dermis in human skin reconstructs.
Melanoma cells from NM#1 (Tspan8-) and M#1 (Tspan8+) subpopulations were cultured with human
keratinocytes (SR) or alone (DED) on acellular dermis. (a) Representative photomicrographs of
hematoxylin and eosin (H&E)-stained 21-day skin composites (scale bars: 100 µm). Arrows indicate
melanoma cells colonizing the dermis (b) Representative IHC-staining of collagen IV. Arrows denote
collagen IV layer disruptions. (c) MMP-9 and MMP-2 activity in gelatin zymography of culture medium
from skin composites collected on day 10, 15 and 21. Lane 1, purified MMP-2 standard; lane 2, purified
MMP-9 standard both activated with 4-aminophenylmercuric acetate. (d,e) ELISA quantification of
secreted protein levels of proMMP-9, active MMP-9 (d) and MMP-2 (e) (ng/ug total protein) into the
composite media. Bars represent the mean ± SD of three separate experiments with 3 ELISA evaluations
for each of the 3 independent experiments (n = 9).
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Figure 3. Tspan8 expression in melanoma triggers dermal invasion, concomitantly to MMP-9 activation
and collagen IV proteolysis. Non-metastatic stable clones ectopically-expressing Tspan8 (TSPAN8
vector) or not (control vector) Tspan8 (left panel) and metastatic stable clones silenced (shTSPAN8) or
not (shcontrol) for Tspan8 (right panel) were subjected to (a) QPCR analysis of TSPAN8 transcripts
levels (n = 3; mean ± s.d.). (b) Western blot analysis of Tspan8 protein levels with β-Actin as loading
control. The band intensities were normalized to actin signal (representative experiment of three),
uncropped western blots figures in Figure S1 (c) Flow cytometry analysis of cell surface Tspan8
expression (representative experiment of three). (d) Matrigel cell invasion assay: invading cells were
DAPI-stained (right panel) and quantified (left panel). Data are means ± SD with n = 3 (*** p < 0.001).
(e) Cells were incorporated into the epidermis of skin reconstructs as described in Materials and
Methods. Representative hematoxylin and eosin-stained skin reconstruct were shown. Arrows denote
melanoma cells located into the dermis. (f) Serum-free conditioned media collected from SR were
analyzed by gelatin zymography at 21 days (representative zymogram of 3 independent experiments).
Molecular weight (MW) markers are indicated in kDa.
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2.3. Tspan8+ Melanoma Cells Require Neighboring Keratinocytes to Promote Dermal Invasion

Tspan8+ cells crossed DEJ exclusively when integrated into an epidermal microenvironment
(Figure 2a). We thus investigated whether and how keratinocytes influence melanoma invasion.
We developed four different models schematized in Figure 4a. Keratinocytes and Tspan8+ melanoma
cells were either cultured alone on de-epidermized dermis (DED) (I and II cultures, respectively)
or cocultured, without or with cell–cell contacts (III and IV cultures, respectively). As shown in
Figure 4b, Tspan8+ cells were able to penetrate the DEJ only when surrounded by keratinocytes, which
coincided with collagen IV breakdown (Figure 4c). Strikingly, when cultured alone or cocultured with
keratinocytes without contacts, melanoma cells formed an attached layer along the JDE, several cells
thick without noticeable dermal invasion (Figure 4b), nor breaks in collagen IV layer (Figure 4c).

Zymography (Figure 4d), ELISA (Figure 4e) and western blot (Figure 4f) assays revealed that
keratinocytes are the major source of proMMP-9 and that active MMP-9 was generated exclusively
when Tspan8+ cells were surrounded with keratinocytes (Figure 4d–f). ProMMP-2, detected at low
levels in the four types of culture, remained stable throughout the experiment (Figure 4d). Overall, our
results indicate that interaction between Tspan8+ melanoma cells and neighboring keratinocytes are
essential to drive MMP-9 activation, collagen IV dissolution, and subsequent dermal invasion.

2.4. Tspan8 Expression in Melanoma Cells Surrounded with Keratinocytes Promotes ProMMP-9 Activation by
Increasing the Amount of Active MMP-3 and Decreasing TIMP-1 Levels

Since MMP-3 can activate in vitro proMMP-9 but not proMMP-2 [26,27] and because it is the
most relevant activator of pro-MMP-9 in vivo [28,29], we wondered whether in our model proMMP-9
activation was MMP-3-dependent. Thus, total MMP-3 levels were measured in the media derived from
our four culture models. MMP-3 highest amounts were observed when Tspan8+ melanoma cells were
integrated with keratinocytes into the SR, peaking at day 21 (Figure 5a). MMP-3 was undetectable
when Tspan8+ cells were cultured alone. MMP-3 activation status was examined by Western blot
(Figure 5b) and we observed a 52 kDa band corresponding to the molecular weight of proMMP-3
in all types of cultures, except the culture with melanoma cells alone, indicating that proMMP-3 is
generated by keratinocytes and not melanoma cells. However, the 28 kDa band representing the fully
activated form of MMP-3 [30] was restricted to co-cultures where Tspan8+ cells were surrounded with
keratinocytes (Figure 5b). Importantly, MMP-3 full activation is Tspan8-dependent as SR generated
with non-invasive melanoma cells ectopically expressing Tspan8 acquired the property to produce a
large amount of fully active MMP-3 (Figure 5c). Concordantly, that property observed in SR containing
Tspan8+ melanoma cells was abrogated when Tspan8 expression was silenced (Figure 5c).

It was emphasized that active MMP-3 becomes a potent activator of proMMP-9 in a tumor cell
model only when its concentration exceeds that of TIMP-1 [28]. We thus wondered whether active
MMP-9, exclusively observed when Tspan8+ melanoma cells were surrounded by keratinocytes,
coincided with low levels of TIMP-1. Indeed, of our four culture models, we found that secreted TIMP-1
is at its highest level when Tspan8+ cells are alone and at its lowest when they are in direct contact
with keratinocytes (Figure 5d,e). Overall, our data show that Tspan8+ melanoma cells surrounded by
keratinocytes maintained lower TIMP-1 level when compared to melanoma cells juxtaposed without
contacts with keratinocytes, thus favoring proMMP-9 activation by the fully active MMP-3, in a
Tspan8-dependent manner.
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Figure 4. Tspan8-dependent dermal invasion coincides with MMP-9 activity and local dissolution
of collagen IV and requires surrounding keratinocytes. (a) Schematic drawings of the four different
culture conditions. I: SR containing no melanoma cells; II: Tspan8-expressing cells seeded alone on
DED (DeEpidermised Dermis); III: SR without melanoma cells juxtaposed with Tspan8+ cells seeded
alone on DED; IV: SR containing Tspan8+ cells in contact with keratinocytes. (b) Representative H&E
staining of skin composites sections. Arrows indicate melanoma cells infiltrating the dermis. (c) type
IV collagen staining on sections from the four culture conditions described in (a). Arrowhead pointed
to collagen IV destruction. (d–f) Serum-free media from the four culture conditions collected at day
10, 15 and 21 were analyzed for the expression levels of proMMP-9 and active MMP-9 using gelatin
zymography (d), ELISA (e) and western blot (f).
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Figure 5. Tspan8-mediated melanoma cell invasion coincides with MMP-3 activation concomitantly
with low TIMP-1. (a,b) The protein levels of total MMP-3 released in the supernatants from each culture
model (I, II, II, IV described in Figure 4) were assessed at day 10, 15 and 21 by ELISA (a) and western
blot (b), uncropped western blots figures in Figure S1. (c) Immunoblot analysis of MMP-3 in serum-free
media harvested from SR integrating non-metastatic NM#1 melanoma cells ectopically expressing
Tspan8 (TSPAN8 vector) and their control (control vector) or metastatic M#1 melanoma cells silenced
(shTSPAN8) or not (shcontrol) for Tspan8. Equal amounts of total protein were loaded. The intensity
value ratio of fully active MMP-3/proMMP-3 was annoted beneath the blot (d,e). Serum-free media
from the 4 culture models collected at day 10, 15 and 21 were analyzed for TIMP-1 content by ELISA
(d) and western blot (e). ELISA results are represented as the mean ± SEM from three independent
experiments, each measured in duplicate.
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2.5. Keratinocytes are the Main Source of ProMMP-9 and ProMMP-3 Whereas Tspan8+Melanoma Cells Are
the Primary Source of TIMP-1

We next evaluated the cellular source of MMP-9, its activator MMP-3 and its inhibitor TIMP-1.
To this end, their respective transcript levels in keratinocytes alone (aK), Tspan8+ melanoma cells
alone (bM), keratinocytes cocultured with melanoma cells without contact (cK and cM respectively),
and melanoma cells that have penetrated the DEJ (dM) (Figure 6a) were measured by RT-QPCR.
MMP-9 and MMP-3 were mainly expressed by keratinocytes whereas TIMP-1 was mainly expressed
by Tspan8+ melanoma cells (Figure 6b). The presence of keratinocytes, irrespective of contacts with
melanoma cells, slightly augmented the MMP-9 mRNA levels in keratinocytes and sorely decreased
TIMP-1 transcription in invasive melanoma cells. Surprisingly, MMP-9 and MMP-3 transcripts were
increased in invading melanoma cells that have penetrated the DEJ, in comparison to melanoma
cells still in contact with the DEJ. This was consistent with the immunodetection of MMP-9 and
MMP-3 in melanoma cells located into the dermis, but not those localized in the epidermis (Figure 6c).
This indicates that Tspan8+ melanoma cells, once invading the dermis, acquire the capability of
expressing the precursor forms of MMP-9 and MMP-3, which were previously provided by the
keratinocytes when situated in the epidermis.

2.6. Antibody-Specific Blockade of Tspan8 Reduces ProMMP-9 Activation and Melanoma Invasion

We next examined whether a blocking monoclonal anti-Tspan8 antibody, previously shown to be
effective in delaying the growth of human colon xenografts [31], could influence melanoma invasion.
First, we showed that it allows efficient selective in vivo imaging of Tspan8+ human melanoma
xenografts, demonstrating its high target specificity (Figure 7a). When this antibody was added to the
culture medium of SR, Tspan8+ M#1 cells grow as clusters in the epidermis without deeply invading the
dermis, whereas isotype-matching control Ab-treated SR invaded the dermis by day 10 and progressed
deeper by day 20 (Figure 7b). The invasion score confirmed that Tspan8+ cells treated with Tspan8
mAb exhibited minimal invasion (mean score 1.83; n = 6) when compared to cells cultured with control
mAb (mean score 0.67, n = 6) in a statistically significant manner (p = 0,01267; paired t-test; Figure 7b).
These findings were extended to the SKMel28 cell line, broadly used for its ability to invade the dermis
of SR [25], and revealed to be Tspan8+ [12]. As depicted in Figure 7c, SKMel28 cells in SR displayed
vertically orientated clusters in the upper dermis when control mAb was added. In contrast, tumor
nodules remained close to DEJ with less dermal invasion when treated with Tspan8 mAb (Figure 7c).
Importantly, Tspan8-mAb treatment correlated with a strong reduction in MMP-9 activation in the SR
integrating M#1 and SKMel28 cells (Figure 7d).



Cancers 2020, 12, 1297 11 of 19Cancers 2020, 12, x 13 of 22 

 

 

 

 
Figure 6. Keratinocytes are the main source of MMP-3 and MMP-9 in the epidermis but melanoma 
cells gain the ability to express both proteins after DEJ crossing. (a) Total RNA has been isolated from 
keratinocytes and Tspan8+ melanoma cells at day 20 from the four different schematized culture 
conditions. aK: keratinocytes from culture I; bM: Tspan8+ melanoma cells from culture II; cK and cM: 
keratinocytes and Tspan8+ melanoma cells from culture III respectively; dM: invading melanoma 
cells from culture IV. (b) QPCR analysis of MMP-9, MMP-3, and TIMP-1 transcript expression levels 
of aK, bM, cK, cM and dM (n =3; ± SD). (c) Representative pictures of immunohistochemical staining 
of MMP-9 and MMP-3 in the epidermis and dermis of SR integrating Tspan8+ melanoma cells 
(condition IV) at day 20. **p < 0.01, *** p < 0.001. 

2.6. Antibody-Specific Blockade of Tspan8 Reduces ProMMP-9 Activation and Melanoma Invasion.  

We next examined whether a blocking monoclonal anti-Tspan8 antibody, previously shown to 
be effective in delaying the growth of human colon xenografts [31], could influence melanoma 
invasion. First, we showed that it allows efficient selective in vivo imaging of Tspan8+ human 
melanoma xenografts, demonstrating its high target specificity (Figure 7a). When this antibody was 

Figure 6. Keratinocytes are the main source of MMP-3 and MMP-9 in the epidermis but melanoma
cells gain the ability to express both proteins after DEJ crossing. (a) Total RNA has been isolated
from keratinocytes and Tspan8+ melanoma cells at day 20 from the four different schematized culture
conditions. aK: keratinocytes from culture I; bM: Tspan8+ melanoma cells from culture II; cK and cM:
keratinocytes and Tspan8+ melanoma cells from culture III respectively; dM: invading melanoma cells
from culture IV. (b) QPCR analysis of MMP-9, MMP-3, and TIMP-1 transcript expression levels of aK,
bM, cK, cM and dM (n =3; ± SD). (c) Representative pictures of immunohistochemical staining of MMP-9
and MMP-3 in the epidermis and dermis of SR integrating Tspan8+ melanoma cells (condition IV) at
day 20. ** p < 0.01, *** p < 0.001.
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Tspan8- tumors. Tumors were collected 120 h after injection and the radioactivity was measured by 

Figure 7. Anti-Tspan8 mAb efficiently targets Tspan8-positive melanoma cells in vivo and reduces
MMP-9 activation and dermal invasion. (a) Mice with Tspan8+ (left side) and Tspan8- xenografts
(right side) were injected (i.v.) with 3.7 MBq of [111In] DOTA-mAb and imaged with a γ-camera
at 24 h, 48 h, 72 h and 120 h post-injection. Whole body SPECT/CT images of mice demonstrate
specific accumulation of [111In] DOTA-mAb in Tspan8+ tumors (surrounded) but significantly lower
in Tspan8- tumors. Tumors were collected 120 h after injection and the radioactivity was measured by
γ-counting of each sample. The graph represents the % of injected activity per gram of tissue (%IA/g,
n = 4). (b) Representative H&E staining of SR with metastatic M#1 cells treated with control IgG or
0.5 µM Ts29 at 13 and 20 days. The graph depicts the invasion scores (see Materials and Methods).
(c) Representative H&E staining of SR with SKMel28 cells treated with control IgG or 15 µg/mL Ts29 at
15 and 21 days. Arrow heads: melanoma cell clusters close to DEJ; arrows, melanoma cells invading
the dermis (Scale bars: 10 µm). Data representative of 6 independent experiments. Graph depicts
results of invasion score analysis. (d) Serum-free conditioned media collected from SR integrating M#1
and SKMel-28 cells were analyzed by gelatin zymography at 21 days (representative zymogram of 3
independent experiments). * p < 0.05.
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3. Discussion

To date, little information is available regarding the epidermal microenvironment role in the
proteolytic events involved in breaking the dermal-epidermal junction, a prerequisite for melanoma
invasion. Here, we demonstrate, using a skin-reconstruct model that closely mimics the tumor
microenvironment in vivo, that melanoma cells require the presence of neighboring keratinocytes
within a fully differentiated epidermis to promote dermal invasion. This is in agreement with Eves
et al. [32] and Van Kilsdonk et al. [33], who showed that melanoma cells invade the dermis only when
integrated into the epidermis. However, the mechanisms of this process have not been explored.
Our data reveal that Tspan8 drives mutual cooperation between melanoma cells and epidermal
microenvironment to trigger the proMMP-9 activation process primarily produced by the keratinocytes,
leading to collagen IV-containing DEJ proteolysis and dermal invasion.

MMP-9 overexpression is traditionally associated with cancer aggressiveness and poor prognosis [34].
However, contradictory data have been reported in melanoma. Van den Oord et al. [35] found that
MMP-9 was mostly expressed in primary lesions <1.6 mm, but not in metastases. Hofmann et al. [36]
reported that several melanoma cell lines derived from metastases did not express MMP-9 at both mRNA
and protein levels. Conversely, Simonetti et al. [37] report the highest MMP-9 levels in melanomas >2
mm thick. In line with this, MacDougall et al. [38] showed that MMP-9 was expressed in melanoma
cell lines established from patient metastases but not from primary lesions. Our own data indicate that
melanoma cells in the epidermis, even when presenting an invasive potential due to Tspan8, do not
express proMMP-9. However, after crossing the DEJ, melanoma cells exhibit increased capabilities
for proMMP-9 expression. This implies that MMP-9 expression by melanoma cells is acquired after
dermal invasion and local dissemination. Thus, it appears that cutaneous environment exerts a
powerful selective pressure for the emergence of cells with increasingly aggressive traits, probably the
source of the well-recognized intra- and inter-heterogeneity of melanoma lesions. This might play
a decisive role in the initiation of melanoma spreading. Indeed, in a spontaneous metastasis model,
Hofmann et al. [39] noticed that a majority of melanoma cells expressed MMP-9 in lung metastases.
Nevertheless, it is still unclear whether and how MMP-9 produced by melanoma cells, nearby host cells,
or both, might be involved in late-stage melanoma. In mice, forced MMP-9 expression in melanoma
cells enhanced lung colonization [40] which was reduced in MMP-9-deficient mice [41], indicating
that MMP-9 produced by neoplastic and host cells might be equally important for the initiation of
metastatic spreading.

Several other tetraspanins, mainly CD9, CD81, CD82 and CD151 have been described to regulate
proMMP-2 and/or proMMP-9 expression in cancer cell lines from liver [42], kidney [43], breast [44]
and lung [45] carcinomas, fibrosarcomas [46] and melanomas [47,48]. However, functionally relevant
MMP-2/-9 active forms were never detected. This is the first study reporting the role of a tetraspanin
family member, Tspan8, in coordinating heterotypic crosstalk between cancer cells and surrounding
epithelial cells to promote basement membrane proteolysis and stromal invasion through an MMP
activation process.

MMP-9 is secreted as a latent pro-enzyme that requires activation in the extracellular space
to achieve catalytic activity [49]. In cellular models, active MMP-3 is considered the most potent
proMMP-9 activator [28,29]. Here, we found that the production of active MMP-9 and fully active
MMP-3 were Tspan8-dependent, concomitant, and always correlated with collagen IV breakdown and
dermal invasiveness. This is consistent with other reports linking MMP-3 to invasion and metastatic
potential of melanoma cell lines and shorter disease-free survival [50,51]. Our data, together with
the data available in the literature, reveal that Tspan8 expression in melanoma cells promotes the
activation of keratinocyte-generated proMMP-3 in the stroma, which engages MMP-9 activation and
DEJ proteolysis.

MMP-9 proteolytic activity is also tightly regulated extracellularly by its physiological inhibitor
TIMP-1 [49,52]. We observed high levels of proteolytically active MMP-9 concurrently with very low
levels of melanoma-derived TIMP-1 at the time of collagen IV dissolution, exclusively when melanoma
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cells were integrated into SR and expressed Tspan8 (Figure S2). These findings are consistent with
prior data demonstrating that TIMP-1 overexpression in B16-F10 melanoma cells reduces their invasive
capacity [53] and their metastatic potential [54]. Overall, our results strongly suggest that, in the
epidermis, Tspan8+ melanoma cells cooperate with surrounding keratinocytes to promote dermal
invasion by instigating MMP-3 activation and strongly decreasing TIMP-1 expression, with both
events leading to a keratinocyte-originated MMP-9 activation process, and subsequent DEJ penetration.
A striking finding is that aggressive cells capable of invading the DEJ to reach the dermis also gain the
ability to express MMP-9 and its activator MMP-3 with reduced TIMP-1 levels. This is consistent with
previous data conducted in mice, where the selection process for metastatic subclones favors those
expressing MMP-9 [40] and those expressing Tspan8 (Figure 1). This profile should allow them to
escape the local tissue control, and thus degrade the basal membranes encountered later throughout
the metastatic cascade by themselves.

A major discovery in this work is that the ability/inability to cross DEJ is interconvertible and that
the switch from one state to another can be accomplished both at the functional and molecular level by
simply manipulating Tspan8 expression. Accordingly, a Tspan8-specific antibody efficiently targeting
in vivo Tspan8+ melanoma xenografts was able to reduce MMP-9 activity, DEJ breakdown, and dermal
invasion. Given that MMPs inhibitors are not highly selective and did not impede a single MMPs
function [55,56], it is tempting to speculate that targeting Tspan8 with antibodies might represent an
alternative means to specifically block MMP-9 activity, and thereby deeper melanoma invasion of the
dermis, the earliest stage before metastatic spreading.

4. Materials and Methods

4.1. Cell lines and Culture

SKMel28 (ATCC, Manassas, VA, USA) and M4Be [10] human melanoma cell lines were derived
from lymph node metastasis. Non-metastatic and metastatic subpopulations were selected from
immunosuppressed newborn rats that had been subcutaneously injected with M4Be (parental) cells,
from lung metastases collected and grown in culture as described previously [57]. Stable clones of
human melanoma cells were generated with shRNA-mediated silencing or ectopic overexpression
of Tspan8 as described elsewhere [21]. Cells were cultured under standard conditions and tested
as mycoplasma-free.

4.2. Matrigel Invasion Assay

Invasion assays were performed in triplicates using BioCoat Matrigel invasion chambers (BD
Biosciences) as previously described [21]. Briefly, the cells that migrated to the lower surface of the
filter were fixed, stained with DAPI, imaged using an Axiovert 200 (Carl Zeiss Inc., Jena, Germany)
equipped with a CoolSNAP HQ camera (Roper Scientific, Lisses, France) and MetaMorph software
(MDS Analytical Technologies, Sunnyvale, CA, USA) and then counted on the entire filter using NIH
Image J software.

4.3. Invasion Assay in Human Skin Reconstructs

Adult human keratinocytes (4 × 105 cells), mixed or not with human melanoma cells (5.820 cells)
at a melanoma/keratinocyte ratio of 1:80, were seeded into a stainless-steel ring deposited on the
surface of human dead de-epidermized dermis (DED) squares as previously described [24]. In some
experiments, the same respective number of melanoma cells and keratinocytes were seeded alone onto
the surface of DED. After 9, 15 and 21 days of incubation at an air-liquid interface, the specimens were
collected and embedded in paraffin for hematoxylin and eosin staining or embedded in Tissue-Tek
(Miles Inc., Elkhart, IN, USA) for further immunohistochemical staining of type IV collagen (clone CIV
22; Dako, Carpinteria, CA, USA) as described [24]. Four-micrometer vertical sections cut at different
levels were subjected to histological and staining evaluation. To test the effect of anti-human Tspan8
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antibody, SR were cultured in its constant presence (TS29 clone, 15 µg/mL; [31]) or an isotype-matching
control antibody. Dermal invasion was evaluated by a scoring system of 0–2 in a blinded manner: 0
indicated no melanoma cells present in the dermis, 1 invasive melanoma cells were located under JDE,
and 2 melanoma cells were observed deep into the dermis. All experiments were done as sixtiplates
and were repeated twice for each condition.

4.4. Preparation of Serum-Free Culture Medium

Culture fluids from skin composites were harvested on days 10, 15 and 21. Two days before
collection, SR were extensively washed and cultured in serum-free medium. The collected serum-free
culture media was centrifuged to remove cellular debris, and concentrated 10-fold in a Centricon
ultrafiltration apparatus, containing a polysulfone membrane with an exclusion limit of Mr 10.000
(Millipore, Molshein, France). Protein concentrations were measured by the Bradford method using a
commercial kit (Bio-Rad Laboratories, Paris, France). Aliquots with equivalent protein contents were
subjected to gelatin zymography, Western blotting, and ELISA assays.

4.5. Gelatin Zymography

The activity of electrophoretically separated gelatinolytic enzymes in the serum-free culture media
was analyzed as described previously [58].

4.6. Western Blot Analysis

Western blotting was performed as previously described [12]. Antibodies against MMP-9
(polyclonal antibody, Dako, Trappes. France), MMP-3 (clone 552A4, Oncogene research Product,
Boston, Mass) and TIMP-1 (clone 7-6C1; Oncogene Research Products) were used.

Tspan8 was detected using a mouse monoclonal anti-Tspan8 antibody (TS29 clone [12,18–21].
Western blot quantifications were performed using ImageJ software. At least three independent
biological replicates were performed.

4.7. Measurement of MMP-9, TIMP-1 and MMP-3

Serum-free culture medium was screened for pro and active MMP-9, total MMP-3 and total
TIMP-1 using the commercially available ELISA kits (Amersham Pharmacia Biotech, Saclay, France),
following procedures recommended by the manufacturer. All experiments were performed in triplicate
from six separate experiments and the results were expressed as ng/mg of total proteins ± SD.

4.8. Real-Time RT-QPCR

Total RNA was extracted using the RNAeasy mini-kit (Qiagen, Germantown, MD, USA),
reverse-transcribed into cDNA by PrimeScript™ RT reagent Kit (TaKaRa, Shiga, Japan) and analysed by
real-time QPCR using SYBR®Premix ExTaq™II (TaKaRa, Shiga, Japan) on a Mx3000P real-time PCR system
(Stratagene, Santa Clara, CA, USA) as described [21]. Results were obtained from at least three independent
experiments and normalized to the 18 S rRNA expression level. The primers used are as follows:
18S-F: 5′-CGATGCGGCGGCGTTATT-3′; 18S-R: 5′-CCTGGTCTGTCTCATCCTCCC-3′; TSPAN8-F:
5’-TTGCTTCTGATCCTG CTCCT-3’; TSPAN8-R: 5′-AGGGCCTGCAGGTTCACACCAC-3′; MMP-9-F:
5′-CACTGTCCACCCCTCAGAGC-3′; MMP-9-R: 5′-GCCACTTGTCGGCGATAAGG-3′; MMP-3-F:
5′-GGAAGCTGGACTCCGACACTC-3′; MMP-3-R: 5′-TGGTGTATAATTCACAAT CCTGTATGTAA-3′;
TIMP-1-F: 5′-GACGGCCTTCTGCAATTCC-3′; TIMP-1R: 5′-GTATAAGGTGGTCTGGTTGACTTCTG-3′.

4.9. Flow Cytometric Analysis

Cell surface labeling was performed as previously described [12]. Data were collected on a
FACSCanto II (BD Biosciences, San Jose, CA, USA) and analyzed using FlowJo Software (Treestar,
Ashland, OR, USA).
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4.10. Animal Studies

NMR1 Foxn1nu/Foxn1nu female mice (Janvier Labs; Le Genest-Saint-Isle, France) were maintained
and used in accordance with the 2010/63/UE directive after approval by the institutional review board
C2E2A and the French MESR ministry. Mice were injected subcutaneously with 1.106 Tspan8+ or
Tspan8- melanoma cells in their left or in right shoulder, respectively. Radiolabeling of Tspan8 mAB
with 111Indium was performed as previously described [59]. The mice were imaged at each timepoint
using a γ-camera (γ IMAGER, BIOSPACE Inc., Urbandale, IA 50322, USA) under gaseous anesthesia
(Isoflurane, Iso-Vet®1000 mg/g). Removed tumors were weighted and counted using a Wallac 1480
automated calibrated γ-counter (Perkin-Elmer, Waltham, MA, USA).

4.11. Statistical Analysis

Statistical significance was calculated by a two-tailed Student’s t-test for unpaired samples. Mean
differences were considered to be significant when p < 0.05.

5. Conclusions

In summary, we report the novel finding that within a human-differentiated epidermis, Tspan8
expression in melanoma cells cooperate with surrounding keratinocytes to promote dermal invasion
by instigating keratinocyte-produced MMP-3 activation and decreasing melanoma-derived TIMP-1
levels, leading to keratinocyte-originated MMP-9 activation process, and subsequent DEJ-collagen
IV degradation. Furthermore, an anti-Tspan8 monoclonal antibody specifically targeting Tspan8+

melanoma xenografts in vivo significantly reduces dermal invasion by strongly impairing proMMP-9
activation process and collagen IV breakdown.

This study is the first to provide evidence for the pro-invasive role of Tspan8 in a cell
non-autonomous manner, a mechanism never reported for a tetraspanin family member. This work
has important implications since the direct inhibition of MMPs proved disappointing in clinical trials,
and therefore targeting Tspan8 might represent a novel alternative and efficient strategy to impede
MMP-9 proteolytic activity and greatly reduce metastasis risks.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/5/1297/s1,
Figure S1: uncropped western blots figures, Figure S2: Low TIMP-1 levels were exclusively observed when
melanoma cells expressed Tspan8 and were integrated into SR. (a,b) Supernatants TIMP-1 protein levels were
measured at day 10, 15 and 21 by ELISA in composites consisting of melanoma cells expressing or not Tspan8
cultured on acellular dermis either alone (a) or with human keratinocytes (b). Results are represented as the mean
± SEM from three independent experiments.
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