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This paper focuses on sequential qualitative decision problems, where no probability distribution on the states 
that may follow an action is available. New qualitative criteria that are based on ordinal uninorms and namely 
R∗ and R∗ are proposed. Like the Hurwicz criterion, the R∗ and R∗ uninorms arbitrate between pure pessimism 
and pure optimism, and generalize the Maximin and Maximax criteria. But contrarily to the Hurwicz criterion they 
are associative, purely ordinal and compatible with Dynamic Consistency and Consequentialism. These important 
properties allow the construction of an optimal strategy in polytime, following an algorithm of Dynamic 
Programming. Making a step further, we then generalize R∗ to qualitative decision under possibilistic uncertainty, 
proposing an alternative to the classical optimistic and pessimistic criteria used for the computation of optimal 
strategies in possibilistic decision trees.

1. Introduction

In a sequential decision problem under uncertainty, a decision maker (DM in the following) faces a sequence of decisions, 
each decision possibly leading to several different states, where further decisions have to be made. A strategy is a conditional 
plan which assigns a (possibly nondeterministic) action to each state were a decision has to be made (also called “decision 
node”), and each strategy leads to a compound lottery, following Von Neuman and Morgenstern’s terminology [15] - roughly, 
a tree representing the different possible scenarios, and thus the different possible final states that the plan/strategy may 
reach. The optimal strategies are then the ones which maximize a criterion applied to the resulting compound lottery.

Three assumptions are desired to accept the optimal strategy without discussions on the meaning of optimal strategy. 
Those assumptions are:

• Dynamic Consistency: when reaching a decision node by following an optimal strategy, the best decision at this node is
the one that had been considered so when computing this strategy, i.e. prior to applying it.

• Consequentialism: the best decision at each step of the problem only depends on potential consequences at this point.
• Tree Reduction: a compound lottery is equivalent to a simple one.

Those three assumptions are linked to the possibility of computing an optimal strategy using an algorithm of dynamic 
programming [11].

https://doi.org/10.1016/j.ijar.2019.10.001



When the preference about the final states is purely qualitative (ordinal), i.e., we cannot assume more than a preference 
order on the consequences (on the leaves of the tree), captured by satisfaction degrees on an ordinal scale (the scale [0, 1]
is chosen for these degrees, but any ordered set can be used). Then the pessimistic maximin approach is often presented as 
a way to capture the behavior of (very) cautious DMs - the utility of a decision is the minimum of the utilities it may lead 
to. The Hurwicz criterion [7] is then advocated since it generalizes the pessimistic maximin and the optimistic maximax 
approaches and makes a “compromise” between these approaches, through the use of a coefficient α of optimism - the 
Hurwicz value being the linear combination, according to this coefficient, of the two criteria. Nevertheless, this approach 
does not suit qualitative, ordinal, utilities: the Hurwicz criterion proceeds to an additive compensation of the min value by 
the max value. Moreover, the criterion turns out to be incompatible with the above assumptions: it can happen that none 
of the optimal strategies is dynamically consistent nor consequentialist - as a consequence the optimization of this criterion 
cannot be carried out using dynamic programming.

Some authors tend to privilege Dynamic Consistency and Tree Reduction and are ready to give up Consequentialism 
(e.g., the Resolute Choice approach [1]). Other insists on the fact that Resolute Choice is not acceptable since a normally 
behaved decision-maker is consequentialist [9] - this leads them to use other approaches, based on Veto-process [9] and 
Ego-dependent process [2] (see also [8], [10] who follow the same idea - quitting Resolute Choice and applying conse-
quentialism - in nonqualitative problems). Then, the fundamental axiom of tree reduction is dropped, the structure of the 
decision tree affects the choices of the decision-maker, and the semantics of the criterion which is eventually optimized is 
defined in an operational way only.

In the present paper, rather than choosing which axiom to drop, we are looking for a new qualitative criterion which 
can take into account the level optimism/pessimism of the DM, like Hurwicz’s criterion, and satisfies the three properties 
stated above (Dynamic Consistency, Consequentialism and Tree Reduction). We then show that, because ordinal in essence (it 
uses min and max functions only), this criterion can be generalized to possibilistic decision trees, where both the utility 
degrees and their likelihood levels are evaluated on a qualitative scale.

The paper is structured as follows. The next Section presents the Hurwicz criterion, the background on decision trees 
under ignorance and the principle of dynamic programming. Section 3 then advocates the use of two qualitative uninorms, 
R∗ and R∗ , as alternatives to the Hurwicz criterion. Drowning them in the context of sequential decision making, we 
show that R∗ and R∗ are compatible with Dynamic Consistency and Consequentialism, and propose to apply an algorithm 
of dynamic programming to compute an optimal, consequentialist and dynamically consistent strategy. Section 4 finally 
presents a generalization of R∗ to the possibilistic case.

2. Background

2.1. The Hurwicz criterion

Let us first consider simple, non-sequential decision problems under ignorance: each decision δi is characterized by the 
multi set of final states Eδi = {si1, ..., simi } it can lead to. Given a utility function u capturing the attractiveness of each of 
these final states, δi can be identified with a simple lottery over the utility levels that may be reached: in decision under 
ignorance, where no probability distribution over the consequences of an act is available, a simple lottery is indeed the 
multiset1 of the utility levels of the sij , i.e. Lδi = 〈ui

1, ..., u
i
mi 〉 (where ui

j = u(sij)).

A usual way to take the optimism of the DM into account is to use the Hurwicz criterion [7]. The worth of δi is then:

H(δi) = H(Lδi ) = (1 − α) ·min(ui
1, ...,u

i
mi ) + α ·max(ui

1, ...,u
i
mi ) (1)

where α ∈ [0, 1] is the degree of optimism. H indeed collapses with the max aggregation when α = 1 (and with the min

aggregation when α = 0).

2.2. Decision trees

A convenient language to introduce sequential decision problems is through decision trees [11]. This framework proposes 
an explicit modeling in a graphical way, representing each possible scenario by a path from the root of the tree to one of 
its leaves. Formally, a decision tree T = (N , E) is such that N contains three kinds of nodes (see Fig. 1 for an example):

• D = {d0, . . . , dm} is the set of decision nodes (depicted by rectangles).
• LN = {ln1, . . . , lnk} is the set of leaves, that represent final states in S = {s1, . . . , sk}; such states can be evaluated

thanks to a utility function: ∀si ∈ S , u(si) is the degree of satisfaction of being eventually in state si (of reaching node
lni). For the sake of simplicity we assume, without loss of generality, that only leaf nodes lead to utilities.

• X = {x1, . . . , xn} is the set of chance nodes (depicted by circles).

1 A given utility level may be present several times, since labeling on several leaves.



Fig. 1. A decision tree.

For any node ni ∈N , Succ(ni) ⊆N denotes the set of its children. In a decision tree, for any decision node di , Succ(di) ⊆X : 
Succ(di) is the set of actions that can be chosen when di is reached. For any chance node xi, Succ(xi) ⊆ LN ∪D: Succ(xi)
is the set of possible outcomes of action xi - either a leaf node is observed, or a decision node is reached (and then a new 
action should be chosen).

When the problem is a problem of qualitative decision making under ignorance:

• the information at chance nodes is a list of potential outcomes - this suits situations of total ignorance, where no
probabilistic distribution is available.

• the preference about the final states is purely qualitative (ordinal), i.e., we cannot assume more than a preference order
on the consequences (on the leaves of the tree), captured by the satisfaction degrees. The scale [0, 1] is chosen for these
degrees, but any ordered set can be used.

Solving a decision tree consists in building a strategy, i.e. a function δ that associates to each decision node di an action
(i.e. a chance node) in Succ(di): δ(di) is the action to be executed when decision node di is reached. Let � be the set 
of strategies that can be built for T . We shall also consider the subtree Tn of T rooted at node n, and denote by �n its 
strategies: they are substrategies of the strategies of �.

Any strategy in � can be viewed as a connected subtree of T where there is exactly one edge (and thus one chance 
node) left at each decision node - skipping the decision nodes, we get a chance tree or, using von Neuwman and Morgern-

stern’s terminology, a compound lottery.2
Simple lotteries indeed suit the representation of decisions made at the last step of the tree: 〈u1, ..., uk〉 is the multiset of 

the utilities of the leaf nodes (ln1, ..., lnk) that may be reached when some decision x is executed. Consider now a decision 
x made at the penultimate level: it may lead to any of the decision nodes di in Succ(x), and thus to any of the simple 
lotteries Li = 〈ui

1, ..., u
i
mi 〉, di ∈ Succ(x) - the substrategy rooted in x defines the compound lottery 〈Li, s.t. di ∈ Succ(x)〉. The 

reasoning generalizes for decisions x at any level of the tree, hence the definition of the (possibly multi level) compound 
lottery Lδ associated to δ.

In order to apply a criterion, e.g. Hurwicz’s, a simple lottery is needed. To this extent the Reduction of the compound 
lottery relative to the strategy is computed, which is the simple lottery which gathers all the utilities reached by the inner 
lotteries. Formally, the reduction of a compound lottery L = 〈L1, ..., Lk〉 composed of lotteries Li is defined by:

Reduction(L) = 〈Reduction(L1), . . . ,Reduction(Lk)〉 (2)

where the reduction of a simple lottery is the simple lottery itself. For instance, if L is composed of simple lotteries 
(L1, ..., Lk), with Li = 〈ui

1, ..., u
i
ni

〉:
Reduction(L) = 〈u1

1, ...,u
1
n1

, ...,uk
1, ...,u

k
nk

〉 (3)

The principle of reduction makes the comparison of compound lotteries (and thus of strategies) possible: to compare 
compound lotteries by some criteria O , simply apply it to their reductions:

O (L) = O (Reduction(L)) (4)

For instance, considering the Hurwicz criterion, the preference relation over strategies is defined by:

δ 	H δ′ iff H(Reduction(Lδ)) 	 H(Reduction(Lδ′)) (5)

Optimality can now be soundly defined, at the global and the local levels:

2 Recall that a simple lottery L = 〈u1, ..., uk〉 is a multiset of utilities; a compound Lottery L = 〈L1, . . . , Lk〉 is a multiset of (simple or compound) lotteries.



Algorithm 1: Dynamic programming.

Input: decision tree T of depth p > 1, criterion O
Output: A strategy δ which is optimal for O , its value O (δ)

for ln ∈LN do
L(ln) = u(ln)

for t = p − 1 to 0 do
for d ∈ Dt do

// Dt denotes the decision nodes at depth t
for n ∈ Succ(d) do

L(n) = Reduction(〈L(n′), n′ ∈ Succ(n)〉)
V (n) = O (L(n))

δ(d) = argmaxn∈Succ(d) V (n)

L(d) = L(δ(d))

Return (δ, (d0))

• δ ∈ � is optimal for T iff

∀δ′ ∈ �, O (Reduction(Lδ)) � O (Reduction(Lδ′ ))
• δ ∈ �n is optimal for Tn iff

∀δ′ ∈ �n, O (Reduction(Lδ)) � O (Reduction(Lδ′ ))

In all the approaches that follow Equation (4), and in particular in the approach considered in this paper, Tree Reduction
is thus obeyed by construction.

Let us now consider Dynamic Consistency. An optimal strategy δ is said to be dynamically consistent iff for any decision 
node n, δn , the restriction of δ to node n and its descendent, is optimal for the subtree rooted in n. A criterion is said to be 
compatible with Dynamic Consistency if there is always an optimal strategy that is dynamically consistent.

The purely optimist (resp. pessimist) criterion, max (resp. min) is compatible with Dynamic Consistency - there always 
exist an optimal strategy whose substrategies are optimal. Unfortunately, the Hurwicz criterion is not compatible with 
Dynamic Consistency. Let us give a counter example:

Example 1. Consider the decision tree of Fig. 1 and α = 0.9; Strategy (d0 ← down, d1 ← down, d2 ← up) is optimal, with a 
Hurwicz value of 0.1 · 0.04 + 0.9 · 1 = 0.904; as a matter of fact (d0 ← down, d1 ← down, d2 ← down) has a Hurwicz value 
of 0.9 and all the strategies with d0 ← up or d1 ← up have a lower value. Hence the (only) optimal strategy prescribes “up” 
for d2. On the other hand, considering the tree rooted in d2, “up” has a H value equal to 0.684, while “down” has a H value 
equal to 0.864 - up is not the optimal strategy in this subtree. This counter example shows that Hurwicz is not compatible 
with Dynamic Consistency.

2.3. Dynamic programming

Consequentialism prescribes that the DM selects a plan looking only at the possible futures (regardless of the past or 
counterfactual history). This is the case when choosing, at each node n, the decision that maximizes O . Hence a conse-
quentialist strategy can be built starting from the anticipated future decisions and rolling back to the present. This is the 
idea implemented in the algorithm of dynamic programming (see Algorithm 1 where the depth of a node in the number 
of its predecessors, which simulates the behavior of such a consequentialist DM: the algorithm builds the best strategy by 
a process of backward induction, optimizing the decisions from the leaves of the tree to its root. Since each edge/node is 
passed through only one this algorithm is linear in the size of the tree, provided that both the reduction of lotteries and 
the computation of the value associated to a simple lottery (i.e. functions Reduction and O ) can be run in linear time.

As to correctness, one can roughly say that a transitive criterion is coherent with Consequentialism iff the strategy re-
turned by the algorithm of dynamic programming is optimal according to this criterion.

Unfortunately this is not always the case when optimality is based on the principle of Tree Reduction: rolling back the 
Hurwicz optimization at each node of the tree of Fig. 1 leads to strategy (d0 ← down, d1 ← down, d2 ← down) which is not
optimal according to Equation (4).

The correctness of dynamic programming actually relies on an important property, called weak monotonicity:

Definition 1. A preference criterion O over lotteries is said to be weakly monotonic iff whatever L, L′ and L′′:

L �O L′ ⇒ 〈L, L′′〉 �O 〈L′, L′′〉 (6)

Weak Monotonicity is an important property; indeed, when �O is complete and transitive, then the strategy returned 
by dynamic programming is optimal according to O . By construction, this strategy is dynamically consistent (any of its 
substrategies is optimal in its subtree), consequentialist and equivalent, according to O , to its reduction. In short, if a 



transitive criterion O satisfies weak monotonicity then strategy returned by dynamic programming is consequentialist and 
dynamically consistent.

3. R∗ and R∗ as criteria for decision making under ignorance

As we have seen in the previous Section, the Hurwicz criterion which is often advocated for decision making under ig-
norance suffers from several drawbacks for ordinal decision making. First of all it is neither so qualitative, since performing 
an compensation between the min value and the max value. Moreover, it fails to obey Dynamic Consistency and Consequen-
tialism. This is regrettable from a prescriptive point of view: when optimizing this criterion, the decision planned for a node 
is not necessarily the one that would be the best one if the tree rooted at this node were considered - when reaching this 
node, a Hurwicz maximizer would be tempted not to follow the plan. That is why we look for alternative generalizations of 
the maximax and maximin rules, which are qualitative and which, like Hurwicz, allow a balance between pure pessimism 
and pure optimism.

A first idea could be to adapt the formulation of the Hurwicz criterion to the qualitative setting, replacing the product 
by the min operator and the sum by the max operator.

HQ (δi) = max(min((1− α),min(ui
1, ...,u

i
mi )),min(α,max(ui

1, ...,u
i
mi ))) (7)

Unfortunately this simple adaptation of the Hurwicz criterion is not very satisfactory. Let us consider two decisions 
� = (0.1, 1) and © = (0, 0.1) with α = 0.1 i.e. a quite pessimistic DM. Remark that � is worse than © for both the maximin

criterion and the maximax criterion. On the other hand HQ (©) = max(min(0.9, 0), min(0.1, 0.1)) = 0.1 and HQ (�) =
max(min(0.9, 0.05), min(0.1, 1)) = 0.1. Hence � ∼HQ © while � �maxmin © and � �maxmax ©. Moreover, HQ does not 
satisfy the monotony principle, as shown by the following counter example:

Example 2. Let L = (0, 1), L′ = (0.5, 0.6) and L′′ = (0.5, 1) hence for α = 0.2 we have H(L) = 0.8 > H(L′) = 0.58 but H(L ∪
L′′) = 0.8 < H(L′ ∪ L′′) = 0.9.

In other terms, HQ does not satisfy the dynamic consistency principle- when reaching this node, a Hurwicz or a HQ

maximizer would be tempted not to follow the plan. We develop in the following another alternative to the Hurwicz 
criterion, based on the notion of uninorm.

3.1. An refresher on the R∗ and R∗ uninorms

The uninorm aggregators [16] are generalization of t-norms and t-conorms. These operators allow the identity element 
(e) to lay anywhere in the unit interval - it is not necessarily equal to zero nor to one, as required by t-norms or t-conorms,

respectively.

Definition 2. [16] A uninorm R is a mapping R : [0, 1] × [0, 1] → [0, 1] having the following properties:

1. R(a, b) = R(b, a) (Commutativity)

2. R(a, b) ≥ R(c, d) if a ≥ c and b ≥ d (Monotonicity)

3. R(a, R(b, c)) = R(R(a, b), c) (Associativity)

4. There exists some element e ∈ [0, 1], called the identity element, such that for all x ∈ [0, 1] R(x, e) = x.

It can be checked that the definition of t-norms (resp. t-conorms) is recovered when e = 1 (resp. e = 0). In this paper
we focus on two ordinal uninorms proposed by Yager [16]:

1. R∗ : [0, 1]n → [0, 1]:
• R∗(a1, ..., an) = min(a1, ..., an) if min(a1, ..., an) < e

• R∗(a1, ..., an) = max(a1, ..., an) if min(a1, ..., an) ≥ e

2. R∗ : [0, 1]n → [0, 1]:
• R∗(a1, ..., an) = min(a1, ..., an) if max(a1, ..., an) < e

• R∗(a1, ..., an) = max(a1, ..., an) if max(a1, ..., an) ≥ e

R∗ specifies that if one of the ai ’s is lower than e then the min operator is applied, otherwise max is applied. R∗ specifies 
that if one of the ai ’s is greater than e then the max operator is applied, otherwise min is applied. One can see that both 
R∗ and R∗ generalize the min and max uninorms, as Hurwicz does (min is recovered when e = 1, max when e = 0).

R∗ and R∗ constitute two different ways of generalizing the maximin and maximax criterion, and capture different types 
of behaviors of the DM. In the context of decision making under ignorance, we propose to interpret [0, e[ as an interval of 
hazards and [e, 1] as interval of desirable opportunities:



Fig. 2. Illustration of R∗ and R∗ . (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

1. When all the possible utilities lay in the hazardous interval, both R∗ and R∗ behave in a pessimistic way and evaluate
the lottery by its worst outcome.

2. When all the possible utilities lay in the interval of opportunity, both R∗ and R∗ behave in an optimistic way and
evaluate the lottery by its best outcome.

3. When some possible utility belongs to the hazardous interval and others in the interval of opportunities, R∗ returns a
pessimistic value (the worst one) while R∗ returns the best, optimistic, one.

Hence, in the simultaneous presence of hazards and opportunities, R∗ focuses on the hazards while R∗ focuses on the
opportunities. If we summarize, the comparison of strategies by R∗ and R∗ is made as follows:

• R∗: if one of the two strategies may lead to (at least) one opportunity, the DM prefers the strategy with the greatest
opportunity. If both lead surely into the interval of hazards, the DM prefers the more robust strategy.

• R∗: if one of the two strategies may lead to (at least) one hazardous utility, the DM prefers the more robust of the
strategies. If both are exempt of hazards, the DM prefers the one with the greatest opportunity.

In robust decision making, where performance guarantees are looked for, one will obviously apply the R∗ uninorm

because of its cautiousness. R∗ indeed appears as too adventurous: one single possible opportunity carries the final decision, 
and this even if all the other utilities lay in the hazard interval. On the contrary, R∗ looks for opportunity only when the 
required level of satisfaction, e, is guaranteed for all the possible outcomes.

Example 3. Let us consider three decisions � = (0.55, 0.55), � = (0.7, 0.39) and © = (0.9, 0.2) and e = 0.6 (see Fig. 2). The 
red zone contains the decisions that the DM would like to avoid because it is too hazardous; the decision in the green zone 
are desirable, since they lead to opportunities for sure. One can see (Fig. 2(a)) that if the DM uses R∗ , all the solutions are 
in the red zone hence she/he will select �. Conversely, if the DM uses R∗ (Fig. 2(b)), decision � is the only decision in the 
red zone and © will be selected.

Depending on the value of e ∈ [0, 1], the optimal solutions are:

• ∀e ∈ [0, 0.2] the optimal solution is © for both R∗ and R∗ .
• ∀e ∈ ]0.2, 0.39] for R∗: � and for R∗: ©
• ∀e ∈ ]0.39, 0.9] for R∗: � and for R∗: ©
• ∀e ∈ ]0.9, 1] the optimal solution is � for both uninorms.

Notice that � is favored by R∗ when the degree of guaranteed performance, e, is moderate (e ≤ 0.39). If a higher degree
of performance must be ensured, R∗ chooses � = (0.55, 0.55).

3.2. R∗ and R∗ in the sequential context

Let us now study the two uninorms in the context of sequential decision. Applying the principle of lottery reduction, we 
have:

δ �R∗ δ′ iff R∗(Reduction(δ)) � R∗(Reduction(δ′)) (8)

δ �R∗ δ′ iff R∗(Reduction(δ)) � R∗(Reduction(δ′)) (9)



Example 4. Let us go back to the example of Fig. 1 and focus first on criterion R∗ . The strategies that decide down for d2
are hazardous (they may reach s5, which has a utility of 0) and have a R∗ equal to 0 whatever the value of e. This is also 
the case for all the strategies that decide up for d0. Now,

• if e ∈ ]0, 0.04] (d0 ← down, d1 ← down, d2 ← up) is optimal, with R∗ = 1.

• if e ∈ ]0.04, 1] there are two optimal strategies, (d0 ← down, d1 ← up, d2 ← up) and (d0 ← down, d1 ← down, d2 ← up),

both with R∗ = 0.04.

It can be checked that each optimal strategy is dynamically consistent. For instance, R∗(d2 ← up), which is at least equal
to 0.04 (whatever e), is always greater than R∗(d2 ← down), which is always equal to 0.

If we consider R∗ , both (d0 ← down, d1 ← down, d2 ← down) and (d0 ← down, d1 ← down, d2 ← up) are optimal: their 
R∗ values are equal to 1, whatever the value e (and both are dynamically consistent).

Beyond this example, R∗ and R∗ behave well for sequential problems in the general case; indeed, both are compatible 
with Dynamic Consistency and Consequentialism. The reason is that, contrarily to the Hurwicz criterion, they satisfy weak 
monotonicity:

Proposition 1. R∗ and R∗ satisfies weak monotonicity.

A direct consequence of Proposition 1 is that both uninorms can be optimized by dynamic programming. The optimiza-

tion leads to strategies which are consequentialist and dynamically consistent; it follows that the uninorms R∗ and R∗ are 
compatible with Dynamic Consistency, Consequentialism and Tree Reduction.

As already outlined, compatibility with Dynamic Consistency guarantees that the DM cannot be tempted to deviate from 
the plan during its execution. Because R∗ is consequentialist, the evaluation of a decision can be conservative at some node 
in the tree (because hazard cannot be excluded) and become optimistic when some safer point is reached (e.g. at node d1
when e ≤ 0.08). On the example of Fig. 1, with e = 0.05, R∗ compares the min values of the two candidate decisions at node 
d2, but is optimistic at node d1: all the outputs that can be reached from d1 are greater than 0.05, i.e. all the decisions are 
safe when d1 is reached. Similar examples can be built for R∗ (which is nevertheless less in accordance with the intuition, 
since pessimism is taken into account only when no opportunity is available).

A last algorithmic advantage of R∗ and R∗ is that they are associative (like any uninorm). This allows dynamic program-

ming to memorize, for each node, the value of the corresponding reduced lottery rather than the lottery itself.

Definition 3. A criterion O satisfies the decomposition principle iff whatever L, L′ , O (〈L, L′〉) = O (〈O (L), O (L′)〉).

Proposition 2. R∗ and R∗ satisfy the decomposition principle.

Algorithm 1 thus directly applies, replacing O by R∗ (resp. R∗).

3.3. Discussion: R∗ and R∗ vs. Hurwicz

Let us now focus on the comparison between the uninorms (and especially on R∗ , which has a well founded inter-
pretation in terms of robustness) and the Hurwicz criterion. All are generalization of the maximax and maximin criteria, 
allow a tuning between optimism and pessimism, and extend to sequential problems through the application of the lottery 
reduction principle.

The first remark is that R∗ can capture the desiderata of a DM who is looking for guarantees of performance, the level of 
performance being represented by e. This kind of requirement cannot be captured by the Hurwicz criterion, unless α = 0, 
i.e. unless Hurwicz collapses with the min (and also collapses with R∗ and with R∗ , setting e = 0).

Our running example also shows that Hurwicz can be very adventurous even for small positive α’s: (d0 ← down, d1 ←
down, d2 ← up) might reach a very low utility (0.08) is indeed optimal for Hurwicz as soon as α > 0. This strategy will on
the contrary be considered as too hazardous for R∗ , unless a low level (e < 0.08) of guaranteed performance is looked for.

Moreover, the behavior of Hurwicz’s approach may appear chaotic in its way to move from pessimism to optimism.

Consider again Example 3: � = (0.55, 0.55) and © = (0.2, 0.9) are the min optimal and max optimal solutions, respectively.
The max (resp. the min) value of � lays between the ones of � and ©, so � = (0.39, 0.7) appears as an intermediate

solution between � and © (see Fig. 2). Nevertheless, � is never optimal for Hurwicz. It can indeed be checked than
H(�) = 0.55 whatever α. H(�) = 0.545 at α = 0.5. When α ≤ 0.5, H(�) < 0.55 = H(�); when α ≥ 0.5 H(©) ≥ H(�),

because H(©) increases faster than H(�). Hence a slight variation of α makes Hurwicz jump directly from the pessimistic

solution � to the very optimistic solution ©, without considering �, which is Pareto optimal and intermediate between �
and ©.

If we look at the formal properties that may be sought for, the first difference is that the uninorms are purely ordinal.
They do not need to assume that the utilities are additive to some extent, while Hurwicz is basically an additive crite-



rion. The second one is their associativity - a basic property that is not satisfied by the Hurwicz’s aggregation (for instance 
H((1, 0), (0)) = α2 while H((1, 0, 0)) = α). Because of the property of associativity, the application of R∗ and R∗ to com-

pound lotteries satisfies decomposition, while this is not the case when Huwicz’s criterion is used. Last but not least, R∗
and R∗ are compatible with Dynamic Consistency and Consequentialism, while Hurwicz is not.

A first, practical consequence is that a polynomial algorithm of dynamic programming can be designed to find consequen-
tialist and dynamically consistent optimal solutions. Moreover, decomposition allows dynamic programming to memorize, 
for each node, the R∗ and R∗ value of the corresponding reduced lottery rather than the lottery itself.

Dynamic Consistency and Consequentialism are also important from a prescriptive point of view. Because the R∗ and R∗
optimal strategies are dynamically consistent, the DM will never be tempted to deviate from it - we have seen on Example 1

that Hurwicz does not prevent for such deviations.
Consequentialism says that the value of a (sub)strategies only depends on the future consequences - R∗ and R∗ never 

care of “parallel”, counter factual worlds. As we have seen, Hurwicz is not compatible with this principle: what happens in 
a world (e.g., in Example 1 in d2 when up is chosen for d2) may influence the decision in an independent, parallel world 
(here, in d1). Indeed, Hurwicz will always prefer d1 ← down to d1 ← up even in case of a very low - but positive - degree 
of optimism. This is due to the fact the low value (0.04) for s3, which is not a descendent of d1 but of d2, masks the 0.08
utility of s2.

4. Possibilistic generalizations of uninorm R∗

In the previous sections, we have made an assumption of total ignorance: all the consequences of a given lottery are
equally possible. Possibility theory [17,3] allows to capture more information while staying in the ordinal context - the 
idea is to rank the consequences from the totally possible ones to the impossible ones. Following Dubois and Prade’s 
possibilistic approach of decision making under ordinal uncertainty [4], a decision can be represented by a normalized 
possibility distribution on a set of utility degrees and evaluated either in a pure pessimistic way, using a Sugeno integral 
based on a necessity measure or on a pure optimistic way, using a Sugeno integral based on a possibility measure. We show 
in the following how to generalize the R∗ uninorm to possibilistic lotteries, thus providing a new possibilistic criterion 
which takes the level optimism/pessimism of the DM into account.

4.1. A refresher on possibilistic decision making

The basic component of possibility theory is the notion of possibility distribution. It is a representation of a state of 
knowledge of an agent about the more or less possible values of a variable x taking its values on a referential S . Let 
� = {λ1, ..., λn} be a bounded ordered scale; by convention and without any loss of generality, we set λi > λi+1; typically 
λ1 = 1 and λn = 0. A possibility distribution π is simply a mapping from S to �: for a value s ∈ S , π(s) = 1 means that s
is totally possible and π(s) = 0 means that s is an impossible value. It is generally assumed that there exists at least one 
value s which is totally possible: π is said then to be normalized.

In the possibilistic framework, extreme forms of knowledge can be captured, namely:

• Complete knowledge i.e. ∃ s ∈ S s.t. π(s) = 1 and ∀ s′ �= s, π(s′) = 0.

• Total ignorance i.e. ∀s ∈ S, π(s) = 1 (all values in S are possible).

From π one can compute the possibility and the necessity of any event A ⊆ S:

�(A) = max
s∈A

π(s) (10)

N(A) = 1− �( Ā) = 1−max
s/∈A

π(s) (11)

� estimates to what extent A is compatible with the knowledge captured by π , and its conjugate, the necessity measure, 
estimates to what extent A is implied (to what extent a value outside A is unlikely).

Following Dubois and Prade’s possibilistic approach of decision making under uncertainty [4], a simple possibilistic lot-
tery L is a normalized possibility distribution on a set of utility degrees, both being expressed in the same ordered scale 
(�). L will denote the set of lotteries that can be built on �. We often write the lotteries as vectors L = 〈π1/λ1, ..., πn/λn〉
with πi ∈ �. πi is the possibility degree of getting utility λi according to the decision captured by L. For the sake of brevity, 
the λi such that πi = 0 are often omitted in the notation of a lottery (e.g. 〈1/0.8〉 denotes the lottery that provides utility 
0.8 for sure, all the other utility degrees being impossible). The normalization conditions imposes that one of the πi is equal 
to λ1 (to 1). The set of nonimpossible utility degrees is called the support of the lottery (we denote it SL ).

Dubois and Prade [4,5] propose to use the possibilistic Sugeno integrals to evaluate the global utility of a possibilistic 
lottery. Recall that for any capacity function γ :

Sugγ (L) = max
λi∈�

min(λi, γ (L ≥ λi)) (12)



γ (L ≥ λi) estimates to what extent it is likely that L leads to a utility greater than λi . In the possibilistic case, two 
measures, N and � shall be used. Hence the definition of two possibilistic global utilities:

SugPES(L) = max
λi∈�

min(λi,N(L ≥ λi)) (13)

SugOPT(L) = max
λi∈�

min(λi,�(L ≥ λi)) (14)

where, according to Equations (10) and (11):

N(L ≥ λi) = 1−max
j<i

π j (15)

�(L ≥ λi) = max
j≤i

π j (16)

When the lottery is normalized, the two possibilistic Sugeno integrals can be rewritten directly with respect to the 
possibility distribution [5,6]:

SugPES(L) = min
λi

max(1− πi, λi) (17)

SugOPT(L) = max
λi

min(πi, λi) (18)

In other terms, a lottery is attractive according to SugPES when the possibility of getting a low utility degree is low - this 
measure suits cautious DMs. The second measure rather suits adventurous, optimistic DMs; indeed, a lottery is attractive 
according to SugOPT as soon as a good utility degree is possible. Of course, SugPES(L) ≥ minλ∈SL λ and SugOPT(L) ≥ minλ∈SL λ.

After having defined the two criteria on simple lotteries, [4] generalizes the notion of composition of lotteries to the 
possibilistic case: a compound lottery 〈π1/L1, . . . , πm/Lm〉 is a possibility distribution over a set of lotteries.

SugPES and SugOPT can be extended to compound lotteries thanks to the possibilistic principle of lottery reduction: for any 
compound lottery L = 〈π1/L1, . . . , πm/Lm〉, Reduction(L) is the simple lottery that associates to each of the λi the possibility 
degree

πi = max
L j∈L

min(π j,π
j
i ) (19)

π
j
i denoting the possibility of getting λi though lottery L j and π j denoting the possibility of getting L j .

The principle of lottery reduction allows the comparison of compound lotteries to any other lottery: L is preferred to L′
iff its reduction is preferred to the one of L′ .

L �PES L
′ iff SugPES(Reduction(L)) � SugPES(Reduction(L

′))

L �OPT L′ iff SugOPT(Reduction(L)) � SugOPT(Reduction(L
′))

The principle of monotonicity and the principle of decomposition extend easily to the possibilistic case, and are satisfied 
by SugPES and SugOPT :

Definition 4. A preference criterion O over possibilistic lotteries is said to be weakly monotonic iff whatever L, L′ and L′′ , 
whatever α, β such that max(α, β) = 1:

L 	O L′ ⇒ 〈α/L, β/L′′rangle 	O 〈α/L′, β/L′′〉 (20)

Definition 5. A preference criterion O over possibilistic lotteries is said to satisfy the principle of decomposition iff whatever 
L and L′ , whatever α, β such that max(α, β) = 1:

O (〈α/L, β/L′′〉) = O (〈α/O (L),β/O (L′)〉) (21)

Proposition 3. Whatever α, β, L, L′, it holds that

• SugPES(Reduction(〈α/L, β/L′〉) = SugPES(〈α/SugPES(L), β/SugPES(L
′)〉)

• SugOPT(Reduction(〈α/L, β/L′〉) = SugOPT(〈α/SugOPT(L), β/SugOPT(L
′)〉)

• if L �PES L
′ then 〈α/L, β/L′′〉 �PES 〈α/L′, β/L′′〉

• if L �OPT L′ then 〈α/L, β/L′′〉 �OPT 〈α/L′, β/L′′〉



Fig. 3. A possibilistic decision tree.

Fig. 4. Hazardous (in red) and desirable (in green) lotteries in a possibilistic decision tree.

This proposition is due to [4]; in this seminal paper, Dubois and Prade propose a representation theorem for SugPES and 
SugOPT which is precisely based on the properties and monotonicity, lottery reduction and certainty equivalence.

[14] have extended decision trees to the possibilistic case. In a possibilistic decision tree (�-tree) the edges outgoing
from the chance nodes are labeled by the possibility of being in the subsequent node when the decision represented 
by the chance node is executed (see Fig. 3). Together with lottery reduction, monotonicity and decomposition allow the 
computation of a SugPES (resp. SugOPT ) optimal policy by dynamical programming, as shown by [12]. Algorithm 1 applies, 
replacing O by SugPES (resp. SugOPT ) and reducing the lotteries according to Equation (19).

Example 5. Fig. 3 describes a possibilistic decision tree with three decision nodes. At each decision node, two decisions are 
available, up and down. The optimistic optimal decision at d1 is up since this decision can lead with great possibility to 
utility 1. On the contrary, the pessimistic optimal decision at d1 is down since d1 ← up can lead with possibility 1 to utility 
0. The pessimistic and optimistic optimal strategies (δP E S and δO P T ) are also represented on Fig. 3.

4.2. A possibilistic generalization of R∗: UR∗

The pessimistic possibilistic Sugeno integral generalizes the min uninorm - indeed, using Equation (17) it is easy to 
show that when all the degrees in SL have a possibility degree equal to 1, SugPES(L) simply computes the minimun of these 
degrees. Likewise, Equation (18) shows that the optimistic Sugeno integral generalizes the max uninorm. In the previous 
sections, we have advocated the use of R∗ as way to arbitrate between the max and min uninorms in decision making under 
total ignorance. In the following, we are looking for generalization of R∗ to possibilistic lotteries, extending the principles 
defined by this uninorm to decision under ordinal uncertainty.

Recall that the principle at work in R∗ is to look for opportunity only when the required level of satisfaction, e, is 
guaranteed for all the possible outcomes: R∗ distinguishes two families of decisions, the desirable ones and the hazardous 
ones, with respect to a neutral level e. The hazardous ones are evaluated in a pessimistic way (according to the min

uninorm) and the desirable ones in an optimistic way (according to the max uninorm). Following this principle, we define 
in the present section a possibilistic generalization of R∗ which compares the utilities to which a possibilistic lottery may 
lead to a neutral level, and propose to use a pessimistic possibilistic Sugeno integral for hazardous levels of utility, and to 
use an optimistic one for desirable ones. Formally, for any L = 〈π1/λ1, . . . , πn/λn〉:

Definition 6.

• L is hazardous (with respect to e ∈ �) iff ∃λi < e such that πi > 0;

• L is desirable (with respect to e ∈ �) iff ∀λi such that πi > 0, λi ≥ e.

In other terms, a lottery is said to be hazardous if and only if getting a utility lower than e is not impossible. A lottery 
is desirable if it always leads to a utility at least equal to e. Fig. 4 distinguishes the hazardous and desirable lotteries of the 
decision tree of Fig. 3.

We can now propose the following possibilistic generalization of R∗:



Fig. 5. Evolution of the worst SugPES with respect to e (UR∗ criterion).

Definition 7. UR∗ : L → �:{
UR∗(L) = maxλi |λi<e(min(λi,N(L ≥ λi)) if L is hazardous

UR∗(L) = maxλi |λi≥e(min(λi,�(L ≥ λi)) otherwise
(22)

Example 6. Let � = {1, 0.75, 0.5, 0.25, 0} and consider the three following lotteries L1 = 〈0.75/0.25, 1/0.5, 1/1〉, L2 =
〈1/0, 0.5/0.5, 1/0.75〉 and L3 = 〈0.25/0.25, 1/0.7, 0.75/1〉. Suppose that the DM would like avoiding the utility degrees 
below 0.5 - so e = 0.5. So, the three lotteries are hazardous and we have UR∗ (L1) = 0.25, UR∗ (L2) = 0 UR∗ (L3) = 0.25

L1 ∼ L3 � L2. L1 and L3 are equivalent while L1 is more hazardous. Lottery L4 = 〈1/0.5, 0.75/0.75, 0.75/1〉 is desirable, with 
UR∗ (L4) = 0.75.

According to this criterion, a hazardous lottery is evaluated on the basis of the hazardous utilities only and according to 
the pessimistic possibilistic Sugeno integral (i.e. following the necessity measure). When the lottery is desirable, then it is 
evaluated on the basis of the desirable utilities and according to the optimistic posibilistic Sugeno integral.

We now check that UR∗ is a generalization of SugPES , SugOPT and R∗:

Proposition 4.

• If e = 0, then UR∗ = SugOPT
• If e = 1, then UR∗ = SugPES
• If all the utilities in the support of L have a possibility degree equal to 1, UR∗(L) = R∗(SL).

To better understand the relationships between UR∗ and SugPES , we have randomly generated 500 samples of simple

decision problems, each containing 50 simple lotteries over �. For each problem, and each value of e in �, all UR∗ optimal 
solutions have been computed, and the worst of their SugPES values retained - the different UR∗ optimal solutions to a 
given problem may indeed lead to different values of SugPES , unless e = 1 (in this case indeed, UR∗ is equivalent to SugPES). 
We denote this worst value SugPES . The average (over the 500 problems) of SugPES is a function of e, which is reported at 
Fig. 5 for � containing 20 positive level (the size of scale do not modify the shape of the curve). We can see that when e
increases the minimal value of SugPES over the set of optimal solutions increases too. At e = 1 (where UR∗ is equivalent to 
SugPES) UR∗ reach the maximal value of SugPES (0.719 in average) and decreasing slowly when e decrease - this shows that 
UR∗ really capture a notion of robustness.

We now give the main results of this Section: like R∗ , SugPES and SugOPT , UR∗ does satisfy the principles of weak 
monotonicity and decomposition:

Proposition 5. UR∗(Reduction(〈α/L, β/L′〉)) = UR∗ (〈α/UR∗ (L), β/UR∗ (L
′)〉)



Proposition 6. UR∗ is weakly monotonic

These two propositions allow the computation of R∗ optimal strategies by Dynamical Programming: Algorithm 1 can be 
adapted, replacing O by UR∗ and reducing the lotteries according to Equation (19).

Algorithm 2: Applying Dynamic Programming to optimize UR∗ in a possibilistic decision tree.
Input: decision tree T of depth p > 1, criterion O
Output: A strategy δ which is optimal for O , its value O (δ)

for ln ∈LN do
V (ln) = u(ln)

for t = p − 1 to 0 do
for d ∈ Dt do

// Dt denotes the decision nodes at depth t
for n ∈ Succ(d) do

// Reduction
for λi ∈ � do

πn[λi ] = 0

for n′ ∈ Succ(n) do
πn[V (n′)] = max(πn[V (n′)], πn

n′ )

V (n) = UR∗ (π
n)

δ(d) = argmaxn∈Succ(d) V (n)

V (d) = V (δ(d))

Return (δ, (d0))

4.3. Alternative generalizations of R∗ and discussion

4.3.1. UR∗ vs Hurwicz

If we would like to apply the principles of the Hurwicz criterion to possibilistic lotteries, a first way to balance between 
optimism and pessimism could be to combine SugPES and SugOPT following Hurwicz’s aggregation:

UH (L) = (1 − α).SugPES(L) + α.SugOPT(L))) (23)

Hurwicz’s criterion is recovered when all the degrees in SL have a possibility degree equal to 1. In a sequential and 
qualitative context, this proposition is as unsatisfactory as Hurwicz’s criterion: it proceeds to an additive compensation of 
two ordinal evaluations, and does not satisfy weak monotonicity. More generally, since UR∗ does satisfy these two properties, 
and is a generalization of R∗ , all the arguments developed in the comparison of R∗ and Hurwicz’s criterion (Section 3.3) 
apply here.

An extension of the qualitative variant of the Hurwicz criterion, HQ (Equation (7)) can also be proposed:

UHQ (L) = max(min(1 − α), SugPES(L),min(α, SugOPT(L))) (24)

But even if purely ordinal, this proposition is not satisfactory either in the sequential context: as a generalization of 
Hurwicz criterion, HQ does not obey weak monotonicity (Counter-Example 2 applies).

In summary, UR∗ overcomes the drawbacks of Hurwicz’s approaches of possibilistic decision, just like R∗ does in decision 
under ignorance.

4.3.2. Alternative generalizations of R∗
We present in this subsection alternative generalizations of R∗ that could seem more direct, and compare them to UR∗
The spirit of the first one, is the same than the one of UR∗ : be pessimistic if the lottery is hazardous, and optimistic 

otherwise.

Definition 8. OR∗ : L → �:{
OR∗(L) = SugPES(L) if L is hazardous

OR∗(L) = SugOPT(L) otherwise

R∗ is recovered when L is a zero/one lottery (πi = 1 if λi ∈ SL , πi = 0 otherwise). The slight difference between OR∗ and 
UR∗ is that the pessimistic evaluation uses all the degrees of utility in the first case, while only the degrees lower than e are 
used in the second case - when L is hazardous UR∗ (L) = maxλi |λi<e(min(λi, N(L ≥ λi)) while OR∗(L) = maxλi

(min(λi, N(L ≥
λi)).



Fig. 6. A counter example to the monotonicity of OR∗ .

It should be noticed that when L and L′ are hazardous OR∗ refines UR∗ , i.e.: UR∗(L) > UR∗ (L
′) =⇒ O R∗(L) > OR∗(L′). 

But OR∗ can exhibit a counter-intuitive behavior when hazardous lotteries are compared to desirable ones: a hazardous 
lottery can be preferred to a desirable one ! For instance, let e = 0.2 L = 〈0.1/0, 1/1〉 and L′ = 〈1/0.2〉 hence L is hazardous 
and L′ is desirable but OR∗(L) = 0.9 > OR∗(L′) = 0.2. Last but not least drawback, OR∗ does not satisfy dynamic consistency 
and monotonicity, as shown by the following counter example:

Example 7. Let us consider a sequential problem with 2 decisions represented in Fig. 6, with � = {1, 0.9, 0.8, 0.7, 0.6, 0.5,
0.4, 0.3, 0.2, 0.1, 0} and e = 0.4. The strategy optimal for OR∗ is d1 ← down and d2 ← down (OR∗ = 0.7); But if the DM 
reaches decision node d2, decision d2 ← up receives a higher OR∗ value than decision d2 ← down. In other terms, dynamic 
consistency and monotonicity are not satisfied.

Notice that the OR∗ degree of the strategy optimal for UR∗ , namely d1 ← down and d2 ← up, is equal to 0.6, i.e. is lower 
than the one of d1 ← down and d2 ← down.

Another idea could be to take the degrees of possibility of the elements of SL into account while deciding whether L
is hazardous or not (contrarily to UR∗ and OR∗ which consider the elements of the support of the lottery, but not their 
possibility degrees). This leads to the following straightforward generalization of R∗ , which evaluates a lottery L by its 
pessimistic Sugeno value, SugPES(L), when this value is lower than the degree e of optimism, and by its optimistic Sugeno 
value otherwise:

Definition 9. PR∗ : L → �:{
PR∗(L) = SugPES(L) if SugPES(L) < e

PR∗(L) = SugOPT(L) otherwise

If πi ∈ {1, 0}, ∀i = 1, ..., n then we get back to the uninorm R∗: in this case indeed SugPES(L) = mini|πi=1(λi) and 
SugOPT(L) = maxi|πi=1(λi).

Example 8. Let � = {1, 0.75, 0.5, 0.25, 0} and consider the three following lotteries L1 = 〈0.75/0.25, 1/0.5, 1/1〉, L2 =
〈0.25/0, 0.5/0.5, 1/0.75〉 and L3 = 〈0.25/0.5, 1/1〉.

Suppose that the DM would like avoiding values of SugPES below 0.5 - so e = 0.5. It is easy to check that SugPES(L1) =
0.25, SugPES(L2) = 0.5, and SugPES(L3) = 0.75. So, L1 is evaluated in a cautious way (by SugPES) while the optimistic aggrega-
tion is used for L2 and L3: SugOPT(L2) = 0.75 and SugOPT(L3) = 1. We get PR∗(L1) = 0.25, PR∗(L2) = 0.75 and PR∗(L3) = 1. 
The preference is thus L3 �PR∗ L2 �PR∗ L1.

Notice that both L1 and L3 can lead to a high utility (both consider that utility 1 is totally possible) but L1 is very 
hazardous (the possibility of getting 0.25 by L1 is equal to 0.75) while the lowest nonimpossible utility with L3 is 0.5. L2
is preferable to L1 since the possibility of getting a bad utility with L2 does not exceeds 0.25.

If the DM were more optimistic, setting for instance e = 0.25 (from level 0.25 all the utility degrees are considered as 
desirable opportunities) the preference relation would rather be L3 ∼PR∗ L1 �PR∗ L2.

This criterion is radically different from the two other generalizations of R∗ , namely OR∗ and UR∗ , since with PR∗ the 
hazardous area is defined from the aggregation of possibility and utility degrees. The following definition allows us to depict 
the area of lotteries which are hazardous for PR∗ in a dimensional space (see Fig. 7(a)).

Definition 10. A lottery is hazardous for criterion PR∗ iff ∃i = 1, ..., n s.t.λi < e and πi > 1 − e.

Proposition 7. SugPES(L) < e iff L is hazardous.

Example 9. Let us illustrate the two dimensional visualization of hazardous and desirable lotteries (Fig. 7). Suppose that 
e = 0.75. Consider lotteries L1 = (〈0.75/0.25, 1/0.5, 1/0.75〉 and L2 = 〈0.25/0, 0.5/0.25, 0.25/0.5, 1/0.75〉. L1 is in the PR∗



Fig. 7. A two dimensional view of the hazardous areas (with e = 0.75); a lottery (for instance © ans �) is represented by points (λi ,πi) in � × �.

hazardous area while L2 is not (see Fig. 7(a)) This area is different from the hazardous area of OR∗/UR∗ (depicted in 
Fig. 7(b)).

Nevertheless, like OR∗ , PR∗ fails to satisfy dynamic consistency and monotonicity, as shown by the following counter 
example. That is why it cannot be used in the sequential context.

Example 10. Let � = {1, 0.8, 0.6, 0.4, 0.2, 0}, e = 0.4 L = 〈1/0.2〉, L′ = 〈1/1, 1/0〉. SugPES(L′) = 0 < e and SugPES(L) = 0.2 < e: 
L and L′ are hazardous. So SugPES is used to rank the lotteries and we get L′ ≺PR∗ L.

Consider now the two compound lotteries 〈0.6/L, 1/L′′〉 and 〈0.6/L′, 1/L′′〉 where L′′ = 〈1/0.4〉 so Reduction(〈0.6/L, 1/L′′〉)
= 〈0.6/0.2, 1/0.4〉 and Reduction(〈0.6/L′, 1/L′′〉) = 〈0.6/1, 0.6/0, 1/0.4〉. We have:

SugPES(Reduction(〈0.6/L, 1/L′′〉)) = SugPES(Reduction(〈0.6/L′, 1/L′′〉)) = 0.4: the two compound lotteries are desirable.
So PR∗ uses SugOPT to rank them.

Since SugOPT(Reduction(〈0.6/L, 1/L′′〉)) = 0.4 and SugOPT(Reduction(〈0.6/L′, 1/L′′〉)) = 0.6 we get 〈0.6/L′, 1/L′′〉 �PR∗
〈0.6/L, 1/L′′〉 while L′ ≺PR∗ L.

5. Conclusion

In this paper, we have shown how the R∗ and R∗ uninorms can be used for sequential decision under qualitative
uncertainty. They constitute an appealing alternative to Hurwicz’s criterion to model the behavior of a DM who is neither 
purely optimistic nor purely pessimistic: an optimal strategy can be computed in polytime, which satisfies Tree reduction, 
Consequentialism and Dynamic Consistency. Moreover, these utilities are purely qualitative. It is then natural to extend them 
to possibilistic (qualitative) decision trees [14]. We have thus proposed a possibilistic generalization of R∗ , and shown that it 
preserves the main properties of R∗ , namely decomposability and weak monotonicity. An optimal strategy can be computed 
in polytime (by dynamic programming) which satisfies the three natural assumptions of sequential decision making. In 
robust decision making, where performance guarantees are looked for, is a natural domain of application for the R∗ uninorm 
(R∗ is on the contrary too adventurous: one single possible opportunity carries the final decision, and this even if all the 
other utilities lay in the hazard interval). The possibilistic generalization of R∗ has not been presented in the paper for the 
sake of brevity, and above all because it is less interesting in decision domains, but it is easy to develop and obeys the same 
properties.

The present work relies on a simple sequential framework, namely (possibilistic) decision trees. It can directly be applied 
to finite horizon possibilistic Markov decision processes [14] which are acyclic oriented decision graphs - the sole difference 
with decision trees is that a given decision node can be reached from several chance nodes - the algorithm is unchanged. 
The case of infinite horizon possibilistic Markov decision process [13] is one of the short term perspectives of the present 
work.

Beyond the application to sequential decision making, the present work extends a uninorm (R∗), which aggregates a vec-
tor, to a bi-dimensional problem (a possibilistic lottery is matrix: the first line contains the utilities and the second line their 
degrees of possibility). The generalization of uninorms to bi-dimensional problems, and more generally to multi-dimensional 
problems, is an exciting question for further research.
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Appendix A

Proofs of Section 3

Proof of Proposition 1. For the sake of brevity, R∗(Reduction(〈L, L′〉)) will be written R∗(〈L, L′〉) in the following.

Because R∗ and R∗ are associative, R∗(〈L, L′〉) = max(R∗(L), R∗(L′) and R∗(〈L, L′〉) = max(R∗(L)), R∗(L′)).
Suppose that L1 	R∗ L2. This happens in three cases:

• max(u1
1, ..., u

1
n1

) ≤ max(u2
1, ..., u

2
n2

): (a) L3 has its smallest element (u∗) smaller than e hence:

R∗(〈L1, L3〉) = u∗ = R∗(〈L2, L3〉) or (b) all elements are greater than e hence R∗(〈L1, L3〉) = max(R∗(L1), R∗(L3)) ≤
max(R∗(L2), R∗(L3)) = R∗(〈L2, L3〉).

• min(u1
1, ..., u

1
n1

) ≤ min(u2
1, ..., u

2
n2

) whatever L3 we have:
R∗(〈L1, L3〉) = min (R∗(L1), R∗(L3)) ≤ min(R∗(L2), R∗(L3)) = R∗(〈L2, L3〉).

• min(u1
1, ..., u

1
n1

) ≤ max(u2
1, ..., u

2
n2

) that implies that min(u2
1, ..., u

2
n2

) ≥ e so whatever L3 we have R∗(〈L1, L3〉) =
min(R∗(L1), R∗(L3)) and R∗(〈L2, L3〉) = R∗(L3) or R∗(L2) hence R∗(〈L1, L3〉) ≤ R∗(〈L2, L3〉).

So, R∗ is satisfies weak monotonicity.

Suppose that L1 	R∗ L2. This happens in three cases:

• max(u1
1, ..., u

1
n1

) ≤ max(u2
1, ..., u

2
n2

) whatever L3 we have:
R∗(〈L1, L3〉) = max (R∗(L1), R∗(L3)) ≤ max (R∗(L2), R∗(L3)) = R∗(〈L2, L3〉).

• min(u1
1, ..., u

1
n1

) ≤ min(u2
1, ..., u

2
n2

) so we have:
max(u1

1, ..., u
1
n1

, u2
1, ..., u

2
n2

) < e hence if L3 has its largest element greater than or equal to e we have R∗(〈L1, L3〉) =
R∗(L2, L3) else R∗(〈L1, L3〉) = min(R∗(L1), R∗(L3)) ≤ min(R∗(L2), R∗(L3)) = R∗(〈L2, L3〉).

• min(u1
1, ..., u

1
n1

) ≤ max(u2
1, ..., u

2
n2

) that implies that:
max(u1

1, ..., u
1
n2

) < e so we have:
R∗(〈L1, L3〉) = R∗(L3) if max(u3

1, ..., u
3
n2

) ≥ e else min(R∗(L1), R∗(L3)) and R∗(〈L2, L3〉) = max(R∗(L2), R∗(L3)) hence

R∗(〈L1, L3〉) ≤ R∗(〈L2, L3〉).

So, R∗ is satisfies weak monotonicity. �
Proof of Proposition 2. A criterion O satisfies the decomposition principle iff whatever L, L′ , O (〈L, L′〉) = O (〈O (L), O (L′)〉).

We must prove that R∗(〈L1, L2〉) = R∗(〈R∗(L1), R∗(L2)〉) (resp. R∗(〈L1, L2〉) = R∗(〈R∗(L1), R∗(L2)〉)).
For R∗ we can distinguish three cases: (1) only one of the lotteries has an element greater or equal than e (suppose that 

is L1); (2) both have an element greater or equal than e ; (3) none of them has an element greater than e.

1 R∗(L1) = max(u1
1, ..., u

1
n1

) ≥ e and R∗(L2) = min(u2
1, ..., u

2
n1

) < e so R∗(〈R∗(L1), R∗(L2)〉) = max(R∗(L1), R∗(L2)) =
R∗(〈L1, L2〉)

2 R∗(L1) = max(u1
1, ..., u

1
n1

) and R∗(L2) = max(u2
1, ..., u

2
n1

) so R∗(〈R∗(L1), R∗(L2)〉) = R∗(〈L1, L2〉)
3 R∗(L1) = min(u1

1, ..., u
1
n1

) and R∗(L2) = min(u2
1, ..., u

2
n1

) so R∗(〈R∗(L1), R∗(L2)〉) = R∗(〈L1, L2〉).

For R∗ we can distinguish three cases: (1) only one of lotteries has all these elements greater or equal than e (suppose 
that is L1); (2) both have all these elements greater or equal than e; (3) none of them has all these elements greater than 
e.

1 R∗(L1) = max(u1
1, ..., u

1
n1

) ≥ e and R∗(L2) = min(u2
1, ..., u

2
n1

) < e so R∗(〈R∗(L1), R∗(L2)〉) = min(R∗(L1), R∗(L2)) =
R∗(L2) and R∗(〈L1, L2〉) = min(u1

1, ..., u
1
n1

, u2
1, ..., u

2
n1

) = R∗(L2)
2 R∗(L1) = max(u1

1, ..., u
1
n1

) and R∗(L2) = max(u2
1, ..., u

2
n1

) so R∗(〈R∗(L1), R∗(L2)〉) = R∗(〈L1, L2〉)
3 R∗(L1) = min(u1

1, ..., u
1
n1

) and R∗(L2) = min(u2
1, ..., u

2
n1

) so R∗(〈R∗(L1, R∗(L2)〉) = R∗(〈L1, L2〉). �
Proof of Proposition 3. See [4,5]. This is due to the fact that, when the lotteries are normalized, SugPES(L) = UPES(L) and 
SugOPT(L) = UOPT(L) where UPES(L) = minλi

max(λi, 1 − πi) and UOPT(L) = maxλi
min(λi, πi). UPES and UOPT have been pre-

sented and axiomatized in [4]. Among other properties, it is shown that UPES and UOPT satisfy weak monotonicity, lottery 
reduction and certainty equivalence. �
Proofs of Section 4

The proofs of this Section are based on a series of Lemma that we detail now, before entering the proofs themselves.



Lemma 1. If L is desirable, then UR∗(L) = SugOPT(L)

Indeed L is desirable, then all the utilities in its support are greater or equal to e, then L = L≥e . Moreover, all the λi < e

have a πi equal to 0. Then Sug�(L) = maxλi∈� min(λi, �(L ≥ λi)) = maxλi≥e min(λi, �(L ≥ λi)) which is precisely the value 
of UR∗ for desirable lotteries. So, Sug�(L) = UR∗ (L).

Lemma 2. If L is hazardous, UR∗(L) = min(e−, SugPES(L)) e− being the level just below e in �

If e = 0, no lottery can lead to a utility strictly lower than e, so no lottery can be hazardous; So, if L is hazardous, e > 0

and e− exists. Then:

UR∗(L) = max
λ|λ<e

min(λ,N(L ≥ λ))

= max
λ|λ≤e− min(λ,N(L ≥ λ))

= max
λ

min(λ,N(L ≥ λ), e−)

= max
λ

min(λ,N(L ≥ λ), e−)

= min(max
λ

min(λ,N(L ≥ λ)), e−)

= min(SugPES(L), e
−)

Lemma 3. If L is hazardous and α > 0, 〈α/L, β/L′′〉 is hazardous.

Proof. L = 〈π1/λ1, . . . , πn/λn〉 is hazardous, i. e. that at least a λi < e receives a positive possibility degree πi . So, 
at least one of the utilites in 〈α/L, β/L′′〉 is lower than e - namely λi , coming from L. It receive possibility degree 
max(min(α, πi), min(β, π ′′

i )) which is positive since α > 0 and πi positive. Then 〈α/L, β/L′′〉 is hazardous. �
Lemma 4. If L is desirable and L′′ is desirable, 〈α/L, β/L′′〉 is desirable.

Proof. since all the utility degrees having a positive possibility by L are greater than e (L is desirable) and all the utility 
degrees having a positive possibility by L′′ are greater than e (L′′ is desirable), all the utility degrees having a positive 
possibility in 〈α/L, β/L′′〉 are greater than e: 〈α/L, β/L′′〉 is desirable. �
Lemma 5. If L is desirable then UR∗(L) ≥ e.

Proof. L is desirable, min(λ ∈ SL) ≥ e. Because L is normalized, �(L ≥ e) = 1. That is to say, there exists a λ∗ ≥ e such that 
�(L ≥ λ∗) = 1, thus such that min(λ∗, �(L ≥ λ∗)) ≥ e.

So, UR∗(L) = maxλinSL min(λ, �(L ≥ λ)) ≥ e. �
Lemma 6. If L is hazardous then UR∗(L) < e.

Proof. When L is hazardous, UR∗ (L) = maxλi<e min(λi, N(L ≥ λi)). So for each λi in the max, min(λi, N(L ≥ λi)) < e. So 
UR∗ (L) < e. �
Lemma 7. If L is desirable then SugPES(L) ≥ e

Proof. When L is desirable N(a ≥ e) = 1 and maxλi
min(λi, N(L ≥ λi)) ≥ min(e, N(a ≥ e)) = e �

Lemma 8.

SugPES(Reduction(〈α/L, β/L′〉)) ≥ min(SugPES(L), SugPES(L
′)).

Proof. We know that

N(a ≥ λ) = min(max(1− α,NL(a ≥ λ)),max(1− β,NL′
(a ≥ λ)))

so N(a ≥ λ) ≥ min(NL(a ≥ λ), NL′
(a ≥ λ)) with NL(a ≥ λ) the necessity measure of lottery L. �



Proof of Proposition 4.

• If e = 0, then no lottery can be hazardous (there is no utility level below 0). So, whatever L, L is desirable. Applying
Lemma 1 then UR∗ (L) = SugOPT(L)

• If e = 1, the only desirable lottery is 〈1/1〉; it is easy to check that SugPES(〈1/1〉) = 1 = SugOPT(〈1/1〉) = UR∗ (〈1/1〉).
Consider now a hazardous lottery. Then UR∗ (L) = min(e−, SugPES(L)). Because L is hazardous, there exits λi ≤ e− such

that πi > 0. So, SugPES(L) ≤ max(1 − πi, λi) with λi ≤ e− and 1 − πi < 1 i. e. 1 − πi ≤ e− . So SugPES(L) ≤ e− . Thus
UR∗ (L) = min(e−, SugPES(L)) = SugPES(L)

• Suppose that all the utilities in the support of L are totally possible. Then �(L ≥ λi) = 1 for any λi in the support SL of

L. If L is desirable, UR∗ (L) = maxλi∈SL min(λi, �(L ≥ λi)) = maxλi∈SL min(λi, 1) = maxλi∈SL λi = R∗(SL).
Suppose now that L is hazardous and let λ j = argmin SL - so R∗(SL) = λ j and N(L ≥ λ j) = 1; because all the utilities
in SL are totally possible, π j = 1 and thus N(L ≥ λi) = 0 for any λi〉λ j . Thus UR∗ (L) = maxλi<e min(λi, N(L ≥ λi)) =
min(λ j, 1) = λ j = R∗(SL). �

Proof of Proposition 5. From Lemmas 3, 5 and Proposition 3 we can reduce the set of cases to study only two cases:
UR∗ (Reduction(〈α/UR∗ (L), β/UR∗ (L

′)〉) is equal either to
min(SugPES(〈α/ min(SugPES(L), e−), β/ min(SugPES(L

′), e−)〉)), e−),

or to
min(SugPES(〈α/ min(SugPES(L), e−), β/SugOPT(L

′)〉)), e−).

Case 1: Suppose that: UR∗ (Reduction(〈α/UR∗ (L), β/UR∗ (L
′)〉) = min(SugPES(〈α/ min(SugPES(L), e−), β/ min(SugPES(L

′), e−)〉)),
e−).

From Lemma 8 we have:

min(SugPES(〈α/min(SugPES(L), e
−),β/min(SugPES(L

′), e−)〉)), e−)

= min(SugPES(〈α/SugPES(L),β/SugPES(L
′)〉)), e−)

= min(SugPES(Reduction(〈α/L, β/L′〉), e−)

= UR∗(Reduction(〈α/L, β/L′〉)
Case 2: Suppose that UR∗ (Reduction(〈α/UR∗ (L), β/UR∗ (L

′)〉) = min(SugPES(〈α/ min(SugPES(L), e−), β/SugOPT(L
′)〉)), e−).

From Lemmas 6 and 7 we have min(SugOPT(L), e−) = min(SugPES(L), e−) = e− ≥ min(SugPES(L), e−) and using Lemma 8

we get:

min(SugPES(〈α/min(SugPES(L), e
−),β/min(SugPES(L), e

−)〉)), e−)

Hence, we recover Case 1 back. �
Proof of Proposition 6. We have to prove that if UR∗ (L) ≤ UR∗ (L

′), then whatever α, β such that max(α, β) = 1, whatever 
L′′ , UR∗ (Reduction(〈α/L, β/L′′〉)) ≤ UR∗ (Reduction(〈α/L′, β/L′′〉)).

The proof is based on the fact that UR∗ (L) = SugOPT(L) for desirable lotteries, UR∗ (L) = min(e−, SugPES(L)) for hazardous 
ones, while SugOPT and SugPES are monotonic. Let us go step by step. We distinguish six cases, depending on whether the 
lotteries are hazardous or desirable.

Case 1: L, L′ and L′′ are hazardous. Then 〈α/L, β/L′′〉 and 〈α/L′, β/L′′〉 are hazardous (Lemma 3).

From Proposition 5, Lemma 2 and the fact that SugPES is monotonic, we have:

UR∗(Reduction(〈α/L, β/L′′〉)) = min(SugPES(Reduction(〈α/L, β/L′′〉), e−)

≤ min(SugPES(Reduction(〈α/L′, β/L′′〉), e−)

= UR∗(Reduction(〈α/L′, β/L′′〉)).
Case 2: L and L′ are hazardous, L′′ is desirable. Then 〈α/L, β/L′′〉 and 〈α/L′, β/L′′〉 are hazardous (Lemma 3). Using the 
same arguments than Case 1 we have:

UR∗(Reduction(〈α/L, β/L′′〉)) = min(SugPES(Reduction(〈α/L, β/L′′〉), e−)

≤ min(SugPES(Reduction(〈α/L′, β/L′′〉), e−)

= UR∗(Reduction(〈α/L′, β/L′′〉)).
Case 3: L and L′′ are hazardous, L′ is desirable. Then 〈α/L, β/L′′〉 and 〈α/L′, β/L′′〉 are hazardous (Lemma 3).




