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a b s t r a c t 

Supervised classification and representation learning are two widely used classes of methods to analyze

multivariate images. Although complementary, these methods have been scarcely considered jointly in a

hierarchical modeling. In this paper, a method coupling these two approaches is designed using a matrix

cofactorization formulation. Each task is modeled as a factorization matrix problem and a term relating

both coding matrices is then introduced to drive an appropriate coupling. The link can be interpreted

as a clustering operation over the low-dimensional representation vectors. The attribution vectors of the

clustering are then used as features vectors for the classification task, i.e., the coding vectors of the corre- 

sponding factorization problem. A proximal gradient descent algorithm, ensuring convergence to a critical

point of the objective function, is then derived to solve the resulting non-convex non-smooth optimiza- 

tion problem. An evaluation of the proposed method is finally conducted both on synthetic and real data

in the specific context of hyperspectral image interpretation, unifying two standard analysis techniques,

namely unmixing and classification.
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1. Introduction

Numerous frameworks have been developed to efficiently ana-

lyze the increasing amount of remote sensing images [1,2] . Among

those methods, supervised classification has received considerable

attention leading to the development of current state-of-the-art

classification methods based on advanced statistical tools, such as

convolutional neural networks [3–5] , kernel methods [6] , random

forest [7] or Bayesian models [8] . In the context of remote sensing

image classification, these methods aim at retrieving the class of

each pixel of the image given a specific class nomenclature. Within
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 supervised framework, a set of pixels is assumed to be anno-

ated by an expert and subsequently used as examples through a

earning process. Thanks to extensive research effort s of the com-

unity, classification methods have become very efficient. Never-

heless, they still face some challenging issues, such as the high

imension of the data, often coupled with the lack of training data

9] . Handling multi-modal and/or composite classes with intrinsic

ntra-variability is also a recurrent issue [10] : for instance, a class

eferred to as building can gather very dissimilar samples when

metallic and tiled roofs are present in a scene. Besides, the result-

ng classification remains a high-level interpretation of the scene

ince it only gives a single class to summarize all information in a

iven pixel. 

Hence, more recent works have emerged in order to provide a

icher interpretation [11,12] . In particular, representation learning

ethods assume that the data results from the composition of a

educed number of elementary patterns. More precisely, the ob-

erved measurements can be approximated by mixtures of dictio-

ary elements able to simultaneously capture the variability and

edundancy in the dataset. Representation learning can be tack-

ed from different perspectives, in particular known as dictionary
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earning [13] , source separation [14] , compressive sensing [15] ,

actor analysis [16] , matrix factorization [17] or subspace learning

18] . Various models have been proposed to learn a dedicated rep-

esentation relevant to the field of interest, differing by specific as-

umptions and/or constraints. Most of them attempt to identify a

ictionary and a mixture function by minimizing a reconstruction

rror measuring the discrepancy between the chosen model and

he dataset. For instance, non-negative matrix factorization (NMF)

ims at recovering a linear mixture of non-negative elements with

on-negative activation coefficients leading to additive part-based

ecompositions of the observations [19,20] . Contrary to a classifica-

ion task, representation learning methods have generally the great

dvantage of being unsupervised. However, for particular purposes,

hey can be specialized to learn a representation suited for a par-

icular task, e.g. classification or regression [21] . Thus, representa-

ion learning provides a rich yet compact description of the data

hereas supervised classification offers a univocal interpretation

ased on prior knowledge from experts. 

The idea of combining the representation learning and classifi-

ation tasks has already been considered, mostly to use the repre-

entation learning method as a dimensionality reduction step prior

o the classification [22] , where the low-dimensional representa-

ion is used as input features. Nonetheless, some works introduce

he idea of performing the two tasks simultaneously [23] . For ex-

mple, the discriminative K-SVD algorithm associates a linear mix-

ure model to a linear classifier [24] . At the end, the method tries

o learn a dictionary well-fitted for the classification task, i.e., the

earned representation minimizes the reconstruction error but also

nsures a good separability of the classes. More intertwined frame-

orks can be also considered, as the one proposed in [25] where

lements of the dictionary are class-specific. Joint representation

earning and classification can be cast as a cofactorization prob-

em. Both tasks are interpreted as individual factorization prob-

ems and constraints between the dictionaries and coding matri-

es associated with the two problems can then be imposed. These

ofactorization-based models have proven to be highly efficient in

any application fields, e.g. for text mining [26] , music source sep-

ration [27] , or image analysis [28,29] . 

However, most of the available methods tend to focus on

lassification results and generally oppose reconstruction accuracy

nd discriminative abilities of the models instead of designing a

nifying hierarchical structure. Capitalizing on recent advances and

 first attempt in [30] in a Bayesian setting, this paper proposes

 particular cofactorization method, with a dedicated application

o multivariate image analysis. The representation learning and

lassification tasks are related through the coding matrices of

he two factorization problems. A clustering is performed on the

ow-dimensional representation and the clustering attribution

ectors are used as coding vectors for the classification. This novel

oupling approach produces a coherent and fully-interpretable

ierarchical model. To solve the resulting non-convex non-smooth

ptimization problem, a proximal alternating linearized min-

mization (PALM) algorithm is derived, yielding guarantees of

onvergence to a critical point of the objective function [31] . 

The main contributions reported in this paper can be summa-

ized as follows. A generic framework is proposed to demonstrate

hat two ubiquitous image analysis methods, namely supervised

lassification and representation learning, can be unified into a

nique joint cofactorization problem. This framework is instanced

or one particular application in the context of hyperspectral im-

ge analysis where supervised classification and spectral unmixing

re performed jointly. The proposed method offers a comprehen-

ive and meaningful analysis of the image as well as competitive

uantitative results for the two considered tasks. 

This paper is organized as follows. Section 2 defines the two

actorization problems used to perform representation learning
nd classification and further discusses the joint cofactorization

roblem. It also details the optimization scheme developed to

olve the resulting non-convex minimization problem. To illus-

rate the generic framework introduced in the previous section,

n application to hyperspectral image analysis is conducted in

ection 3 through the dual scope of spectral unmixing and clas-

ification. Performance of the proposed framework is illustrated

hanks to experiments conducted on synthetic and real data in

ection 4 . Finally, Section 5 concludes the paper and presents some

esearch perspectives to this work. 

. Proposed generic framework

The representation learning and classification tasks are generi-

ally defined as factorization matrix problems in Sections 2.1 and

.2 . To derive a unified cofactorization formulation, a third step

onsists in drawing the link between these two independent prob-

ems. In this work, this coupling is ensured by imposing a consis-

ent structure between the two coding matrices corresponding to

he low-dimensional representation and the feature matrices, re-

pectively. As detailed in Section 2.3 , it is expressed as a clustering

ask where the parameters describing the attribution to the clus-

ers are the feature vectors, i.e. the coding matrix resulting from

he classification task. Particular instances of these three tasks will

e detailed in Section 3 for an application to multiband image

nalysis. 

.1. Representation learning 

The fundamental assumption in representation learning is that

he P considered L -dimensional samples, gathered in matrix Y ∈
 

L ×P , belong to a R -dimensional subspace such that R � L . The

im is then to recover this manifold, where samples can be ex-

ressed as combinations of elementary vectors, herein the column

f the matrix W ∈ R 

L ×R sometimes referred to as dictionary. These

amples can be subsequently represented thanks to the so-called

oding matrix H ∈ R 

R ×P . Formally, identifying the dictionary and

he coding matrices can be generally expressed as a minimization

roblem 

in 

W , H
J r (Y | ψ(W , H )) + λw 

R w 

(W ) + ı W 

(W ) + λh R h (H ) + ı H (H )

(1) 

here ψ( ·) is a mixture function (e.g., linear or bilinear operator),

 r (·) is an appropriate cost function, for example derived from a

-divergence [32] , R ·(·) denote penalizations weighted by the pa-

ameter λ · and ı · ( ·) is the indicator functions defined here on

he respective sets W ⊂ R 

L ×R and H ⊂ R 

R ×P imposing some con-

traints on the dictionary and coding matrices. 

In the case of a linear embedding adopted in this work, the

ixture function writes 

(W , H ) = WH . (2)

In this context, the problem (1) can be cast as a factor anal-

sis driven by the cost function J r (·) . Depending on the applica-

ive field, typical data-fitting measures include the Itakura-Saito,

he Euclidean and the Kullback–Leibler divergences [32] . Assum-

ng a low-rank model (i.e., R ≤ L ), specific choices for the sets H

nd W lead to various standard factor models. For instance, when

 is chosen as the Stiefel manifold, the solution of (1) is given

y a principal component analysis (PCA) [33] . When W and H im-

ose nonnegativity of the dictionary and coding matrix elements,

he problem is known as nonnegative matrix factorization [19,34] . 

Within a supervised context, the dictionary W can be chosen

hanks to a end-user expertise or estimated beforehand. Without

oss of generality but for the sake of conciseness, the framework



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Structure of the cofactorization model. Variables in blue stand for observa- 

tions or available external data. Variables in olive green are linked through the clus- 

tering task here formulated as an optimization problem. The variable in a dotted

box is assumed to be known or estimated beforehand in this work.

w  

t

m  

t  

b  

fi  

T  

a  

T  

t  

a  

i  

F  

t  

a  

i  

c  

b  

s

S  

2

 

c  

t  

w  

t  

e  

p  

i  

c  

t  

v  

s  

s

s  

o  

o  

a  

d  
described in this paper assumes that this dictionary is known, pos-

sibly overcomplete as proposed in the experimental illustration de-

scribed in Section 4 . In this case, as in many applications, it makes

sense to look for a sparse representation of the signal of interest

to retrieve its most achievable compact representation [21,35] . Fol-

lowing this strategy, we propose to consider an � 1 -norm sparsity

penalization on the coding vectors, leading to representation learn-

ing task defined by 

min 

H
J r (Y | WH ) + λh ‖ 

H ‖ 1 + ı H (H ) (3)

where ‖ H ‖ 1 = 

∑ P
p=1 ‖ h p ‖ 1 with h p denoting the p th column of H .

2.2. Supervised classification 

To clearly define the classification task, let first introduce some

key notations. The index subset of samples with an available

groundtruth is denoted as L while the index subset of unla-

beled samples is U such that L ∩ U = ∅ and L ∪ U = P with P �
{ 1 , . . . , P } . Classifying the unlabeled samples consists in assigning

each of them to one of the C classes. This can be reformulated as

the estimation of a C × P matrix C whose columns correspond to

unknown C -dimensional attribution vectors c p = 

[
c 1 ,p , . . . , c C,p 

]
T .

Each vector is made of 0 except for c i,p = 1 when the p th sample

is assigned the i th class. 

Numerous classification rules have been proposed in the liter-

ature [36] . Most of them rely on a K × P matrix Z = [ z 1 , . . . , z P ]

of features z p ( p ∈ P) associated with each sample and derived

from the raw data. Within a supervised framework, the attribution

matrix C L and feature matrix Z L of the labeled data are exploited

during the learning step, where ·L denotes the corresponding

submatrix whose columns are indexed by L . For a wide range of

classifiers, deriving a classification rule can be achieved by solving

the optimization problem 

min 

Q
J c (C L | φ(Q , Z L )) + λq R q (Q ) (4)

where Q ∈ R 

C×K is the set of classifier parameters to be inferred,

R q (·) refer to regularizations imposed on Q and J c is a cost

function measuring the quality of the classification such as the

quadratic loss [24] or cross-entropy [37] . Moreover, in (4) , φ( Q ,

· ) defines a element-wise nonlinear mapping between the fea-

tures and the class attribution vectors parametrized by Q , e.g.,

derived from a sigmoid or a softmax operators. In this work, the

classifier is assumed to be linear, which leads to a vector-wise

post-nonlinear mapping

φ(Q , Z L ) = φ(QZ L ) (5)

with 

φ(X ) = [ φ(x 1 ) , . . . , φ(x p ) ] . (6)

Once the classifier parameters have been estimated by solv-

ing (4) , the unknown attribution vectors C U can be subsequently

inferred during the testing step by applying the nonlinear transfor-

mation to the corresponding predicted features ˆ Z U associated with

the unlabeled samples. The obtained outputs are relaxed attribu-

tion vectors ˆ c p = φ(Q ̂

 z p ) ( p ∈ U ) and the most probable predicted

sample class can be computed as argmax i c i,p . 

Under the proposed formulation of the classification task, the

learning and testing steps can be conducted simultaneously, a

framework usually referred to as semi-supervised, with the ben-

eficial opportunity to introduce additional regularizations and/or

constraints on the submatrix of unknown attribution vectors C U .
The initial problem (4) is thus extended to the following one 

min 

Q , C U
J c (C | φ(QZ )) + λq R q (Q ) + λc R c (C ) + ı C (C U ) (7)
here C = [ C L C U ] and C ⊂ R 

C×|U| denotes a feasible set for the at-

ribution matrix C U . As discussed above, the cost function J c (C | ̂ C )

easures the actual classification loss, i.e., the discrepancy be-

ween the attribution vector C of the training set and the attri-

ution vectors ˆ C predicted by the classifier. Two particular cases

tting this generic model are provided in Sections 3.2.1 and 3.2.2 .

he attribution vectors are defined as ˆ C = φ(Q ̂

 Z ) where φ( ·) is

 nonlinear function applied to the output of a linear classifier.

he regularization term R q (Q ) penalizes over the parameters of

he classifiers. A typical example is a quadratic penalization which

ims at avoiding overfitting, as conventionally done when optimiz-

ng neural networks and generally referred to as weight decay [38] .

inally, the regularization term R c (C ) penalizes over the attribu-

ion matrix. Typical examples include spatial regularizations such

s total variation (TV) when dealing with image classification. The

ndicator function ı C (C U ) enforces sum-to-one and non-negativity

onstraints such that each attribution vector c p ( p ∈ U) can then

e interpreted as a probability vector of belonging to each class. In

uch a case, the feasible set is chosen as C = S 
|U| 
C 

where 

 C �

{
u ∈ R 

C 
∣∣∀ k, u k ≥ 0 and 

C ∑ 

k =1

u k = 1 

}
. (8)

.3. Coupling representation learning and classification 

Up to this point, the representation learning and supervised

lassification tasks have been formulated as two independent ma-

rix factorization problems given by (3) and (7) , respectively. This

ork proposes to join them by drawing an implicit relation be-

ween two factors involved in these two problems. Inspired by hi-

rarchical Bayesian models such as the one proposed in [30] , both

roblems are coupled through the activation matrices H and Z , as

llustrated in Fig. 1 . More precisely, the coding vectors in H are

lustered such that the feature vectors in Z are defined as the at-

ribution vectors to the K clusters. Ideally, clustering attribution

ectors z p are filled with zeros except for z k,p = 1 when h p is as-

ociated with the k th cluster. Thus, the vectors z p ( p ∈ P) are as-

umed to be defined on the K -dimensional probability simplex S K 
imilarly defined as (8) and ensuring non-negativity and sum-to-

ne constraints. Many clustering algorithms can be expressed as

ptimization problem such as the well-known k-means algorithm

nd many of its variants [39,40] . Adopting this formulation, and

enoting θ the set of parameters of the clustering algorithm, the



Table 1

Overview of notations.

Parameter

P ∈ R Number of observations

L ∈ R Dimension of observations

C ∈ R Number of classes

K ∈ R Number of features/clusters

P = { 1 , . . . , P } Index set of observations

L ⊂ P Index set of labeled samples

L i ⊂ L Index set of labeled samples in the i th class

U = P\L Index set of unlabeled samples

Y ∈ R L ×P Observations

W ∈ R L ×R Dictionary

H ∈ R R ×P Coding matrix

Q ∈ C C×P Classifier parameters

C L ∈ R C×|L| Attribution matrix of labeled data

C U ∈ R C×|U| Attribution matrix of unlabeled data

C = [ C L C U ] Class attribution matrix

Z ∈ R K×P Cluster attribution matrix

θ ∈ � Clustering parameters
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lustering task can be defined as the minimization problem 

in 

Z , θ
J g (H , Z ; θ) + λz R z (Z ) + λθR θ ( θ) + ı 

S P 
K 
(Z ) + ı �( θ) (9)

here � defines a feasible set for the parameters θ. 

It is worth noting that introducing this coupling term is one

f the major novelty of the proposed approach. When consid-

ring task-driven dictionary learning methods, it is usual to in-

ertwine the representation learning and the classification tasks

y directly imposing H = Z [24,41] . Since these methods generally

ely on a linear classifier, one major drawback of such approaches

s their unability to deal with non-separable classes in the low-

imensional representation space. In such cases, the underlying

odel cannot be discriminative and descriptive simultaneously and

he resulting tasks become adversarial. When considering the pro-

osed coupling term, the cluster attribution vectors z p offer the

ossibility of linearly separating any group of clusters from the

thers. As a consequence, the model benefits from more flexibility,

ith both discriminative and descriptive abilities in a more general

ense. 

.4. Global cofactorization problem 

Unifying the representation learning task (3) and the classifica-

ion task (7) through the clustering task (9) leads to the following

oint cofactorization problem 

min 

H , Q , C U ,
Z , θ

λ0 J r (Y | WH ) + λh ‖ 

H ‖ 1

+ λ1 J c (C | φ(QZ )) + λq R q (Q ) + λc R c (C )

+ λ2 J g (H , Z ; θ) + λz R z (Z ) + λθR θ ( θ)

+ ı H (H ) + ı 
S 
|U| 
K

(C U ) + ı 
S P 

K 
(Z ) + ı �( θ) (10) 

here λ0 , λ1 and λ2 control the respective contribution of each

ask data-fitting term. All notations and parameter dimensions are

ummarized in Table 1 . A generic algorithmic scheme solving the

roblem (10) is proposed in the next section. 

.5. Optimization scheme 

The minimization problem defined by (10) is not globally con-

ex. To reach a local minimizer, we propose to resort to the prox-

mal alternating linearized minimization (PALM) algorithm intro-

uced in [31] . This algorithm is based on proximal descent steps,

hich allows non-smooth terms to be handled. Moreover it is

uaranteed to converge to a critical point of the objective func-

ion even in the case of non-convex problem. This means that, if
he initialization is good enough, it is expected to likely converge

o a solution close to the global optimum. To implement PALM, the

roblem (10) is rewritten in the form of an unconstrained problem

xpressed as a sum of a smooth coupling term g ( ·) and separable

on-smooth terms f j ( ·) ( j ∈ { 0 , . . . , 4 } ) as follows

min 

 , θ, Z ,
Q , C U

f 0 (H ) + f 1 ( θ) + f 2 (Z ) + f 3 (C U ) + g(H , θ, Z , C U , Q ) (11) 

here 

f 0 (H ) = ı H (H ) + λh ‖ 

H ‖ 1 f 2 (Z ) = ı 
S P 

K
(Z ) 

f 1 ( θ) = ı �( θ) f 3 (C U ) = ı 
S 
|U| 
K

(C U ) 

nd the coupling function is 

(H , θ, Z , C U , Q ) = λ0 J r (Y | WH )

+ λ1 J c (C | φ(QZ )) + λq R q (Q ) + λc R c (C )

+ λ2 J g (W , Z ; θ) + λz R z (Z ) + λθR θ ( θ) . (12)

To ensure the stated guarantees of PALM, all f j ( ·) have to

e proper, lower semi-continuous function f j : R 

n j → (−∞ , + ∞ ] ,

hich ensures in particular that the associated proximal operator

s well-defined. Additionally, sufficient conditions on the coupling

unction are that g ( ·) is a C 2 function (i.e., with continuous first

nd second derivatives) and that its partial gradients are globally

ipschitz. For example, partial gradient ∇ H g(H , θ, Z , C U , Q ) should

e globally Lipschitz for any fixed θ, Z , C U , Q , that is 

∇ H g(H 1 , θ, Z , C U , Q ) − ∇ H g(H 2 , θ, Z , C U , Q ) 
∥∥

≤ L H ( θ, Z , C U , Q ) ‖ 

H 1 − H 2 ‖ 

, ∀ H 1 , H 2 ∈ R 

R ×P (13) 

here L H ( θ, Z , C U , Q ) , simply denoted L H hereafter, is the Lipschitz

onstant. For sake of conciseness, we refer to [31] to get further

etails. 

The main idea of the algorithm is then to update each variable

f the problem alternatively using a proximal gradient descent. The

verall scheme is summarized in Algorithm 1 . For a practical im-

Algorithm 1: PALM. 

1 Initialize variables H 

0 , θ
0 
, Z 0 , C U 

0 and Q 

0 ; 

2 Set α > 1 ;

3 while stopping criterion not reached do

4 H 

k +1 ∈ prox αL H 
f 0

(H 

k − 1 
αL H 

∇ H g(H 

k , θ
k 
, Z k , C k U , Q 

k )) ; 

5 θ
k +1 ∈ prox 

αL θ
f 1

( θ
k − 1 

αL θ
∇ θg(H 

k +1 , θ
k 
, Z k , C k U , Q 

k )) ; 

6 Z k +1 ∈ prox αL Z 
f 2

(Z k − 1 
αL Z 

∇ Z g(H 

k +1 , θ
k +1 

, Z k , C k U , Q 

k )) ; 

7 Q 

k +1 ∈ prox 
αL Q 
f 3

(Q 

k − 1 
αL Q 

∇ Q g(H 

k +1 , θ
k +1 

, Z k +1 , C U 
k 
, Q 

k )) ; 

8 C k +1 
U ∈ prox 

αL C U 
f 4

(C k U − 1 
αL C U

∇ C U g(H 

k +1 , θ
k +1 

, Z k +1 , C k U , Q 

k +1 )) ; 

9 end

10 return H 

end , θ
end 

, Z end , Q 

end , C end 
U 

lementation, one needs to compute the partial gradients of g ( ·)
xplicitly and their Lipschitz constants to perform a gradient de-

cent step, followed by a proximal mapping associated with the

on-smooth terms f j ( ·). The objective function is then monitored

t each iteration and the algorithm is stopped when convergence

s reached. Note that, when a specific penalization R ·(·) is non-

mooth or non-gradient-Lipschitz, it is possible to move it into the

orresponding independent term f j ( ·) to ensure the required prop-

rty of the coupling function g ( ·). This is for instance the case for

he sparse penalization used over H which has been moved into

 0 ( ·). Nonetheless, as mentioned above, the proximal operator as-

ociated with each f j ( ·) is needed. Thus, even when the function

onsists of several terms, a closed-form expression of this operator

hould be known. Alternatively, one should be able to compose the

roximal operators associated with each term of f j ( ·) [42] . 



Fig. 2. Spectral unmixing concept (source US Navy NEMO).
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3. Application: hyperspectral images analysis

A general framework has been introduced in the previous sec-

tion. As an illustration, a particular instance of this generic frame-

work is now considered, where explicit representation learning,

classification and clustering are introduced. The specific case of hy-

perspectral images analysis is considered for this use case example.

Contrary to conventional color imaging which only captures the

reflectance measure for three wavelengths (red, blue, green), hy-

perspectral imaging makes it possible to measure reflectance of the

observed scene for several hundreds of wavelengths from visible to

invisible domain. Each pixel of the image can thus be represented

as a vector of reflectance, called spectrum, which characterizes the

observed material. 

One drawback of hyperspectral images is usually a weaker spa-

tial resolution due to sensor limitations. The direct consequence

of this poor spatial resolution is the presence of mixed pixels,

i.e., pixels corresponding to areas containing several materials. Ob-

served spectra are in this case the result of a specific mixture of

the elementary spectra, called endmembers, associated with indi-

vidual materials present in the pixel. The problem of retrieving the

proportions of each material in each pixel is referred to as spectral

unmixing [11] . This problem can be seen as a specific case of rep-

resentation learning where the dictionary is composed of the set of

endmembers standing for the endmember spectra and the coding

matrix is the so-called abundance matrix containing the proportion

of each material in each pixel. 

Spectral unmixing is introduced as a representation learning

task in Section 3.1 . The specific classifier used for this application

is then explained in Section 3.2 and finally Section 3.3 presents the

clustering adopted to relate the abundance matrix and the classifi-

cation feature matrix. 

3.1. Spectral unmixing 

As explained, each pixel of an hyperspectral image is character-

ized by a reflectance spectrum that physics theory approximates

as a combination of endmembers, each corresponding to a spe-

cific material, as illustrated in Fig. 2 . Formally, in this applicative

scenario, the L -dimensional sample y p denotes the L -dimensional

spectrum of the p th pixel of the hyperspectral image ( p ∈ P). Each

observation vectors y p can be expressed as a function of the end-

member matrix W (containing the R elementary spectra) and the

abundance vector h p ∈ R 

R with R � L . 

In the case of the most commonly adopted linear mixture

model, each observation y p is assumed to be a linear combina-
ion of the endmember spectra w r ( r = 1 , . . . , R ) corrupted by some

oise, underlying the linear embedding (2) . Assuming a quadratic

ata-fitting term, the cost function associated with the representa-

ion learning task in (1) is written 

 r (Y | WH ) = 

1 

2 

‖ 

Y − WH ‖ 

2 
F . (14)

The abundance vector h p is usually interpreted as a vector of

roportions describing the proportion of each elementary compo-

ent in the pixel. Thus, to derive an additive composition of the

bserved pixels, a nonnegative constraint is considered for each

lement of the abundance matrix H , i.e., H = R 

R ×P 
+ . In this work,

o sum-to-one constraint is considered since it has been argued

hat leaving this constraint out offers a better adaptation to possi-

le changes of illumination in the scene [43] . Additionally, as the

ndmember matrix W is the collection of reflectance spectra of

he endmembers, it is also expected to be non-negative. When this

ictionary needs to be estimated, the resulting problem is a sparse

on-negative matrix factorization (NMF) task. When the dictio-

ary is known or estimated beforehand, the resulting optimization

roblem is the nonnegative sparse coding problem 

min 

H

1 

2 

‖ 

Y − WH ‖ 

2 
F + λh ‖ 

H ‖ 1 + ı 
R 

R ×P 
+ 

(H ) (15)

here the sparsity penalization actually supports the assumption

hat only a few materials are present in a given pixel. 

.2. Classification 

In the considered application, two loss functions associated

ith the classification problem have been investigated, namely

uadratic loss and cross-entropy loss. One advantage of these two

oss functions is that they can be used in a multi-class classi-

cation (i.e., with more than two classes). Moreover, this choice

ay fulfill the required conditions stated in Section 2.5 to apply

ALM since, coupled with an appropriate φ( ·) function, both loss

osts are smooth and gradient-Lipschitz according to each esti-

ated variables. 

.2.1. Quadratic loss 

The quadratic loss is the most simple way to perform a classifi-

ation task and have been extensively used [25,44,45] . It is defined

s 

 c (C | ̂  C ) = 

1 

2 

∥∥CD − ˆ C D 

∥∥2

F
(16)

here ˆ C denotes the estimated attribution matrix. In (16) , the

 × P matrix D is introduced to weight the contribution of the

abeled data with respect to the unlabeled one and to deal with

he case of unbalanced classes in the training set. Weights are

hosen to be inversely proportional to class frequencies in the

nput data. The weight matrix is defined as the diagonal matrix

 = diag [ d 1 , . . . , d P ] with 

 p = 

⎧ ⎨
⎩

√
1 

|L i | , if p ∈ L i ; √
1 

|U| , if p ∈ U; 
(17)

here L i denotes the set of indexes of labeled pixels of the i th

lass ( i = 1 , . . . , C). Thus, considering a linear classifier, the generic

lassification problem in (7) can be specified for the quadratic loss

in 

Q , C U 

1 

2 

‖ 

CD − QZD ‖ 

2 
F + λc R c (C ) + ı 

S 
|U| 
C 

(C U ) (18)

here no additional constraints nor penalization is applied to the

lassifier parameters Q . Besides, when samples obey a spatially co-

erent structure, as it is the case when analyzing hyperspectral im-

ges, it is often desirable to transfer this structure to the classifi-

ation map. Such a characteristics can be achieved by considering
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 spatial regularization R c (C ) applied to the attributions vectors.

ollowing this assumption, this work considers a regularized coun-

erpart of the weighted vectorial total variation (vTV), promoting

 spatially piecewise constant behavior of the classification map

46] 

 

C ‖ vTV =
∑ 

m,n

βm,n 

√ ∥∥[ ∇ h C ] m,n 

∥∥2

2
+

∥∥[ ∇ v C ] m,n 

∥∥2

2
+ ε (19) 

here ( m, n ) are the spatial position pixel indexes and [ ∇ h ( ·)] m,n

nd [ ∇ v ( ·)] m,n stand for horizontal and vertical discrete gradient

perators evaluated at a given pixel, 1 respectively, i.e., 

 

∇ h C ] m,n = c (m +1 ,n ) − c (m,n )

 

∇ v C ] m,n = c (m,n +1) − c (m,n ) .

The weights βm,n can be computed beforehand to adjust the pe-

alizations with respect to expected spatial variations of the scene.

hey can be estimated directly from the image to be analyzed or

xtracted from a complementary dataset as in [47] . They will be

pecified during the experiments reported in Section 4 . Moreover,

he smoothing parameter ε > 0 ensures the gradient-Lipschitz

roperty of the coupling term g ( ·), as required in Section 2.5 . 

.2.2. Cross-entropy loss 

The quadratic loss has the advantage to be expressed sim-

ly and the associated Lipschitz constant of the partial gradients

re trivially obtained. However, this loss function is known to be

ighly influenced by outliers which can result in a degraded pre-

ictive accuracy [48] . A more sophisticated way to conduct the

lassification task is to consider a cross-entropy loss 

 c (C | ̂  C ) = −
∑ 

p∈P
d 2 p 

∑ 

i ∈C
c i,p log 

(
ˆ c i,p 

)
(20)

ombined with a logistic regression, i.e., where the nonlinear map-

ing (5) is element-wise defined as 

 

φ( X ) ] i, j = 

1 

1 + exp (−x i, j ) 
= sigm (x i, j ) (21) 

ith i ∈ { 1 , . . . , C } and p ∈ P . This classifier can actually be inter-

reted as a one-layer neural network with a sigmoid non-linearity.

ross-entropy loss is indeed a very conventional loss function in

he neural network/deep learning community [38] . In the present

ase, the corresponding optimization problem can be written 

in 

Q , C U
−

∑ 

p∈P
d 2 p 

∑ 

i ∈C
c i,p log ( sigm (q i : z p )) ) 

 λq R q (Q ) + λc ‖ 

C ‖ vTV + ı
S
|U| 
C 

(C U ) (22) 

here q i : ∈ R 

1 ×K denotes the i th line of the matrix Q . The penal-

zation R q (Q ) is here chosen as R q (Q ) = 

1 
2 ‖ Q ‖ 2 F to prevent the loss

unction to artificially decrease when ‖ q i : ‖ 2 is increasing. This reg-

larization has been extensively studied in the neural network lit-

rature where it is referred to as weight decay [38] . In (22) , the

egularization R c (C U ) applied to the attribution matrix is chosen

gain as a vTV-like penalization (see (19) ). 

.3. Clustering 

For the considered application, the conventional k -means algo-

ithm has been chosen because of its straightforward formulation

s an optimization problem. By denoting θ = { B } a R × K matrix

ollecting K centroids, the clustering task (9) can be rewritten as

he following NMF problem [40] 

in 

Z , B

1 

2 

‖ 

H − BZ ‖ 

2 
F + λz R z (Z ) + ı 

S P 
K
(Z ) + ı 

R 
R ×K 
+ 

(B ) (23)
1 With a slight abuse of notations, c ( m,n ) refers to the p th column of C where the 

 th pixel is spatially indexed by ( m, n ).

 

f  
here R z (Z ) should promote Z to be composed of orthogo-

al lines. Combined with the nonnegativity and sum-to-one con-

traints, it would ensure that z p is a vector of zeros except for its

 th component equal to 1, i.e., meaning that the p th pixel belongs

o the k th cluster. However, handling this orthogonality property

ithin the PALM optimization scheme detailed in Section 2.5 is not

traightforward, in particular because the proximal operator asso-

iated to this penalization cannot be explicitly computed. In this

ork, we propose to remove this orthogonality constraint since re-

axed attribution vectors may be richer feature vectors for the clas-

ification task. 

.4. Multi-objective problem 

Based on the quadratic and cross-entropy loss functions con-

idered in the classification task, two distinct global optimization

roblems are obtained. When considering the quadratic loss of

ection 3.2.1 , the multi-objective problem (10) writes 

min 

H , Q , Z 
C U , B

λ0 

2 

‖ 

Y − WH ‖ 

2 
F + λh ‖ 

H ‖ 1 + ı 
R 

R ×P 
+ 

(H ) 

+ λ1 

2
‖ 

CD − QZD ‖ 

2 
F + λc ‖ 

C ‖ vTV + ı
S
|U| 
C 

(C U ) 

+ λ2 

2
‖ 

H − BZ ‖ 

2 
F + ı 

S P 
K
(Z ) + ı 

R 
R ×K 
+ 

(B ) . (24) 

Instead, when considering the cross-entropy loss function pro-

osed in Section 3.2.2 , the optimization problem (10) is defined

s 

min 

H , Q , Z 
C U , B

λ0 

2 

‖ 

Y − WH ‖ 

2 
F + λh ‖ 

H ‖ 1 + ı 
R 

R ×P 
+ 

(H ) 

− λ1 

2

∑ 

p∈P
d 2 p 

∑ 

i ∈C
c i,p log ( sigm (−q i : z p )) ) 

+ λq 

2
‖ 

Q ‖ 

2 
F + λc ‖ 

C ‖ vTV + ı
S
|U| 
C 

(C U ) 

+ λ2 

2
‖ 

H − BZ ‖ 

2 
F + ı 

S P 
K
(Z ) + ı 

R 
R ×K 
+ 

(B ) . (25) 

Both problems are particular instances of nonnegative matrix

o-factorization [27,28] . To summarize, the hyperspectral pixel is

rst described as a combination of elementary spectra through the

earning representation step, aka spectral unmixing. Then, assum-

ng that there exist groups of pixels resulting from the same mix-

ure of materials, a clustering is performed among the abundance

ectors. And finally, attribution vectors to the clusters are used

s feature vectors for the classification supporting the idea that

lasses are made of a mixture of clusters. For both multi-objective

roblems (24) and (25) , all conditions required to the use of PALM

lgorithm described in Section 2.5 are met. Details regarding the

wo optimization schemes dedicated to these two problems are re-

orted in the Appendix. 

.5. Complexity analysis 

Regarding the computational complexity of the proposed

lgorithm 1 , deriving the gradients shows that it is dominated by

atrix product operations. It yields that the algorithm has an over-

ll computational cost in O(NK 

2 P ) where N is the number of iter-

tions. 

. Experiments

.1. Implementation details 

Before presenting the experimental results, it is worth clari-

ying the choices which have been made regarding the practical



Fig. 3. Convergence of the various terms of objective function (representation

learning, clustering, classification, vTV, total).
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implementation of the proposed algorithms for the considered ap-

plication. Important aspects are discussed below. 

Convergence diagnosis and stopping rule – In all experiments

conducted hereafter, the value of the objective function is mon-

itored at each iteration to determine if convergence has been

reached. The normalized difference between the last two consecu-

tive values of the objective function is compared to a threshold and

the algorithm stops when the criterion is smaller than this thresh-

old (set as 10 −4 for the conducted experiments). Fig. 3 shows one

example of the behavior of the objective function along the itera-

tions as well as the behavior of several terms composing this over-

all objective function. As it can be observed from the figure, the

global objective function is decreasing over the iteration, which is

theoretically ensured by the PALM algorithm. 

Initialization – As PALM algorithm only ensures convergence

to a critical point and not a global optimum, it remains sensi-

tive to initialization, which needs to be carefully chosen to reach

relevant solutions. The initialization of the parameters associated

with the learning representation and clustering steps relies on the

self-dictionary learning method proposed in [49] . This method pro-

poses to use observed pixels of the image as dictionary elements.

The underlying assumption is that the image contains pure pixels,

i.e., composed of only a single material. Formally, the initial esti-

mate H 

0 of H is chosen as

H 

0 = argmin 

H

1 

2 

∥∥Y − ˜ Y H 

∥∥2

F
+ α‖ 

H ‖ 1 , 2 (26)

where ‖ H ‖ 1 , 2 = 

∑ R
r=1 ‖ h r, : ‖ 2 promotes the use of a reduced num-

ber of pixels as dictionary elements and 

˜ Y is a submatrix of Y con-

taining the pixel candidates to be used as dictionary elements. Fol-

lowing the strategy similarly proposed in [49] , this subset ˜ Y is built

as follows: i ) for each class of the training set, a k -means is applied

to the labeled samples to identify J clusters, ii ) within a given class,

one candidate is retained from each cluster as the pixel the far-

thest away from the centers of the other clusters (in term of spec-

tral angle distance). This procedure provides a subset ˜ Y composed

of J × C spectrally diverse candidates extracted from the labeled

samples. 

Then, regarding the representation learning step, only active el-

ements in 

˜ Y , i.e., those associated with non-zero rows in H 

0 , are

kept to define the dictionary W . Finally, to initialize the variables
nvolved in the clustering step, a k -means is conducted on H 

0 and

he identified centroids are chosen as B 

0 while the corresponding

ttribution vectors define Z 

0 . Finally, the classification parameters

 

0 and attribution vectors C 

0 
U are randomly initialized. 

Weighting the vTV – As explained in Section 2.2 , the classi-

cation is regularized by a weighted smooth vTV regularization.

hen all not fixed to the same value, the weights offer the pos-

ibility to account for natural boundaries in the observed scene,

.e., variations in the classification map are expected to be localized

t the edges in the image. As in [47] , an auxiliary dataset inform-

ng about the spatial structure of the image can be used to adjust

hese weights. Instead, in this work, we assume that no such exter-

al information is available. Thus these weights are directly com-

uted from the hyperspectral image. More precisely, a virtually ob-

erved panchromatic image y PAN ∈ R 

P , i.e. a single band image, is

rst synthetized by averaging the bands of the hyperspectral image

 . Then, the weights are chosen as 

m,n = 

˜ βm,n∑ 

p,q 
˜ βp,q 

with 

˜ βm,n = 

1 ∥∥[ ∇y PAN ] m,n

∥∥
2

+ σ
(27)

here ∇(·) = [ ∇ h (·) ∇ v (·) ] T is the gradient operator and σ is an

yperparameter chosen as σ = 0 . 01 to avoid numerical problems

nd to control the adaptive weighting (the larger σ , the less varia-

ion in the weighting) [50] . 

Hyperparameter scaling – To balance the size and the dynam-

cs of the matrices involved in the cofactorization problem, the hy-

erparameters λ0 and λq in (24) and (25) have been set as 

0 = 

1 

L ‖ 

Y ‖ 

2 
∞ 

˜ λ0 , λq = 

P 

C 
˜ λq . (28)

Then, for each experiment presented hereafter, the parameters
˜ · have been empirically adjusted to obtain consistent results. 

.2. Synthetic hyperspectral image 

Data generation – First, to assess the relevance of the proposed

odel, experiments have been conducted on synthetic images.

hese synthetic images have been generated using a real hyper-

pectral image which has been unmixed using the well-established

nmixing method SUnSAL [51] . The extracted abundance maps and

 set of 6 pure spectra from the hyperspectral library ASTER have

een used to build a synthetic hyperspectral images with a realis-

ic spatial organization. The resulting 100-by-250 pixel image pre-

ented in Fig. 4 is composed of L = 385 spectral bands. The im-

ge is associated with a classification groundtruth ( C = 4 ) based

n the groundtruth of the original real image and a subpart of

his groundtruth is assumed known and therefore used as training

ataset for the supervised classification step. 

Moreover, in this experiment, the endmember matrix W com-

rises the 6 spectra actually used to generate the image. To evalu-

te the robustness of the method in a challenging scenario, these

 initial endmember spectra are complemented with 9 endmem-

ers not present in the image but very correlated with the 6 actu-

lly used ones. The endmember matrix is thus composed of R = 15

pectra depicted in Fig. 5 . 

Compared methods – The proposed methods with quadratic

Q) and cross-entropy (CE) classification losses, denoted respec-

ively by Cofact-Q and Cofact-CE, have been compared with state-

f-the-art classification and unmixing methods. First, one consid-

red competing method is the random forest (RF) classifier, which

has been extensively used for the hyperspectral image classifica-

ion. Then, the convolutional neural network (CNN) proposed in

52] has also been tested. This CNN architecture, referred to as

esNet, is based on a residual network specifically designed for

yperspectral image classification. Additionally, the performance



Fig. 4. Synthetic image: (a) colored composition of the hyperspectral image Y , (b) panchromatic image y PAN , (c) classification ground-truth, (d) training set.

Fig. 5. Spectra used as dictionary W . The 6 color spectra have been used to gener- 

ate the semi-synthetic image (4 vegetation spectra and 2 soil spectra).
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f the classification method proposed in [53] has been evaluated.

his method, referred to as SSFPCA+SVM, relies on a so-called

pectrally-segmented folded PCA (SSFPCA) as a feature extraction

tep, followed by a RBF-kernel SVM classifier. Finally, a multino-

ial logistic regression classifier (MLR) has also been applied di-

ectly on the observations. This classifier is equivalent to the clas-

ification term proposed in the Cofact-CE method. Thus it will il-

ustrate the interest of using a representation learning step before

erforming the classification. Parameters of the RF and the SVM

ave been adjusted using cross-validation with a grid-search strat-

gy and we used the implementations provided in the scikit-learn

ython library [54] . The parameters of SSFPCA have been set based

n the study provided in the original paper. The implementation

nd parameters proposed by the authors has been used for the

esNet method. All methods except ResNet have been run on a

esktop computer with 16Gb of RAM and Intel(R) Xeon(R) CPU E5-

630 v4 @ 3.70GHz × 8 processor. Due to its high computational

oad, the ResNet method has been run on a DELL T630 server with

 Intel(R) Xeon(R) CPU 2640 v4, 2 × 100Gb of RAM and a Nvidia

TX 1080 TI GPU. 

Besides, two unmixing methods proposed in [51] has been

ested, namely the fully constrained least squares ( fc -SUnSAL) and

he constrained sparse regression ( csr -SUnSAL). fc -SUnSAL basi-
ally relies on the same data fitting term (14) considered in the

roposed cofactorization method, under non-negativity and sum-

o-one constraints applied to the abundance vectors. Conversely,

he csr -SUnSAL problem removes the sum-to-one constraint and

ntroduces a � 1 -norm penalization on the abundance vectors. It

hus solves (15) where the associated regularization parameter λh 

s tuned using a grid-search strategy. These two methods use an

ugmented Lagrangian splitting algorithm to recover the abun-

ance vectors. Additionally, these abundance vectors are subse-

uently used as input features of a MLR classifier. This classifier

s linear and its combination with the csr -SUnSAL unmixing algo-

ithm, referred to as csr -SUnSAL+MLR, yields a sequential counter-

art of the proposed Cofact-CE method. In particular, comparing

he resulting classification performance with the performance of

ofact-CE allows the benefit of introducing the clustering coupling

erm to be assessed. 

Besides, the proposed method has been also compared with the

iscriminative K-SVD (D-KSVD) method proposed in [24] . The D-

SVD problem has strong similarities with the proposed cofactor-

zation problem. Indeed, it corresponds to a � 0 -penalized represen-

ation learning and a classification with a quadratic loss. It aims

t learning a dictionary suitable for the classification problem and

erforms a linear classification on the coding vectors. For this rea-

on, the dictionary W is only used as an initialization for D-KSVD,

hile it remains fixed for the unmixing and proposed cofactor-

zation methods. Similarly, the label consistent K-SVD (LC-KSVD)

s also considered [25] . This model has been proposed as an im-

rovement of D-KSVD where an additional term ensures that the

ictionary elements are class-specific. Hyperparameters of D-KSVD

nd LC-KSVD have been manually adjusted in order to get the

est results. When implementing the PALM algorithm proposed in

ection 2.5 , the normalized regularization parameters in (28) have

een fixed as ˜ λ0 = 100 , λ1 = λ2 = 1 , λh = λq = 0 . 1 and 

˜ λc = 10 −3 .

inally, the number of clusters has been set to K = 10 . The influ-

nce of these parameters are empirically studied in the associated

ompanion report [55] . 

Figure-of-merits – Several metrics are computed to quantify

he quality of the classification and unmixing tasks. For classifi-

ation, two widely-used metrics are used, namely Cohen’s kappa

nd the averaged F1-score over all classes [56] . For unmixing, re-

onstruction error (RE) and root global mean squared error (RMSE)

re computed as follows 

E = 

√
1 

P L 

∥∥Y − W ̂

 H 

∥∥2

F
,



Table 2

Synthetic data: unmixing and classification results.

Model F1-mean Kappa RMSE ( ̂ H ) RE Time (s)

Cofact-Q 0.911 ( ±3 . 5 × 10 −3 ) 0.893 ( ±3 . 5 × 10 −3 ) 0.0528 ( ±1 . 1 × 10 −4 ) 0.32 ( ±8 . 9 × 10 −4 ) 80 ( ± 6) 

Cofact-CE 0.899 ( ±5 . 4 × 10 −2 ) 0.880 ( ±6 . 2 × 10 −2 ) 0.0524 ( ±1 . 3 × 10 −4 ) 0.27 ( ±2 . 2 × 10 −3 ) 61 ( ± 4) 

MLR 0.873 ( ±2 . 6 × 10 −3 ) 0.882 ( ±2 . 3 × 10 −3 ) N \ A N \ A 92 ( ± 14) 

RF 0.913 ( ±1 . 4 × 10 −3 ) 0.907 ( ±1 . 3 × 10 −4 ) N \ A N \ A 0.9 ( ± 0.08) 

ResNet 0.913 ( ±1 . 6 × 10 −2 ) 0.943 ( ±4 . 6 × 10 −3 ) N \ A N \ A 220 ( ± 12) a 

SSFPCA + SVM 0.918 ( ±8 . 3 × 10 −4 ) 0.911 ( ±2 . 4 × 10 −3 ) N \ A N \ A 4.0 ( ± 0.05) 

fc -SUnSAL + MLR 0.893 ( ±6 . 4 × 10 −4 ) 0.912 ( ±3 . 7 × 10 −4 ) 0.120 ( ±3 . 1 × 10 −6 ) 0.37 ( ±5 . 1 × 10 −5 ) 6 ( ± 0.3) 

csr -SUnSAL + MLR 0.888 ( ±1 . 0 × 10 −3 ) 0.911 ( ±5 . 0 × 10 −4 ) 0.125 ( ±3 . 0 × 10 −6 ) 0.36 ( ±4 . 2 × 10 −5 ) 9 ( ± 0.5) 

D-KSVD 0.520 ( ±3 . 1 × 10 −3 ) 0.653 ( ±3 . 4 × 10 −2 ) N \ A 0.23 ( ±4 . 1 × 10 −2 ) 382 ( ± 9) 

LC-KSVD 0.879 ( ±3 . 7 × 10 −4 ) 0.904 ( ±1 . 0 × 10 −4 ) N \ A 30.4 ( ±1 . 0 × 10 −4 ) 96 ( ± 1) 

a Based on a GPU implementation run on a computer cluster.

Fig. 6. Synthetic data: abundance maps of the 6 actual endmembers (from left to right): (1st row) ground-truth, (2nd row) Cofact-Q, (3rd row) Cofact-CE, (4rd row) fc -

SUnSAL and (5th row) csr -SUnSAL.
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methods. 
RMSE ( ̂  H ) = 

√
1 

P R 

∥∥H true − ˆ H 

∥∥2

F
(29)

where H true and 

ˆ H are the actual and estimated abundance ma-

trices. All these performance metrics are complemented with the

computational times. Again, note that for all methods, similar com-

putational framework have been considered except for the CNN-

based algorithm whose complexity requires a specific GPU imple-

mentation embedded on a computer cluster. 

Performance evaluation – Quantitative results obtained on the

synthetic dataset are reported in Table 2 and are visually depicted

in Figs. 7 and 6 for the classification and abundance maps, re-

spectively. Metrics and their standard deviation have been com-

puted over 20 trials. For each trial, a Gaussian white noise is added

the observed image such that SNR = 30 dB. From these results,

the proposed method appears to be competitive with the com-

pared state-of-the-art methods. In term of classification results,

even though the spatial regularization is very weak in this set-

ting, the cofactorization methods are as good as the RF classi-

fier, which is very satisfying since this latter classifier is one of

the most prominent one to deal with HS images [57] . The ResNet

algorithm shows similar accuracy in term of F1-score but seems

to perform slightly better in term of kappa. However, classifica-

tion results of fc -SUnSAL and csr -SUnSAL show that a classifier

using abundance vectors can already perform well on this toy

example where classes are linearly separable. Similarly, the SSF-

PCA+SVM methods appears to give interesting results with this

synthetic dataset. The MLR using directly the observations appears

to be a little less accurate, which may result from the difficulty

inherent to high-dimensional inputs. As for LC-KSVD, it performs

slightly worse regarding the F1-mean score whereas results of D-
SVD are clearly the worst. In term of unmixing performance, fc -

UnSAL, csr -SUnSAL, Cofact-Q and Cofact-CE obtain very similar

Es. Note however this metrics only evaluates the quality of the

econstructed data. However, the RMSE is lower with the cofac-

orization methods and the abundance estimations provided by

c -SUnSAL and csr -SUnSAL significantly degrade. Even if it is not

ossible to produce a quantitative evaluation of the representation

earnt by D-KSVD and LC-KSVD, REs tends to show that D-KSVD

uccessfully estimated a representation of the data (without be-

ng easily interpretable) whereas LC-KSVD seems to focus mostly

n the discriminative power of the representation at the price of

n inaccurate representation. Moreover, the results produced by

C-KSVD have been obtained by increasing the dimension of the

epresentation R to 40 while the results obtained by the other

ethods have been obtained for R = 15 to get good classifica-

ion performances. The rather poor performance obtained by these

wo dictionary learning methods, when compared to the proposed

ofactorization model, can be explained by the lack of flexibil-

ty of the corresponding models which try to recover a descrip-

ive and discriminative representation simultaneously. On the con-

rary, some flexibility is offered by the clustering step included

n the proposed method. Finally, comparison in term of process-

ng times shows that D-KSVD, LC-KSVD and the proposed co-

actorization methods are significantly slower, which is expected

ince these methods conducts representation learning and classi-

cation jointly. Nonetheless, the cofactorization methods appears

aster than D-KSVD and LC-KSVD. It should be also noted that it

s necessary to tune manually the number of iterations when us-

ng the two latter methods. Conversely, standard convergence cri-

erion can be implemented for the proposed optimization-based



Fig. 7. Synthetic data, classification maps: (a) groundtruth, (b) Cofact-Q, (c) Cofact-CE, (d) MLR, (e) RF, (f) ResNet, (g) SSFPCA, (h) fc -SUnSAL+MLR, (i) csr -SUnSAL+MLR, (j)

LC-KSVD, (k) D-KSVD.

Table 3

AISA data: information about classes.

Class Nb. of samples Subclasses

Arable land 177,350 millet, rape, winter

barley, winter wheat, oat

Forest 9274 forest

Grassland 25,399 meadow, pasture

Green fallowland 44,370 fallow treated last year,

fallow with shrubs

Leguminosae 17,628 leguminosae

Reed 4776 reed

Row crops 79,737 maize, sunflowers

4

 

t  

g  

o  

p  

s  

h  

d  

a  

5  

m  

s  

g  

d  

a  

a  

b  

a  

g  

s  

c  

p  

c

 

t  

K  

s  

t  

i  

c  

t  

o  

l  

λ  

i  

r  

t

 

s  

c  

n  

a  

s  

p  

n  

b  

t  

f  

q  

T  

F  

fi  

s  

m  

t  
.3. Real hyperspectral image 

Description of the dataset – The Aisa dataset was acquired by

he AISA Eagle sensor during a flight campaign over Heves, Hun-

ary. It contains L = 252 bands ranging from 395 to 975nm. A set

f C = 7 classes have been defined for a total of 358,534 referenced

ixels, according to the class-wise repartition given in Table 3 . To

plit the full dataset into two test and train subsets, special care

as been taken to ensure that training samples are picked out from

istinct areas than test samples. The polygons of the reference map

re split in smaller polygons on a regular grid pattern and then

0% of the polygons are taken randomly for training and the re-

aining 50% for testing (see [58] for a similar procedure). Fig. 8

hows a colored composition of the image and the classification

round-truth. Several reasons justify the choice of this particular

ataset. First, it is very challenging both in term of classification

nd unmixing mostly because the spectral signatures of the classes

re very similar, leading in particular to very correlated endmem-

er spectra in W . Secondly, the ground-truth associated to this im-

ge is composed of two levels of classification. Thus, an additional

round-truth is available where the 7 considered classes have been

ubdivided into 14 classes also detailed in Table 3 . These subclasses
ould be compared to the clustering outputs obtained by the pro-

osed cofactorization method, e.g., to verify either the clusters are

onsistent with the underlying subclasses. 

Compared methods – The proposed algorithm is compared to

he same methods introduced above. However, note that the D-

SVD method has experienced some difficulties to scale with the

ize of this new dataset, which is significantly bigger. Thus to ob-

ain results in a decent amount of time, the algorithm has been

nterrupted prematurely, i.e., before convergence. Similarly, SVM

lassifier encounters the same difficulty for the training step and

he SVM was finally trained using a subset of the training set (1

ver 10 samples). For the proposed cofactorization method, regu-

arization parameters have been set to ˜ λ0 = ̃

 λ1 = ̃

 λ2 = ̃

 λc = 1 . and
˜ 

h = ̃

 λq = 0 . 01 and the number of clusters to K = 30 . The initial-

zation step described in Section 4.1 has been performed and the

esulting dictionary W is depicted in Fig. 9 ( R = 13 ). The same dic-

ionary has been used for the compared unmixing methods. 

Performance evaluation – All quantitative results are pre-

ented in Table 4 . Metrics and their standard deviation have been

omputed over 5 trials. RMSE metrics have been removed since

o groundtruth is available to assess the quality of the estimated

bundance maps. RE is thus the only used figure-of-merit to as-

ess the quality of the representation learning. Note however, as

reviously explained, RE does not directly evaluate the correct-

ess of the abundance maps. In the present case, REs appear to

e very similar for all algorithms. Contrary to the previous dataset,

his is also the case for LC-KSVD, which can be explained by the

act that spectra are similar in the whole image and it is thus

uite easy to get a very low RE with any estimated dictionary.

his is the reason why qualitative evaluation remains interesting.

ig. 11 shows a subset of the estimated abundance maps. It is dif-

cult to draw any incontestable conclusion but it is clear that, de-

pite similar REs, significantly different result are obtained for each

ethod. This behavior is strengthened by the very high correla-

ion between the endmembers in this dataset, which may lead to



Fig. 8. AISA dataset: (a) colored composition of the hyperspectral image Y , (b) ground-truth [arable land: dark blue, forest: orange, grassland: red, fallowland: brown,

leguminosae: pink, reed: green, row crops: light blue].

Table 4

AISA data: unmixing and classification results.

Model F1-mean Kappa RE Time (s)

Cofact-Q 0.503 ( ±4 . 7 × 10 −2 ) 0.652 ( ±2 . 5 × 10 −2 ) 0.310 ( ±1 . 6 × 10 −4 ) 7303 ( ± 139) 

Cofact-CE 0.697 ( ±4 . 5 × 10 −2 ) 0.759 ( ±3 . 5 × 10 −2 ) 0.310 ( ±1 . 4 × 10 −4 ) 4382 ( ± 257) 

MLR 0.497 ( ±7 . 3 × 10 −2 ) 0.482 ( ±7 . 7 × 10 −2 ) N \ A 2060 ( ± 83) 

RF 0.711 ( ±1 . 4 × 10 −2 ) 0.835 ( ±1 . 2 × 10 −2 ) N \ A 41 ( ± 1) 

ResNet 0.880 ( ±2 . 3 × 10 −2 ) 0.932 ( ±1 . 3 × 10 −2 ) N \ A 7576 ( ± 555) a 

SSFPCA + SVM 0.425 ( ±1 . 5 × 10 −2 ) 0.466 ( ±1 . 9 × 10 −2 ) N \ A 398 ( ± 12) 

fc -SUnSAL + MLR 0.344 ( ±3 . 1 × 10 −2 ) 0.433 ( ±3 . 8 × 10 −2 ) 0.298 ( ±1 . 9 × 10 −3 ) 512 ( ± 96) 

csr -SUnSAL + MLR 0.535 ( ±5 . 0 × 10 −2 ) 0.618 ( ±8 . 0 × 10 −2 ) 0.304 ( ±2 . 0 × 10 −5 ) 529 ( ± 61) 

D-KSVD 0.224 ( ±2 . 1 × 10 −2 ) 0.406 ( ±9 . 9 × 10 −2 ) 0.303 ( ±7 . 6 × 10 −6 ) 10475 ( ± 129) 

LC-KSVD 0.350 ( ±3 . 2 × 10 −2 ) 0.594 ( ±3 . 0 × 10 −2 ) 0.303 ( ±4 . 0 × 10 −6 ) 3780 ( ± 320) 

a Based on a GPU implementation run on a computer cluster.

Fig. 9. AISA data: spectra used as the dictionary W identified by the self-dictionary

method.
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probable mismatch between endmember spectra. Nevertheless the

Cofact methods seems to give slightly more consistent results. In-

deed, edges in the abundance maps appear to be more consistent

with boundaries observed in the hyperspectral image. Addition-

ally, for the compared methods, some abundance maps seem to be

influenced by the presence of two flight lines in the image. This

phenomenon clearly appears in the abundance maps recovered by

fc -SUnSAL (3rd row). 

Concerning classification results, the results reported in

Table 4 show that the classification maps recovered by the Cofact-

CE is very closed to the one obtained by RF, whereas SSFPCA+SVM

fails to provide reasonable results. As for the ResNet method, it

clearly outperforms all the other methods. The better performance
ould be explained by the fact the neural network used convolu-

ional layers which extract spatial context information. On the con-

rary, the other methods rely on pixelwise inputs with, at best, a

patial regularization which only promotes local regularity without

enefiting from a richer description of the spatial context. Fig. 10

hows in particular that the cofactorization methods encounter

ome trouble distinguishing very similar classes, for example grass-

and (red) from fallowland (brown). Nevertheless, the obtained

lassification appears to be consistent and it seems reasonable to

xpect a lesser degradation of the classification results when con-

idering less correlated spectral signatures. This confusion explains

he less convincing results of the proposed method with quadratic

oss. Besides, it is important to keep in mind that the objective of

his work is not to propose the most efficient classification method

ut rather to propose a method that can give results of simi-

ar quality than some state-of-the-art methods, with the benefit

f providing additional insights thanks to the joint representation

earning. The results also show that the proposed method is bene-

cial to the classification since fc -SUnSAL+MLR, csr -SUnSAL+MLR,

LR and Cofact-CE use the same classifier and the latter per-

orms clearly better. The comparison between the representation

earning-based algorithms is clear and the both Cofact methods

erform better than LC-KSVD and D-KSVD. 

In term of processing time, LC-KSVD, D-KSVD and the Cofact

ethods are clearly more time consuming. Nevertheless, all those

ethods provide more outputs than the other methods. The com-

arison between these methods seems to give an advantage for

C-KSVD. However, it should be noted that it is very difficult to

onitor the convergence of LC-KSVD and D-KSVD since the value

f the objective function over the iteration is not monotonic. The

roposed algorithms and their implementations thus give a practi-

al advantage since they do not need to be applied with different

umbers of iterations to ensure good results. 

One of very interesting feature of the Cofact method is the

ossibility of examining the clusters obtained as a byproduct.

iven the formulation (23) , the centroids B estimated by the Co-



Fig. 10. AISA image, classification maps: (a) groundtruth, (b) Cofact-Q, (c) Cofact-CE, (d) MLR, (e) RF, (f) ResNet, (g) SSFPCA, (h) fc -SUnSAL+MLR, (i) csr -SUnSAL+MLR, (j)

LC-KSVD, (k) D-KSVD.

Fig. 11. AISA dataset, abundances map for the 6 components: (1st row) Cofact-Q, (2nd row) Cofact-CE, (3rd row) fc -SUnSAL and (4th row) csr -SUnSAL.
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ppendix A. Technical derivations 

This appendix provides some details regarding the optimization

chemes instanced for the proposed cofactorization model with the

lassification quadratic and cross-entropy losses. 

.1. Cofactorization model with quadratic loss function 

Using notations consistent with (11) , the smooth coupling term

f the quadratic (Q) loss cost can be expressed as 

 (H , B , Z , C U , Q ) = 

λ0 

2 

‖ 

Y − WH ‖ 

2 
F 

+ λ1 

2 

‖ 

CD − QZD ‖ 

2 
F + λc ‖ 

C ‖ vTV + 

λ2 

2 

‖ 

H − BZ ‖ 

2 
F .

For a practical implementation, one needs to compute the par-

ial gradients of g ( ·) explicitly and their Lipschitz constants to per-

orm the gradient descent. Regarding the H and B variables, these

omputations are the same for the two models (quadratic and

ross-entropy losses) and lead to 

 H g(H , B , Z , C U , Q ) = λ0 (W 

t WH − W 

t Y ) + λ2 (H − BZ ) , (A.1)

 B g(H , B , Z , C U , Q ) = λ2 (BZZ 

t − HZ 

t ) , (A.2)

Regarding the variables Z, Q and C U involved in the classifica-

ion step with quadratic loss, they writes 

∇ Z g(H , B , Z , C U , Q ) = λ2 (B 

T BZ − λ1 B 

T H )

+ λ1 (Q 

T QZD 

2 − Q 

T CD 

2 ) ,

∇ Q g(H , B , Z , C U , Q ) = λ1 (QZD 

2 Z 

T − CD 

2 Z 

T ) ,

 C U g(H , B , Z , C U , Q ) = λc ∇ C U ‖ 

C ‖ vTV + λ1 (C U D 

2
U − QZ U D 

2 
U ) . (A.3)

For sake of brevity, the gradient ∇ · ‖ · ‖ vTV of the vectorial

V regularization is not explicitly given. Readers are referred to

60] for further details.

All partial gradients are globally Lipschitz as functions of the

orresponding partial variables. After basic matrix derivations, ma-

orizations similar to (13) lead to the following Lipschitz constant 

L H = 

∥∥λ0 W 

T W + λ2 I R 
∥∥, 

L B (Z ) = 

∥∥λ2 ZZ 

T 
∥∥, 
2 http://osirim.irit.fr/site/en .

s  

p  

t

 Z (B , Q ) = max 
p

∥∥λ2 B 

T B + λ1 d p Q 

T Q 

∥∥, 

L Q (Z ) = 

∥∥λ1 ZD 

2 Z 

T 
∥∥, 

L C U = λ1 max 
p

d 2 p + λc

√ 

8 max p βp 

ε
. (A.4) 

.2. Cofactorization model with cross-entropy loss function

When using cross-entropy as the classification loss function, the

oupling term writes 

(H , B , Z , C U , Q ) = 

λ0 

2 

‖ 

Y − WH ‖ 

2 
F 

− λ1 

2

∑ 

p∈P
d 2 p 

∑ 

i ∈C
c i,p log ( sigm (−q i : z p )) ) 

+ λq 

2
‖ 

Q ‖ 

2 
F + λc ‖ 

C ‖ vTV + 

λ2 

2 

‖ 

H − BZ ‖ 

2 
F (A.5) 

nd the specific partial gradients are 

∇ Z g(H , B , Z , C U , Q ) = −λ1 

2 

Q 

T G 

∇ Q g(H , B , Z , C U , Q ) = −λ1 

2 

GZ 

T + λq Q , 

 C U g(H , B , Z , C U , Q ) = λc ∇ C U ‖ 

C U ‖ vTV

− λ1 

2 

∑ 

p∈P
d 2 p 

∑ 

i ∈C
log ( sigm (−q i : z p )) ) (A.6) 

here G is a C × P matrix with elements given by 

 i,p = 

d 2 p c i,p 

1 + exp (−q i : z p ) 
. (A.7) 

It should be noticed that G depends on Z, Q and C and is only

ntroduced here to get compact notations. The following Lipschitz

onstants can be derived 

 Z (B , Q ) = λ1 

∑ 

p∈P
d 2 p 

∑ 

i ∈C
c i,p 

∥∥q j: 

∥∥2

2
+

∥∥λ2 BB 

T 
∥∥,

L Q = λ1 

∑ 

p∈P
d 2 p + λq ,

L C U = λc 

√ 

8 max p βp 

ε
. (A.8) 

.3. Computing the proximal operators

For a practical implementation of the PALM algorithm, the prox-

mal operators associated with each f j ( ·) in (12) need to be com-

uted. It is clear that all these functions are proper lower semi-

ontinuous functions for both models instanced in Section 3.4 .

he involved indicator functions are defined on convex sets. Thus,

heir proximal operators can be expressed as projections. The pro-

ection on the non-negative quadrant is a simple thresholding of

egative values. The projection on the simplices S · can be con-

ucted as detailed in [61] . The case of f 0 ( ·) defined by a nonneg-

tivity constraint complemented by a � 1 -norm sparsity promoting

egularization is slightly more complex. It can be handled using

 composition of proximal operators. As stated before, the prox-

mal operator associated to the positivity constraint is the pro-

ection on the non-negative quadrant. The proximal operator as-

ociated with the � 1 -norm penalization is a soft-thresholding, i.e.,

rox t ‖ ·‖ 1 (x ) = sign (x )(| x | − 1 
t ) + [62] . These two proximal operators

atisfy the conditions exhibited in [42] required to be allowed to

erform their compositions to get the proximal operator associated

o f ( ·). 
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Supplementary material 

Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.neucom.2019.12.068 . 
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