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a b s t r a c t

We investigate the complexity of local search based on steepest ascent. We show that even when 
all variables have domains of size two and the underlying constraint graph of variable interactions 
has bounded treewidth (in our construction, treewidth 7), there are fitness landscapes for which an 
exponential number of steps may be required to reach a local optimum. This is an improvement on 
prior recursive constructions of long steepest ascents, which we prove to need constraint graphs of 
unbounded treewidth.

1. Introduction

We are interested in the long-term behaviour of steepest-
ascent local search in optimisation problems over finite domains.
Local search is an important tool in solving optimisation problems
when exhaustive search algorithms, such as branch-and-bound,
are not a practical possibility due to the size of the search space.

It is therefore important to gain understanding of the be-
haviour of local search and, in particular, the number of steps
required to reach a local optimum. If local search can continue
for a number of steps which is exponential in the number of
variables, then in practice we can consider that it may never
reach a stable state within a reasonable timescale. This failure to
equilibrate is especially important to understand for commonly
used greedy local search heuristics like steepest ascent.

Algorithmically, steepest ascent proceeds by a sequence of
steps towards a local maximum of the objective function. At each
step, a best move is chosen to transform the current state into a
better neighbouring state. In this paper we restrict our attention
to the simplest case in which all variables are Boolean and the
set of possible moves from a given state is just the flipping of
one variable.

Throughout the paper, we will refer to the objective function
being maximised as the fitness function. We choose this termi-
nology due to the central role that local search has played in

the study of biological evolution. This has been the case ever
since Wright [12] introduced the idea of viewing the evolution of
populations of organisms as a local search process over a space
of possible genotypes with associated fitness values that became
known as a ‘‘fitness landscape’’. For over 80 years since Wright’s
introduction of fitness landscapes, it has been assumed that if
the fitness function is not time-varying (i.e. if we have a static
fitness landscape) then typical populations will quickly evolve to
a local fitness peak. Recently, Kaznatcheev [4] has challenged this
assumption by showing biologically reasonable families of land-
scapes where a local peak cannot be found in time polynomial
in the number of genes (variables). On such ‘‘hard’’ fitness land-
scapes, we can consider local peaks as practically unreachable.
This situation can be seen as open-ended evolution [11].

In the case of biological evolution, the particular local search
algorithm that is implemented can depend on the details of the
particular population structure, genetic architecture, and muta-
tion rate [4]. However, in the limit of large populations with small
mutations rates, the evolutionary dynamics are often modelled
as steepest ascent. Thus, rigorously analysing steepest ascent
can help us better understand biological evolution. Of course,
biology is not the only domain where local search matters. Similar
models are used in fields like business operation & innovation
theory [6,8], physics, and economics [9].

1.1. Soft constraints and fitness functions

A discrete optimisation problem can be formalised as a set of
functions on subsets of its variables. The value of the objective
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function is the sum of the values of these functions. In the generic
framework known as the VCSP (Valued Constraint Satisfaction
Problem), each function is known as a ‘‘soft constraint’’ on its
variables [7]. The ‘‘scope’’ of a soft constraint is its set of variables;
each combination of values assigned to these variables is mapped
to a value by the soft constraint. The ‘‘arity’’ of a constraint is the
number of variables in its scope. The ‘‘degree’’ of a variable is the
number of other variables that occur with it in some constraint
scope. In the formulation of the VCSP considered in this paper the
objective function is to be maximised.

Biologically a combination of gene expressions underlies a
phenotypic trait, and a combination of its phenotypic traits un-
derlie the fitness. Put very simply, fitness is the sum of the values
of its phenotypic traits. We can assign this same value to the
combination of gene expressions which underly the phenotype
traits. The number of genes involved in a single phenotypic trait
is assumed to be reasonably small – say less than some fixed
number K + 1 (the amount of epistasis), and any one gene is
involved in a reasonably small number of phenotypic traits – say
some fixed number P (the amount of pleiotropy).

A VCSP is a model of fitness if we associate a variable with
each gene, which takes the value 1 if the gene is expressed. Each
soft constraint over a set of variables, models the set of genes
underlying a phenotypic trait, and the value of the soft constraint
represents the value of the phenotypic trait. The bound K + 1 on
the number of genes underlying a phenotypic trait is modelled by
a bound on the arity of the soft constraints. The bound P on the
number of different phenotypes involving one gene is modelled
by a bound on the degree of any variable in the VCSP.

In this paper we only consider functions expressible as a set of
soft constraints with bounded arity (our examples all have arity
at most eight). The constraint graph is the graph whose vertices
are the variables and with an edge between two variables if there
is a soft constraint between them (i.e. they both belong to the
scope of some soft constraint). Given a constraint graph G, and a
variable index i, we will let dG(i) be the degree of i in G: i.e. the
total number of other variables that co-occur with xi in the scope
of some constraint in the VCSP.

1.2. Bounded treewidth and local search

We are particularly interested in the behaviour of local search
when the constraint graph has bounded treewidth. When
treewidth is bounded, it is well known that it is possible to find
a global optimum of a VCSP in polynomial time [2], but this does
not inform us on the complexity of local search even for the
simpler problem of reaching a local maximum. A major drawback
of local search as a technique for solving optimisation problems
is the possibility of there being an exponential number of local
maxima whose value may even be exponentially smaller than the
value of the global maximum. It is not difficult to show that this
phenomenon can occur when treewidth is bounded. Consider, for
example, the global objective function

F (x) =

N/2∑
i=1

f (x2i−1, x2i) (1)

where

f (a, b) =

⎧⎨⎩
1 if a = b = 0
α if a = b = 1
0 otherwise

(2)

where x = ⟨x1, . . . , xN⟩ ∈ {0, 1}N , and N is even. Each of
the tuples consisting of repeated bits (i.e. x2i−1 = x2i for i =

1, . . . ,N/2) is a local maximum. Furthermore, the ratio between
the value of the global maximum and the value of the worst local

maximum is α and hence is exponential if α = 2N . The constraint
graph is a forest (consisting of N/2 unconnected edges) and hence
has treewidth 1.

Thus bounded treewidth does not alleviate the phenomenon
of multi-modality. The possibility of exponential complexity of
local search to reach a local maximum, which is the topic of this
paper, is an independent phenomenon which, as we have seen, is
of interest in genetics as well as computer science.

1.3. Summary

We show that local search following a steepest ascent can take
an exponential number of steps to reach a local optimum even
when (a) the variables are Boolean, (b) the problem is formalised
using bounded arity soft constraints, and (c) the constraint graph
has bounded treewidth. Previously, classes of objective functions
have been described for which steepest ascent may require an
exponential number of variable flips to reach a local maximum
[3,4] but the fitness functions were defined recursively and not
expressed as the sum of bounded-arity functions. We first show
in the next section that these examples cannot be expressed by
soft constraints whose constraint graph has bounded treewidth.
In related work, Kaznatcheev et al. [5] have studied the comple-
mentary problem of guaranteeing short paths to a local optimum
for local search which performs an arbitrary improving flip at
each step rather than a steepest ascent. In the process, they
have described some bounded treewidth examples where some
exponentially long improving paths exist but these are not the
paths followed by steepest ascent.

2. Earlier recursive construction of hard fitness landscapes

We are not the first to consider long steepest-ascent walks in
fitness landscapes. Two constructions from the literature [3,4] of
fitness landscapes on n variables where steepest ascent requires
of the order of 2n steps are particularly relevant. However, both
these landscapes were specified recursively and not by concrete
VCSP instances. In this section, we give a simpler presentation
of the recursive definition of winding landscapes (Definition 1)
that generalises both the construction in [3] and [4]. We then
prove that if these winding landscapes were implemented by a
VCSP then the fitness graph would have unbounded treewidth
(Corollary 4). This will motivate consideration of a different form
of fitness landscape in Section 3.

2.1. Recursive construction

Given a fitness landscape on {0, 1}2n, we refer to the hyper-
cube {0, 1}2k on the first 2k variables as a sub-cube.

Definition 1. Suppose we are given a sequence of fittest steps
s+k > 0 and barrier steps s−k for 0 ≤ k ≤ n satisfying the
conditions s+k > s−k+1, s

−

k < s+k < s+k+1. Consider the recursive
construction of the functions f k{0, 1}2k → R with sub-cube
optima x∗

k = 02(k−1)11 for 0 ≤ k ≤ n (where x∗

0 = ϵ, the empty
string):

f 0(ϵ) = 0 (3)

f k+1(xab) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f k(x) if a = b = 0

f k(x) + s−k+1 if a ̸= b & x ̸= x∗

k

f k(x∗

k) + s−k+1 if a = 0, b = 1 & x = x∗

k

f k(x∗

k) + s+k+1 if a = 1, b = 0 & x = x∗

k

f k(x ⊕ x∗

k) + f k(x∗

k) + 2s+k+1if a = b = 1

(4)

We define the (nth) winding landscape as f = f n.



Here x⊕x∗

k means the bit-wise XOR of x and x∗

k (i.e. [x⊕x∗

k]i =

[x]i + [x∗

k]i mod 2).
Based on this definition, if the steepest-ascent path takes Tk

steps to reach x∗

k from 02k in f k then steepest-ascent will take the
following path from 02k to x∗

k+1 in f k+1 (see Appendix C.2 of [4]
for the proof):

02(k+1)
→

Tk x∗

k00 → x∗

k10 → x∗

k11 →
Tk 02k11 = x∗

k+1 (5)

which has a length of Tk+1 = 2Tk+2 steps. Solving this recurrence
equation with T0 = 0, we get Tn = 2n+1

− 2.
On the one hand, if s−k ≤ 0 for all 0 ≤ k ≤ n then Definition 1

implements Horn et al. [3]’s Root2path construction and the long
path from 02n is not only the steepest ascent but also the only
ascent. On the other hand, if s−k > 0 for all 0 ≤ k ≤ n then
Definition 1 implements Kaznatcheev [4]’s winding semismooth
fitness landscape that has no reciprocal sign epistasis but still
maintains the long path from 02n as the steepest ascent. This
semismooth case is of interest because a short ascent exists from
each variable assignment to the unique fitness peak but steepest
ascent does not find this short ascent.

2.2. Lower bounds on the constraint-graph

The winding fitness landscape has the dramatic property of
having drastic changes in the direction and magnitude of the
gradient of the objective function between points which are very
close to each other. Consider the sub-cube spanned by the first
2(k + 1)-variables. The sub-cube fitness maximum is at x∗

k =

02k11. If s−k+1 > 0 (as in [4]) then the sub-cube fitness minimum
is only Hamming-distance 2 away at 02(k+1): so the flows (i.e. dif-
ferences in the objective function from the current point to its
neighbouring points) change from all positive to all negative in
just 2 steps. From this we can prove that the total scope size of
any constraint graph implementing this fitness landscape must
be high. The case in which we do not necessarily have s−k+1 > 0
(as in [3]) is slightly more complicated since 02(k+1) is no longer a
fitness minimum and mostly has negative flows. However, these
negative flows have small magnitude compared to the very large
magnitude negative flows at x∗

k , so a similar argument can be
used. We formalise this argument below.

For convenience, let ∥x∥0 be the number of non-zero entries
in x – also known as the Hamming weight or the zero-‘norm’ of
the vector x. And let us use x[i → b] to mean a bit-string that
is the same as x at every bit, except the ith bit is set to b. Or, in
symbols: ∀j ̸= i [x[i → b]]j = [x]j and [x[i → b]]i = b. This
allows us to define the gradient ∇f of a fitness function f entry-
wise as [∇f (x)]i = f (x[i → 1]) − f (x[i → 0]) to state our degree
lower-bound lemma:

Lemma 2. Given a fitness function f implemented by a VCSP with
constraint graph G and any two distinct variable assignments x and
y that differ on a set of variables S, we have that the total degree
dG(S) =

∑
i∈S dG(i) of S in G is lower-bounded by the change in

flow: dG(S) ≥ ∥∇fx − ∇fy∥0.

Proof. If we look at a variable at position i and compare ∇f (x[i →

1]) to ∇f (x[i → 0]) then any differences in the gradient must
have been due solely to the change in variable xi. Thus, given any
position j such that [∇f (x[i → 1])]j ̸= [∇f (x[i → 0])]j there
must be a constraint that has both i and j (and maybe others)
in its scope. Thus, by looking at the number of non-zero entries
in ∇f (x[i → 1]) − ∇f (x[i → 0]), we get a lower bound on the
number of other variables with which each variable i co-occurs
in a constraint.

This reasoning can be extended over paths between non-
adjacent states. Suppose we have two states x1 and xt at Ham-
ming distance t from each other. Let x1x2...xt−1xk be any shortest

path between them with the bits flipped at each step given by
i1, i2, . . . , it−1. Notice the following:

∥∇fx1 − ∇fxk∥0 = ∥(∇fx1 − ∇fx2) + (∇fx2 − ∇fx3)+

· · · + (∇fxt−1 − ∇fxt )∥0 (6)
≤ ∥∇fx1 − ∇fx2∥0 + ∥∇fx2 − ∇fx3∥0+

· · · + ∥(∇fxt−1 − ∇fxt )∥0 (7)

In words: given two states x1 and xk that differ at a set of variables
S, the total number of variables that the variables in S co-occur
with is lower-bounded by ∥∇fx1 − ∇fxk∥0. □

Now, we can apply this lower bound technique to the winding
fitness landscape.

Proposition 3. If the winding fitness landscape f on 2n variables
from Definition 1 is implemented by a VCSP with constraint graph G
then dG(2k + 1) + dG(2k + 2) ≥ k for each 0 ≤ k < n.

Proof. Let us look at the gradients at the path’s starting point:

∇f (02n) = [s+1 , s−1 , s−2 , s−2 , . . . , s−i , s−i , . . . , s−n , s−n ] (8)

and for each 1 ≤ k ≤ n, look at the gradients at subcube
peaks ∇f (02(k−1)(11)02(n−k)): they have a slightly more compli-
cated form, so we define them point-wise for i ∈ [1, n], b ∈ {0, 1},
and x = 02(k−1)(11)02(n−k):

[∇f (x)]2i−b =

⎧⎪⎪⎨⎪⎪⎩
−s+i + b(s−i − s+i ) if i < k
f k(x∗

k) − s−k if i = k
s+k+1 if i = k + 1 & b = 1
s−i if i > k + b

(9)

Looking at the odd entries lower than 2k (i.e. i < k, b = 1
in Eq. (9)), we have

[∇f (02(k−1)(11)02(n−k)) − ∇f (02n)]2i−1 = −2s+i ̸= 0.

Thus by Eq. (7), the variables at positions 2k + 1 and 2k + 2
together have degree of at least k. □

Corollary 4. Any VCSP implementing the winding fitness landscape
from Definition 1 must have a constraint graph that is dense and
with unbounded treewidth.

Proof. Summing up over all 1 ≤ k ≤ n, we get that any VCSP
instance that implements f must have total degree of at least
(n − 1)n/2 (i.e. quadratic in the number 2n of variables).

In particular, this means that a constraint graph of bounded
treewidth (which would have total degree linear in 2n) cannot
implement the winding fitness landscape f . □

In the following section we avoid the issue raised by
Corollary 4 by using an explicit construction based on a low-
treewidth constraint graph.

3. Exponential local search with bounded treewidth

We seek a simple model whose n variables are all Boolean
(with domain {0, 1}), for which steepest ascent local search, by
flipping the value of a variable at each step, has an exponentially
long ascending sequence. In the model we construct, the soft
constraints will have scopes of arity eight, namely the variables
with index 4i, . . . , 4i+7. The constructed model has a constraint
graph of treewidth seven.

In order to better explain the judgments made in constructing
our novel fitness landscape, we build the model in a series of
stages. At each stage we modify or extend the set of domains,
variables and soft constraints from the previous stage so as to
reach the final model which satisfies the above conditions.



3.1. Stage 1: Counting

Our initial model will have N variables denoted XN , . . . , X1,
which will all have the same finite domain including the values
0 and 1.

We will denote a state, i.e. an assignment of the N variables,
as an array of their values with the value of X1 on the right. Thus
the assignment X1 = 1, X2 = 0, X3 = 0 will be denoted by the
array ⟨0, 0, 1⟩. A local search path can thus be represented as a se-
quence of arrays. The final exponential-length ascending path will
include as a sub-sequence an encoding of the standard Boolean
counting sequence 0, 1, 10, 11, 100, 101, . . . or, more precisely:

0N , 0N−11, 0N−210, 0N−211, 0N−3100, 0N−3101, . . . (10)

which is highlighted in all of the explicit examples.
Since the final model will have O(N) Boolean variables this will

be a sub-sequence of exponential length.

3.2. Stage 2: Two new domain values

The values 0 and 1 alone do not enable us to write down a
sequence of arrays of increasing value reached by local search.
We only allow a local search step to flip a single variable value.
Since many of the steps in the binary counting sequence above
alter the value of many more than one variable, they cannot be
steps in our final ascent.

To fix this we introduce a carry symbol, C . The idea is that
carry represents the fact that we have arrived at S01i, where S
is some arbitrary prefix of length N − i − 1. We first flip the
rightmost 1 to be the new carry symbol. We then propagate this
carry symbol to the left so long as it is preceded by a 1. Each
propagation first yields two adjacent carry symbols, and then we
replace the right hand carry with a 0. Eventually we have only
one carry symbol and it has a 0 to its left. Now we flip this 0,
replacing 0C with a 1C , and we arrive at S1C0i−1. We can now flip
the final C into a 0 and we have successfully performed a carry.
For example, to count from [15]2 = 1111 to [16]2 = 10000:

1: 0 0 0 1 1 1 1
2: 0 0 0 1 1 1 C
3: 0 0 0 1 1 C C
4: 0 0 0 1 1 C 0
5: 0 0 0 1 C C 0
6: 0 0 0 1 C 0 0
7: 0 0 0 C C 0 0
8: 0 0 0 C 0 0 0
9: 0 0 1 C 0 0 0
10: 0 0 1 0 0 0 0

In this sequence only one variable is flipped at each step. But note
that the pair 1C changes in different ways. At lines 2, 4 and 6 1C
flips to CC . However at line 9 1C flips to 10. This is because the
carry symbol appears in two contexts. We introduce C to indicate
a carry, but when its job is done and the 0 on its left has become
a 1, the carry symbol needs to be removed.

So far, the construction is equivalent to Kaznatcheev et al. [5]’s
Example 2 and with the right choice of soft-constraints is suffi-
cient to show that some fitness increasing path has exponential
length. But this needs further elaboration to make the steepest
ascent exponentially long and reduce domain size to 2.

To eliminate the dual role of carry as add and remove, we
introduce a fourth symbol X and put extra steps to enable the
transition from state 8 to state 9. When the 0C should become
1C , we first move to XC , then remove the carry symbol, and then
flip the X to a 1.

8: 0 0 0 C 0 0 0
9a: 0 0 X C 0 0 0
9b: 0 0 X 0 0 0 0
10: 0 0 1 0 0 0 0

The admissible configurations of these symbols can be sum-
marised in as the six cases in Eq. (11):

{01}+ {01}∗1C{01}∗0 {01}∗0C{01}∗0
{01}∗CC{01}∗0 0∗XC{01}∗0 0∗X{01}∗0

(11)

A VCSP will be designed so that only admissible configurations of
these symbols will be reached by steepest ascent from 0N .

3.3. Stage 3: New intermediate symbols

Even with our new symbols C and X , the sequence we pro-
posed in the previous section cannot correspond to a steepest
ascent. Simply flipping the most significant variable from 0 to 1
(so 0N becomes 10N−1) jumps directly from the start the end of
the sequence.

It is necessary to ensure that a state s cannot be a neighbour
of a previous state s′ (apart from its immediate predecessor in
the path) otherwise the steepest-ascent would take the short-
cut from s′ to s. In order to constrain and prioritise moves we
introduce an intermediate symbol between each pair of symbols.
It thus requires two steps to change any of the main symbols,
0, 1, C and X to another main symbol, via an intermediate symbol.

To encode all (4 main and 6 intermediate) symbols we will
use four Boolean variables. The encoding, and the definition of the
soft constraints, will ensure that a flip of a Boolean variable which
increases the objective (a) can only yield Boolean sequences that
encode (main or intermediate) symbols; (b) cannot change a
main to a main symbol; (c) cannot change an intermediate to
an intermediate symbol; and, (d) can only change a main to
an intermediate symbol if there currently are no intermediate
symbols (i.e. all flips from intermediate symbols to main symbols
are better than any move from a main symbol to an intermediate
symbol)

Each intermediate symbol can be chosen to be one flip away
from exactly two main symbols: it falls therefore ‘‘between’’ the
two main symbols. Consequently, when an intermediate symbol
is flipped during a sequence of local moves, in order to improve
again, it must move forward to the other main symbol.

We build the set of (six) intermediate symbols using a function
symbol i where iab = iba is the intermediate symbol between
main symbols a and b. We denote the set of symbols:

Sym = {0, 1, C, X, i01, iC,0, i0,X , i1,C , iX,1, iC,X } (12)

Boolean encoding of main and intermediate symbols. The explicit
encoding using the four Boolean variables x1,i, x2,i, x3,i, x4,i is
given in the following table.

Xi x1,i x2,i x3,i x4,i
0 1 0 0 0
1 0 1 0 0
C 0 0 1 0
X 0 0 0 1
i01 1 1 0 0
iC0 1 0 1 0
i0X 1 0 0 1
i1C 0 1 1 0
iX1 0 1 0 1
iCX 0 0 1 1

Each intermediate symbol has two Boolean variables set to 1,
and each original symbol corresponds to a pattern with just one



Boolean variable set to 1. The row ⟨0, 0, 0, 0⟩ and any row with
more than two 1’s represents a non-symbol.

The intermediate symbols mean that the example of a
steepest-ascent path will now take the following form (where
each symbol would now be represented by four Boolean vari-
ables):

1: 0 0 0 1 1 1 1
0 0 0 1 1 1 i1C

2: 0 0 0 1 1 1 C
0 0 0 1 1 i1C C

3: 0 0 0 1 1 C C
0 0 0 1 1 C iC0

4: 0 0 0 1 1 C 0
0 0 0 1 i1C C 0

5: 0 0 0 1 C C 0
0 0 0 1 C iC0 0

6: 0 0 0 1 C 0 0
0 0 0 i1C C 0 0

7: 0 0 0 C C 0 0
0 0 0 C iC0 0 0

8: 0 0 0 C 0 0 0
0 0 i0X C 0 0 0

9a: 0 0 X C 0 0 0
0 0 X iC0 0 0 0

9b: 0 0 X 0 0 0 0
0 0 iX1 0 0 0 0

10: 0 0 1 0 0 0 0

There are now more possible configurations than those six
that appear in Eq. (11). The additional admissible configura-
tions that include intermediate symbols are {01}+i01, {01}+i1C ,
{01}+i1CC{01}∗, 0∗i0XC{01}∗, {01}+CiC0{01}∗, 0∗XiC0{01}∗. The
VCSP soft constraints will be designed so that only these ‘‘in-
termediate’’ configurations will occur on the steepest ascent
from 0N .

3.4. Encoding using soft constraints

Ensuring that intermediate symbols only occur in admissible config-
urations. The VCSP which assigns a value to each state comprises
just two constraints, a unary constraint h which applies only
to the last symbol, and a binary constraint f . The constraint f
applies to each pair of neighbouring symbols. By assigning a
value of 0 to each inadmissible pair of symbols it is simple to
prevent an improving flip generating an intermediate symbol in
an inadmissible configuration.

Indeed, for each intermediate symbol, we can list the non-zero
rows of f that include that symbol:

i01: None iC0: f (C, iC0), f (X, iC0) i0X : f (i0X , C)
i1C : f (i1C , C) iX1: f (iX1, 0) iCX : None

Let us call the sequence (from 0N to 01N−1) via steepest ascent, a
counting path. Each of these non-zero-valued rows lies between
a predecessor and successor on a counting path:

CC ⇒ CiC0 ⇒ C0 XC ⇒ XiC0 ⇒ X0
0C ⇒ i0XC ⇒ XC 1C ⇒ i1CC ⇒ CC
X0 ⇒ iX10 ⇒ 10

The values of f for each row will be set so that both forward flips
yield an increase in the valuation of the state. Consequently a
backward flip, from the resulting configurations C0,X0,XC,CC,
10, will always result in a lower valuation, and therefore never
occur.

Note, in particular that the pair of main symbols CC, XC, 0C,
1C, X0 which yield these configurations by a flip can only occur
once in an admissible configuration. Thus through these flips, two
intermediate symbols will never appear in a configuration on a
counting path.

To enable the symbols i01 and i1C to occur as the last symbol,
the soft constraint h, gives a non-zero value to h(i01) and to h(i1C ).
The values of h are small enough that on a counting path i01
and i1C will never occur in a configuration that has any other
intermediate symbols. The forward flips introduced above are
always more valuable than h.

Ensuring the counting path only yields admissible configurations.
We show in this section that it is possible to make this counting
path a steepest ascent by a judicious choice of soft constraints. We
first identify a set of prioritised transition rules which if followed
from the initial tuple 0N produce exactly the counting path. We
then construct soft constraints which define a fitness landscape
on which the transition rules correspond to an ascending path.
The list of transition rules is given below.

1. Change the last symbol from 0 to 1 (incrementing the
counting number)

(a) If X2 ∈ {0, 1} and X1 = 0 then set X1 = i01.
(b) If X2 ∈ {0, 1} and X1 = i01, then set X1 = 1.

2. Change the last symbol from 1 to C

(a) If X2 ∈ {0, 1} and X1 = 1 then set X1 = i1C .
(b) If X2 ∈ {0, 1} and X1 = i1C , then set X1 = C .

3. Carry to 1

(a) If Xi+1 = 1 and Xi = C then set Xi+1 = i1C .
(b) If Xi+1 = i1C and Xi = C then set Xi+1 = C .

4. Carry to 0

(a) If Xi+1 = 0 and Xi = C then set Xi+1 = i0X .
(b) If Xi+1 = i0X and Xi = C then set Xi+1 = X .

5. Drop the carry after C

(a) If Xi+1 = C and Xi = C then set Xi = iC0.
(b) If Xi+1 = C and Xi = iC0 then set Xi = 0.

6. Drop the carry after X

(a) If Xi+1 = X and Xi = C then set Xi = iC0.
(b) If Xi+1 = X and Xi = iC0 then set Xi = 0.

7. Use the final carry X

(a) If Xi+1 = X and Xi = 0 then set Xi+1 = iX1.
(b) If Xi+1 = iX1 and Xi = 0 then set Xi+1 = 1.

These rules are applicable in the following main symbol con-
figurations:

{01}∗0 Rule1a
{01}∗1 Rule2a
{01}∗1C{01}∗0 Rule1a, Rule3a
{01}∗0C{01}∗0 Rule1a, Rule4a
{01}∗CC{01}∗0 Rule1a, Rule3a, Rule4a, Rule5a
0∗XC{01}∗0 Rule1a, Rule6a
0∗X{01}∗0 Rule1a, Rule7a

To maintain the counting property, Rule 1a must only fire in the
first configuration. To keep to admissible configurations, Rule 5a
must fire in the fifth configuration.



Thus the priorities we impose between these rules are as
follows: (1) We prefer Rule 5a, over both Rules 3a, 4a; and (2) We
prefer any of Rules 3a, 4a, 5a, 6a, 7a, over Rule 1a. The VCSP will
ensure that other flips do not improve on the current valuation.

The rules applicable in the states which have an intermediate
value are:

{01}+i01 Rule1b
{01}+i1C Rule2b
{01}+i1CC{01}∗ Rule3b
0∗i0XC Rule4b
0∗i0XC{01}∗0 Rule1a, Rule4b
{01}+CiC0 Rule3a, Rule4a, Rule5b
{01}+CiC0{01}∗0 Rule1a, Rule3a, Rule4a, Rule5b
0∗XiC0{01}∗ Rule6b

To ensure only admissible configurations Rule 4b must fire in the
fifth configuration, and Rule 5b must fire in the sixth and seventh
configurations. By applying the above rules according to these
priorities we ensure that only admissible states appear on the
steepest ascent from 0N . We term this the Counting Path Property
(CPP). It is straightforward to verify the following CPP lemma:

Lemma 5. All flips when applied to an admissible state yield an
admissible state by applying the above prioritised transition rules.

The following table introduces the binary soft constraint f(a,b)
which we use to construct a fitness landscape in which the
counting path is a steepest ascent. We obtained these values by
solving a system of linear equations (described in the appendix)
which ensure that a steepest-ascent respects the transition rules
and their relative priorities. Many solutions exist, but to simplify
the proof, we chose a solution with integer values and with a
large number of zeros.

f (a, b) b
0 1 C X i01 iC0 i0X i1C iX1 iCX

a

0 0 4 6 0 0 0 0 0 0 0
1 0 4 6 0 0 0 0 0 0 0
C 13 0 0 0 0 8 0 0 0 0
X 13 0 8 0 0 12 0 0 0 0
i01 0 0 0 0 0 0 0 0 0 0
iC0 0 0 0 0 0 0 0 0 0 0
i0X 0 0 7 0 0 0 0 0 0 0
i1C 0 0 23 0 0 0 0 0 0 0
iX1 14 0 0 0 0 0 0 0 0 0
iCX 0 0 0 0 0 0 0 0 0 0

We apply f to each successive pair Xi+1, Xi of variables, with
increasing weight 4i−1. We also apply the cost function h, whose
sole purpose is to trigger rules 1a and 2a, with weight 1 to X2, X1.
The function h is identically zero except for the values h(i01) = 1
and h(i1C ) = 5. The value of a state is thus:

F (X) = h(X1) +

N∑
i=1

4i−1f (Xi+1, Xi) (13)

It remains to be shown that a steepest-ascent algorithm on
the fitness landscape defined by F , starting at the initial state
0N respects the transition rules and their priorities. By Lemma 5,
since 0N clearly satisfies CPP, we only need to consider states sat-
isfying CPP. It suffices to show that: (a) each transition triggered
by the rules leads to an increase in F , (b) when conflicts arise
the priorities between rules are respected by steepest ascent, and
(c) no other transition leads to an increase in F .

Lemma 6. In the fitness landscape defined by the global objective
function F , the counting path is a steepest-ascent.

A series of lemmas in Appendix contains a proof of Lemma 6,
and we have also verified the steepest ascent by coding in Python
and Eclipse [1]. We can now state our main theorem:

Theorem 7. Steepest ascent may take an exponential number of
steps to reach a local optimum even when the fitness landscape is
defined by soft constraints over Boolean variables with constraint
graph of pathwidth and treewidth 7.

Proof. Since the counting path is of exponential length, Lemma 6
tells us that steepest-ascent on the landscape defined by F re-
quires an exponential number of steps to reach a local optimum
starting from the initial state 0N . The constraint graph of the Xi
variables is clearly a chain. When we replace each Xi variable
by the Boolean variables x1,i, x2,i, x3,i, x4,i, the constraint graph
has treewidth 7. To see this, observe that when the variables are
ordered in lexicographic order (xa,i < xb,j if i < j or (i = j and
a < b)), the only earlier variables that constraint a variable are
among the 7 variables that immediately precede it in this order.
If we consider the preceding constraining variables along with the
variable they constraint as an interval then we can see that our
constraint graph is an interval graph with maximum clique size
8 – so it has pathwidth 7 and thus treewidth 7. □

4. Conclusion and discussion

We have shown that steepest-ascent local search can re-
quire an exponential number of steps to reach a local maximum
even when domains are Boolean and the constraint graph has
treewidth (in fact, the more restrictive pathwidth) bounded by
a constant k. It is an open question to determine the smallest
value of k for which this holds. We have given a proof for k = 7.
Kaznatcheev et al. [5] have shown that for k = 1 all ascending
paths are bounded by a quadratic number of steps and that for
k = 2 there exist some ascending paths that are exponentially
long. But their long ascending paths are not the paths that
steepest ascent would follow, so for values of k between 2 and
6 the question is still open for steepest ascent.

The fact that local search may require exponential time to
converge has implications both in the performance analysis of
local search algorithms and in the understanding of biological
processes such as evolution. Of course, we are aware that the
example we have constructed is pathological. For example, ex-
periments on computational protein design benchmark problems
indicate that the average number of steps required by steepest
ascent to reach a local optimum is proportional to the logarithm
of the size of the attraction basin of the local optimum [10], and
hence (sub)linear in the total number of variables. Further the-
oretical research is required to identify conditions under which
exponentially-long steepest-ascent paths cannot occur.
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Appendix. Proofs of lemmas

Lemma 8. If the CPP is satisfied, then all transition rules lead to an
increase in the objective function F .

Proof. In the following let S, S ′ be any (possibly empty) string
and let a be any symbol from {0, 1}. To show that applying
Rules 1a, 2a, 1b or 2b leads to an increase in F , we only need
to show that

F (S a 0) < F (S a i01) < F (S a 1) < F (S a i1C ) < F (S a C)

This holds since

f (a, 0) + h(0) = 0 < f (a, i01) + h(i01) = 1 < f (a, 1) + h(1) = 4
< f (a, i1C ) + h(i1C ) = 5 < f (a, C) + h(C) = 6

For Rules 3a and 3b to increase F , we require

F (S a 1 C S ′) < F (S a i1C C S ′) < F (S a C C S ′)

(where a ∈ {0, 1} follows from the CPP). These inequalities hold
since

4f (a, 1) + f (1, C) = 22 < 4f (a, i1C ) + f (i1C , C) = 23
< 4f (a, C) + f (C, C) = 24

For Rules 4a and 4b to increase F , we require

F (S a 0 C S ′) < F (S a i0X C S ′) < F (S a X C S ′)

(where a ∈ {0, 1} follows from the CPP). These inequalities hold
since

4f (a, 0) + f (0, C) = 6 < 4f (a, i0X ) + f (i0X , C) = 7
< 4f (a, X) + f (X, C) = 8

For Rules 6a and 6b to increase F , we require

F (S X C S ′) < F (S X iC0 S ′) < F (S X 0 S ′)

where, by the CPP, S ′ is a string of zeros. This holds since

4f (X, C) + f (C, 0) = 45 < 4f (X, iC0) + f (iC0, 0) = 48
< 52 = 4f (X, 0) + f (0, 0)

when S ′ is non-empty (and f (X, C) = 8 < f (X, iC0) = 12 <

f (X, 0) = 13 if S ′ is the empty string). For Rules 5a and 5b to
increase F , we require

F (S C C S ′) < F (S C iC0 S ′) < F (S C 0 S ′)

where, again by the CPP, S ′ is a string of zeros. This holds since

4f (C, C) + f (C, 0) = 13 < 4f (C, iC0) + f (iC0, 0) = 32
< 52 = 4f (C, 0) + f (0, 0)

when S ′ is non-empty (and f (C, C) = 0 < f (C, iC0) = 8 <

f (C, 0) = 13 if S ′ is the empty string). For Rules 7a and 7b to
increase F , we require

F (S a X 0 S ′) < F (S a iX1 0 S ′) < F (S a 1 0 S ′)

(where a ∈ {0, 1} and S ′ is a string of zeros by the CPP). These
inequalities hold since

4f (a, X) + f (X, 0) = 13 < 4f (a, iX1) + f (iX1, 0) = 14
< 4f (a, 1) + f (1, 0) ≤ 16 □

Lemma 9. Assuming the CPP, when one of Rules 3a or 4a are in
conflict with one of Rules 5a or 5b, the transitions triggered by the
latter rules lead to a greater increase in F .

Proof. Given the limited form of states described by the CPP,
there is only one type of conflict for each pair of rules. In the
following calculations, S, S ′ represent (possibly empty) strings
and (since we are requiring the CPP) the symbol a will always
stand for either 0 or 1.

Rules 3a and 5a are only in conflict in the state Sa1CCS ′. For
the priority of Rule 5a to be respected, it suffices to show that

F (S a i1C C C S ′) < F (S a 1 C iC0 S ′)

where S ′ is a string of zeros. This holds since

64f (a, i1C ) + 16f (i1C , C) + 4f (C, C) + f (C, 0) = 381
< 384 = 64f (a, 1) + 16f (1, C) + 4f (C, iC0) + f (iC0, 0)

when S ′ is non-empty (and 16f (a, i1C ) + 4f (i1C , C) + f (C, C) =

92 < 96 = 16f (a, 1)+4f (1, C)+f (C, iC0) if S ′ is the empty string).
Rules 3a and 5b are only in conflict in the state Sa1CiC0S ′. For

the priority of Rule 5b to be respected, it suffices to show that

F (S a i1C C iC0 S ′) < F (S a 1 C 0 S ′)

where, by the CPP, S ′ is a string of zeros. This holds since

64f (a, i1C ) + 16f (i1C , C) + 4f (C, iC0) + f (iC0, 0) = 400
< 404 = 64f (a, 1) + 16f (1, C) + 4f (C, 0) + f (0, 0)

when S ′ is non-empty (and 16f (a, i1C ) + 4f (i1C , C) + f (C, iC0) =

100 < 101 = 16f (a, 1) + 4f (1, C) + f (C, 0) if S ′ is the empty
string).

Rules 4a and 5a are only in conflict in the state Sa0CCS ′. For
the priority of Rule 5a to be respected, it suffices to show that

F (S a i0X C C S ′) < F (S a 0 C iC0 S ′)

where, by the CPP, S ′ is a string of zeros. This holds since

64f (a, i0X ) + 16f (i0X , C) + 4f (C, C) + f (C, 0) = 125
< 128 = 64f (a, 0) + 16f (0, C) + 4f (C, iC0) + f (iC0, 0)

when S ′ is non-empty (and 16f (a, i0X ) + 4f (i0X , C) + f (C, C) =

28 < 32 = 16f (a, 0)+4f (0, C)+f (C, iC0) if S ′ is the empty string).
Rules 4a and 5b are only in conflict in the state Sa0CiC0S ′. For

the priority of Rule 5b to be respected, it suffices to show that

F (S a i0X C iC0 S ′) < F (S a 0 C 0 S ′)

where, by the CPP, S ′ is a string of zeros. This holds since

64f (a, i0X ) + 16f (i0X , C) + 4f (C, iC0) + f (iC0, 0) = 144
< 148 = 64f (a, 0) + 16f (0, C) + 4f (C, 0) + f (0, 0)

when S ′ is non-empty (and 16f (a, i0X ) + 4f (i0X , C) + f (C, iC0) =

36 < 37 = 16f (a, 0) + 4f (0, C) + f (C, 0) if S ′ is the empty
string). □

Lemma 10. Assuming the CPP, when Rule 1a is in conflict with one
of the other rules, the transition triggered by the other rule always
leads to a greater increase in F then Rule 1a.

Proof. By the CPP, conflicts between Rule 1a and another rule
can only occur in a state ending with a string of at least two zeros,
namely one of S0C0r , S1C0r , SX0r , SiX10r , S0CC0r , S1CC0r , SXC0r ,
S0CiC00r , S1CiC00r , Si1CC0r , Si0XC0r , SXiC00r for some string S of
zeros and ones, and with r ≥ 2. In each case, the application of
Rule 1a leads to an increase of just 1 in the value of F , whereas
the application of any other rule leads to an increase of at least
4r−1 > 1 (by the same exhaustive case analysis as given in the
proof of Lemma 8). □

Lemma 11. Assuming the CPP is satisfied, the only transitions
which lead to an increase in F are those triggered by Rules 1–14.



Proof. Recall that the only possible transitions are those between
a main symbol (0, 1, C or X) and an intermediate symbol, since
all other transitions change 2 bits.

We first consider all possible transitions from a main symbol
to one of the six intermediate symbols:

iC0: since the only non-zero values of f (or h) with an argument
iC0 are f (X, iC0) = 12 and f (C, iC0) = 8, the only transitions
we need to consider are SX0S ′

→ SXiC0S ′, SC0S ′
→ SCiC0S ′

and SXCS ′
→ SXiC0S ′, SCCS ′

→ SCiC0S ′. The first two
transitions lead to a decrease in F since they correspond to
the inverse transitions of Rules 6b and 5b. The latter two
transitions correspond to Rules 6a and 5a.

i0X : since the only non-zero value of f (or h) with an argument
i0X is f (i0X , C) = 7, the only transitions we need to consider
are S0CS ′

→ Si0XXS ′ and SXCS ′
→ Si0XXS ′. The former cor-

responds to Rule 4a, whereas the latter leads to a decrease
in F since it is the inverse transition of Rule 4b.

i1C : since the only non-zero values of f or h with an argument
i1C are f (i1C , C) = 23 and h(i1C ) = 5, the only transitions
we need to consider are S1CS ′

→ Si1CCS ′, SCCS ′
→ Si1CCS ′,

and Sa1 → Sai1C SaC → Sai1C (where a ∈ {0, 1}). Of these
transitions, the first corresponds to Rule 3a, the second to
the inverse of Rule 3b, the third to Rule 2a and the last to
the inverse of Rule 2b.

iX1: since the only non-zero value of f (or h) with an argument
iX1 is f (iX1, 0) = 14, the only transitions we need to consider
are S10S ′

→ SiX10S ′ and SX0S ′
→ SiX10S ′. The former corre-

sponds to the inverse of Rule 7b and the latter corresponds
to Rule 7a.

i01: since the only non-zero values of (f or) h with an argument
i01 are h(i01) = 1, the only transitions we need to consider
are Sa0 → Sai01 and Sa1 → Sai01 (where a ∈ {0, 1}). The
former corresponds to Rule 1a and the latter corresponds to
the inverse of Rule 1b.

We now consider all possible transitions from one of the six
intermediate symbols to a main symbol:

iC0: since, by the CPP, iC0 can only occur just after X or C , the
only transitions we need to consider are SXiC0S ′

→ SX0S ′,
SCiC0S ′

→ SC0S ′, SXiC0S ′
→ SXCS ′, and SCiC0S ′

→ SCCS ′.
Of these transitions, the first corresponds to Rule 6b, the
second to Rule 5b, the third to the inverse of Rule 6a and
the last to the inverse of Rule 5a.

i0X : since, by the CPP, i0X can only occur just before C , the only
transitions we need to consider are Si0XCS ′

→ S0CS ′ and
Si0XCS ′

→ SXCS ′. The first of these transitions corresponds
to Rule 4a and the second corresponds to the inverse of
Rule 4b.

i1C : since, by the CPP, i1C can only occur at X1 (with X2 ∈ {0, 1})
or just before C , the only transitions we need to consider

are Sai1C → Sa1, Sai1C → SaC (where a ∈ {0, 1}), and
Si1CCS ′

→ S1CS ′, Si1CCS ′
→ SCCS ′. Of these transitions, the

first is the inverse of Rule 1a, the second is Rule 2b, the third
is the inverse of Rule 3a and the fourth is Rule 3b.

iX1: since, by the CPP, iX1 can only occur just before 0, the only
transitions we need to consider are SiX10S ′

→ S10S ′ and
SiX10S ′

→ SX0S ′. The first of these transitions corresponds
to Rule 7b and the second to the inverse of Rule 7a.

i01: since, by the CPP, i01 can only occur at X1 (with X2 ∈ {0, 1}),
the only transitions we need to consider are Sai01 → Sa0
and Sai01 → Sa1. The former corresponds to the inverse of
Rule 1a and the latter to Rule 1b. □

Lemma 6 now follows directly from Lemmas 8–11, and the
steepest ascent has been verified by coding in Python and
Eclipse [1].
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