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ABSTRACT

Supervised classification and representation learning are two widely used classes of methods to analyze
multivariate images. Although complementary, these methods have been scarcely considered jointly in a
hierarchical modeling. In this paper, a method coupling these two approaches is designed using a matrix
cofactorization formulation. Each task is modeled as a factorization matrix problem and a term relating
both coding matrices is then introduced to drive an appropriate coupling. The link can be interpreted
as a clustering operation over the low-dimensional representation vectors. The attribution vectors of the
clustering are then used as features vectors for the classification task, i.e., the coding vectors of the corre-
sponding factorization problem. A proximal gradient descent algorithm, ensuring convergence to a critical
point of the objective function, is then derived to solve the resulting non-convex non-smooth optimiza-
tion problem. An evaluation of the proposed method is finally conducted both on synthetic and real data
in the specific context of hyperspectral image interpretation, unifying two standard analysis techniques,
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1. Introduction

Numerous frameworks have been developed to efficiently ana-
lyze the increasing amount of remote sensing images [1,2]. Among
those methods, supervised classification has received considerable
attention leading to the development of current state-of-the-art
classification methods based on advanced statistical tools, such as
convolutional neural networks [3-5], kernel methods [6], random
forest [7] or Bayesian models [8]. In the context of remote sensing
image classification, these methods aim at retrieving the class of
each pixel of the image given a specific class nomenclature. Within
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namely unmixing and classification.

a supervised framework, a set of pixels is assumed to be anno-
tated by an expert and subsequently used as examples through a
learning process. Thanks to extensive research efforts of the com-
munity, classification methods have become very efficient. Never-
theless, they still face some challenging issues, such as the high
dimension of the data, often coupled with the lack of training data
[9]. Handling multi-modal and/or composite classes with intrinsic
intra-variability is also a recurrent issue [10]: for instance, a class
referred to as building can gather very dissimilar samples when
metallic and tiled roofs are present in a scene. Besides, the result-
ing classification remains a high-level interpretation of the scene
since it only gives a single class to summarize all information in a
given pixel.

Hence, more recent works have emerged in order to provide a
richer interpretation [11,12]. In particular, representation learning
methods assume that the data results from the composition of a
reduced number of elementary patterns. More precisely, the ob-
served measurements can be approximated by mixtures of dictio-
nary elements able to simultaneously capture the variability and
redundancy in the dataset. Representation learning can be tack-
led from different perspectives, in particular known as dictionary



learning [13], source separation [14], compressive sensing [15],
factor analysis [16], matrix factorization [17] or subspace learning
[18]. Various models have been proposed to learn a dedicated rep-
resentation relevant to the field of interest, differing by specific as-
sumptions and/or constraints. Most of them attempt to identify a
dictionary and a mixture function by minimizing a reconstruction
error measuring the discrepancy between the chosen model and
the dataset. For instance, non-negative matrix factorization (NMF)
aims at recovering a linear mixture of non-negative elements with
non-negative activation coefficients leading to additive part-based
decompositions of the observations [19,20]. Contrary to a classifica-
tion task, representation learning methods have generally the great
advantage of being unsupervised. However, for particular purposes,
they can be specialized to learn a representation suited for a par-
ticular task, e.g. classification or regression [21]. Thus, representa-
tion learning provides a rich yet compact description of the data
whereas supervised classification offers a univocal interpretation
based on prior knowledge from experts.

The idea of combining the representation learning and classifi-
cation tasks has already been considered, mostly to use the repre-
sentation learning method as a dimensionality reduction step prior
to the classification [22], where the low-dimensional representa-
tion is used as input features. Nonetheless, some works introduce
the idea of performing the two tasks simultaneously [23]. For ex-
ample, the discriminative K-SVD algorithm associates a linear mix-
ture model to a linear classifier [24]. At the end, the method tries
to learn a dictionary well-fitted for the classification task, i.e., the
learned representation minimizes the reconstruction error but also
ensures a good separability of the classes. More intertwined frame-
works can be also considered, as the one proposed in [25] where
elements of the dictionary are class-specific. Joint representation
learning and classification can be cast as a cofactorization prob-
lem. Both tasks are interpreted as individual factorization prob-
lems and constraints between the dictionaries and coding matri-
ces associated with the two problems can then be imposed. These
cofactorization-based models have proven to be highly efficient in
many application fields, e.g. for text mining [26], music source sep-
aration [27], or image analysis [28,29].

However, most of the available methods tend to focus on
classification results and generally oppose reconstruction accuracy
and discriminative abilities of the models instead of designing a
unifying hierarchical structure. Capitalizing on recent advances and
a first attempt in [30] in a Bayesian setting, this paper proposes
a particular cofactorization method, with a dedicated application
to multivariate image analysis. The representation learning and
classification tasks are related through the coding matrices of
the two factorization problems. A clustering is performed on the
low-dimensional representation and the clustering attribution
vectors are used as coding vectors for the classification. This novel
coupling approach produces a coherent and fully-interpretable
hierarchical model. To solve the resulting non-convex non-smooth
optimization problem, a proximal alternating linearized min-
imization (PALM) algorithm is derived, yielding guarantees of
convergence to a critical point of the objective function [31].

The main contributions reported in this paper can be summa-
rized as follows. A generic framework is proposed to demonstrate
that two ubiquitous image analysis methods, namely supervised
classification and representation learning, can be unified into a
unique joint cofactorization problem. This framework is instanced
for one particular application in the context of hyperspectral im-
age analysis where supervised classification and spectral unmixing
are performed jointly. The proposed method offers a comprehen-
sive and meaningful analysis of the image as well as competitive
quantitative results for the two considered tasks.

This paper is organized as follows. Section 2 defines the two
factorization problems used to perform representation learning

and classification and further discusses the joint cofactorization
problem. It also details the optimization scheme developed to
solve the resulting non-convex minimization problem. To illus-
trate the generic framework introduced in the previous section,
an application to hyperspectral image analysis is conducted in
Section 3 through the dual scope of spectral unmixing and clas-
sification. Performance of the proposed framework is illustrated
thanks to experiments conducted on synthetic and real data in
Section 4. Finally, Section 5 concludes the paper and presents some
research perspectives to this work.

2. Proposed generic framework

The representation learning and classification tasks are generi-
cally defined as factorization matrix problems in Sections 2.1 and
2.2. To derive a unified cofactorization formulation, a third step
consists in drawing the link between these two independent prob-
lems. In this work, this coupling is ensured by imposing a consis-
tent structure between the two coding matrices corresponding to
the low-dimensional representation and the feature matrices, re-
spectively. As detailed in Section 2.3, it is expressed as a clustering
task where the parameters describing the attribution to the clus-
ters are the feature vectors, i.e. the coding matrix resulting from
the classification task. Particular instances of these three tasks will
be detailed in Section 3 for an application to multiband image
analysis.

2.1. Representation learning

The fundamental assumption in representation learning is that
the P considered L-dimensional samples, gathered in matrix Y ¢
RLXP| belong to a R-dimensional subspace such that R « L. The
aim is then to recover this manifold, where samples can be ex-
pressed as combinations of elementary vectors, herein the column
of the matrix W e RE*R sometimes referred to as dictionary. These
samples can be subsequently represented thanks to the so-called
coding matrix H e RR*P, Formally, identifying the dictionary and
the coding matrices can be generally expressed as a minimization
problem

min J: (Y1 (W, H)) + ARy (W) + 137 (W) + 2 Ri (H) + 15 (H)
(1)

where (-) is a mixture function (e.g., linear or bilinear operator),
Jr(+) is an appropriate cost function, for example derived from a
B-divergence [32], R.(-) denote penalizations weighted by the pa-
rameter A . and 1. (-) is the indicator functions defined here on
the respective sets W c R-*R and H c RR*P imposing some con-
straints on the dictionary and coding matrices.

In the case of a linear embedding adopted in this work, the
mixture function writes

¥ (W, H) = WH. (2)

In this context, the problem (1) can be cast as a factor anal-
ysis driven by the cost function J;(-). Depending on the applica-
tive field, typical data-fitting measures include the Itakura-Saito,
the Euclidean and the Kullback-Leibler divergences [32]. Assum-
ing a low-rank model (i.e., R < L), specific choices for the sets H
and W lead to various standard factor models. For instance, when
W is chosen as the Stiefel manifold, the solution of (1) is given
by a principal component analysis (PCA) [33]. When W and H im-
pose nonnegativity of the dictionary and coding matrix elements,
the problem is known as nonnegative matrix factorization [19,34].

Within a supervised context, the dictionary W can be chosen
thanks to a end-user expertise or estimated beforehand. Without
loss of generality but for the sake of conciseness, the framework



described in this paper assumes that this dictionary is known, pos-
sibly overcomplete as proposed in the experimental illustration de-
scribed in Section 4. In this case, as in many applications, it makes
sense to look for a sparse representation of the signal of interest
to retrieve its most achievable compact representation [21,35]. Fol-
lowing this strategy, we propose to consider an ¢;-norm sparsity
penalization on the coding vectors, leading to representation learn-
ing task defined by

l’r}_linjr(Y|WH) + Ap|H|l; + tm(H) (3)
where [[H||; = Y)_; [[hpl|; with h, denoting the pth column of H.

2.2. Supervised classification

To clearly define the classification task, let first introduce some
key notations. The index subset of samples with an available
groundtruth is denoted as £ while the index subset of unla-
beled samples is ¢/ such that £LNY =9 and LUl =P with P2
{1,..., P}. Classifying the unlabeled samples consists in assigning
each of them to one of the C classes. This can be reformulated as
the estimation of a C x P matrix C whose columns correspond to
unknown C-dimensional attribution vectors ¢, = [c1p,....ccp]"-
Each vector is made of 0 except for ¢; , =1 when the pth sample
is assigned the ith class.

Numerous classification rules have been proposed in the liter-
ature [36]. Most of them rely on a K x P matrix Z = [zq, ..., Zp]
of features z, (p € P) associated with each sample and derived
from the raw data. Within a supervised framework, the attribution
matrix C; and feature matrix Z, of the labeled data are exploited
during the learning step, where -, denotes the corresponding
submatrix whose columns are indexed by L. For a wide range of
classifiers, deriving a classification rule can be achieved by solving
the optimization problem

inl‘l T (Clp(Q.Zs)) + AqRq(Q) (4)

where Q e R“K s the set of classifier parameters to be inferred,
Rq(-) refer to regularizations imposed on Q and J: is a cost
function measuring the quality of the classification such as the
quadratic loss [24] or cross-entropy [37]. Moreover, in (4), ¢(Q,
- ) defines a element-wise nonlinear mapping between the fea-
tures and the class attribution vectors parametrized by Q, e.g.,
derived from a sigmoid or a softmax operators. In this work, the
classifier is assumed to be linear, which leads to a vector-wise
post-nonlinear mapping

$(Q.Z) = QL) (5)
with
dX) =[pX1).....d(Xp)]. (6)

Once the classifier parameters have been estimated by solv-
ing (4), the unknown attribution vectors C; can be subsequently
inferred during the testing step by applying the nonlinear transfor-
mation to the corresponding predicted features Z;; associated with
the unlabeled samples. The obtained outputs are relaxed attribu-
tion vectors €y = ¢(QZp) (p € U) and the most probable predicted
sample class can be computed as argmax; ¢; p.

Under the proposed formulation of the classification task, the
learning and testing steps can be conducted simultaneously, a
framework usually referred to as semi-supervised, with the ben-
eficial opportunity to introduce additional regularizations and/or
constraints on the submatrix of unknown attribution vectors C;.
The initial problem (4) is thus extended to the following one

l('ll'léun Jc(Cl¢p(QZ)) + AgRq(Q) + AR (C) +1c(Cy) (7)

REPRESENTATION
CLUSTERING CLASSIFICATION
LEARNING
Codes
Features
H
Z

mingz J,(H,Z; 0)

C.|Cu

) Classifier Classification
Dict. Image

Fig. 1. Structure of the cofactorization model. Variables in blue stand for observa-
tions or available external data. Variables in olive green are linked through the clus-
tering task here formulated as an optimization problem. The variable in a dotted
box is assumed to be known or estimated beforehand in this work.

where C = [C; C;] and C c RO denotes a feasible set for the at-
tribution matrix Cy. As discussed above, the cost function 7.(C|C)
measures the actual classification loss, i.e., the discrepancy be-
tween the attribution vector C of the training set and the attri-
bution vectors C predicted by the classifier. Two particular cases
fitting this generic model are provided in Sections 3.2.1 and 3.2.2.
The attribution vectors are defined as € = ¢(QZ) where ¢(.) is
a nonlinear function applied to the output of a linear classifier.
The regularization term R4(Q) penalizes over the parameters of
the classifiers. A typical example is a quadratic penalization which
aims at avoiding overfitting, as conventionally done when optimiz-
ing neural networks and generally referred to as weight decay [38].
Finally, the regularization term R.(C) penalizes over the attribu-
tion matrix. Typical examples include spatial regularizations such
as total variation (TV) when dealing with image classification. The
indicator function 1¢(Cy) enforces sum-to-one and non-negativity
constraints such that each attribution vector ¢, (p € &) can then
be interpreted as a probability vector of belonging to each class. In
such a case, the feasible set is chosen as C = S‘CL” where

c
Sc2 JueR|Vk, yy=0and ) u=14¢. (8)
k=1

2.3. Coupling representation learning and classification

Up to this point, the representation learning and supervised
classification tasks have been formulated as two independent ma-
trix factorization problems given by (3) and (7), respectively. This
work proposes to join them by drawing an implicit relation be-
tween two factors involved in these two problems. Inspired by hi-
erarchical Bayesian models such as the one proposed in [30], both
problems are coupled through the activation matrices H and Z, as
illustrated in Fig. 1. More precisely, the coding vectors in H are
clustered such that the feature vectors in Z are defined as the at-
tribution vectors to the K clusters. Ideally, clustering attribution
vectors z, are filled with zeros except for z; , =1 when hy is as-
sociated with the kth cluster. Thus, the vectors z, (p € P) are as-
sumed to be defined on the K-dimensional probability simplex S
similarly defined as (8) and ensuring non-negativity and sum-to-
one constraints. Many clustering algorithms can be expressed as
optimization problem such as the well-known k-means algorithm
and many of its variants [39,40]. Adopting this formulation, and
denoting € the set of parameters of the clustering algorithm, the



Table 1
Overview of notations.

Parameter
PeR Number of observations
LeR Dimension of observations
CeR Number of classes
KeR Number of features/clusters
P={1,..., P}  Index set of observations
LCP Index set of labeled samples
LicL Index set of labeled samples in the ith class
U="P\L Index set of unlabeled samples
Y e RIXP Observations
W ¢ REXR Dictionary
H e RR*P Coding matrix
Qe CCxP Classifier parameters
C, e RExI4I Attribution matrix of labeled data
Cy € ROxMl Attribution matrix of unlabeled data
C=[C; Cy] Class attribution matrix
Z c RKxP Cluster attribution matrix
0cO Clustering parameters

clustering task can be defined as the minimization problem
nzlien Je(H,Z;0) + A, R,(Z) + AgRy (0) + Igr (Z) +16(0) (9)

where © defines a feasible set for the parameters 6.

It is worth noting that introducing this coupling term is one
of the major novelty of the proposed approach. When consid-
ering task-driven dictionary learning methods, it is usual to in-
tertwine the representation learning and the classification tasks
by directly imposing H = Z [24,41]. Since these methods generally
rely on a linear classifier, one major drawback of such approaches
is their unability to deal with non-separable classes in the low-
dimensional representation space. In such cases, the underlying
model cannot be discriminative and descriptive simultaneously and
the resulting tasks become adversarial. When considering the pro-
posed coupling term, the cluster attribution vectors z, offer the
possibility of linearly separating any group of clusters from the
others. As a consequence, the model benefits from more flexibility,
with both discriminative and descriptive abilities in a more general
sense.

2.4. Global cofactorization problem

Unifying the representation learning task (3) and the classifica-
tion task (7) through the clustering task (9) leads to the following
joint cofactorization problem
JRin AoJ: (YIWH) + Ay [,

YAJ
+ A17:(Clp(QZ)) + AqRq(Q) + AcR(C)
+ )szg (H7 Z§ 0) + )\-ZRZ (Z) + )LGRG (0)

+ 1 (H) + 150 (Cu) +157.(Z) + 10 (0) (10)

where Ag, A; and A, control the respective contribution of each
task data-fitting term. All notations and parameter dimensions are
summarized in Table 1. A generic algorithmic scheme solving the
problem (10) is proposed in the next section.

2.5. Optimization scheme

The minimization problem defined by (10) is not globally con-
vex. To reach a local minimizer, we propose to resort to the prox-
imal alternating linearized minimization (PALM) algorithm intro-
duced in [31]. This algorithm is based on proximal descent steps,
which allows non-smooth terms to be handled. Moreover it is
guaranteed to converge to a critical point of the objective func-
tion even in the case of non-convex problem. This means that, if

the initialization is good enough, it is expected to likely converge
to a solution close to the global optimum. To implement PALM, the
problem (10) is rewritten in the form of an unconstrained problem
expressed as a sum of a smooth coupling term g(-) and separable
non-smooth terms fi(-) (j € {0, ..., 4}) as follows

l_rll}gile foH) + f1(0) + 2(Z) + f3(C) +gH,0,Z,C, Q) (11)
Q"c’b{Y

where

fo(H) = 1 (H) + A, |[H]|;
f1(0) =19(9)

and the coupling function is
g§H,0,Z,Cy, Q) = Ao Jr(YIWH)

+ AT (Clp(QZ)) + AqRq(Q) + AcRc(C)
+A2Jg(W, Z 0) -‘r)\,ZRZ(Z) +)\,9R9(0) (12)

To ensure the stated guarantees of PALM, all fi(-) have to
be proper, lower semi-continuous function f; : R — (—o0, +0],
which ensures in particular that the associated proximal operator
is well-defined. Additionally, sufficient conditions on the coupling
function are that g(-) is a ¢? function (i.e., with continuous first
and second derivatives) and that its partial gradients are globally
Lipschitz. For example, partial gradient Vyg(H, 0, Z, C;;, Q) should
be globally Lipschitz for any fixed 0, Z, C;;, Q, that is

| VigH1,0.2,Cy, Q) — Vig(H,,0.2,C,, Q|
<Lu(0.Z,Cy, Q) |H; —Hy||, VH;, H; e R®*P (13)

where Ly (0, Z, Cy. Q), simply denoted Ly hereafter, is the Lipschitz
constant. For sake of conciseness, we refer to [31] to get further
details.

The main idea of the algorithm is then to update each variable
of the problem alternatively using a proximal gradient descent. The
overall scheme is summarized in Algorithm 1 . For a practical im-

L(@) =15 (2)
f3(Cy) = 's}?‘ (Cu)

Algorithm 1: PALM.

Initialize variables H°, 6°, Z°, C;,° and Q°;
Seta > 1;
while stopping criterion not reached do
HK ¢ prox}*oL" (Hk — a‘THVHg(Hk,Ok,Z", ck.Q));
5 | 6 proxf’ = ar; Vog(H !, 0", Z¢, ¢, Q4));
6 | Z¢ e prox{r(zk - L Vag(HH, 0 7 ¢, @)
7 | Qe prox{e (@ — k- Vog(H, 6 24, 6/F, @)

3 clk;rl c prox?f‘“ (czﬁ I Vc“g(Hk“ . 0"“1 ZkH, Clk/' Q4+1y);

alg,

BOwW N =

9 end
d gend d d d
10 return Hemd 97, zend Qend, e

plementation, one needs to compute the partial gradients of g(-)
explicitly and their Lipschitz constants to perform a gradient de-
scent step, followed by a proximal mapping associated with the
non-smooth terms fi(-). The objective function is then monitored
at each iteration and the algorithm is stopped when convergence
is reached. Note that, when a specific penalization R.(-) is non-
smooth or non-gradient-Lipschitz, it is possible to move it into the
corresponding independent term f;(-) to ensure the required prop-
erty of the coupling function g(-). This is for instance the case for
the sparse penalization used over H which has been moved into
fo(-). Nonetheless, as mentioned above, the proximal operator as-
sociated with each fi(-) is needed. Thus, even when the function
consists of several terms, a closed-form expression of this operator
should be known. Alternatively, one should be able to compose the
proximal operators associated with each term of fi(-) [42].
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Fig. 2. Spectral unmixing concept (source US Navy NEMO).

3. Application: hyperspectral images analysis

A general framework has been introduced in the previous sec-
tion. As an illustration, a particular instance of this generic frame-
work is now considered, where explicit representation learning,
classification and clustering are introduced. The specific case of hy-
perspectral images analysis is considered for this use case example.

Contrary to conventional color imaging which only captures the
reflectance measure for three wavelengths (red, blue, green), hy-
perspectral imaging makes it possible to measure reflectance of the
observed scene for several hundreds of wavelengths from visible to
invisible domain. Each pixel of the image can thus be represented
as a vector of reflectance, called spectrum, which characterizes the
observed material.

One drawback of hyperspectral images is usually a weaker spa-
tial resolution due to sensor limitations. The direct consequence
of this poor spatial resolution is the presence of mixed pixels,
i.e., pixels corresponding to areas containing several materials. Ob-
served spectra are in this case the result of a specific mixture of
the elementary spectra, called endmembers, associated with indi-
vidual materials present in the pixel. The problem of retrieving the
proportions of each material in each pixel is referred to as spectral
unmixing [11]. This problem can be seen as a specific case of rep-
resentation learning where the dictionary is composed of the set of
endmembers standing for the endmember spectra and the coding
matrix is the so-called abundance matrix containing the proportion
of each material in each pixel.

Spectral unmixing is introduced as a representation learning
task in Section 3.1. The specific classifier used for this application
is then explained in Section 3.2 and finally Section 3.3 presents the
clustering adopted to relate the abundance matrix and the classifi-
cation feature matrix.

3.1. Spectral unmixing

As explained, each pixel of an hyperspectral image is character-
ized by a reflectance spectrum that physics theory approximates
as a combination of endmembers, each corresponding to a spe-
cific material, as illustrated in Fig. 2. Formally, in this applicative
scenario, the L-dimensional sample y, denotes the L-dimensional
spectrum of the pth pixel of the hyperspectral image (p € P). Each
observation vectors y, can be expressed as a function of the end-
member matrix W (containing the R elementary spectra) and the
abundance vector h, € RR with R « L.

In the case of the most commonly adopted linear mixture
model, each observation y, is assumed to be a linear combina-

tion of the endmember spectra w; (r =1, ..., R) corrupted by some
noise, underlying the linear embedding (2). Assuming a quadratic
data-fitting term, the cost function associated with the representa-
tion learning task in (1) is written

1
J:(Y|WH) = j||Y—WH||§. (14)

The abundance vector hy is usually interpreted as a vector of
proportions describing the proportion of each elementary compo-
nent in the pixel. Thus, to derive an additive composition of the
observed pixels, a nonnegative constraint is considered for each
element of the abundance matrix H, ie, H=RMP. In this work,
no sum-to-one constraint is considered since it has been argued
that leaving this constraint out offers a better adaptation to possi-
ble changes of illumination in the scene [43]. Additionally, as the
endmember matrix W is the collection of reflectance spectra of
the endmembers, it is also expected to be non-negative. When this
dictionary needs to be estimated, the resulting problem is a sparse
non-negative matrix factorization (NMF) task. When the dictio-
nary is known or estimated beforehand, the resulting optimization
problem is the nonnegative sparse coding problem

.1
min 5|
where the sparsity penalization actually supports the assumption
that only a few materials are present in a given pixel.

Y — WHIJE + A [HIl; + tgs.r (H) (15)

3.2. Classification

In the considered application, two loss functions associated
with the classification problem have been investigated, namely
quadratic loss and cross-entropy loss. One advantage of these two
loss functions is that they can be used in a multi-class classi-
fication (i.e.,, with more than two classes). Moreover, this choice
may fulfill the required conditions stated in Section 2.5 to apply
PALM since, coupled with an appropriate ¢(-) function, both loss
costs are smooth and gradient-Lipschitz according to each esti-
mated variables.

3.2.1. Quadratic loss

The quadratic loss is the most simple way to perform a classifi-
cation task and have been extensively used [25,44,45]. It is defined
as

7.(€1©) = 5D~ o; (16)

where € denotes the estimated attribution matrix. In (16), the
P x P matrix D is introduced to weight the contribution of the
labeled data with respect to the unlabeled one and to deal with
the case of unbalanced classes in the training set. Weights are
chosen to be inversely proportional to class frequencies in the
input data. The weight matrix is defined as the diagonal matrix
D = diag[dy, ..., dp] with

/77 ifpeLs
dy = . (17)
/IZ]TI’ ifpeu;

where £; denotes the set of indexes of labeled pixels of the ith
class (i=1,...,C). Thus, considering a linear classifier, the generic
classification problem in (7) can be specified for the quadratic loss

1
min = [|CD — QZD||? + AR (C€) + 1 (Cyr) (18)
QC, 2 c

where no additional constraints nor penalization is applied to the
classifier parameters Q. Besides, when samples obey a spatially co-
herent structure, as it is the case when analyzing hyperspectral im-
ages, it is often desirable to transfer this structure to the classifi-
cation map. Such a characteristics can be achieved by considering



a spatial regularization R.(C) applied to the attributions vectors.
Following this assumption, this work considers a regularized coun-
terpart of the weighted vectorial total variation (VTV), promoting
a spatially piecewise constant behavior of the classification map
[46]

”CHVTV = Z ﬂmn\/” [th]mn Hi + ” [VVC]mn ”; t€ (19)

where (m, n) are the spatial position pixel indexes and [V},(-)lmn
and [Vy(-)]mn stand for horizontal and vertical discrete gradient
operators evaluated at a given pixel,! respectively, i.e.,

[VeClinn = €onst.m) — Comm)
[VvClin = C€mnt1) — Cimun)-

The weights Bmn can be computed beforehand to adjust the pe-
nalizations with respect to expected spatial variations of the scene.
They can be estimated directly from the image to be analyzed or
extracted from a complementary dataset as in [47]. They will be
specified during the experiments reported in Section 4. Moreover,

the smoothing parameter € > 0 ensures the gradient-Lipschitz
property of the coupling term g(-), as required in Section 2.5.

3.2.2. Cross-entropy loss

The quadratic loss has the advantage to be expressed sim-
ply and the associated Lipschitz constant of the partial gradients
are trivially obtained. However, this loss function is known to be
highly influenced by outliers which can result in a degraded pre-
dictive accuracy [48]. A more sophisticated way to conduct the
classification task is to consider a cross-entropy loss

Je(€1€) ==Y "d2 > "¢ plog (&) (20)
peP e

combined with a logistic regression, i.e., where the nonlinear map-

ping (5) is element-wise defined as

1
[pX)];; = T+ exp(—xi))

with i e {1,...,C} and p € P. This classifier can actually be inter-
preted as a one-layer neural network with a sigmoid non-linearity.
Cross-entropy loss is indeed a very conventional loss function in
the neural network/deep learning community [38]. In the present
case, the corresponding optimization problem can be written

mén =Y d3> ciplog (sigm(q;.z,)))
Qe peP ieC
+4qRq(Q) + AclCllyry + 15 (Cu) (22)

= sigm(x; ;) (21)

where q;. € R1*K denotes the ith line of the matrix Q, The penal-
ization Rq(Q) is here chosen as R4(Q) = %||Q||,2E to prevent the loss
function to artificially decrease when ||q;.||? is increasing. This reg-
ularization has been extensively studied in the neural network lit-
erature where it is referred to as weight decay [38]. In (22), the
regularization R.(Cy) applied to the attribution matrix is chosen
again as a vTV-like penalization (see (19)).

3.3. Clustering

For the considered application, the conventional k-means algo-
rithm has been chosen because of its straightforward formulation
as an optimization problem. By denoting # = {B} a R x K matrix
collecting K centroids, the clustering task (9) can be rewritten as
the following NMF problem [40]

1
min = ||H — BZ|f + AR2(Z) + 157 (Z) + 1 (B) (23)

T With a slight abuse of notations, C(m,n) refers to the pth column of C where the
pth pixel is spatially indexed by (m, n).

where R;(Z) should promote Z to be composed of orthogo-
nal lines. Combined with the nonnegativity and sum-to-one con-
straints, it would ensure that z, is a vector of zeros except for its
kth component equal to 1, i.e.,, meaning that the pth pixel belongs
to the kth cluster. However, handling this orthogonality property
within the PALM optimization scheme detailed in Section 2.5 is not
straightforward, in particular because the proximal operator asso-
ciated to this penalization cannot be explicitly computed. In this
work, we propose to remove this orthogonality constraint since re-
laxed attribution vectors may be richer feature vectors for the clas-
sification task.

3.4. Multi-objective problem

Based on the quadratic and cross-entropy loss functions con-
sidered in the classification task, two distinct global optimization
problems are obtained. When considering the quadratic loss of
Section 3.2.1, the multi-objective problem (10) writes

. Ao 2
min 52 Y — WHIZ + 2 [H], + 1os.0(H)
Cy.B

A
+ 1€ — Q2D + Acl|Cllyry + g (Co)

A
+ 72 IH = BZ[[} + 152 (Z) + g (B). (24)

Instead, when considering the cross-entropy loss function pro-
posed in Section 3.2.2, the optimization problem (10) is defined
as

. Ao 2
lf{flég7||Y—WH||p + Anl[HI|; + 1grr (H)
C B

X |
By e, log igm(az))

peP ieC
A o2
T3 1QIIE + AclICllyry + gl (Cu)

A
+ 72||H—BZ||§+lSIP<(Z)+lR5XK(B). (25)

Both problems are particular instances of nonnegative matrix
co-factorization [27,28]. To summarize, the hyperspectral pixel is
first described as a combination of elementary spectra through the
learning representation step, aka spectral unmixing. Then, assum-
ing that there exist groups of pixels resulting from the same mix-
ture of materials, a clustering is performed among the abundance
vectors. And finally, attribution vectors to the clusters are used
as feature vectors for the classification supporting the idea that
classes are made of a mixture of clusters. For both multi-objective
problems (24) and (25), all conditions required to the use of PALM
algorithm described in Section 2.5 are met. Details regarding the
two optimization schemes dedicated to these two problems are re-
ported in the Appendix.

3.5. Complexity analysis

Regarding the computational complexity of the proposed
Algorithm 1, deriving the gradients shows that it is dominated by
matrix product operations. It yields that the algorithm has an over-
all computational cost in ©®(NK2P) where N is the number of iter-
ations.

4. Experiments
4.1. Implementation details

Before presenting the experimental results, it is worth clari-
fying the choices which have been made regarding the practical
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Fig. 3. Convergence of the various terms of objective function (representation
learning, clustering, classification, vTV, total).

implementation of the proposed algorithms for the considered ap-
plication. Important aspects are discussed below.

Convergence diagnosis and stopping rule - In all experiments
conducted hereafter, the value of the objective function is mon-
itored at each iteration to determine if convergence has been
reached. The normalized difference between the last two consecu-
tive values of the objective function is compared to a threshold and
the algorithm stops when the criterion is smaller than this thresh-
old (set as 10~ for the conducted experiments). Fig. 3 shows one
example of the behavior of the objective function along the itera-
tions as well as the behavior of several terms composing this over-
all objective function. As it can be observed from the figure, the
global objective function is decreasing over the iteration, which is
theoretically ensured by the PALM algorithm.

Initialization - As PALM algorithm only ensures convergence
to a critical point and not a global optimum, it remains sensi-
tive to initialization, which needs to be carefully chosen to reach
relevant solutions. The initialization of the parameters associated
with the learning representation and clustering steps relies on the
self-dictionary learning method proposed in [49]. This method pro-
poses to use observed pixels of the image as dictionary elements.
The underlying assumption is that the image contains pure pixels,
i.e.,, composed of only a single material. Formally, the initial esti-
mate HO of H is chosen as

HO:argmin%“Y—?H”i+Ol||H||1.2 (26)
H

where |H||;, = Z’f:] |Ihy. ||, promotes the use of a reduced num-
ber of pixels as dictionary elements and Y is a submatrix of Y con-
taining the pixel candidates to be used as dictionary elements. Fol-
lowing the strategy similarly proposed in [49], this subset Y is built
as follows: i) for each class of the training set, a k-means is applied
to the labeled samples to identify J clusters, ii) within a given class,
one candidate is retained from each cluster as the pixel the far-
thest away from the centers of the other clusters (in term of spec-
tral angle distance). This procedure provides a subset ¥ composed
of ] x C spectrally diverse candidates extracted from the labeled
samples.

Then, regarding the representation learning step, only active el-
ements in Y, i.e., those associated with non-zero rows in HO, are
kept to define the dictionary W. Finally, to initialize the variables

involved in the clustering step, a k-means is conducted on H® and
the identified centroids are chosen as BY while the corresponding
attribution vectors define Z°. Finally, the classification parameters
Q° and attribution vectors CY are randomly initialized.

Weighting the vIV - As explained in Section 2.2, the classi-
fication is regularized by a weighted smooth vTV regularization.
When all not fixed to the same value, the weights offer the pos-
sibility to account for natural boundaries in the observed scene,
i.e., variations in the classification map are expected to be localized
at the edges in the image. As in [47], an auxiliary dataset inform-
ing about the spatial structure of the image can be used to adjust
these weights. Instead, in this work, we assume that no such exter-
nal information is available. Thus these weights are directly com-
puted from the hyperspectral image. More precisely, a virtually ob-
served panchromatic image ypay € R, i.e. a single band image, is
first synthetized by averaging the bands of the hyperspectral image
Y. Then, the weights are chosen as

1
H[VYPAN]m,n Hz +0

B = ﬂ with B, =
p.q Fp.q

(27)

where V(-) = [Vy(-) Vy()]" is the gradient operator and o is an
hyperparameter chosen as o = 0.01 to avoid numerical problems
and to control the adaptive weighting (the larger o, the less varia-
tion in the weighting) [50].

Hyperparameter scaling - To balance the size and the dynam-
ics of the matrices involved in the cofactorization problem, the hy-
perparameters Ag and Aq in (24) and (25) have been set as

1 - P
— %o Ag= ke (28)
Lz e

_ Then, for each experiment presented hereafter, the parameters
A. have been empirically adjusted to obtain consistent results.

Ao

4.2. Synthetic hyperspectral image

Data generation - First, to assess the relevance of the proposed
model, experiments have been conducted on synthetic images.
These synthetic images have been generated using a real hyper-
spectral image which has been unmixed using the well-established
unmixing method SUNnSAL [51]. The extracted abundance maps and
a set of 6 pure spectra from the hyperspectral library ASTER have
been used to build a synthetic hyperspectral images with a realis-
tic spatial organization. The resulting 100-by-250 pixel image pre-
sented in Fig. 4 is composed of L =385 spectral bands. The im-
age is associated with a classification groundtruth (C =4) based
on the groundtruth of the original real image and a subpart of
this groundtruth is assumed known and therefore used as training
dataset for the supervised classification step.

Moreover, in this experiment, the endmember matrix W com-
prises the 6 spectra actually used to generate the image. To evalu-
ate the robustness of the method in a challenging scenario, these
6 initial endmember spectra are complemented with 9 endmem-
bers not present in the image but very correlated with the 6 actu-
ally used ones. The endmember matrix is thus composed of R = 15
spectra depicted in Fig. 5.

Compared methods - The proposed methods with quadratic
(Q) and cross-entropy (CE) classification losses, denoted respec-
tively by Cofact-Q and Cofact-CE, have been compared with state-
of-the-art classification and unmixing methods. First, one consid-
ered competing method is the random forest (RF) classifier, which
has been extensively used for the hyperspectral image classifica-
tion. Then, the convolutional neural network (CNN) proposed in
[52] has also been tested. This CNN architecture, referred to as
ResNet, is based on a residual network specifically designed for
hyperspectral image classification. Additionally, the performance
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Fig. 4. Synthetic image: (a) colored composition of the hyperspectral image Y, (b) panchromatic image ypan, (c) classification ground-truth, (d) training set.

0.6 |
S 04+
8
9
=
]
Y
0.2 1
0 T T T T
0.5 1 1.5 2
A (um)

Fig. 5. Spectra used as dictionary W. The 6 color spectra have been used to gener-
ate the semi-synthetic image (4 vegetation spectra and 2 soil spectra).

of the classification method proposed in [53] has been evaluated.
This method, referred to as SSFPCA+SVM, relies on a so-called
spectrally-segmented folded PCA (SSFPCA) as a feature extraction
step, followed by a RBF-kernel SVM classifier. Finally, a multino-
mial logistic regression classifier (MLR) has also been applied di-
rectly on the observations. This classifier is equivalent to the clas-
sification term proposed in the Cofact-CE method. Thus it will il-
lustrate the interest of using a representation learning step before
performing the classification. Parameters of the RF and the SVM
have been adjusted using cross-validation with a grid-search strat-
egy and we used the implementations provided in the scikit-learn
Python library [54]. The parameters of SSFPCA have been set based
on the study provided in the original paper. The implementation
and parameters proposed by the authors has been used for the
ResNet method. All methods except ResNet have been run on a
desktop computer with 16Gb of RAM and Intel(R) Xeon(R) CPU E5-
1630 v4 @ 3.70GHz x 8 processor. Due to its high computational
load, the ResNet method has been run on a DELL T630 server with
2 Intel(R) Xeon(R) CPU 2640 v4, 2 x 100Gb of RAM and a Nvidia
GTX 1080 TI GPU.

Besides, two unmixing methods proposed in [51] has been
tested, namely the fully constrained least squares (Fc-SUnSAL) and
the constrained sparse regression (csR-SUnSAL). rc-SUnSAL basi-

i N
()

cally relies on the same data fitting term (14) considered in the
proposed cofactorization method, under non-negativity and sum-
to-one constraints applied to the abundance vectors. Conversely,
the csr-SUNSAL problem removes the sum-to-one constraint and
introduces a ¢;-norm penalization on the abundance vectors. It
thus solves (15) where the associated regularization parameter A
is tuned using a grid-search strategy. These two methods use an
augmented Lagrangian splitting algorithm to recover the abun-
dance vectors. Additionally, these abundance vectors are subse-
quently used as input features of a MLR classifier. This classifier
is linear and its combination with the csrR-SUnSAL unmixing algo-
rithm, referred to as csR-SUnSAL+MLR, yields a sequential counter-
part of the proposed Cofact-CE method. In particular, comparing
the resulting classification performance with the performance of
Cofact-CE allows the benefit of introducing the clustering coupling
term to be assessed.

Besides, the proposed method has been also compared with the
discriminative K-SVD (D-KSVD) method proposed in [24]. The D-
KSVD problem has strong similarities with the proposed cofactor-
ization problem. Indeed, it corresponds to a ¢y-penalized represen-
tation learning and a classification with a quadratic loss. It aims
at learning a dictionary suitable for the classification problem and
performs a linear classification on the coding vectors. For this rea-
son, the dictionary W is only used as an initialization for D-KSVD,
while it remains fixed for the unmixing and proposed cofactor-
ization methods. Similarly, the label consistent K-SVD (LC-KSVD)
is also considered [25]. This model has been proposed as an im-
provement of D-KSVD where an additional term ensures that the
dictionary elements are class-specific. Hyperparameters of D-KSVD
and LC-KSVD have been manually adjusted in order to get the
best results. When implementing the PALM algorithm proposed in
Section 2.5, the normalized regularization parameters in (28) have
been fixed as Lo =100, A.; =A; =1, A, = Aq = 0.1 and A = 103,
Finally, the number of clusters has been set to K = 10. The influ-
ence of these parameters are empirically studied in the associated
companion report [55].

Figure-of-merits - Several metrics are computed to quantify
the quality of the classification and unmixing tasks. For classifi-
cation, two widely-used metrics are used, namely Cohen’s kappa
and the averaged F1-score over all classes [56]. For unmixing, re-
construction error (RE) and root global mean squared error (RMSE)
are computed as follows

1 .02
Re= /o [ - wa’



Table 2

Synthetic data: unmixing and classification results.

Model F1-mean Kappa RMSE(H) RE Time (s)
Cofact-Q 0.911 (£3.5x1073)  0.893 (£3.5 x 103 0.0528 (£1.1x1074)  0.32 (£8.9x1074) 80 ( £ 6)
Cofact-CE 0.899 (£5.4 x 1072)  0.880 (+6.2 x 1072 0.0524 (£1.3 x 107%)  0.27 (¥2.2x1073) 61 (£ 4)
MLR 0.873 (2.6 x 1073)  0.882 (+2.3 x 1073 N\A N\A 92 ( + 14)
RF 0.913 (1.4 x1073)  0.907 (1.3 x 10* N\A N\A 0.9 ( £ 0.08)
ResNet 0.913 (£1.6 x 1072)  0.943 (+4.6 x 1073 N\A N\A 220 ( £ 12)°
SSFPCA+SVM 0918 (£8.3 x107%)  0.911 (+2.4 x 1073 N\A N\A 4.0 ( £ 0.05)
FC-SUnSAL+MLR 0.893 (+6.4 x 107%)  0.912 (+3.7 x 10~* 0.120 (£3.1 x 1079) 037 (£5.1x107%) 6 (+0.3)
CSR-SUNSAL+MLR  0.888 (£1.0x 1073)  0.911 (£5.0 x 104 0.125 (£3.0 x 1076) 0.36 (£4.2x107°) 9 (£ 0.5)
D-KSVD 0.520 (£3.1 x 1073)  0.653 (+3.4 x 1072 N\A 0.23 (+4.1x1072) 382 (+9)
LC-KSVD 0.879 (+3.7 x 107%)  0.904 (+1.0 x 10~* N\A 304 (£1.0x107%) 96 (+ 1)

2 Based on a GPU implementation run on a computer cluster.

Fig. 6. Synthetic data: abundance maps of the 6 actual endmembers (from left to right): (1st row) ground-truth, (2nd row) Cofact-Q, (3rd row) Cofact-CE, (4rd row) Fc-

SUNSAL and (5th row) csr-SUnSAL.

2

RMSE (H) = le | Herve — A

(29)
where Hgye and H are the actual and estimated abundance ma-
trices. All these performance metrics are complemented with the
computational times. Again, note that for all methods, similar com-
putational framework have been considered except for the CNN-
based algorithm whose complexity requires a specific GPU imple-
mentation embedded on a computer cluster.

Performance evaluation - Quantitative results obtained on the
synthetic dataset are reported in Table 2 and are visually depicted
in Figs. 7 and 6 for the classification and abundance maps, re-
spectively. Metrics and their standard deviation have been com-
puted over 20 trials. For each trial, a Gaussian white noise is added
the observed image such that SNR =30 dB. From these results,
the proposed method appears to be competitive with the com-
pared state-of-the-art methods. In term of classification results,
even though the spatial regularization is very weak in this set-
ting, the cofactorization methods are as good as the RF classi-
fier, which is very satisfying since this latter classifier is one of
the most prominent one to deal with HS images [57]. The ResNet
algorithm shows similar accuracy in term of F1-score but seems
to perform slightly better in term of kappa. However, classifica-
tion results of Fc-SUnSAL and csr-SUnSAL show that a classifier
using abundance vectors can already perform well on this toy
example where classes are linearly separable. Similarly, the SSF-
PCA+SVM methods appears to give interesting results with this
synthetic dataset. The MLR using directly the observations appears
to be a little less accurate, which may result from the difficulty
inherent to high-dimensional inputs. As for LC-KSVD, it performs
slightly worse regarding the F1-mean score whereas results of D-

KSVD are clearly the worst. In term of unmixing performance, Fc-
SUNnSAL, csr-SUNSAL, Cofact-Q and Cofact-CE obtain very similar
REs. Note however this metrics only evaluates the quality of the
reconstructed data. However, the RMSE is lower with the cofac-
torization methods and the abundance estimations provided by
FC-SUNSAL and csr-SUnSAL significantly degrade. Even if it is not
possible to produce a quantitative evaluation of the representation
learnt by D-KSVD and LC-KSVD, REs tends to show that D-KSVD
successfully estimated a representation of the data (without be-
ing easily interpretable) whereas LC-KSVD seems to focus mostly
on the discriminative power of the representation at the price of
an inaccurate representation. Moreover, the results produced by
LC-KSVD have been obtained by increasing the dimension of the
representation R to 40 while the results obtained by the other
methods have been obtained for R=15 to get good classifica-
tion performances. The rather poor performance obtained by these
two dictionary learning methods, when compared to the proposed
cofactorization model, can be explained by the lack of flexibil-
ity of the corresponding models which try to recover a descrip-
tive and discriminative representation simultaneously. On the con-
trary, some flexibility is offered by the clustering step included
in the proposed method. Finally, comparison in term of process-
ing times shows that D-KSVD, LC-KSVD and the proposed co-
factorization methods are significantly slower, which is expected
since these methods conducts representation learning and classi-
fication jointly. Nonetheless, the cofactorization methods appears
faster than D-KSVD and LC-KSVD. It should be also noted that it
is necessary to tune manually the number of iterations when us-
ing the two latter methods. Conversely, standard convergence cri-
terion can be implemented for the proposed optimization-based
methods.
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Fig. 7. Synthetic data, classification maps: (a) groundtruth, (b) Cofact-Q, (c) Cofact-CE, (d) MLR, (e) RF, (f) ResNet, (g) SSFPCA, (h) Fc-SUnSAL+MLR, (i) csrR-SUnSAL+MLR, (j)

LC-KSVD, (k) D-KSVD.

Table 3
AISA data: information about classes.
Class Nb. of samples  Subclasses
Arable land 177,350 millet, rape, winter
barley, winter wheat, oat
Forest 9274 forest
Grassland 25,399 meadow, pasture
Green fallowland 44,370 fallow treated last year,
fallow with shrubs
Leguminosae 17,628 leguminosae
Reed 4776 reed
Row crops 79,737 maize, sunflowers

4.3. Real hyperspectral image

Description of the dataset - The Aisa dataset was acquired by
the AISA Eagle sensor during a flight campaign over Heves, Hun-
gary. It contains L = 252 bands ranging from 395 to 975nm. A set
of C = 7 classes have been defined for a total of 358,534 referenced
pixels, according to the class-wise repartition given in Table 3. To
split the full dataset into two test and train subsets, special care
has been taken to ensure that training samples are picked out from
distinct areas than test samples. The polygons of the reference map
are split in smaller polygons on a regular grid pattern and then
50% of the polygons are taken randomly for training and the re-
maining 50% for testing (see [58] for a similar procedure). Fig. 8
shows a colored composition of the image and the classification
ground-truth. Several reasons justify the choice of this particular
dataset. First, it is very challenging both in term of classification
and unmixing mostly because the spectral signatures of the classes
are very similar, leading in particular to very correlated endmem-
ber spectra in W. Secondly, the ground-truth associated to this im-
age is composed of two levels of classification. Thus, an additional
ground-truth is available where the 7 considered classes have been
subdivided into 14 classes also detailed in Table 3. These subclasses

could be compared to the clustering outputs obtained by the pro-
posed cofactorization method, e.g., to verify either the clusters are
consistent with the underlying subclasses.

Compared methods - The proposed algorithm is compared to
the same methods introduced above. However, note that the D-
KSVD method has experienced some difficulties to scale with the
size of this new dataset, which is significantly bigger. Thus to ob-
tain results in a decent amount of time, the algorithm has been
interrupted prematurely, i.e., before convergence. Similarly, SVM
classifier encounters the same difficulty for the training step and
the SVM was finally trained using a subset of the training set (1
over 10 samples). For the proposed cofactorization method, regu-
larization parameters have been set to Ag = A; = Ay = Ac = 1. and
*n =Aq=0.01 and the number of clusters to K = 30. The initial-
ization step described in Section 4.1 has been performed and the
resulting dictionary W is depicted in Fig. 9 (R = 13). The same dic-
tionary has been used for the compared unmixing methods.

Performance evaluation - All quantitative results are pre-
sented in Table 4. Metrics and their standard deviation have been
computed over 5 trials. RMSE metrics have been removed since
no groundtruth is available to assess the quality of the estimated
abundance maps. RE is thus the only used figure-of-merit to as-
sess the quality of the representation learning. Note however, as
previously explained, RE does not directly evaluate the correct-
ness of the abundance maps. In the present case, REs appear to
be very similar for all algorithms. Contrary to the previous dataset,
this is also the case for LC-KSVD, which can be explained by the
fact that spectra are similar in the whole image and it is thus
quite easy to get a very low RE with any estimated dictionary.
This is the reason why qualitative evaluation remains interesting.
Fig. 11 shows a subset of the estimated abundance maps. It is dif-
ficult to draw any incontestable conclusion but it is clear that, de-
spite similar REs, significantly different result are obtained for each
method. This behavior is strengthened by the very high correla-
tion between the endmembers in this dataset, which may lead to



Fig. 8. AISA dataset: (a) colored composition of the hyperspectral image Y, (b) ground-truth [arable land: dark blue, forest: orange, grassland: red, fallowland: brown,

leguminosae: pink, reed: green, row crops: light blue].

Table 4

AISA data: unmixing and classification results.
Model F1-mean Kappa RE Time (s)
Cofact-Q 0.503 (£4.7 x 1072)  0.652 (£2.5x 1072)  0.310 (£1.6 x 10~4) 7303 ( £ 139)
Cofact-CE 0.697 (£4.5 x 1072)  0.759 (£3.5x 10~2)  0.310 (£1.4 x 10~4) 4382 ( £ 257)
MLR 0.497 (£7.3 x 1072)  0.482 (£7.7x 1072) NA 2060 ( + 83)
RF 0.711 (1.4 x 1072)  0.835 (£1.2x1072) NA 41(+1)
ResNet 0.880 (£2.3 x 1072)  0.932 (£1.3x1072) NA 7576 ( + 555)°
SSFPCA+SVM 0.425 (£1.5x 102)  0.466 (£1.9x1072) N\A 398 (£ 12)
FC-SUnSAL+MLR 0.344 (£3.1 x 1072) 0433 (£3.8x1072)  0.298 (£1.9x1073) 512 ( + 96)
cSR-SUNSAL+MLR  0.535 (£5.0 x 1072)  0.618 (+8.0 x 102)  0.304 (+2.0 x 10-5) 529 ( + 61)
D-KSVD 0.224 (£2.1 x 1072)  0.406 (£9.9 x 10-2)  0.303 (£7.6 x 10-6) 10475 ( + 129)

( )

LC-KSVD

0.350 (£3.2 x 1072

0.594 (£3.0 x 1072)

0.303 (4.0 x 10-5)

3780 ( + 320)

2 Based on a GPU implementation run on a computer cluster.
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Fig. 9. AISA data: spectra used as the dictionary W identified by the self-dictionary
method.

probable mismatch between endmember spectra. Nevertheless the
Cofact methods seems to give slightly more consistent results. In-
deed, edges in the abundance maps appear to be more consistent
with boundaries observed in the hyperspectral image. Addition-
ally, for the compared methods, some abundance maps seem to be
influenced by the presence of two flight lines in the image. This
phenomenon clearly appears in the abundance maps recovered by
FC-SUNSAL (3rd row).

Concerning classification results, the results reported in
Table 4 show that the classification maps recovered by the Cofact-
CE is very closed to the one obtained by RF, whereas SSFPCA+SVM
fails to provide reasonable results. As for the ResNet method, it
clearly outperforms all the other methods. The better performance

could be explained by the fact the neural network used convolu-
tional layers which extract spatial context information. On the con-
trary, the other methods rely on pixelwise inputs with, at best, a
spatial regularization which only promotes local regularity without
benefiting from a richer description of the spatial context. Fig. 10
shows in particular that the cofactorization methods encounter
some trouble distinguishing very similar classes, for example grass-
land (red) from fallowland (brown). Nevertheless, the obtained
classification appears to be consistent and it seems reasonable to
expect a lesser degradation of the classification results when con-
sidering less correlated spectral signatures. This confusion explains
the less convincing results of the proposed method with quadratic
loss. Besides, it is important to keep in mind that the objective of
this work is not to propose the most efficient classification method
but rather to propose a method that can give results of simi-
lar quality than some state-of-the-art methods, with the benefit
of providing additional insights thanks to the joint representation
learning. The results also show that the proposed method is bene-
ficial to the classification since Fc-SUnSAL+MLR, csrR-SUnSAL+MLR,
MLR and Cofact-CE use the same classifier and the latter per-
forms clearly better. The comparison between the representation
learning-based algorithms is clear and the both Cofact methods
perform better than LC-KSVD and D-KSVD.

In term of processing time, LC-KSVD, D-KSVD and the Cofact
methods are clearly more time consuming. Nevertheless, all those
methods provide more outputs than the other methods. The com-
parison between these methods seems to give an advantage for
LC-KSVD. However, it should be noted that it is very difficult to
monitor the convergence of LC-KSVD and D-KSVD since the value
of the objective function over the iteration is not monotonic. The
proposed algorithms and their implementations thus give a practi-
cal advantage since they do not need to be applied with different
numbers of iterations to ensure good results.

One of very interesting feature of the Cofact method is the
possibility of examining the clusters obtained as a byproduct.
Given the formulation (23), the centroids B estimated by the Co-
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Fig. 10. AISA image, classification maps: (a) groundtruth, (b) Cofact-Q, (c) Cofact-CE, (d) MLR, (e) RF, (f) ResNet, (g) SSFPCA, (h) Fc-SUnSAL+MLR, (i) cSR-SUnSAL+MLR, (j)
LC-KSVD, (k) D-KSVD.
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Fig. 11. AISA dataset, abundances map for the 6 components: (1st row) Cofact-Q, (2nd row) Cofact-CE, (3rd row) Fc-SUnSAL and (4th row) csr-SUnSAL.
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Fig. 12. AISA data: (1st row) Groundtruth map of subclasses and clustering recovered by Cofact-CE, (2nd row) for each class, spectral centroids of the clusters recovered by
Cofact-CE composing the class, (3rd row) for each class, mean spectra of the groundtruth subclasses composing the class.

fact method can be interpreted as average behaviors of abun-
dance vectors. Corresponding virtual spectral signatures can be ob-
tained by right-multiplying the dictionary W by this estimated
abundance-like matrix B. The first line in Fig. 12 shows these spec-
tral centroids for each cluster. Accessing this kind of information is
precious in term of image interpretation since it offers the possi-
bility of visualizing any class multi-modality. To illustrate, the sec-
ond line of Fig. 12 shows the mean spectra associated with the
subclass groundtruth. Clearly, both lines exhibit strong similarities,
with spectral diversity (hence multi-modality) for the 1st, 3rd and
4rd classes. This illustrates the relevance of the clusters recovered
by the proposed cofactorization method.

5. Conclusion and perspectives

This paper proposed a cofactorization model to unify a rep-
resentation learning task and a classification task. The coding
matrices associated with the two factorization problems, which
respectively are the low-dimensional representations and the
feature vectors, were related thanks to a clustering step. The low-
dimensional representation vectors were clustered and the re-
sulting attribution vectors were used as features vectors. These
three tasks were jointly formulated as a non-convex non-smooth
minimization problem, whose solution was approximated thanks
to a PALM algorithm which ensured some convergence guarantees.
The interest of considering a clustering task as a coupling process
is threefold. First, it allows the learnt representation to be both
descriptive and discriminative to ensure a low reconstruction
error and a good separability of the classes, respectively. These
two properties are often adversarial and the clustering term
offers an additional degree of freedom to accommodate both
properties. Secondly, instead of linearly separating the classes in
the low-dimensional representation space, the resulting method
achieves a non-linear classification relying on the coding vectors.
The clustering term acts similarly as the well-known kernel trick

since the coding vectors are mapped into a new representation
space, the cluster attribution space, where classes are expected
to be linearly separable. Finally, the clustering is very interesting
to interpret the obtained results. For instance, analyzing the
identified cluster centroids allows the end-user to characterize
the possible class multi-modality. This model was instanced in
an particular applicative scenario, namely hyperspectral image
analysis, to jointly conduct unmixing and classification. It provided
convincing results on synthetic and real data both quantitatively
and qualitatively. Moreover, byproducts of the estimation ap-
peared to be a relevant added value to interpret the obtained
results.

To further improve the developed model, it would be particu-
larly interesting to investigate the best way to learn an appropri-
ate dictionary. For instance, it would be relevant to directly exploit
the supervised information to get a better dictionary initialization.
Moreover, updating the dictionary when solving the cofactorization
problem would be also of interest. Another promising future work
would consist in replacing the stage of the model dedicated to the
classification task by a more advanced classifier. Indeed, when us-
ing the cross-entropy loss, this factorization model was interpreted
as a single-layer neural network. A natural extension would be to
leverage on a deeper architecture, while preserving the benefit of
interpretability brought by the hierarchical representation of the
data through the learning, clustering and classification steps. Fi-
nally, the genericity of the proposed approach should be assessed
through the analysis of data from other applicative contexts where
representation learning and classification play central roles, such
as medical imaging of various modalities [16,59].
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Appendix A. Technical derivations

This appendix provides some details regarding the optimization
schemes instanced for the proposed cofactorization model with the
classification quadratic and cross-entropy losses.

A.1. Cofactorization model with quadratic loss function

Using notations consistent with (11), the smooth coupling term
of the quadratic (Q) loss cost can be expressed as

A
g(H.B.Z.C,,Q) = 3| - WH

A A
+ 5 11€D — QZDI|; + Ac[|Cllyry + 5 [IH — BZ;.

For a practical implementation, one needs to compute the par-
tial gradients of g(-) explicitly and their Lipschitz constants to per-
form the gradient descent. Regarding the H and B variables, these
computations are the same for the two models (quadratic and
cross-entropy losses) and lead to

Vug(H, B, Z, Cy, Q) = ho(W'WH — W'Y) + A,(H — BZ), (A1)

Veg(H, B, Z, Cy, Q) = A, (BZZ — HZ"), (A2)

Regarding the variables Z, Q and C;, involved in the classifica-
tion step with quadratic loss, they writes
Vzg(H,B,Z,Cy,, Q) = A, (B'BZ — 1;B"H)
+21(Q"QzZD* - Q'CD?),
Vog(H,B,Z,Cy, Q) = 41(QZD*Z" — CD’°Z"),
Ve, 8H,B,Z,Cy. Q) = AV, [|Cllyry + A1 (CuDZ — QZ,D?). (A.3)

For sake of brevity, the gradient V . || - ||y7v of the vectorial
TV regularization is not explicitly given. Readers are referred to
[60] for further details.

All partial gradients are globally Lipschitz as functions of the
corresponding partial variables. After basic matrix derivations, ma-
jorizations similar to (13) lead to the following Lipschitz constant

Ly = | AoWTW + Aole ).
Lg(Z) = | 12227 .

2 http://osirim.irit.fr/site/en

L2(B. Q) = max | 1;B"B + 1:d,Q'Q]
Lo(Z) = |AZD*Z" |,

fmaxp B

Lcu =M max d2 +A——m—— (A4)

A.2. Cofactorization model with cross-entropy loss function

When using cross-entropy as the classification loss function, the
coupling term writes

A
gH.B,Z €, Q = 3 |[Y - WH;

5 .
_ 71 Z d; Z ¢iplog (sigm(-q;.zp)))

peP ieC

||Q||F+)"”C||VTV+ IIH BZ|} (A5)

and the specific partial gradlents are

Vzg(H,B,Z,C,, Q) = —*QT

VosH.B.Z,C, Q) = “ Mer 10

Vc,&H,B,Z,C,,Q) = )"Cvcu I1Cutllyrv
ALY &Y logsigm(-aiz,) (AS)
peP  ieC
where G is a C x P matrix with elements given by
d2cip
1+ exp(—q;.zp)’

It should be noticed that G depends on Z, Q and C and is only
introduced here to get compact notations. The following Lipschitz
constants can be derived

LB.Q = Y2 cpa: | + |28

&ip= (A7)

peP ieC
Lo=21 Y d%+Aq.
peP
Le, = he fmjx” by (A8)

A.3. Computing the proximal operators

For a practical implementation of the PALM algorithm, the prox-
imal operators associated with each fi(-) in (12) need to be com-
puted. It is clear that all these functions are proper lower semi-
continuous functions for both models instanced in Section 3.4.
The involved indicator functions are defined on convex sets. Thus,
their proximal operators can be expressed as projections. The pro-
jection on the non-negative quadrant is a simple thresholding of
negative values. The projection on the simplices S. can be con-
ducted as detailed in [61]. The case of fy(-) defined by a nonneg-
ativity constraint complemented by a ¢;-norm sparsity promoting
regularization is slightly more complex. It can be handled using
a composition of proximal operators. As stated before, the prox-
imal operator associated to the positivity constraint is the pro-
jection on the non-negative quadrant. The proximal operator as-
sociated with the ¢;-norm penalization is a soft-thresholding, i.e.,
proxfw1 (x) = sign(x) (|x| — %)+ [62]. These two proximal operators
satisfy the conditions exhibited in [42] required to be allowed to
perform their compositions to get the proximal operator associated

to fo(-).
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