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This paper focuses on sequential qualitative decision problems, where no probability distribution on the states that may follow an action is available. New qualitative criteria that are based on ordinal uninorms and namely R * and R * are proposed. Like the Hurwicz criterion, the R * and R * uninorms arbitrate between pure pessimism and pure optimism, and generalize the Maximin and Maximax criteria. But contrarily to the Hurwicz criterion they are associative, purely ordinal and compatible with Dynamic Consistency and Consequentialism. These important properties allow the construction of an optimal strategy in polytime, following an algorithm of Dynamic Programming. Making a step further, we then generalize R * to qualitative decision under possibilistic uncertainty, proposing an alternative to the classical optimistic and pessimistic criteria used for the computation of optimal strategies in possibilistic decision trees.

Introduction

In a sequential decision problem under uncertainty, a decision maker (DM in the following) faces a sequence of decisions, each decision possibly leading to several different states, where further decisions have to be made. A strategy is a conditional plan which assigns a (possibly nondeterministic) action to each state were a decision has to be made (also called "decision node"), and each strategy leads to a compound lottery, following Von Neuman and Morgenstern's terminology [START_REF] Von Neumann | Theory of Games and Economic Behavior[END_REF] -roughly, a tree representing the different possible scenarios, and thus the different possible final states that the plan/strategy may reach. The optimal strategies are then the ones which maximize a criterion applied to the resulting compound lottery.

Three assumptions are desired to accept the optimal strategy without discussions on the meaning of optimal strategy. Those assumptions are:

• Dynamic Consistency: when reaching a decision node by following an optimal strategy, the best decision at this node is the one that had been considered so when computing this strategy, i.e. prior to applying it.

• Consequentialism: the best decision at each step of the problem only depends on potential consequences at this point.

• Tree Reduction: a compound lottery is equivalent to a simple one.

Those three assumptions are linked to the possibility of computing an optimal strategy using an algorithm of dynamic programming [START_REF] Raiffa | Decision Analysis: Introductory Lectures on Choices Under Uncertainty[END_REF].

When the preference about the final states is purely qualitative (ordinal), i.e., we cannot assume more than a preference order on the consequences (on the leaves of the tree), captured by satisfaction degrees on an ordinal scale (the scale [0,[START_REF] Mcclennen | Rationality and Dynamic Choice: Foundational Explorations[END_REF] is chosen for these degrees, but any ordered set can be used). Then the pessimistic maximin approach is often presented as a way to capture the behavior of (very) cautious DMs -the utility of a decision is the minimum of the utilities it may lead to. The Hurwicz criterion [START_REF] Hurwicz | Optimality Criteria for Decision Making under Ignorance[END_REF] is then advocated since it generalizes the pessimistic maximin and the optimistic maximax approaches and makes a "compromise" between these approaches, through the use of a coefficient α of optimism -the Hurwicz value being the linear combination, according to this coefficient, of the two criteria. Nevertheless, this approach does not suit qualitative, ordinal, utilities: the Hurwicz criterion proceeds to an additive compensation of the min value by the max value. Moreover, the criterion turns out to be incompatible with the above assumptions: it can happen that none of the optimal strategies is dynamically consistent nor consequentialist -as a consequence the optimization of this criterion cannot be carried out using dynamic programming.

Some authors tend to privilege Dynamic Consistency and Tree Reduction and are ready to give up Consequentialism (e.g., the Resolute Choice approach [START_REF] Mcclennen | Rationality and Dynamic Choice: Foundational Explorations[END_REF]). Other insists on the fact that Resolute Choice is not acceptable since a normally behaved decision-maker is consequentialist [START_REF] Jaffray | Rational decision making with imprecise probabilities[END_REF] -this leads them to use other approaches, based on Veto-process [START_REF] Jaffray | Rational decision making with imprecise probabilities[END_REF] and Ego-dependent process [START_REF] Dubois | Deciding under ignorance: in search of meaningful extensions of the Hurwicz criterion to decision trees[END_REF] (see also [START_REF] Huntley | An efficient normal form solution to decision trees with lower previsions[END_REF], [START_REF] Kikuti | Sequential decision making with partially ordered preferences[END_REF] who follow the same idea -quitting Resolute Choice and applying consequentialism -in nonqualitative problems). Then, the fundamental axiom of tree reduction is dropped, the structure of the decision tree affects the choices of the decision-maker, and the semantics of the criterion which is eventually optimized is defined in an operational way only.

In the present paper, rather than choosing which axiom to drop, we are looking for a new qualitative criterion which can take into account the level optimism/pessimism of the DM, like Hurwicz's criterion, and satisfies the three properties stated above (Dynamic Consistency, Consequentialism and Tree Reduction). We then show that, because ordinal in essence (it uses min and max functions only), this criterion can be generalized to possibilistic decision trees, where both the utility degrees and their likelihood levels are evaluated on a qualitative scale.

The paper is structured as follows. The next Section presents the Hurwicz criterion, the background on decision trees under ignorance and the principle of dynamic programming. Section 3 then advocates the use of two qualitative uninorms, R * and R * , as alternatives to the Hurwicz criterion. Drowning them in the context of sequential decision making, we show that R * and R * are compatible with Dynamic Consistency and Consequentialism, and propose to apply an algorithm of dynamic programming to compute an optimal, consequentialist and dynamically consistent strategy. Section 4 finally presents a generalization of R * to the possibilistic case.

Background

The Hurwicz criterion

Let us first consider simple, non-sequential decision problems under ignorance: each decision δ i is characterized by the multi set of final states E δ i = {s i 1 , ..., s i m i } it can lead to. Given a utility function u capturing the attractiveness of each of these final states, δ i can be identified with a simple lottery over the utility levels that may be reached: in decision under ignorance, where no probability distribution over the consequences of an act is available, a simple lottery is indeed the multiset 1 of the utility levels of the s i j , i.e. L δ i = u i 1 , ..., u i m i (where u i j = u(s i j )). A usual way to take the optimism of the DM into account is to use the Hurwicz criterion [START_REF] Hurwicz | Optimality Criteria for Decision Making under Ignorance[END_REF]. The worth of δ i is then:

H(δ i ) = H(L δ i ) = (1 -α) • min(u i 1 , ..., u i m i ) + α • max(u i 1 , ..., u i m i ) ( 1 
)
where α ∈ [0, 1] is the degree of optimism. H indeed collapses with the max aggregation when α = 1 (and with the min aggregation when α = 0).

Decision trees

A convenient language to introduce sequential decision problems is through decision trees [START_REF] Raiffa | Decision Analysis: Introductory Lectures on Choices Under Uncertainty[END_REF]. This framework proposes an explicit modeling in a graphical way, representing each possible scenario by a path from the root of the tree to one of its leaves. Formally, a decision tree T = (N , E) is such that N contains three kinds of nodes (see Fig. 1 for an example):

• D = {d 0 , . . . , d m } is the set of decision nodes (depicted by rectangles).

• LN = {ln 1 , . . . , ln k } is the set of leaves, that represent final states in S = {s 1 , . . . , s k }; such states can be evaluated thanks to a utility function: ∀s i ∈ S, u(s i ) is the degree of satisfaction of being eventually in state s i (of reaching node ln i ). For the sake of simplicity we assume, without loss of generality, that only leaf nodes lead to utilities.

• X = {x 1 , . . . , x n } is the set of chance nodes (depicted by circles). For any node n i ∈ N , Succ(n i ) ⊆ N denotes the set of its children. In a decision tree, for any decision node

d i , Succ(d i ) ⊆ X : Succ(d i )
is the set of actions that can be chosen when d i is reached. For any chance node

x i , Succ(x i ) ⊆ LN ∪ D: Succ(x i )
is the set of possible outcomes of action x i -either a leaf node is observed, or a decision node is reached (and then a new action should be chosen).

When the problem is a problem of qualitative decision making under ignorance:

• the information at chance nodes is a list of potential outcomes -this suits situations of total ignorance, where no probabilistic distribution is available.

• the preference about the final states is purely qualitative (ordinal), i.e., we cannot assume more than a preference order on the consequences (on the leaves of the tree), captured by the satisfaction degrees. The scale [0, 1] is chosen for these degrees, but any ordered set can be used.

Solving a decision tree consists in building a strategy, i.e. a function δ that associates to each decision node d i an action (i.e. a chance node) in Succ(d i ): δ(d i ) is the action to be executed when decision node d i is reached. Let be the set of strategies that can be built for T . We shall also consider the subtree T n of T rooted at node n, and denote by n its strategies: they are substrategies of the strategies of .

Any strategy in can be viewed as a connected subtree of T where there is exactly one edge (and thus one chance node) left at each decision node -skipping the decision nodes, we get a chance tree or, using von Neuwman and Morgernstern's terminology, a compound lottery. 2Simple lotteries indeed suit the representation of decisions made at the last step of the tree: u 1 , ..., u k is the multiset of the utilities of the leaf nodes (ln 1 , ..., ln k ) that may be reached when some decision x is executed. Consider now a decision x made at the penultimate level: it may lead to any of the decision nodes d i in Succ(x), and thus to any of the simple lotteries L i = u i 1 , ..., u i m i , d i ∈ Succ(x) -the substrategy rooted in x defines the compound lottery L i , s.t. d i ∈ Succ(x) . The reasoning generalizes for decisions x at any level of the tree, hence the definition of the (possibly multi level) compound lottery L δ associated to δ.

In order to apply a criterion, e.g. Hurwicz's, a simple lottery is needed. To this extent the Reduction of the compound lottery relative to the strategy is computed, which is the simple lottery which gathers all the utilities reached by the inner lotteries. Formally, the reduction of a compound lottery L = L 1 , ..., L k composed of lotteries L i is defined by:

Reduction(L) = Reduction(L 1 ), . . . , Reduction(L k ) (2)
where the reduction of a simple lottery is the simple lottery itself. For instance, if L is composed of simple lotteries

(L 1 , ..., L k ), with L i = u i 1 , ..., u i n i : Reduction(L) = u 1 1 , ..., u 1 n 1 , ..., u k 1 , ..., u k n k (3)
The principle of reduction makes the comparison of compound lotteries (and thus of strategies) possible: to compare compound lotteries by some criteria O , simply apply it to their reductions:

O (L) = O (Reduction(L)) (4)
For instance, considering the Hurwicz criterion, the preference relation over strategies is defined by: δ H δ iff H(Reduction(L δ )) H(Reduction(L δ )) [START_REF] Dubois | Qualitative decision theory with Sugeno integrals[END_REF] Optimality can now be soundly defined, at the global and the local levels: 

L(n) = Reduction( L(n ), n ∈ Succ(n) ) V (n) = O (L(n)) δ(d) = arg max n∈Succ(d) V (n) L(d) = L(δ(d)) Return (δ, (d 0 )) • δ ∈ is optimal for T iff ∀δ ∈ , O (Reduction(L δ )) O (Reduction(L δ )) • δ ∈ n is optimal for T n iff ∀δ ∈ n , O (Reduction(L δ )) O (Reduction(L δ ))
In all the approaches that follow Equation ( 4), and in particular in the approach considered in this paper, Tree Reduction is thus obeyed by construction.

Let us now consider Dynamic Consistency. An optimal strategy δ is said to be dynamically consistent iff for any decision node n, δ n , the restriction of δ to node n and its descendent, is optimal for the subtree rooted in n. A criterion is said to be compatible with Dynamic Consistency if there is always an optimal strategy that is dynamically consistent.

The purely optimist (resp. pessimist) criterion, max (resp. min) is compatible with Dynamic Consistency -there always exist an optimal strategy whose substrategies are optimal. Unfortunately, the Hurwicz criterion is not compatible with Dynamic Consistency. Let us give a counter example: Example 1. Consider the decision tree of Fig. 1 andα 

= 0.9; Strategy (d 0 ← down, d 1 ← down, d 2 ← up) is optimal, with a
Hurwicz value of 0.1 • 0.04 + 0.9 • 1 = 0.904; as a matter of fact (d 0 ← down, d 1 ← down, d 2 ← down) has a Hurwicz value of 0.9 and all the strategies with d 0 ← up or d 1 ← up have a lower value. Hence the (only) optimal strategy prescribes "up" for d 2 . On the other hand, considering the tree rooted in d 2 , "up" has a H value equal to 0.684, while "down" has a H value equal to 0.864 -up is not the optimal strategy in this subtree. This counter example shows that Hurwicz is not compatible with Dynamic Consistency.

Dynamic programming

Consequentialism prescribes that the DM selects a plan looking only at the possible futures (regardless of the past or counterfactual history). This is the case when choosing, at each node n, the decision that maximizes O . Hence a consequentialist strategy can be built starting from the anticipated future decisions and rolling back to the present. This is the idea implemented in the algorithm of dynamic programming (see Algorithm 1 where the depth of a node in the number of its predecessors, which simulates the behavior of such a consequentialist DM: the algorithm builds the best strategy by a process of backward induction, optimizing the decisions from the leaves of the tree to its root. Since each edge/node is passed through only one this algorithm is linear in the size of the tree, provided that both the reduction of lotteries and the computation of the value associated to a simple lottery (i.e. functions Reduction and O ) can be run in linear time.

As to correctness, one can roughly say that a transitive criterion is coherent with Consequentialism iff the strategy returned by the algorithm of dynamic programming is optimal according to this criterion.

Unfortunately this is not always the case when optimality is based on the principle of Tree Reduction: rolling back the Hurwicz optimization at each node of the tree of Fig. 1 leads to strategy (d 0 ← down, d 1 ← down, d 2 ← down) which is not optimal according to Equation (4). The correctness of dynamic programming actually relies on an important property, called weak monotonicity: Definition 1. A preference criterion O over lotteries is said to be weakly monotonic iff whatever L, L and L :

L O L ⇒ L, L O L , L (6) 
Weak Monotonicity is an important property; indeed, when O is complete and transitive, then the strategy returned by dynamic programming is optimal according to O . By construction, this strategy is dynamically consistent (any of its substrategies is optimal in its subtree), consequentialist and equivalent, according to O , to its reduction. In short, if a transitive criterion O satisfies weak monotonicity then strategy returned by dynamic programming is consequentialist and dynamically consistent.

R * and R * as criteria for decision making under ignorance

As we have seen in the previous Section, the Hurwicz criterion which is often advocated for decision making under ignorance suffers from several drawbacks for ordinal decision making. First of all it is neither so qualitative, since performing an compensation between the min value and the max value. Moreover, it fails to obey Dynamic Consistency and Consequentialism. This is regrettable from a prescriptive point of view: when optimizing this criterion, the decision planned for a node is not necessarily the one that would be the best one if the tree rooted at this node were considered -when reaching this node, a Hurwicz maximizer would be tempted not to follow the plan. That is why we look for alternative generalizations of the maximax and maximin rules, which are qualitative and which, like Hurwicz, allow a balance between pure pessimism and pure optimism.

A first idea could be to adapt the formulation of the Hurwicz criterion to the qualitative setting, replacing the product by the min operator and the sum by the max operator.

H Q (δ i ) = max(min((1 -α), min(u i 1 , ..., u i m i )), min(α, max(u i 1 , ..., u i m i ))) (7)
Unfortunately this simple adaptation of the Hurwicz criterion is not very satisfactory. Let us consider two decisions = (0.1, 1) and = (0, 0.1) with α = 0.1 i.e. a quite pessimistic DM. Remark that is worse than for both the maximin criterion and the maximax criterion. On the other hand H Q ( ) = max(min(0.9, 0), min(0.1, 0.1)) = 0.1 and H Q ( ) = max(min(0.9, 0.05), min(0. . Moreover, H Q does not satisfy the monotony principle, as shown by the following counter example:

Example 2. Let L = (0, 1), L = (0.5, 0.6) and L = (0.5, 1) hence for α = 0.2 we have H(L) = 0.8 > H(L ) = 0.58 but H(L ∪ L ) = 0.8 < H(L ∪ L ) = 0.9.
In other terms, H Q does not satisfy the dynamic consistency principle-when reaching this node, a Hurwicz or a H Q maximizer would be tempted not to follow the plan. We develop in the following another alternative to the Hurwicz criterion, based on the notion of uninorm.

An refresher on the R * and R * uninorms

The uninorm aggregators [START_REF] Yager | Uninorm aggregation operators[END_REF] are generalization of t-norms and t-conorms. These operators allow the identity element (e) to lay anywhere in the unit interval -it is not necessarily equal to zero nor to one, as required by t-norms or t-conorms, respectively.

Definition 2. [16] A uninorm R is a mapping R : [0, 1] × [0, 1] → [0, 1] having the following properties: 1. R(a, b) = R(b, a) (Commutativity) 2. R(a, b) ≥ R(c, d) if a ≥ c and b ≥ d (Monotonicity) 3. R(a, R(b, c)) = R(R(a, b), c) (Associativity) 4.
There exists some element e ∈ [0, 1], called the identity element, such that for all x ∈ [0, 1] R(x, e) = x.

It can be checked that the definition of t-norms (resp. t-conorms) is recovered when e = 1 (resp. e = 0). In this paper we focus on two ordinal uninorms proposed by Yager [START_REF] Yager | Uninorm aggregation operators[END_REF]:

1. R * : [0, 1] n → [0, 1]: • R * (a 1 , ..., a n ) = min(a 1 , ..., a n ) if min(a 1 , ..., a n ) < e • R * (a 1 , ..., a n ) = max(a 1 , ..., a n ) if min(a 1 , ..., a n ) ≥ e 2. R * : [0, 1] n → [0, 1]: • R * (a 1 , ..., a n ) = min(a 1 , ..., a n ) if max(a 1 , ..., a n ) < e • R * (a 1 , ..., a n ) = max(a 1 , ..., a n ) if max(a 1 , ..., a n ) ≥ e
R * specifies that if one of the a i 's is lower than e then the min operator is applied, otherwise max is applied. R * specifies that if one of the a i 's is greater than e then the max operator is applied, otherwise min is applied. One can see that both R * and R * generalize the min and max uninorms, as Hurwicz does (min is recovered when e = 1, max when e = 0). R * and R * constitute two different ways of generalizing the maximin and maximax criterion, and capture different types of behaviors of the DM. In the context of decision making under ignorance, we propose to interpret [0, e[ as an interval of hazards and [e, 1] as interval of desirable opportunities: Example 4. Let us go back to the example of Fig. 1 and focus first on criterion R * . The strategies that decide down for d 2 are hazardous (they may reach s 5 , which has a utility of 0) and have a R * equal to 0 whatever the value of e. This is also the case for all the strategies that decide up for d 0 . Now,

• if e ∈ ]0, 0.04] (d 0 ← down, d 1 ← down, d 2 ← up) is optimal, with R * = 1.
• if e ∈ ]0.04, 1] there are two optimal strategies, (

d 0 ← down, d 1 ← up, d 2 ← up) and (d 0 ← down, d 1 ← down, d 2 ← up),
both with R * = 0.04.

It can be checked that each optimal strategy is dynamically consistent. For instance, R * (d 2 ← up), which is at least equal to 0.04 (whatever e), is always greater than R * (d 2 ← down), which is always equal to 0.

If we consider R * , both (d 0 ← down, d 1 ← down, d 2 ← down) and (d 0 ← down, d 1 ← down, d 2 ← up) are optimal: their R * values are equal to 1, whatever the value e (and both are dynamically consistent).

Beyond this example, R * and R * behave well for sequential problems in the general case; indeed, both are compatible with Dynamic Consistency and Consequentialism. The reason is that, contrarily to the Hurwicz criterion, they satisfy weak monotonicity: Proposition 1. R * and R * satisfies weak monotonicity.

A direct consequence of Proposition 1 is that both uninorms can be optimized by dynamic programming. The optimization leads to strategies which are consequentialist and dynamically consistent; it follows that the uninorms R * and R * are compatible with Dynamic Consistency, Consequentialism and Tree Reduction.

As already outlined, compatibility with Dynamic Consistency guarantees that the DM cannot be tempted to deviate from the plan during its execution. Because R * is consequentialist, the evaluation of a decision can be conservative at some node in the tree (because hazard cannot be excluded) and become optimistic when some safer point is reached (e.g. at node d 1 when e ≤ 0.08). On the example of Fig. 1, with e = 0.05, R * compares the min values of the two candidate decisions at node d 2 , but is optimistic at node d 1 : all the outputs that can be reached from d 1 are greater than 0.05, i.e. all the decisions are safe when d 1 is reached. Similar examples can be built for R * (which is nevertheless less in accordance with the intuition, since pessimism is taken into account only when no opportunity is available).

A last algorithmic advantage of R * and R * is that they are associative (like any uninorm). This allows dynamic programming to memorize, for each node, the value of the corresponding reduced lottery rather than the lottery itself. 

Discussion: R * and R * vs. Hurwicz

Let us now focus on the comparison between the uninorms (and especially on R * , which has a well founded interpretation in terms of robustness) and the Hurwicz criterion. All are generalization of the maximax and maximin criteria, allow a tuning between optimism and pessimism, and extend to sequential problems through the application of the lottery reduction principle.

The first remark is that R * can capture the desiderata of a DM who is looking for guarantees of performance, the level of performance being represented by e. This kind of requirement cannot be captured by the Hurwicz criterion, unless α = 0, i.e. unless Hurwicz collapses with the min (and also collapses with R * and with R * , setting e = 0).

Our running example also shows that Hurwicz can be very adventurous even for small positive α's: (d 0 ← down, d 1 ← down, d 2 ← up) might reach a very low utility (0.08) is indeed optimal for Hurwicz as soon as α > 0. This strategy will on the contrary be considered as too hazardous for R * , unless a low level (e < 0.08) of guaranteed performance is looked for.

Moreover, the behavior of Hurwicz's approach may appear chaotic in its way to move from pessimism to optimism.

Consider again Example 3: = (0.55, 0.55) and = (0.2, 0.9) are the min optimal and max optimal solutions, respectively.

The max (resp. the min) value of lays between the ones of and , so = (0.39, 0.7) appears as an intermediate solution between and (see Fig. 2). Nevertheless, is never optimal for Hurwicz. It can indeed be checked than H( ) = 0.55 whatever α. H( ) = 0.545 at α = 0.5. When α ≤ 0.5, H( ) < 0.55 = H( ); when α ≥ 0.5 H( ) ≥ H( ), because H( ) increases faster than H( ). Hence a slight variation of α makes Hurwicz jump directly from the pessimistic solution to the very optimistic solution , without considering , which is Pareto optimal and intermediate between and . If we look at the formal properties that may be sought for, the first difference is that the uninorms are purely ordinal. They do not need to assume that the utilities are additive to some extent, while Hurwicz is basically an additive crite-rion. The second one is their associativity -a basic property that is not satisfied by the Hurwicz's aggregation (for instance H((1, 0), (0)) = α 2 while H((1, 0, 0)) = α). Because of the property of associativity, the application of R * and R * to compound lotteries satisfies decomposition, while this is not the case when Huwicz's criterion is used. Last but not least, R * and R * are compatible with Dynamic Consistency and Consequentialism, while Hurwicz is not.

A first, practical consequence is that a polynomial algorithm of dynamic programming can be designed to find consequentialist and dynamically consistent optimal solutions. Moreover, decomposition allows dynamic programming to memorize, for each node, the R * and R * value of the corresponding reduced lottery rather than the lottery itself.

Dynamic Consistency and Consequentialism are also important from a prescriptive point of view. Because the R * and R * optimal strategies are dynamically consistent, the DM will never be tempted to deviate from it -we have seen on Example 1 that Hurwicz does not prevent for such deviations.

Consequentialism says that the value of a (sub)strategies only depends on the future consequences -R * and R * never care of "parallel", counter factual worlds. As we have seen, Hurwicz is not compatible with this principle: what happens in a world (e.g., in Example 1 in d 2 when up is chosen for d 2 ) may influence the decision in an independent, parallel world (here, in d 1 ). Indeed, Hurwicz will always prefer d 1 ← down to d 1 ← up even in case of a very low -but positive -degree of optimism. This is due to the fact the low value (0.04) for s 3 , which is not a descendent of d 1 but of d 2 , masks the 0.08 utility of s 2 .

Possibilistic generalizations of uninorm R *

In the previous sections, we have made an assumption of total ignorance: all the consequences of a given lottery are equally possible. Possibility theory [START_REF] Zadeh | Fuzzy sets as the basis for a theory of possibility[END_REF][START_REF] Dubois | Possibility Theory[END_REF] allows to capture more information while staying in the ordinal context -the idea is to rank the consequences from the totally possible ones to the impossible ones. Following Dubois and Prade's possibilistic approach of decision making under ordinal uncertainty [START_REF] Dubois | Possibility theory as a basis for qualitative decision theory[END_REF], a decision can be represented by a normalized possibility distribution on a set of utility degrees and evaluated either in a pure pessimistic way, using a Sugeno integral based on a necessity measure or on a pure optimistic way, using a Sugeno integral based on a possibility measure. We show in the following how to generalize the R * uninorm to possibilistic lotteries, thus providing a new possibilistic criterion which takes the level optimism/pessimism of the DM into account.

A refresher on possibilistic decision making

The basic component of possibility theory is the notion of possibility distribution. It is a representation of a state of knowledge of an agent about the more or less possible values of a variable x taking its values on a referential S. Let = {λ 1 , ..., λ n } be a bounded ordered scale; by convention and without any loss of generality, we set λ i > λ i+1 ; typically λ 1 = 1 and λ n = 0. A possibility distribution π is simply a mapping from S to : for a value s ∈ S, π(s) = 1 means that s is totally possible and π(s) = 0 means that s is an impossible value. It is generally assumed that there exists at least one value s which is totally possible: π is said then to be normalized.

In the possibilistic framework, extreme forms of knowledge can be captured, namely:

• Complete knowledge i.e. ∃ s ∈ S s.t. π(s) = 1 and ∀ s = s, π(s ) = 0.

• Total ignorance i.e. ∀s ∈ S, π(s) = 1 (all values in S are possible).

From π one can compute the possibility and the necessity of any event A ⊆ S: [START_REF] Raiffa | Decision Analysis: Introductory Lectures on Choices Under Uncertainty[END_REF] estimates to what extent A is compatible with the knowledge captured by π , and its conjugate, the necessity measure, estimates to what extent A is implied (to what extent a value outside A is unlikely).

(A) = max s∈ A π(s) (10) N( A) = 1 -( Ā) = 1 -max s / ∈A π(s)
Following Dubois and Prade's possibilistic approach of decision making under uncertainty [START_REF] Dubois | Possibility theory as a basis for qualitative decision theory[END_REF], a simple possibilistic lottery L is a normalized possibility distribution on a set of utility degrees, both being expressed in the same ordered scale ( ). L will denote the set of lotteries that can be built on . We often write the lotteries as vectors L = π 1 /λ 1 , ..., π n /λ n with π i ∈ . π i is the possibility degree of getting utility λ i according to the decision captured by L. For the sake of brevity, the λ i such that π i = 0 are often omitted in the notation of a lottery (e.g. 1/0.8 denotes the lottery that provides utility 0.8 for sure, all the other utility degrees being impossible). The normalization conditions imposes that one of the π i is equal to λ 1 (to 1). The set of nonimpossible utility degrees is called the support of the lottery (we denote it S L ).

Dubois and Prade [START_REF] Dubois | Possibility theory as a basis for qualitative decision theory[END_REF][START_REF] Dubois | Qualitative decision theory with Sugeno integrals[END_REF] propose to use the possibilistic Sugeno integrals to evaluate the global utility of a possibilistic lottery. Recall that for any capacity function γ :

Sug γ (L) = max λ i ∈ min(λ i , γ (L ≥ λ i )) (12) γ (L ≥ λ i )
estimates to what extent it is likely that L leads to a utility greater than λ i . In the possibilistic case, two measures, N and shall be used. Hence the definition of two possibilistic global utilities:

Sug PES (L) = max λ i ∈ min(λ i , N(L ≥ λ i )) (13) Sug OPT (L) = max λ i ∈ min(λ i , (L ≥ λ i )) (14) 
where, according to Equations ( 10) and [START_REF] Raiffa | Decision Analysis: Introductory Lectures on Choices Under Uncertainty[END_REF]:

N(L ≥ λ i ) = 1 -max j<i π j (15) (L ≥ λ i ) = max j≤i π j ( 16 
)
When the lottery is normalized, the two possibilistic Sugeno integrals can be rewritten directly with respect to the possibility distribution [START_REF] Dubois | Qualitative decision theory with Sugeno integrals[END_REF][START_REF] Dubois | The use of the discrete Sugeno integral in decision-making: a survey[END_REF]:

Sug PES (L) = min λ i max(1 -π i , λ i ) (17) Sug OPT (L) = max λ i min(π i , λ i ) (18)
In other terms, a lottery is attractive according to Sug PES when the possibility of getting a low utility degree is low -this measure suits cautious DMs. The second measure rather suits adventurous, optimistic DMs; indeed, a lottery is attractive according to Sug OPT as soon as a good utility degree is possible. Of course, Sug PES (L) ≥ min λ∈S L λ and Sug OPT (L) ≥ min λ∈S L λ.

After having defined the two criteria on simple lotteries, [START_REF] Dubois | Possibility theory as a basis for qualitative decision theory[END_REF] generalizes the notion of composition of lotteries to the possibilistic case: a compound lottery π 1 /L 1 , . . . , π m /L m is a possibility distribution over a set of lotteries.

Sug PES and Sug OPT can be extended to compound lotteries thanks to the possibilistic principle of lottery reduction: for any compound lottery L = π 1 /L 1 , . . . , π m /L m , Reduction(L) is the simple lottery that associates to each of the λ i the possibility degree

π i = max L j ∈L min(π j , π j i ) (19) π j
i denoting the possibility of getting λ i though lottery L j and π j denoting the possibility of getting L j .

The principle of lottery reduction allows the comparison of compound lotteries to any other lottery: L is preferred to L iff its reduction is preferred to the one of L .

L PES L iff Sug PES (Reduction(L)) Sug PES (Reduction(L )) L OPT L iff Sug OPT (Reduction(L)) Sug OPT (Reduction(L ))
The principle of monotonicity and the principle of decomposition extend easily to the possibilistic case, and are satisfied by Sug PES and Sug OPT : Definition 4. A preference criterion O over possibilistic lotteries is said to be weakly monotonic iff whatever L, L and L , whatever α, β such that max(α, β) = 1: This proposition is due to [START_REF] Dubois | Possibility theory as a basis for qualitative decision theory[END_REF]; in this seminal paper, Dubois and Prade propose a representation theorem for Sug PES and Sug OPT which is precisely based on the properties and monotonicity, lottery reduction and certainty equivalence. [START_REF] Sabbadin | Towards qualitative approaches to multi-stage decision making[END_REF] have extended decision trees to the possibilistic case. In a possibilistic decision tree ( -tree) the edges outgoing from the chance nodes are labeled by the possibility of being in the subsequent node when the decision represented by the chance node is executed (see Fig. 3). Together with lottery reduction, monotonicity and decomposition allow the computation of a Sug PES (resp. Sug OPT ) optimal policy by dynamical programming, as shown by [START_REF] Sabbadin | A possibilistic model for qualitative sequential decision problems under uncertainty in partially observable environments[END_REF]. Algorithm 1 applies, replacing O by Sug PES (resp. Sug OPT ) and reducing the lotteries according to Equation (19).

L O L ⇒ α/L, β/L rangle O α/L , β/L (20)
O ( α/L, β/L ) = O ( α/O (L), β/O (L ) ) (21) Proposition 3. Whatever α, β, L, L , it holds that • Sug PES (Reduction( α/L, β/L ) = Sug PES ( α/Sug PES (L), β/Sug PES (L ) ) • Sug OPT (Reduction( α/L, β/L ) = Sug OPT ( α/Sug OPT (L), β/Sug OPT (L ) ) • if L PES L then α/L, β/L PES α/L , β/L • if L OPT L then α/L, β/L OPT α/L , β/L
Example 5. Fig. 3 describes a possibilistic decision tree with three decision nodes. At each decision node, two decisions are available, up and down. The optimistic optimal decision at d 1 is up since this decision can lead with great possibility to utility 1. On the contrary, the pessimistic optimal decision at d 1 is down since d 1 ← up can lead with possibility 1 to utility 0. The pessimistic and optimistic optimal strategies (δ P E S and δ O P T ) are also represented on Fig. 3.

A possibilistic generalization of R * : U R *

The pessimistic possibilistic Sugeno integral generalizes the min uninorm -indeed, using Equation [START_REF] Zadeh | Fuzzy sets as the basis for a theory of possibility[END_REF] it is easy to show that when all the degrees in S L have a possibility degree equal to 1, Sug PES (L) simply computes the minimun of these degrees. Likewise, Equation (18) shows that the optimistic Sugeno integral generalizes the max uninorm. In the previous sections, we have advocated the use of R * as way to arbitrate between the max and min uninorms in decision making under total ignorance. In the following, we are looking for generalization of R * to possibilistic lotteries, extending the principles defined by this uninorm to decision under ordinal uncertainty.

Recall that the principle at work in R * is to look for opportunity only when the required level of satisfaction, e, is guaranteed for all the possible outcomes: R * distinguishes two families of decisions, the desirable ones and the hazardous ones, with respect to a neutral level e. The hazardous ones are evaluated in a pessimistic way (according to the min uninorm) and the desirable ones in an optimistic way (according to the max uninorm). Following this principle, we define in the present section a possibilistic generalization of R * which compares the utilities to which a possibilistic lottery may lead to a neutral level, and propose to use a pessimistic possibilistic Sugeno integral for hazardous levels of utility, and to use an optimistic one for desirable ones. Formally, for any L = π 1 /λ 1 , . . . , π n /λ n : Definition 6.

• L is hazardous (with respect to e ∈ ) iff ∃λ i < e such that π i > 0;

• L is desirable (with respect to e ∈ ) iff ∀λ i such that π i > 0, λ i ≥ e.

In other terms, a lottery is said to be hazardous if and only if getting a utility lower than e is not impossible. A lottery is desirable if it always leads to a utility at least equal to e. Fig. 4 distinguishes the hazardous and desirable lotteries of the decision tree of Fig. 3.

We can now propose the following possibilistic generalization of R * : 

λ i ∈ do π n [λ i ] = 0 for n ∈ Succ(n) do π n [V (n )] = max(π n [V (n )], π n n ) V (n) = U R * (π n ) δ(d) = arg max n∈Succ(d) V (n) V (d) = V (δ(d)) Return (δ, (d 0 ))

Alternative generalizations of R * and discussion

U R * vs Hurwicz

If we would like to apply the principles of the Hurwicz criterion to possibilistic lotteries, a first way to balance between optimism and pessimism could be to combine Sug PES and Sug OPT following Hurwicz's aggregation:

U H (L) = (1 -α).Sug PES (L) + α.Sug OPT (L))) (23)
Hurwicz's criterion is recovered when all the degrees in S L have a possibility degree equal to 1. In a sequential and qualitative context, this proposition is as unsatisfactory as Hurwicz's criterion: it proceeds to an additive compensation of two ordinal evaluations, and does not satisfy weak monotonicity. More generally, since U R * does satisfy these two properties, and is a generalization of R * , all the arguments developed in the comparison of R * and Hurwicz's criterion (Section 3.3) apply here.

An extension of the qualitative variant of the Hurwicz criterion, H Q (Equation ( 7)) can also be proposed:

U H Q (L) = max(min(1 -α), Sug PES (L), min(α, Sug OPT (L))) (24) 
But even if purely ordinal, this proposition is not satisfactory either in the sequential context: as a generalization of Hurwicz criterion, H Q does not obey weak monotonicity (Counter-Example 2 applies).

In summary, U R * overcomes the drawbacks of Hurwicz's approaches of possibilistic decision, just like R * does in decision under ignorance.

Alternative generalizations of R *

We present in this subsection alternative generalizations of R * that could seem more direct, and compare them to U R * The spirit of the first one, is the same than the one of U R * : be pessimistic if the lottery is hazardous, and optimistic otherwise.

Definition 8. OR

* : L → : OR * (L) = Sug PES (L) if L is hazardous OR * (L) = Sug OPT (L) otherwise R * is recovered
when L is a zero/one lottery (π i = 1 if λ i ∈ S L , π i = 0 otherwise). The slight difference between OR * and U R * is that the pessimistic evaluation uses all the degrees of utility in the first case, while only the degrees lower than e are used in the second case -when It should be noticed that when L and L are hazardous

L is hazardous U R * (L) = max λ i |λ i <e (min(λ i , N(L ≥ λ i )) while OR * (L) = max λ i (min(λ i , N(L ≥ λ i )).
OR * refines U R * , i.e.: U R * (L) > U R * (L ) =⇒ O R * (L) > OR * (L ).
But OR * can exhibit a counter-intuitive behavior when hazardous lotteries are compared to desirable ones: a hazardous lottery can be preferred to a desirable one ! For instance, let e = 0.2 L = 0.1/0, 1/1 and L = 1/0.2 hence L is hazardous and L is desirable but OR * (L) = 0.9 > OR * (L ) = 0.2. Last but not least drawback, OR * does not satisfy dynamic consistency and monotonicity, as shown by the following counter example: Example 7. Let us consider a sequential problem with 2 decisions represented in Fig. 6, with = {1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0} and e = 0.4. The strategy optimal for OR * is d 1 ← down and d 2 ← down (OR * = 0.7); But if the DM reaches decision node d 2 , decision d 2 ← up receives a higher OR * value than decision d 2 ← down. In other terms, dynamic consistency and monotonicity are not satisfied.

Notice that the OR * degree of the strategy optimal for U R * , namely d 1 ← down and d 2 ← up, is equal to 0.6, i.e. is lower than the one of d 1 ← down and d 2 ← down.

Another idea could be to take the degrees of possibility of the elements of S L into account while deciding whether L is hazardous or not (contrarily to U R * and OR * which consider the elements of the support of the lottery, but not their possibility degrees). This leads to the following straightforward generalization of R * , which evaluates a lottery L by its pessimistic Sugeno value, Sug PES (L), when this value is lower than the degree e of optimism, and by its optimistic Sugeno Suppose that the DM would like avoiding values of Sug PES below 0.5 -so e = 0.5. It is easy to check that Sug PES (L 1 ) = 0.25, Sug PES (L 2 ) = 0.5, and Sug PES (L 3 ) = 0.75. So, L 1 is evaluated in a cautious way (by Sug PES ) while the optimistic aggregation is used for L 2 and L 3 : Sug OPT (L 2 ) = 0.75 and Sug OPT (L 3 ) = 1. We get PR * (L1) = 0.25, PR * (L2) = 0.75 and PR * (L3) = 1.

The preference is thus L 3 PR * L 2 PR * L 1 .

Notice that both L 1 and L 3 can lead to a high utility (both consider that utility 1 is totally possible) but L 1 is very hazardous (the possibility of getting 0.25 by L 1 is equal to 0.75) while the lowest nonimpossible utility with L 3 is 0.5. L 2 is preferable to L 1 since the possibility of getting a bad utility with L 2 does not exceeds 0.25.

If the DM were more optimistic, setting for instance e = 0.25 (from level 0.25 all the utility degrees are considered as desirable opportunities) the preference relation would rather be

L 3 ∼ PR * L 1 PR * L 2 .
This criterion is radically different from the two other generalizations of R * , namely OR * and U R * , since with PR * the hazardous area is defined from the aggregation of possibility and utility degrees. The following definition allows us to depict the area of lotteries which are hazardous for PR * in a dimensional space (see Fig. Example 9. Let us illustrate the two dimensional visualization of hazardous and desirable lotteries (Fig. 7). Suppose that e = 0.75. Consider lotteries L 1 = ( 0.75/0.25, 1/0.5, 1/0.75 and L 2 = 0.25/0, 0.5/0.25, 0.25/0.5, 1/0.75 . L 1 is in the PR *

Fig. 1 .

 1 Fig. 1. A decision tree.

Definition 3 .

 3 A criterion O satisfies the decomposition principle iff whatever L, L , O ( L, L ) = O ( O (L), O (L ) ).

Proposition 2 .

 2 R * and R * satisfy the decomposition principle.Algorithm 1 thus directly applies, replacing O by R * (resp. R * ).

Definition 5 .

 5 A preference criterion O over possibilistic lotteries is said to satisfy the principle of decomposition iff whatever L and L , whatever α, β such that max(α, β) = 1:
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 3 Fig. 3. A possibilistic decision tree.
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 4 Fig. 4. Hazardous (in red) and desirable (in green) lotteries in a possibilistic decision tree.
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 6 Fig. 6. A counter example to the monotonicity of OR * .

Definition 9 .

 9 PR * : L → :PR * (L) = Sug PES (L) if Sug PES (L) < e PR * (L) = Sug OPT (L) otherwise If π i ∈ {1, 0}, ∀i = 1, ..., n then we get back to the uninorm R * : in this case indeed Sug PES (L) = min i|π i =1 (λ i ) andSug OPT (L) = max i|π i =1 (λ i ).Example 8. Let = {1, 0.75, 0.5, 0.25, 0} and consider the three following lotteries L 1 = 0.75/0.25, 1/0.5, 1/1 , L 2 = 0.25/0, 0.5/0.5, 1/0.75 and L 3 = 0.25/0.5, 1/1 .
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  (a)). Definition 10. A lottery is hazardous for criterion PR * iff ∃i = 1, ..., n s.t.λ i < e and π i > 1e. Proposition 7. Sug PES (L) < e iff L is hazardous.

Algorithm 1: Dynamic programming. Input: decision

  tree T of depth p > 1, criterion O Output: A strategy δ which is optimal for O , its value O (δ)

	for ln ∈ LN do
	L(ln) = u(ln)
	for t = p -1 to 0 do
	for d ∈ D t do
	// D t denotes the decision nodes at depth t
	for n ∈ Succ(d) do

  1, 1)) = 0.1. Hence ∼ H Q

	while	max min	and	max max

  Proposition 6. U R * is weakly monotonicThese two propositions allow the computation of R * optimal strategies by Dynamical Programming: Algorithm 1 can be adapted, replacing O by U R * and reducing the lotteries according to Equation (19). Applying Dynamic Programming to optimize U R * in a possibilistic decision tree.

	Algorithm 2: Input: decision tree T of depth p > 1, criterion O
	Output: A strategy δ which is optimal for O , its value O (δ)
	for ln ∈ LN do
	V (ln) = u(ln)
	for t = p -1 to 0 do
	for d ∈ D t do
	// D t denotes the decision nodes at depth t
	for n ∈ Succ(d) do
	// Reduction
	for

Recall that a simple lottery L = u 1 , ..., u k is a multiset of utilities; a compound Lottery L = L 1 , . . . , L k is a multiset of (simple or compound) lotteries.

Appendix A

Proofs of Section 3

Proof of Proposition 1. For the sake of brevity, R * (Reduction( L, L )) will be written R * ( L, L ) in the following.

Because R * and R * are associative, R * ( L, L ) = max(R * (L), R * (L ) and R * ( L, L ) = max(R * (L)), R * (L )).

Suppose that L 1 R * L 2 . This happens in three cases:

• max(u 1 1 , ..., u 1 n 1 ) ≤ max(u 2 1 , ..., u 2 n 2 ): (a) L 3 has its smallest element (u * ) smaller than e hence: R * ( L 1 , L 3 ) = u * = R * ( L 2 , L 3 ) or (b) all elements are greater than e hence R * ( L 1 ,

• min(u 1 1 , ..., u 1 n 1 ) ≤ min(u 2 1 , ..., u 2 n 2 ) whatever L 3 we have:

• min(u 1 1 , ..., u 1 n 1 ) ≤ max(u 2 1 , ..., u 2 n 2 ) that implies that min(u 2 1 , ..., u 2 n 2 ) ≥ e so whatever L 3 we have

So, R * is satisfies weak monotonicity.

Suppose that L 1 R * L 2 . This happens in three cases: We must prove that

For R * we can distinguish three cases: (1) only one of the lotteries has an element greater or equal than e (suppose that is L1); (2) both have an element greater or equal than e ; (3) none of them has an element greater than e.

For R * we can distinguish three cases: (1) only one of lotteries has all these elements greater or equal than e (suppose that is L1); (2) both have all these elements greater or equal than e; (3) none of them has all these elements greater than e.

Proof of Proposition 3. See [START_REF] Dubois | Possibility theory as a basis for qualitative decision theory[END_REF][START_REF] Dubois | Qualitative decision theory with Sugeno integrals[END_REF]. This is due to the fact that, when the lotteries are normalized, Sug PES (L) = U PES (L) and

U PES and U OPT have been presented and axiomatized in [START_REF] Dubois | Possibility theory as a basis for qualitative decision theory[END_REF]. Among other properties, it is shown that U PES and U OPT satisfy weak monotonicity, lottery reduction and certainty equivalence. 2

Proofs of Section 4

The proofs of this Section are based on a series of Lemma that we detail now, before entering the proofs themselves.

Indeed L is desirable, then all the utilities in its support are greater or equal to e, then L = L ≥e . Moreover, all the λ i < e have a π i equal to 0. Then Sug (L)

the level just below e in

If e = 0, no lottery can lead to a utility strictly lower than e, so no lottery can be hazardous; So, if L is hazardous, e > 0 and e -exists. Then: Proof. since all the utility degrees having a positive possibility by L are greater than e (L is desirable) and all the utility degrees having a positive possibility by L are greater than e (L is desirable), all the utility degrees having a positive possibility in α/L, β/L are greater than e: α/L, β/L is desirable.

Proof. L is desirable, min(λ ∈ S L ) ≥ e. Because L is normalized, (L ≥ e) = 1. That is to say, there exists a λ * ≥ e such that (L ≥ λ * ) = 1, thus such that min(λ * , (L

Sug PES (Reduction( α/L, β/L )) ≥ min(Sug PES (L), Sug PES (L )).

Proof. We know that

Proof of Proposition 4.

• If e = 0, then no lottery can be hazardous (there is no utility level below 0). So, whatever L, L is desirable. Applying

Consider now a hazardous lottery. Then U R * (L) = min(e -, Sug PES (L)). Because L is hazardous, there exits

• Suppose that all the utilities in the support of L are totally possible. Then (L

Suppose now that L is hazardous and let λ j = arg min S L -so R * (S L ) = λ j and N(L ≥ λ j ) = 1; because all the utilities in S L are totally possible, π j = 1 and thus

Proof of Proposition 5. From Lemmas 3, 5 and Proposition 3 we can reduce the set of cases to study only two cases:

or to min(Sug PES ( α/ min(Sug PES (L), e -), β/Sug OPT (L ) )), e -).

Case 1: Suppose that:

From Lemma 8 we have: