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Abstract

An analytical model is built for the Maxwell field in an axisymmetric
galaxy, especially that field which results from stellar radiation. This
model is based on an explicit representation for axisymmetric free
Maxwell fields. In a previous work, the general applicability of this
representation has been proved. The model is adjusted by fitting to
it the sum of spherical radiations emitted by the composing “stars”.
The huge ratio distance/wavelength needs to implement a numerical
precision better than the quadruple precision. The model passes a
validation test based on a spherically symmetric solution. The results
for a set of “stars” representative of a disk galaxy indicate that the
field is highest near to the disk axis, and there the axial component
of E dominates over the radial one.

Keywords: Maxwell equations; axial symmetry; exact solutions; disk
galaxy; numerical model.

1 Introduction

Apart from pure magnetic fields, which are thought to be produced by a
galactic dynamo action [1, 2], the electromagnetic (EM) field in a galaxy is
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in the form of EM radiation. A lot of information can be found in the litera-
ture regarding the production of the EM radiation field by stars and by other
astrophysical objects, its interaction with dust, as well as other processes of
radiative transfer, or regarding the EM wave spectrum and its dependence
on the position in the galaxy, etc. [3, 4]. However, it seems that little or
nothing can be found about the description of the EM radiation field in a
galaxy as an exact solution of the Maxwell equations. The aim of the present
work is to propose and first check a method to obtain such relevant solutions.

Our main motivation for that work is to make a step towards testing
the following prediction [8] of an alternative theory of gravity [9], which is
a scalar theory with a preferred reference frame: In the presence of both a
gravitational field and an EM field, the total energy(-momentum-stress) ten-
sor is not the sum of the energy tensors of matter and the EM field – there
must appear a specific interaction energy tensor, which should be distributed
in space, and be gravitationally active. That energy could thus possibly con-
tribute to the dark matter, because moreover it has an “exotic” character,
being different from both the energy of matter and that of the EM field.
(It has a classical nature, however, as has the theory [8, 9]. I.e., the theory
does not say anything about the possibility that the interaction energy might
result from underlying quantum particles.) The interaction energy tensor is
characterized by a scalar (field), which is determined by the gravitational
and EM fields in the preferred frame of the theory; hence it depends also on
the velocity of the reference frame used, with respect to that preferred frame.
More precisely, in order to calculate that scalar field in a weak and slowly
varying gravitational field, one has to know the EM field and its first-order
derivatives, as well as the time derivative ∂TU and the spatial gradient of the
latter [8]. (Here U is the Newtonian potential.)

The precise goal of the present work, therefore, is to build a representative
analytical model for the EM field in a galaxy – especially for the spatio-
temporal variation of the EM field. This is in order to be able later to
calculate the interaction energy predicted by the scalar theory [8], and to
check if its distribution might have something common with a “dark halo”.
However, the present goal is to have the EM field in a galaxy as an exact
solution of the Maxwell equations, and this is interesting per se. Section 2
describes the model that has been built in this work. Section 3 discusses
its numerical implementation. The numerical results obtained so far are
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discussed in Sect. 4. Finally, we present our conclusions.

2 Description of the model

2.1 Main assumptions

The following lists and comments the essential assumptions of the model, i.e.,
the ones which it would be difficult to change without going to a different
model:

(i) The structure of the interstellar radiation field is determined by the
sum of the EM radiation fields emitted by the stars. This assumption actu-
ally defines the source input that we use to determine the parameters of a
general solution of the Maxwell equations, see the end of this paragraph. It
would be an oversimplifying assumption to equate this source input generally
with the total interstellar radiation field, because this would mean neglect-
ing the effect of important physical processes like dust extinction and, more
generally, radiative transfer. Nevertheless, according to Maciel [4], “The in-
terstellar radiation field in the optical and ultraviolet comes essentially from
integrated stellar radiation”. Note, moreover, that in directions which are
roughly orthogonal to a galactic disk or at least are strongly inclined with
respect to it, the light emitted by the stars of that galaxy will suffer much
less alteration as compared with what happens close to the galactic plane.
This is important in connection with the aim of checking if the “interaction
energy” alluded to in the Introduction might significantly contribute to the
dark matter halos, since, precisely, the most part of such a halo is outside
the galactic disk. Even more important in this connection is an essential fea-
ture of our model: that it provides an EM field which is an exact solution of
the Maxwell equations. In contrast, if one would try to account directly for
absorption, emission, and scattering processes, this feature would be quite
difficult to maintain. But on the other hand, in our model, the sum of the
EM potentials generated by the point sources (by the “stars”) is fitted by
a general analytical solution, see the Theorem and see the statement of the
model below. The sum just mentioned thus merely serves to determine the
“shape” (the parameters) of that general solution. That analytical solution,
in itself, is valid independently of whether the corresponding EM field has
been generated directly or has undergone various radiative transfers.
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(ii) The distribution of the stars and (hence) the interstellar radiation
field are axially symmetric. This is of course not exactly true (cf. e.g. the
arms of a spiral galaxy), but it seems to be a reasonable simplification which
should provide a correct first approximation. Except for peculiar cases, e.g.
if there we,re a correlation between the intensity of the EM radiation field
emitted by a star and its angular position in the galaxy, and except for the
vicinity of a star, the axisymmetry of the stars’ distribution should indeed
imply that of the interstellar radiation field. In any case, we shall assume
that both the stars’ distribution and the interstellar radiation field are axially
symmetric.

(iii) Each star emits a spherical radiation. This assumption seems quite
reasonable to describe the interstellar EM field at a large-enough distance
from any individual star. Moreover, recall the discussion at the end of Point
(i) above.

2.2 Distribution of the stars

� Each star (or bright object) is schematized as a point x determined
by its cylindrical coordinates (ρ, φ, z): distance to the symmetry axis,
azimuth, altitude, thus x = x(ρ, φ, z).

� A discrete set of such points, S = {xi} = {x(ρm, φmpq, zmp)} (that is,
i = i(m, p, q)), is got by random generation, as follows:

I An exponential distribution is assumed for ρ > 0, i.e., nρ values
ρm (m = 1, ..., nρ) are got by quasi-random generation with a
probability:

P (a < ρm < b) =
1

h

∫ b

a

e−
ρ
hdρ, (1)

where h is the scale length, with h = 3 kpc in the numerical com-
putations, which roughly corresponds to the Milky Way [5, 6, 7].

I Also, an exponential distribution is assumed for z > 0: for any
m = 1, ..., nρ, we draw nz/2 values zmp (nz being an even integer)
by quasi-random generation with a probability law independent
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of m:

P (a < zmp < b) =
1

hz

∫ b

a

e−
z
hz dz, (2)

with hz = 0.2 kpc in the numerical computations.

I For each value zmp > 0 thus obtained, we introduce another value
−zmp, i.e., we impose a perfect symmetry w.r.t. z = 0 in the
distribution of z.

I Finally, for any two m = 1, ..., nρ and p = 1, ..., nz, we draw nφ
values φmpq, with a uniform distribution between 0 and 2π (thus
ensuring the axial symmetry of the distribution of the “stars”, as
announced).

2.3 Explicit representation for axisymmetric EM fields

In Ref. [11], two classes of time-harmonic axisymmetric solutions of the free
Maxwell equations were introduced, and it was shown that these two classes
allow one to obtain in explicit form nonparaxial EM beams. The first class
of solutions is got in the following way. One starts from a time-harmonic
axisymmetric solution Ψ(t, ρ, z) = e−iωtΨ̂(ρ, z) of the scalar wave equation,
and one associates with it a vector potential A by

A := Ψez, or Az := Ψ, Aρ = Aφ = 0. (3)

(We shall denote by (eρ, eφ, ez) the standard, point-dependent, direct or-
thonormal basis associated with the cylindrical coordinates ρ, φ, z .) In the
time-harmonic case considered for the moment, such a vector potential de-
fines uniquely [11, 12] the following exact solution of the Maxwell equations
in free space:

Bφ = −∂Az
∂ρ

, Eφ = 0, (4)

Eρ = i
c2

ω

∂2Az
∂ρ ∂z

, Bρ = 0, (5)

Ez = i
c2

ω

∂2Az
∂z2

+ iωAz, Bz = 0. (6)
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In Ref. [11], this class was defined only when the scalar wave Ψ has the
following form:

Ψω S (t, ρ, z) = e−iωt
∫ +K

−K
J0

(
ρ
√
K2 − k2

)
eik z S(k) dk, (7)

with ω the angular frequency, K := ω/c, 1 and J0 the first-kind Bessel func-
tion of order 0. (c is the velocity of light.) This form does apply [10, 11] to
any totally propagating, time-harmonic, axisymmetric solution of the scalar
wave equation. However, as noted in Ref. [12], this form is not necessary at
this stage and the solution (4)–(6) applies whether Az = Ψ is totally propa-
gating or not.

The second class of solutions is deduced from the first one above by ap-
plying the EM duality to any solution of the first class, i.e., by setting [11]:

E′ = cB, B′ = −E/c. (8)

In the work [12], we showed that, by combining these two classes, one can
define a method that allows one to get actually all totally propagating, time-
harmonic, axisymmetric free Maxwell fields – and thus, by the appropriate
summation on frequencies, all totally propagating axisymmetric free Maxwell
fields. (The necessary restriction of the method to totally propagating fields
turns out to be appropriate to describe the radiation field.) The main result
that allows this is the following one:

Theorem [12]. Let (A,E,B) be any time-harmonic axisymmetric solution
of the free Maxwell equations (whether totally propagating or not). There
exist a unique solution (E1,B1) of the first class (4)–(6) and a unique solution
(E′2,B

′
2) of the second class, both with the same frequency as has (A,E,B),

and whose sum gives just that solution:

E = E1 + E′2, B = B1 + B′2. (9)

Of course, as usual, it is implicit that, in Eqs. (4)–(6), Bφ, Eρ and Ez
are actually the real parts of the respective r.h.s. Therefore, when Az is

1In Ref. [11], K was defined as K := 2ω/c instead.
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totally propagating and hence has the form (7), we obtain (using the fact
that dJ0/dx = −J1(x)):

Bφω S = Re
[
e−iωt

∫ +K

−K

√
K2 − k2 J1

(
ρ
√
K2 − k2

)
S(k) eikzdk

]
, (10)

Eρω S = Re
[
−i
c2

ω
e−iωt

∫ +K

−K

√
K2 − k2 J1

(
ρ
√
K2 − k2

)
ik S(k) eikzdk

]
,

(11)

Ez ω S = Re
[
ie−iωt

∫ +K

−K
J0

(
ρ
√
K2 − k2

) (
ω − c2

ω
k2
)
S(k) eikzdk

]
, (12)

where K := ω/c.

As we already mentioned, the case of a general time dependence is de-
duced from the case with harmonic time dependence by considering a fre-
quency spectrum. We shall consider a discrete spectrum for simplicity. A
totally propagating solution of the wave equation with a discrete frequency
spectrum (ωj) (j = 1, ..., Nω) is got by summing solutions of the form (7):

Ψ(ωj) (Sj) (t, ρ, z) =
Nω∑
j=1

ψωj Sj (t, ρ, z), (13)

where each ψωj Sj is a time-harmonic solution having the form (7). Note that
the different frequencies do not necessarily have the same weight, since any
given “wave vector spectrum” Sj can be multiplied by a factor wj. In other
words, the weights are contained in the functions Sj.

2.4 The case of spherical waves

The case of a spherical time-harmonic solution of the scalar wave equation is
got by putting

S(k) ≡ c

2ω
(−K < k < K ) (14)

in the axisymmetric time-harmonic solution (7): this yields [11, 13]

ψω S≡ c
2ω

(t, ρ, z) = e−iωt sinc
(ω
c
r
)
, (15)
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where sinc θ := sin θ
θ

, r := |x| =
√
ρ2 + z2.

If we have a set of spherical sources situated at the points xi, all sources
having the same amplitude and the same frequency spectrum, (15) becomes:

Ψ(xi) (ωj) (S′
j)

(t, ρ, z) =
imax∑
i=1

Nω∑
j=1

S ′j e
−iωjt sinc

(ωj
c
ri

)
, (16)

where ri := |x− xi|, and setting again the initial phases to zero for simplicity.
Of course one might also make the amplitude of the source, as well as the
weights affected to the different frequencies ωj, depend on the source, i.e. on
the index i, by giving a dependence on i to the positive numbers S ′j, which
would thus become S ′ij.

2.5 The model

� Step 1. Determine a relevant axisymmetric solution Ψ of the scalar
wave equation, by fitting to the form (13) the sum (16) of the spherical
radiations emitted by the “stars” that make the “galaxy”.

� Step 2.

I (2.1) Calculate the associated EM field of the first class, (Eρ, Ez, Bφ)
with Bρ = Bz = Eφ = 0, by summing its time-harmonic contribu-
tions given by Eqs. (4)–(6), with Az := Ψ, where Ψ is the result
of step 1.

I (2.2) Similarly, calculate the associated EM field of the second
class, (B′ρ, B

′
z, E

′
φ) with E ′ρ = E ′z = B′φ = 0, by using the EM

duality (8).

Step 1 (especially) is delicate numerically, as we will see in the next
section. Therefore, we shall focus in this paper on Steps 1 and (2.1). Thus,
in the sequel of this paper, we shall omit step (2.2), i.e., we shall consider only
solutions of the first class. This means that we shall obtain axisymmetric
EM fields having Bρ = Bz = Eφ = 0. “Complete” axisymmetric EM fields,
obtained by summing solutions of the two classes, will of course have to be
considered in the future work. At the stage of the fitting (Step 1), one may
think to consider two different frequency spectra for the two classes, e.g.
“mutually interpenetrating” ones.

8



3 Numerical implementation

3.1 Precise object of the fitting

The fitting of the sum (16) is done to determine the “wave vector spectra”
Sj in Eq. (13):

Ψ(ωj) (Sj) (t, ρ, z) =
∑
j

ψωj Sj (t, ρ, z), (17)

where [Eq. (7) with ω = ωj and Kj = ωj/c]

ψωj Sj (t, ρ, z) = e−iωjt
∫ +Kj

−Kj
J0

ρ
√
ω2
j

c2
− k2

 eik z Sj(k) dk. (18)

Thus, we have one spectrum Sj for each value of the index j = 1, ...Nω,
the latter specifying the frequency ωj. To determine these spectra, several
methods could be a priori envisaged. However, a difficulty comes from the
huge ratio

galactic distances

wavelength
' kpc

µm
' 3× 1025, (19)

which is the order of magnitude of the arguments of the Bessel function J0
and the complex exponential in Eq. (18). This huge number discards several
possibilities. First, it turns out to be not tractable at all here to determine
each Sj by its Fourier coefficients Cjn – as proposed (for a very different
problem) by Garay-Avendaño & Zamboni-Rached [11]. Indeed, considering
(to begin with) one axisymmetric time-harmonic solution (7) of the scalar
wave equation, this method leads to the following expansion {Eq. (8) in Ref.
[11]}:

ψω S (t, ρ, z) = 2Ke−iωt
∞∑

n=−∞

Cn sinc(hω n(ρ, z)), (20)

with K = ω/c and

hω n(ρ, z) =
√
K2ρ2 + (zK + πn)2. (21)

Introducing the wavelength λ = 2πc/ω = 2π/K, we have from (21):

(hω n(ρ, z)))2 = π2

[(
2ρ

λ

)2

+

(
2z

λ
+ n

)2
]
. (22)
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On the r.h.s. of Eq. (22), ρ/λ and z/λ have the huge magnitude (19). There-
fore, the functions hω n, hence also the functions sinc(hω n) which form the
basis in the expansion (20), are practically independent of n for relevant val-
ues of the spatial variables ρ and z, unless n would take similarly huge values.
In that case, presumably, an integer of an akin value should give the number
of the different values n to be taken in order to have an accurate expansion
(20) – which of course is not tractable. Anyway, this method has been tried
in this work and has not allowed us to get an accurate fitting of the sum (16).

A second method which is a priori conceivable to determine the “spectra”
Sj in Eq. (13) by fitting the sum (16) to this equation, and has indeed been
tried in this work, is by inverse Fourier transform: again, considering one
axisymmetric time-harmonic solution (7) of the scalar wave equation, and
removing its dependence in t, a formal inverse Fourier transform gives us

S(k) =
1

2πJ0
(
ρ
√
K2 − k2

) ∫ +∞

−∞
ψ(ρ, z)e−ikzdz. (23)

This should thus be independent of ρ when e−iωtψ(ρ, z) is indeed an axisym-
metric time-harmonic solution, with frequency ω, of the wave equation. What
we found numerically using the Matlab software is that, for the solution (15)
corresponding to a spherical wave, with the frequency ω0 being defined in
Sect. 4 below: i) The spectrum S obtained by Eq. (23) depends on ρ, which
it shouldn’t. ii) For a given value of ρ, S(k) varies with k ∈]−K,+K[ instead
of being the constant S(k) ≡ c

2ω
= 1

2K
. iii) For values of ρ in the investigated

range (10−3 kpc, ..., 102 kpc), S(k) is much smaller than that value 1
2K

– by
a factor of at least 105 to 1010 at given ρ, and depending on ρ. We tried
also to determine S(k) using an inverse Fourier transform starting from the
EM field instead of the EM potential Az: e.g., starting from the component
Ez [Eq. (12) in the time-harmonic case]. This also was not successful in the
numerical application with the relevant numbers.

Instead, the method we finally used to determine Sj is by the values

Snj := Sj(knj) (n = 0, ..., N, j = 1, ..., Nω), (24)

where
knj = −Kj + nδj (n = 0, ..., N) (25)
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is a regular discretization of the integration interval [−Kj,+Kj] for k, cor-
responding with the frequency ωj, Eq. (18). (We remind that Kj := ωj/c;
moreover, δj := 2Kj/N is the size of the discretization interval.) Using the
so-called “Simpson 3

8
composite rule”, integrals like the one in Eq. (18) are

approximated by discrete sums, as follows:∫ +Kj

−Kj
f(k)dk =

N∑
n=0

anjf(knj) +O

(
1

N4

)
, (26)

where N must be a multiple of 3, and

anj = (3/8) δj (n = 0 or n = N), (27)

anj = 2× (3/8) δj (mod(n, 3) = 0 and n 6= 0 and n 6= N), (28)

anj = 3× (3/8) δj otherwise. (29)

Using the approximation (26) to calculate Ψ [Eqs. (17) and (18)], we get:

Ψ(t, ρ, z) =
N∑
n=1

Nω∑
j=1

fnj(t, ρ, z)Snj +O

(
1

N4

)
, (30)

with

fnj(t, ρ, z) =
ωj
ω0

an J0

(
ρ
ωj
ω0

√
K2

0 − k2n
)

exp

[
i

(
ωj
ω0

knz − ωj t
)]

, (31)

where the real numbers an ≥ 0 and kn (0 ≤ n ≤ N) are as anj and knj in
Eqs. (27) and (25, replacing Kj by K0 = ω0

c
, so that

anj =
ωj
ω0

an, knj =
ωj
ω0

kn. (32)

To determine the spectra Sj, i.e. the unknown complex numbers (24), we fit
the sum of the scalar potentials of the individual “stars”, Eq. (16), by Eq.
(30). To do that, we evaluate the sum (16) at a discrete set G of values of t, ρ
and z, that makes a regular three-dimensional grid of points of spacetime:

G = {(tl, ρm, zp), 1 ≤ l ≤ Nt, 1 ≤ m ≤ Nρ, 1 ≤ p ≤ Nz}. (33)

We group the indices l,m, p as a single index J = J(l,m, p) (1 ≤ J ≤ Jmax =
Nt×Nρ×Nz). We denote the corresponding values of the sum (16) by DJ :

DJ =
imax∑
i=1

Nω∑
j=1

S ′j e
−iωjtl sinc

(ωj
c
|x(ρm, φ = 0, zp)− xi|

)
. (34)
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(Recall that x(ρ, φ, z) is the spatial point with cylindrical coordinates (ρ, φ, z).)
Similarly, we denote AJ nj = fnj(tl, ρm, zp). The fitting of the sum (16) by
Eq. (30) on the spatiotemporal grid G amounts to solving the linear system

N∑
n=1

Nω∑
j=1

AJ nj Snj = DJ (J = 1, ...Jmax) (35)

in the sense of the least squares, hence getting the complex numbers Snj as
the output. These calculations are implemented on a PC, using the Matlab
language and software.

3.2 Quadruple precision is needed

The ratio in Eq. (19), thus a number of the order of 1025, gives the magnitude
of the argument of the sinc function in Eq. (16) and the argument of the
Bessel function J0 in Eq. (18). However, the sinc and Bessel J0 functions
oscillate around 0 with a pseudo-period which is of the order of unity (exactly
2π, for sinc ). So already to get only the correct sign, one needs to know
their arguments to a precision better than O(1). In view of the magnitude
of the arguments: O(1025), it means that 25 significant digits are needed to

know just the sign of sinc
(ωj
c
ri
)

in Eq. (16) and the sign of J0

(
ρ

√
ω2
j

c2
− k2

)
in Eq. (18). Therefore, double precision (16 significant digits) is not enough:
quadruple precision (32 significant digits) is needed – and even, it is not a
luxury. Implementing quadruple precision, using the Matlab function vpa

(for “variable precision arithmetic”), increases drastically the computation
time. But, fortunately, we could reduce significantly the computation time
(by a factor of approximately 20 for our programs), by using the external
toolbox “Multiprecision Computing Toolbox for Matlab”, of Advanpix. In
that toolbox, we imposed the number of digits to be 41, in order to reach
the same level of numerical precision as with the Matlab function vpa with
default precision, i.e., 32 digits plus 9 “guard digits”. 2

3.3 Calculation of the EM field and its exact character

As with Eq. (17) and (18) for the Az potential: each of Bφ, Eρ, and Ez is
the sum of the time-harmonic components given by Eqs. (10)–(12). And as

2 This was advised to the author by Pavel Holoborodko, of Advanpix.
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we did with Az to obtain Eqs. (30) and (31), we use the approximation (26)
to calculate the integrals in Eqs. (10)–(12). We thus get:

Bφ(t, ρ, z) =
N∑
n=1

Nω∑
j=1

Rn J1

(
ρ
ωj
ω0

Rn

)
Re [Fnj(t, z)] +O

(
1

N4

)
, (36)

Eρ(t, ρ, z) =
N∑
n=1

Nω∑
j=1

c2

ω0

knRn J1

(
ρ
ωj
ω0

Rn

)
Re [Fnj(t, z)] +O

(
1

N4

)
, (37)

Ez(t, ρ, z) =
N∑
n=1

Nω∑
j=1

(
c2

ω0

k2n − ω0

)
J0

(
ρ
ωj
ω0

Rn

)
Im [Fnj(t, z)] +O

(
1

N4

)
,

(38)
with Rn =

√
K2

0 − k2n and

Fnj(t, z) =

(
ωj
ω0

)2

an exp

[
i

(
ωj
ω0

knz − ωj t
)]

Snj. (39)

Suppose one starts from an exact solution, with a discrete frequency spec-
trum (ωj), of the scalar wave equation: Az = Ψ(ωj) (Sj) given by Eqs. (17)
and (18) with exact “wave-vector spectra” Sj. Then Eqs. (36)–(38) for the
EM field give in general only an approximation of the associated EM field
(defined by summing the contributions (10)–(12)): this is due to the discrete
integration method (26), using the discrete values (24) of the exact functions
Sj.

However, the integration formula (26) is exact (i.e., the remainder is not
only O(1/N4) but exactly zero) if the integrand function f is a polynomial
of degree ≤ 3. This is because the remainder is proportional to f (4)(ξ) for
some ξ ∈] − Kj,+Kj[ [14]. Moreover, given e.g. the first four arguments
knj and the four corresponding function values Snj (n = 0, ..., 3), there exists
one and only one polynomial P of degree ≤ 3, such that P (knj) = Snj
(n = 0, ..., 3). (This is the well-known “Unisolvence theorem”; note that we
are considering a fixed value of the frequency index j.) By construction, N
is a multiple of 3, hence the whole integration interval [−Kj,+Kj] is the
union of N/3 adjacent subintervals, each covering three steps δj. Thus, due
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to the unisolvence theorem: in each of those subintervals, the four successive
arguments knj and the four corresponding function values Snj define a unique
3rd-degree polynomial, for which the integration (26) is exact. It follows

that the integration (26) is exact for the piecewise polynomial function S̃j
which continuously extends those N/3 polynomial functions to the whole
interval [−Kj,+Kj].

3 Therefore, Eqs. (30) and (31) actually define an exact

solution Ψ̃ of the scalar wave equation, which corresponds with substituting
the functions S̃j for Sj in Eqs. (17) and (18). Similarly, Eqs. (36)–(38) for
the EM field give the exact result of adding the contributions (10)–(12) for
the different frequencies ωj, when in these contributions one considers, for

the frequency ω = ωj, the spectrum function S = S̃j. In other words, Eqs.
(36)–(38) provide an exact solution of the free Maxwell equations, deduced
from an exact solution (30) of the scalar wave equation – all corresponding

with the spectrum functions S̃j, which are piecewise 3rd-degree polynomials.

3.4 Validation test

The formulas (30) and (36)–(38) were implemented numerically and that
numerical implementation was tested for the case with spherical symmetry,
as follows. We can define an exact solution of the free Maxwell equations by
Eqs. (4)–(6), with Az = ψω S≡ c

2ω
the spherically-symmetric time-harmonic

solution (15) of the scalar wave equation. This yields (after taking the real
part):

Bφ(t, ρ, z) = ρ cosωt

(
sinKr

r3
−K cosKr

r2

)
, (40)

Eρ(t, ρ, z) =
c2

ω

ρz

r3
sinωt

[
−3K

r
cosKr +

(
3

r2
−K2

)
sinKr

]
, (41)

3 The continuity of S̃j results from the common value Snj at the common bound of

any two successive subintervals. (The derivatives of S̃j are in general not continuous at
the bounds of the subintervals, though.) Note that the integration formula (26) gives
the same result whether it is applied to the whole interval, or successively to each of the
subintervals, each covering three steps δj , because the weights anj = (3/8) δj at the bounds
of two successive subintervals add to give the weight anj = 2 × (3/8) δj at a multiple of
three steps inside the whole interval.
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Ez(t, ρ, z) =
c2

ω

sinωt

r

[
K

r

(
1− 3z2

r2

)
cosKr +

(
3z2

r4
− 1 +K2z2

r2
+K2

)
sinKr

]
,

(42)
with K := ω/c and r :=

√
ρ2 + z2. The outputs of the (exact) Eqs. (40)–(42)

were compared to those of Eqs. (36)–(38) applied with the relevant constant
spectrum S(k) := c

2ω
, thus in Eq. (39):

Sn := S(kn) =
c

2ω
(n = 0, ..., N). (43)

(We are considering the single angular frequency case: Nω = 1, hence the
index j is omitted since it takes only one value: j = 1; moreover, we set
ω1 := ω0 := ω in Eqs. (36)–(39).) Note that, with the exact spectrum
S(k) := c

2ω
, Eqs. (10)–(12) provide just the same exact fields as do Eqs.

(40)–(42). However, even with the exact spectrum values (43), Eqs. (36)–
(38) provide only an approximation of those exact fields, due to the discrete
integration (26).

Figs. 1 to 3 show, for the three different scales investigated, the relative
average quadratic differences between the fields Ψ = Az, Bφ, Eρ, Ez, as calcu-
lated either “directly”, i.e., by Eqs. (15) and (40)–(42), or “with the spectrum
(43)”, i.e., by Eqs. (30) and (36)–(38) applied with the spectrum values (43).
The different scales were here: scale = 10nλ (n = 1, 2, 3), with λ := c/ν.
For this test, the frequency was taken to be ν := ω/(2π) = 100 MHz, thus
λ = 3 m. The average quadratic differences are in general evaluated on a reg-
ular three-dimensional spatio-temporal grid (33) for the variables t, ρ, z. Thus
t takes Nt values between t0 and t0 + (Nt − 1)δt, ρ takes Nρ values between
ρ0 and ρ0 +(Nρ−1)δρ, and z takes Nz values between z0 and z0 +(Nz−1)δz,
with δt = T/Nt, δρ = scale/Nρ, and δz = scale/(10Nz). However, in the
present case with harmonic time dependence, we took Nt = 1, thus one value
of t = t0, which was fixed at T/8, with T = 1/ν = 10−8 s. So here the grid is
two-dimensional in fact. Also, we took here Nρ = 14, Nz = 13, and ρ0 = δρ,
z0 = 5δz.

As expected, the errors (the relative delta’s on the different fields calcu-
lated either “directly” or “with the spectrum (43)”) decrease strongly as the
discretization of the (here constant) spectrum function S(k) becomes finer,
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Figure 1: Average quadratic differences on a (ρ, z) grid. Scale: 10λ

i.e., with increasing N . (See Eq. (24).) This validates the correctness of
our calculations. However, the errors increase quickly when the scale length
scale is increased (even though it remains here enormously smaller than
the galactic scale). This is because the integrals in Eqs. (18) and (10)–(12)
involve functions of k that oscillate with a frequency or a pseudo-frequency
which is proportional to the magnitude of the spatial variables ρ and z. As
these integrals are approximated by the discrete sums (30) and (36)–(38),
one would have to increase the discretization number N in proportion of the
scale length scale.

This test of Eqs. (36)–(38) by an exact solution with spherical symmetry
can be extended to the case of a set of spherical sources situated at the points
xi. That is, one defines an exact solution of the free Maxwell equations by
Eqs. (4)–(6), with Az = Ψ(xi) (ωj) (S′

j)
as given by Eq. (16). (Thus, all

sources have the same amplitude and the same frequency spectrum, but this
can easily be changed.) The fields produced by the source at xi are denoted
by Bφ i, Eρ i and Ez i, and are given by Eqs. (40)–(42) [see Eq. (49), though],
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Figure 2: Average quadratic differences on a (ρ, z) grid. Scale: 102λ

but with ρ, z and r being replaced by

ρ′i :=
√

(x− xi)2 + (y − yi)2, (44)

Zi := z − zi, (45)

ri := |x− xi| =
√

(x− xi)2 + (y − yi)2 + (z − zi)2 =
√
ρ′2i + Z2

i . (46)

Thus, the definition of Bφ i, Eρ i and Ez i is that the exact fields produced at
x by the source at xi are decomposed on the orthonormal direct basis made
of

e′ρ i = e′ρ(x; xi) = ((x− xi)ex + (y − yi)ey) /ρ′i, (47)

e′φ i = e′φ(x; xi) := ez ∧ e′ρ(x; xi) = ((x− xi)ey − (y − yi)ex) /ρ′i, (48)

17



Figure 3: Average quadratic differences on a (ρ, z) grid. Scale: 103λ

and ez. When each spherical source has the same discrete frequency spectrum
(ωj, S

′
j), as in Eq. (16), it is understood that the components Bφ i, Eρ i and

Ez i involve the corresponding weighted sum, e.g.

Bφ i =
Nω∑
j=1

S ′j Bφ i ωj , (49)

whereBφ i ωj is given by Eq. (40) with ρ′i, Zi, ri, ωj, Kj in the place of ρ, z, r, ω,K.
The total exact fields, sums of these different fields, are (reminding that
Bρ i = Bz i = Eφ i = 0):

Bφ := B.eφ =
∑
i

Bφ i e
′
φ i.eφ, (50)

Eρ := E.eρ =
∑
i

Eρ i e
′
ρ i.eρ, (51)

Ez := E.ez =
∑
i

Ez i. (52)
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In general, the other components of the total fields may be non-zero also,
but we assume that the distribution of the identical spherical sources is ax-
isymmetric (see Sect 2.2). In that case, the potential Az = Ψ in Eq. (16)
is axisymmetric, too, hence, by Eqs. (4)–(6), we have Eφ = Bρ = Bz = 0.
Note also that eρ and eφ, hence also the scalar products in Eqs. (50)–(51),
and therefore also the Bφ and Eρ components, are not defined if ρ = 0.

4 Results and discussion

A file of some 104 randomly generated “stars” (as described in Subsect. 2.2)
has been used here, more precisely one with 16× 16× 36 triplets (ρ, z, φ).

The angular frequencies ωj are the same in the expression to be fitted,
Eq. (16), and in the analytical expression used to fit it, Eq. (17). They are
regularly spaced and symmetric around a central frequency ω0, thus

ωj = ω0 −∆ω + (j − 1)
∆ω

Ninter

, (j = 1, ..., Nω = 2Ninter + 1), (53)

where ω0 = 2π c
λ0

, ∆ω < ω0. In the calculations, we took Ninter = 5 (hence
Nω = 11), λ0 := 0.5µm, ∆ω = ω0/2. The weights S ′j affected to the different
frequencies in Eq. (16) have the form

S ′j ∝ ωj exp

[
− 1

2σ2
(ωj − ω0)

2

]
(j = 1, ..., Nω) (54)

with σ = ∆ω, and are normed so that
∑

j S
′
j = 1 .

A few different spacetime domains (variables t, ρ, z) of galactic dimen-
sions have been used. The adopted sizes of the domain for the calculations
discussed here were as follows:

0 ≤ t < T0 :=
λ0
c
, (55)

ρ0 ≤ ρ < scale , (56)

−scale/20 < z < scale/20, (57)

with scale = 3.086× 1020 m ' 10 kpc and ρ0 = scale/106 in these calcu-
lations.

19



We have discretized that domain using grids (33) with Nt = 4, Nρ =
8, Nz = 7 – in short (4, 8, 7) —, or (5, 12, 11), or (7, 14, 13). The symbols
≤ and < in Eqs. (55)–(57) are meant to indicate that, e.g. for Eq. (55), the
discrete variation of t begins with t = 0 and ends with the largest multiple
of the time step that is smaller than T0. The time step is δt = T0/Nt, so
t = (it − 1)δt (it = 1, ..., Nt) – and similarly for ρ and z in Eqs. (56)–(57).
(This is just the same kind of variation as for the validation test of Sect. 3.4,
but here scale has a value that is relevant to a galaxy.) Thus, while we
browse a very small total interval of time using a very small time step, we
do scan a large spatial scale, representative of a disk galaxy. The reason for
imposing this difference is that the variation of the fields has a quasi-periodic
character in time. This has been checked for the Az potential by calculat-
ing the sum (16) with a very large time step, close to δρ/c. Whereas, as
we will see below, the fields have a definite spatial variation. On the other
hand, the following values were tried for the number N in Eqs. (24)–(30):
N = 6, 12, 24, 48, 96, 192.

We will compare the field components Bφ, Eρ, Ez, as calculated either
“directly”, i.e., from Eqs. (50)–(52), or “from the model”, i.e., from Eqs.
(36)–(38), using in the latter case in Eq. (39) the spectrum values Snj ob-
tained from fitting the sum (16) by Eq. (30), Eq. (35). Thus, in both cases,
the field derives from an exact solution Ψ of the scalar wave equation by
Eqs. (3) and (4)–(6): Ψ is either the sum (16), or the function (30), which
is obtained precisely from fitting the sum (16).

Figures 4 to 9 show, for the (5, 12, 11) spatiotemporal grid, the contour
levels of the field components Bφ, Eρ, Ez, as calculated either “directly”
or “from the model” – in the latter case, on the same spatiotemporal grid
(5, 12, 11) used for the fitting, and with N = 48. In order to save place,
we selected somewhat arbitrarily, and independently for each component, 3
values of the time among the available 5 values. Also, very similar figures are
obtained if one uses another spatiotemporal grid, like (4, 8, 7) or (7, 14, 13).

If the increase of the error with scale, found for the smaller scales investi-
gated in the validation test of Subsect. 3.4 (up to 103λ), would continue up
to the scale relevant to a typical disc galaxy (' 3× 1025λ), then the relative
quadratic errors between the field components calculated either directly or
from the model (e.g. ‖ δBφ ‖ / ‖ Bφ ‖) would reach huge values for the
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galactic scale that we are investigating in this section. For the validation
test, the increase of the error with scale was due to the fact that the dis-
cretization number N was not increased in proportion of the scale length.
The exact spectrum (14) was available, and the discretized spectrum values
were taken from it, Eq. (43). In contrast, in this section, the discretized
spectrum values Snj are now obtained from fitting the sum (16) by Eq. (30).
For the present calculation, the relative quadratic errors are rather close to
unity. The qualitative features of the fields are the same for the fields cal-
culated directly or with the model, i.e., from the spectra obtained by fitting
the Az potential:

i) The fields are more intense close to the z axis. This feature is true
for both the direct calculation and the model, but it appears more clearly
with the model. Moreover, using that model, based on Eqs. (36)–(38), one
can calculate the three components Bφ, Eρ and Ez also for ρ = 0 – which is
not the case for the Bφ and Eρ components when one uses the direct calcu-
lation based on Eqs. (50)–(52), see after those equations. The model gives
Bφ = Eρ = 0 for ρ = 0, because J1(0) = 0. In contrast, for Ez, that model
predicts very high values for ρ = 0, of the order Ez = O(10) with the spec-
trum values obtained by fitting the sum (16) by Eq. (30) on the spacetime
domain (55)–(57), using e.g. the parameters described in the paragraph fol-
lowing Eqs. (55)–(57) (but using these spectrum values to calculate the fields
on a somewhat different grid, starting with ρ0 = 0).

ii) The maximum intensities (positive and negative), calculated either di-
rectly or from the model, have quite similar values – but the positions of the
maxima are generally different between the direct calculation and the model,
except for the fact mentioned, that they are close to the z axis.

An important point has to be noted in this connection. As we saw, the
fields have a definite spatial variation at the galactic scale, in contrast to
their quasi-periodic time variation with a very small time period T0 = λ0/c.
However, to that large-scale spatial variation, is superimposed an oscillatory
variation at the very small scale of the main wavelength λ0 = 0.5µm. This
results again from the analytical expressions of the fields, e.g. it is easy to
see in Eqs. (36)–(38) for the model. 4 The oscillatory spatial variation at the

4 However, the same remark applies to the direct calculation, e.g. Eq. (50) for Bφ,
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wavelength scale implies a high sensitivity of the details of the calculations
on a big spatiotemporal grid like (55)–(57) to small variations of the param-
eters. This is seen, for example, when the spectrum functions Sj obtained
from a fitting are used to calculate the fields on a different spatiotemporal
grid than the one used for the fitting ; or, when two different orders N are
used for the same grid. However, the main features of the calculations, as
described at points i) and ii) above, are robust, and the relative quadratic
differences between different calculations on the same grid usually remain of
the order of unity. An exception is if a too low order N is used (e.g. N = 6
used to fit and calculate with the model on the (5, 12, 11) grid), in which case
larger differences can exist.

Remind that the schematization which leads to the direct calculation
(50)–(52) is a rather simple one: an axisymmetric disk-like distribution of
point sources, each of which emitting an EM field deriving via Eq. (3) from
a spherically symmetric solution Ψ of the scalar wave equation. As we saw
at the end of Subsect. 3.3, also the field got from the model is an exact
axisymmetric solution of the free Maxwell equations. The set of point-like
sources, that may represent a disk galaxy, and that leads directly to the cal-
culation (50)–(52), is also used to adjust the model. The latter, however,
is based on the nonsingular (“continuous”) equations (30) and (36)–(38) –
in contrast with Eqs. (16) and (50)–(52), that are singular at each source
(i.e., for x = xi). Therefore, the field obtained from the model is at least as
representative of the EM field in a disc galaxy as the field calculated directly
can be.

5 Conclusion

In this work, an analytical model has been built for the Maxwell field in an
axisymmetric galaxy, in particular for that field which results from stellar ra-
diation. This model is based on a representation of any totally propagating
axisymmetric free Maxwell field as the sum of two fields given explicitly: in
the case of a time-harmonic field, the first field is given by Eqs. (10–(12),
and the second one is deduced by the duality (8) from a field of the same

with Bφ i given by Eq. (49), where Bφ i ωj is given by Eq. (40) with ρ′i, Zi, ri, ωj ,Kj in the
place of ρ, z, r, ω,K.
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form. In a previous work, the general applicability of this representation has
been proved.

The model is adjusted by fitting to it the sum of spherical radiations emit-
ted by a set of point-like “stars”. The distribution of these point-like objects
is axisymmetric. It builds a flat disk, symmetrical with respect to a plane
perpendicular to the symmetry axis, and the dimensions have been chosen
to represent a disk galaxy similar to the Milky Way. The model provides
an exact solution of the free Maxwell equations, also after the discretization
that is used to calculate the relevant integrals.

The huge ratio distance/wavelength needs to implement a numerical pre-
cision better than the quadruple precision. The model and the corresponding
software have passed a validation test based on an exact solution with spher-
ical symmetry. The results for a disk galaxy indicate that the field is highest
near to the z axis, and the Ez component dominates over Eρ. In a further
stage it will be possible to adjust the model so as to accurately describe the
measured EM spectrum and its spatial variation.
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Figure 4: Bφ calculated directly or from the model; t = 2T0/5
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Figure 5: Bφ calculated directly or from the model; t = 4T0/5
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Figure 6: Eρ calculated directly or from the model; t = 2T0/5
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Figure 7: Eρ calculated directly or from the model; t = 3T0/5
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Figure 8: Ez calculated directly or from the model; t = T0/5

29



Figure 9: Ez calculated directly or from the model; t = 3T0/5
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