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Branching Brownian motion conditioned on small maximum

Xinxin Chen Hui He Bastien Mallein

September 2, 2022

Abstract

For a standard binary branching Brownian motion on the real line, it is known
that the typical position of the maximal position Mt among all particles alive at
time t is mt + Θ(1) with mt =

√
2t− 3

2
√

2 log t. Further, it is proved independently
in [1] and [2] that the branching Brownian motion shifted by mt (or Mt) converges
in law to some decorated Poisson point process. The goal of this work is to study
the branching Brownian motion conditioned on Mt � mt. We give a complete
description of the limiting extremal process conditioned on {Mt ≤

√
2αt} with

α < 1, which reveals a phase transition at α = 1−
√

2. We also verify the conjecture
of Derrida and Shi [20] on the precise asymptotic behaviour of P(Mt ≤

√
2αt) for

α < 1.
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1 Introduction

Branching Brownian motion (BBM) is a spatial branching process of great interests in
recent years. On the one hand, its connection with the partial different F-KPP equation
brings out many studies on both probabilistic and analytic sides, see for instance, [25],
[10], [24] and [2]. On the other hand, it is the fundamental model to understand the
BBM-universality class which includes the 2-dim Gaussian free field [6], [11] and 2-dim
cover times [16], etc.

We consider a one-dimensional standard binary branching Brownian motion. It is
a continuous-time particle system on the real line which is constructed as follows. It
starts with one individual located at the origin at time 0 that moves according to a
standard Brownian motion. After an independent exponential time of parameter 1, the
initial particle dies and gives birth to 2 children that start at the position their parent
occupied at its death. These 2 children then move according to independent Brownian
motions and give birth independently to their own children at rate 1. The particle system
keeps evolving in this fashion for all time.

For all t ≥ 0, we denote by N(t) the collection of the individuals alive at time t. For
any u ∈ N(t) and s ≤ t, let Xu(s) denote the position at time s of the individual u or its

1



ancestor alive at that time. The maximum of the branching Brownian motion at time t
is defined as Mt := max{Xu(t) : u ∈ N(t)}.

The asymptotic behaviour of Mt as t → ∞ has been subjected to intense study,
partly due to its link with the F-KPP reaction-diffusion equation, defined as

∂tu = 1
2∆u− u(1− u). (1.1)

Precisely, McKean [25] showed that the function (t, x) 7→ u(x, t) = P(Mt ≤ x) is the
unique solution of (1.1) with initial condition u(x, 0) = 1{x>0}.

With the help of (1.1), Bramson [10] proved that uniformly in z ∈ R,

lim
t→∞

P(Mt ≤ mt + z) = lim
t→∞

u(mt + z, t) = w(z), (1.2)

where mt =
√

2t− 3
2
√

2 log t and w is the travelling wave solution of the F-KPP equation
at speed

√
2, which satisfies 1

2w
′′ +
√

2w′ − w(1− w) = 0.
Later, Lalley and Sellke [24] showed that the limiting distribution function w can be

written as
w(z) := E[e−C0e−

√
2zD∞ ], (1.3)

where C0 > 0 is a constant and D∞ is an a.s. positive random variable, constructed as
the almost sure limit of the so-called derivative martingale, defined for all t ≥ 0 by

Dt :=
∑

u∈N(t)
(
√

2t−Xu(t))e
√

2Xu(t)−2t.

Further, the branching Brownian motion seen from its tip, i.e.,
∑
u∈N(t) δXu(t)−mt

has gained much interest. It is conjectured since the work of [24] that it converges in law
to some invariant point process. Then, this convergence has been verified independently
by [1] and [2]. Let Et :=

∑
u∈N(t) δXu(t)−mt be the extremal process of the branching

Brownian motion, they showed that as t→∞,

(Et,Mt −mt) =⇒ (E ,max
x∈E

x),

where =⇒ denotes convergence in distribution for the topology of vague convergence
of random measures. In the rest of the article, we always consider the convergence of
random measures with the topology of vague convergence, i.e., Et → E if 〈Et, φ〉 → 〈E , φ〉
for all continuous compactly supported function φ.

Precisely, the limiting extremal point process E point process can be constructed as

E :=
∑
x∈P

∑
y∈Dx

δx+y,

where conditioned on D∞ defined in (1.3), P is a Poisson point process with intensity
C0
√

2D∞e−
√

2xdx (C0 is the same as in (1.3)) and conditioned on P, (Dx, x ∈ P) are
i.i.d. decorated point processes in (−∞, 0] with an atom at 0, which we refer to as the
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decoration of the branching Brownian motion. More properties of this limiting point
process have been investigated in [15], [4] recently.

We are interested in the behaviour of the branching Brownian motion conditioned
on {Mt ≤

√
2αt} with α < 1. This leads to the consideration of the shifted point process

Et(α) :=
∑

u∈N(t)
δXu(t)−

√
2αt, t ≥ 0,

under the probability P(·|Mt ≤
√

2αt). We show that Et(α) converges in law in the
vague topology to some limiting point process and obtain that the limiting point process
exhibits a phase transition at

−γ := 1−
√

2.

The corresponding lower deviation probability P(Mt ≤
√

2αt) also exhibits a phase
transition at αc, as previously detected in [19] and conjectured in [20].

Before stating precisely our main result, let us briefly stress a few links with other
works in the literature.

1. It is natural to consider also the branching Brownian motion conditioned on large
maximum. Conditioned on {Mt ≥

√
2αt} with α > 1, this question has been

studied in [12] and a Yaglom-type theorem was obtained. It is more subtle when
α = 1 and Chauvin-Rouault [13] also conjectured a Yaglom theorem in this case.
In particular, it is proved in [1] that conditioned on {Mt ≥

√
2t + a

√
t} with

any a ∈ (0,∞), the point process
∑
u∈N(t) δXu(t)−Mt

converges in law to some
point process D, which serves as the decoration process appeared in the limiting
extremal process of BBM in their work.

2. BBM is usually viewed as a continuous-time analogue of branching random walks
(BRW) in discrete time. In fact, the BBM should be considered as a BRW in
Schröder case where the offspring could be less than or equal to 1. There exist
also BRWs in Böttcher case where the offspring is at least 2. It has been detected
in [14] that the atypically small maximum comes from different mechanisms in
the two cases. One could expect that the conditioned BRW in Schröder case
behaves similarly as conditioned BBM, yet conditioned BRW in Böttcher case
would be more complicated and be of different nature. It is an interesting question
to understand the conditioned structure in Böttcher case.

3. As 2-dimensional discrete Gaussian free field (2d DGFF) belongs to the BBM-
universality class, our result naturally leads to thinking about the description of
2d DGFF conditioned to stay negative/positive, which is connected with the so-
called entropic repulsion. However, the entropic repulsion is more challenging
because of the following two aspects. First, the interior bulk estimates of DGFF is
comparable with the lower deviation estimates of BRW in Böttcher case, which are
totally different from that of BBM, see for example [28]. Secondly, the boundary
estimates show that only the spins close to the boundary are responsible for the
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hard wall condition that the whole DGFF stays positive. One can refer to [8], [21]
and [7] for more details.

4. Our work on conditioned BBM could lead to further research on conditioned BBM
in presence of selection or coalescence which are closely related to the noisy FKPP
equation. The appearance of atypically large maximum for BBM with selection is
discussed in [18]. The lower deviation for maximum is studied in [26] and [27] for
BRW with coalescence. It is intriguing to understand how the conditioned process
and the large deviation probabilities are modified by the selection or coalescence.

5. In view of (1.2) and (1.3), the event that Mt is atypically small is related to the
event that D∞ is atypically small. Inspired by this observation, one may consider
the BBM or BRW conditioned on {0 < D∞ < ε} which was asked in [23]. In
the literature, [5] showed that the law of a Galton-Watson process conditioned on
the limiting martingale being small is described as a Galton-Watson process with
minimal branching until a given generation, which then behaves as typical process
after that generation. This phenomena occurs also in our result. The heuristic will
be discussed at the end of this section.

1.1 Main theorems

To state the main theorem, let us introduce the first branching time, defined by

τ := inf{t ≥ 0 : #N(t) ≥ 2}.

The corresponding position of the initial ancestor is X∅(τ). Then we obtain the following
result on conditioned BBM.

Theorem 1.1. Conditioned on {Mt ≤
√

2αt}, the following convergences in law hold.

1. If α ∈ (−γ, 1), thenτ −
(1−α)√

2 t√
t (1−α)

4
√

2

, X∅(τ)− (
√

2αt−mt−τ ),Mt −
√

2αt

 =⇒ (ξ,−χ,−E), (1.4)

where ξ and (χ,E) are independent, with ξ a standard Gaussian random variable
and E an exponential random variable with parameter

√
2γ. The joint distribution

of (χ,E) is given by

P(χ ≤ x,E ≥ y) ∝ e−
√

2γy
∫ x−y

−∞
e−
√

2γzw(z)2dz, x ∈ R, y ∈ R+.

Moreover, we have, jointly with the convergence in (1.4),

Et(α) =⇒ E∞(α) = E− :=
∑

x∈E1∪E2

δx−χ, (1.5)

where given χ, E1 and E2 are i.i.d. point processes distributed as E conditioned on
{max E ≤ χ}.
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2. If α = −γ, then(
t− τ√

t
,X∅(τ)− (

√
2αt−mt−τ ),Mt −

√
2αt

)
=⇒ (ξα,−χ,−E), (1.6)

where ξα and (χ,E) are independent, (χ,E) are the same as in (1.4) and ξα is
a positive random variable with density 2−3(

√
2+1)/4Γ((3

√
2 − 1)/4)u3γ/2e−2u2du.

Further, we have jointly
Et(α) =⇒ E∞(α) = E−, (1.7)

where E− is the same as in (1.5).

3. If α < −γ, then(
t− t ∧ τ,

√
2αt−X∅(t ∧ τ),Mt −

√
2αt

)
=⇒ (ξα,−χα,−Eα), (1.8)

where ξα is distributed as

1
−αΦ(α)δ0(ds) + 1

Φ(α)

∫
R
e
√

2αz+(1−α2)su(z, s)2dzds,

with Φ(α) := − 1
α +
√

2
∫∞
0 ds

∫
R dye(1−α2)s+

√
2αyu(y, s)2 ∈ (0,∞), Eα is distributed

as an exponential random variable with parameter −
√

2α, and the joint distribution
of (ξα, χα, Eα) is given by

P(ξα ≤ x1, χα ≤ x2, Eα ≥ x3)

= 1
Φ(α)

(
1{x3<x2}

∫ x2

x3

√
2e
√

2αzdz

+
√

2
∫ x1

0
ds
∫ x2−x3

−∞
e
√

2α(x3+z)+(1−α2)su(z, s)2dz
)
,

for any x1, x3 ∈ R+ and x2 ∈ R. Further, we have jointly

Et(α) =⇒ E∞(α) := δ−χα1{ξα=0} + 1{ξα>0}
∑

x∈B1∪B2

δx−χα , (1.9)

where given (ξα, χα), B1 and B2 are i.i.d. copies of
∑
u∈N(ξα) δXu(ξα) conditioned

on {Mξα ≤ χα}.

Remark 1.2. One could see in the limiting point process E− the union of two independent
copies of conditioned E . That is because for the conditioned BBM, the initial ancestor
gives birth at time τ to two children, which produce typically behaved BBMs and give
rise to independent copies of E conditioned to remain below some appropriate level. In
the regime where α < −γ, Observe that t−t∧τ has a Dirac mass at 0, which corresponds
to the probability that no branching occurs before time t.
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To illustrate this phenomena, we draw, in Figure 1, schemes of the expected behaviour
of the branching Brownian motion conditioned to stay below

√
2αt in the three regimes.

t

X

×

τ

X∅(τ)

√
2αt

(a) α ∈ (−γ, 1)

×

(b) α = −γ

×

(c) α < −γ

Figure 1: Scheme of the first branching time in different conditioning scenarios. The
initial particle is drawn in red, its two offspring giving birth to the green and blue
subtrees respectively. The typical branching zone is drawn as a grey area. Its width is
of order t1/2 and its height of order 1 in cases (a) and (b).

In this work, we also study the precise asymptotic of P(Mt ≤
√

2αt) in the three
regimes. Derrida and Shi [19] obtained the exponential decay as follows,

P(Mt ≤
√

2αt) =
{
e−2(

√
2−1)(1−α)t+o(t), for − γ < α < 1,

e−(1+α2)t+o(t), for α ≤ −γ,
as t→∞.

A phase transition occurs at −γ = 1 −
√

2 ≈ −0.414. Later, Derrida and Shi [20]
conjectured the second order as below

P(Mt ≤
√

2αt) ∼


C(1)(α−αc√

2 )
3γ
2 t

3γ
2 e−2γ(1−α)t, if α > −γ,

Φ(α)√
4π t
− 1

2 e−(1+α2)t, if α < −γ,
(1.10)

with some constant C(1) ∈ (0,∞) and

Φ(α) = − 1
α

+
√

2
∫ ∞

0
ds
∫
R

dye(1−α2)s+
√

2αyu(y, s)2 ∈ (0,∞). (1.11)

We verify this conjecture and obtain the asymptotic for αc = 1−
√

2 in the next theorem.

Theorem 1.3. As t→∞, the following convergences holds.

1. If α ∈ (−γ, 1),
P(Mt ≤

√
2αt) ∼ C(1)(vαt)

3γ
2 e−2γ(1−α)t, (1.12)

where C(1) := 1
2
∫
R e
−
√

2γzw(z)2dz ∈ (0,∞) and vα := γ+α√
2 ∈ (0, 1).
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2. If α = −γ,
P(Mt ≤

√
2αt) ∼ C(2)t3γ/4e−(1+γ2)t, (1.13)

where

C(2) := 1√
2π

∫
R+
u3γ/2e−2u2du

∫
R
e−
√

2γzw(z)2dz =
C(1)Γ(3

√
2−1
4 )

√
2π2

3
√

2−1
4

.

3. If α < −γ,
P(Mt ≤

√
2αt) ∼ Φ(α)√

4π
t−

1
2 e−(1+α2)t. (1.14)

Remark 1.4. In fact, we could look closer around the phase transition point −γ and
obtain the following results by a straightforward adaptation of the reasoning used in
Section 5. We leave the proof to interested readers. Let a : R+ → R with at = o(t).

1. If at = o(
√
t), then

P(Mt ≤ −
√

2γt+ at) ∼ C(2)t3γ/4e−2
√

2γt+
√

2γat . (1.15)

2. If at = a
√
t with a ∈ R, there exists a positive function a 7→ C(a) such that

P(Mt ≤ −
√

2γt+ at) ∼ C(a)t3γ/4e−2
√

2γt+
√

2γat . (1.16)

3. If limt→∞
at√
t

=∞ and at = o(t), then there exist C(3), C(4) > 0 such that

P(Mt ≤ −
√

2γt+ at) ∼C(3)a
3γ/2
t e−2

√
2γt+

√
2γat , (1.17)

P(Mt ≤ −
√

2γt− at) ∼C(4)(t/at)3γ/2+1t−1/2e−2
√

2t−
√

2γat−
a2
t

4t . (1.18)

Finally, we could consider the BBM conditioned on the event {Mt ≤ mt− at} where
limt→∞ at =∞ and at = o(t). In that case the first branching time happens at a time of
order at, and the process after that first branching time is a branching Brownian motion
conditioned on an event of positive probability. So the eventual limiting process is the
same as in the regime with α < −γ.
Remark 1.5. If at = o(t) and limt→∞ at =∞, then as t→∞,

P(Mt ≤ mt − at) ∼ C(1)e−
√

2γat . (1.19)

Moreover, conditioned on {Mt ≤ mt − at},(
τ − 1

2at√
at/8

, X∅(τ)− (
√

2τ − at),Mt − (mt − at)
)

=⇒ (ξ,−χ,−E), (1.20)

and jointly, ∑
u∈N(t)

δXu(t)−(mt−at) =⇒ E−, (1.21)

where (ξ, χ,E, E−) is the same as Theorem 1.1.
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Note that (1.19) is already known in the literature (see [2]); the joint convergence in
distribution described in (1.20–1.21) is new. One could follow the arguments in Section
3 to complete the proof. We shall omit the details.
Remark 1.6. In this article, we choose to focus on branching Brownian motions with
binary branching, to keep the proofs as simple as possible. Up to minor changes, one can
assume the number of children made by an individual at death to be i.i.d. integer-valued
random variables of law ν. As long as ν(0) = 0 (i.e. the process never gets extinct) and∑∞
k=1 k(log k)2ν(k) <∞ (an integrability condition guaranteeing the non-degeneracy of

the limit D∞), we expect similar results to hold.
Remark 1.7. Bai and Hartung in [3] considered the following joint deviation probability

P(Mt ≤
√

2αt, (τ,X∅(τ)) ∈ ·), α < 1.

They obtained the first order of the decay rate for various cases by imposing constraints
on the first branching time and location. Based on our work, it is possible to further
refine their results to obtain precise prefactors.

Before proving our main result, we quickly recall the heuristics given in [19] to explain
the asymptotic decay of P(Mt ≤

√
2αt) in (1.10) in the next section.

1.2 Heuristics behind the conjecture (1.10)
Recall that τ is the first branching time of the process and X∅(τ) the position of the par-
ticle at that first branching time. As particles behave independently after they branched,
the probability of observing an unusually low maximum decays sharply after each branch-
ing event. Therefore, to maximize the possibility that Mt ≤

√
2αt, a good strategy is

to make the first branching time as large as possible. Recalling that P(τ > s) = e−s

and that we expect exponential decay in t, it is reasonable to conjecture that τ ≈ λαt
conditioned on {Mt ≤

√
2αt}, for some λα ∈ [0, 1]. Additionally, after that branching

time, particle should behave as regular branching Brownian motions with length t − τ ,
therefore the maximal position at time t should be around level X∅(τ)+

√
2(t−τ), which

has to be lower than
√

2αt. This yields the condition X∅(τ) ≤
√

2αt+
√

2(τ − t).
Then, with B a standard Brownian motion, observe that

P(τ ≈ λt,X∅(τ) ≤
√

2αt+
√

2(τ − t)) ≈ e−λtP(Bλt ≤
√

2αt+
√

2(λ− 1)t)

≈ exp
(
−t
(
λ+ (α+ (λ− 1))2

λ

))
.

Thus, to maximize this probability, one has to choose the parameter λα ∈ [0, 1] that
minimizes the quantity

λ+ (α− (1− λ))2

λ
.

Note that if α > −γ = 1−
√

2, this minimum is attained for λα = (1−α)√
2 ∈ [0, 1], whereas

if α ≤ γ, this minimum is attained at λα = 1.
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As a result, we expect three different behaviours for the branching Brownian motion
conditioned on having a maximum smaller than

√
2αt, depending on whether α is larger

than, smaller than, or equal to −γ. In the first case, the branching time should happen
at some intermediate time in the process, and the branching Brownian motion after
this first branching time should behave as a regular process, conditioned on an event of
positive probability. If α < −γ, then one expects the process not to branch until the
very end of the process, which allows an explicit description of the extremal process in
that case. In the intermediate case α = −γ, the branching time should be such that t−τ
is large, but negligible with respect to t. In this setting, the behaviour of the process
after that time should not be too different from the case α > −γ.

The main idea behind the proof of all these results is the decomposition of the
branching Brownian motion at its first branching point. More precisely, the cumulative
distribution function of the maximal displacement, defined as u(z, s) = P(Ms ≤ z), for
all s ≥ 0 and z ∈ R, satisfies

u(z, t) = e−tP(Bt ≤ z) +
∫ t

0
ds
∫
R
P(Bs ∈ dy)e−su(z − y, t− s)2, (1.22)

where (Bt)t≥0 is a standard Brownian motion. This formula allows us to bootstrap
close to optimal bounds on u(

√
2t− at, t) from a priori bounds, using Laplace’s method

(see e.g. [17, Chapter 4]). This allows us to obtain equivalents for different regimes as
t, at →∞.

Observe that (1.22) is a simple consequence of the Markov property applied at the
first branching time of the branching Brownian motion. Indeed, at time t, the original
ancestor did not split with probability e−t, in which case its position is distributed as a
Gaussian random variable with variance t. Otherwise, the ancestor died at time s with
probability e−sds, in which case the maximum of the branching Brownian motion at time
t has the same law as the maximum of two independent branching Brownian motions at
time t− s, shifted by the position of the ancestor at time s, which is distributed as Bs.

We use (1.22) to show that with high probability, conditioned on {Mt ≤
√

2t− at},
the first branching time has to happen at some specific time and position with high
probability. Depending on the growth rate of at, this first branching time can be either
o(t) (Theorem 1.5), of order λt + O(t1/2) for some λ ∈ [0, 1] (when α ∈ (−γ, 1)), or of
order t− o(t) (when α ≤ −γ).

The rest of the paper is organized as follows. In Section 2, we state some well-
known results on branching Brownian motion and show some rough bounds of u(z, t).
In Section 3, we treat the case where α ∈ (−γ, 1). Section 4 is devoted to the study of
the regime that α < −γ. In Section 5, we consider the critical case α = γ. The proofs
of some technical lemmas are postponed to Appendix A.

In this paper, we write f(t) ∼ g(t) as t → ∞ to denote limt→∞
f(t)
g(t) = 1. As usual,

f(t) = ot(g(t)) means limt→∞
f(t)
g(t) = 0. The quantities (Ci)i∈N and (ci)i∈N represent

positive constants, and c, C are non-specified positive constants, that might change from
line to line, taken respectively small enough and large enough.
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2 Preliminary results and well-known facts

In this section, we recall previously known results on the maximum and extremal process
of branching Brownian motions. We source most of the results stated here from the book
of Bovier [9] for convenience, and refer the reader to it for the origins of these results.
Using these results, we obtain first order estimates on u(z, t) = P(Mt ≤ z).

Let C+
c (R) be the set of non-negative continuous functions on R with compact sup-

port. We begin by recalling that by [9, Proposition 2.22], for any family (Dt)t∈[0,∞]
of point processes, the joint convergence in law of (Dt,maxDt) to (D∞,maxD∞) is
equivalent to

∀φ ∈ C+
c (R), ∀z ∈ R, lim

t→∞
E
[
e−
∫
φdDt ; maxDt ≤ z

]
= E

[
e−
∫
φdD∞ ; maxD∞ ≤ z

]
,

(2.1)
writing E [X;A] for E [X1A], with X a random variable and A a measurable event.

For all φ ∈ C+
c (R), we denote by

uφ : (z, t) ∈ R+ × R 7→ E
[
e
−
∑

u∈N(t) φ(Xu(t)−z);Mt ≤ z
]

= E

 ∏
u∈N(t)

fφ(z −Xu(t))

 ,
(2.2)

where fφ : y 7→ e−φ(−y)
1{y≥0}. Recall that uφ is the unique solution of the F-KPP

partial differential equation (1.1) with initial condition fφ, i.e.{
∂tu = 1

2∆u− u(1− u),
uφ(z, 0) = fφ(z), for all z ∈ R.

(2.3)

We remark that the cumulative distribution function of Mt is given by u(z, t) = u0(z, t).
By (2.1), the joint convergence in law of the centred extremal process and maxi-

mal displacement of the branching Brownian motion can be rewritten as the following
pointwise convergence

∀φ ∈ C+
c (R),∀z ∈ R, lim

t→∞
uφ(mt + z, t) = wφ(z), (2.4)

where wφ(z) := E
[
e−
∫
φ(·−z)dE ; max E ≤ z

]
.

Moreover, convergence (2.4) in fact holds uniformly on compact sets, by [9, Lemma 5.5
and Theorem 5.9]. Let K > 0. As minz∈[−K,K]wφ(z) > 0, this uniform convergence re-
sult implies that

lim
t→∞

sup
|z|≤K

|uφ(mt + z, t)− wφ(z)|
wφ(z) = 0. (2.5)

Applying the above result to the function φ ≡ 0 gives that uniformly on z ∈ [−K,K],
u(mt + z, t) = w(z)(1 + o(1)) as t→∞.

Let (Bt, t ≥ 0) be a standard Brownian motion. We recall the following classical
asymptotic on the tail of the standard Gaussian variable (see e.g. [9, Lemma 1.1]). For
any z > 0,

1
z
√

2π
e−z

2/2(1− 2z−2) ≤ P(B1 > z) ≤ 1
z
√

2π
e−z

2/2. (2.6)

10



It follows that for any z > 0 and t > 0,

∫ ∞
z

e−
y2
2t

√
2πt

dz =
∫ −z
−∞

e−
y2
2t

√
2πt

dz = P(Bt > z) ≤
√
t

z
√

2π
e−

z2
2t . (2.7)

Observe that (2.5) gives tight bounds on u(z, t) for z in a neighbourhood of mt. We
use the above equation (2.7) to give cruder bounds on u(z, t) outside of this neighbour-
hood. At time t, the system contains #N(t) ≥ 1 individuals, the positions of which are
distributed with the same law as Bt. Therefore, for any t ≥ 0 and z ∈ R,

u(z, t) = P(Mt ≤ z) ≤ P(Bt ≤ z),

which using (2.7), yields for z < 0:

u(z, t) ≤
√
t

−z
√

2π
e−

z2
2t . (2.8)

This straightforward upper bound, combined with the lower deviation results of Derrida
and Shi [19] gives us the following lemma.

Lemma 2.1. For any β ≥ 1 and ε > 0, there exists tε,β > 1 such that for any t ≥ tε,β,

u(
√

2at, t) ≤


1, if a ≥ 1;
e−2γ(1−a)t+εt, if − γ ≤ a < 1;
e−(1+a2)t+εt, if − β ≤ a < −γ;
e−a

2t, if a < −β.

(2.9)

Proof. Let β ≥ 1. We begin by noting that u(z, t) ≤ 1 for any z ∈ R and t ≥ 0.
Additionally, by (2.8), for any a < −1, we have

u(
√

2at, t) ≤ 1
−2a
√
πt
e−a

2t ≤ e−a2t, (2.10)

for all t ≥ 1. To complete the proof, it is therefore enough to bound u(
√

2at, t) for
a ∈ [−β, 1).

We first reformulate Derrida and Shi’s result [19, Theorem 1] as follows:

lim
t→∞

1
t

log u(
√

2at, t) = ψ(a) :=


0, if a ≥ 1;
−2γ(1− a), if − γ ≤ a < 1;
−(1 + a2), if a < −γ.

(2.11)

Note that being a cumulative distribution function for any t ≥ 0, the function z 7→ u(z, t)
is non-decreasing. Thus, both log u(

√
2at,t)
t and ψ(a) are non-decreasing in a ∈ R, and

moreover ψ is continuous. By Dini’s theorem, the convergence in (2.11) holds uniformly
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on any compact sets in R, hence in particular on [−β, 1]. As a result, for all ε > 0 ,there
exists tε,β > 1 such that for all t ≥ tε,β, we have

sup
a∈[−β,1]

∣∣∣1
t

log u(
√

2at, t)− ψ(a)
∣∣∣ ≤ ε. (2.12)

We then deduce (2.9) from (2.12) and (2.10).

Next, we recall [14, Theorem 1.7], that gives a tight estimate on the moderate lower
deviations of the maximal displacement: for any sequence (at) such that limt→∞ at =∞
and at = o(t),

P(Mt ≤ mt − at) = e−
√

2(γ+ot(1))at .

To complete this section, we strengthen the above estimate into the following non-
asymptotic upper bound for u(mt − z, t).

Lemma 2.2. For any δ ∈ (0, 1), there exist Kδ ≥ 1 and Tδ ≥ 1, such that for any t ≥ Tδ
and any z ≥ Kδ,

u(mt − z, t) = P(Mt ≤ mt − z) ≤ cδe−
√

2γ(1−δ)z, (2.13)

with cδ > 1 a constant depending on δ.

The idea of the proof of this result is mainly borrowed from the proof of Theorem 3.2
(Case 2) in [22]. We apply the Markov property at some intermediate time, and observe
that either there is an anomalously small number of particles alive at that time, or all of
the particles alive at that time must satisfy Lemma 2.1. The detailed proof is postponed
to Appendix A.1.

3 The case −γ < α < 1
In this section, we treat the case when 1−

√
2 < α < 1 and prove (1.4), (1.5) and (1.12).

The proof of Theorem 1.5, which can be though of as α = 1− ot(1) can be obtained in
a very similar fashion. We thus feel free to omit it.

Recall that γ =
√

2 − 1 and if −γ < α < 1, we expect the existence of λα ∈ (0, 1)
such that with high probability the first branching time of the branching Brownian
motion conditioned on the event {Mt ≤

√
2αt} is close to λαt. In this situation, we have

λα = 1−α√
2 .

Let φ ∈ C+
c (R). Applying the Markov property at the first branching time τ , we

obtain that uφ satisfies (1.22) as well:

uφ(z, t) = e−t E
(
e−φ(Bt−z);Bt ≤ z

)
+
∫ t

0
e−sds

∫
R
P(Bs ∈ dy)uφ(z − y, t− s)2 (3.1)

=: Uφ1 (z, t) + Uφ2 (z, t). (3.2)

12



Note that Uφ1 (z, t) is the contribution to uφ(z, t) = E
(
e
−
∑

u∈N(t) φ(Xu(t)−z);Mt ≤ z
)

,
which comes from the event {τ > t} on which no branching occurred. As we write u for
u0, we denote by U1 and U2 the quantities defined above with φ ≡ 0.

Using standard computations for the Brownian motion, we first give an uniform
estimate of Uφ1 (

√
2αt, t) for α ∈ [0, 1), as well as an exact asymptotic for α < 0.

Lemma 3.1. Let φ ∈ C+
c (R). For α ≥ 0, we have

e−‖φ‖∞

2 e−t ≤ Uφ1 (
√

2αt, t) ≤ e−t. (3.3)

Moreover, for α < 0, we have

lim
t→∞

√
te(1+α2)tUφ1 (

√
2αt, t) = 1√

2π

∫ 0

−∞
e−φ(y)−

√
2αydy. (3.4)

In particular, for α < 0 we have U1(
√

2αt, t) ∼ e−(1+α2)t
√

4πt|α| as t→∞.

Proof. We have Uφ1 (
√

2αt, t) = e−t E(e−φ(Bt−
√

2αt);Bt ≤
√

2αt). For all α ≥ 0, as φ is
non-negative, we have 1 ≥ E(e−φ(Bt−

√
2αt);Bt ≤

√
2αt) ≥ e−‖φ‖∞P(Bt ≤ 0), which is

enough to prove (3.3).
Additionally, for α < 0, by Girsanov transform, we then have

Uφ1 (
√

2αt, t) = e−(1+α2)t E
(
e−φ(Bt)−

√
2αBt ;Bt ≤ 0

)
= e−(1+α2)t
√

2πt

∫ 0

−∞
e−y

2/2t−φ(y)−
√

2αydy.

The dominated convergence theorem yields

lim
t→∞

∫ 0

−∞
e−y

2/2t−φ(y)−
√

2αydy =
∫ 0

−∞
e−φ(y)−

√
2αydy,

which completes the proof.

Remark 3.2. For all α ∈ (−γ, 1), we have u(
√

2αt, t) = e−2γ(1−α)t(1+ot(1)) by [19]. More-
over, observe that

2γ(1− α) <
{

1, if 0 ≤ α < 1;
1 + α2, if − γ < α < 0.

As a result, Lemma 3.1 shows that U1(
√

2αt, t) = ot(1)u(
√

2αt, t) for all α ∈ (−γ, 1),
which by (3.2) implies that u(

√
2αt, t) ∼ U2(

√
2αt, t) as t→∞.

We thus turn to study Uφ2 (
√

2αt, t), which is by definition

Uφ2 (
√

2αt, t) =
∫ t

0
ds
∫
R

dz e
−(t−s)− (ms+z−

√
2αt)2

2(t−s)√
2π(t− s)

uφ(ms + z, s)2.
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Recalling that vα = γ+α√
2 = 1− 1−α√

2 ∈ (0, 1), our next lemma consists in the observation
that most of the mass on this double integral is carried by {(s, z) : |s− vαt| ≤ A

√
t, |z−

ms| ≤ K}, with A,K large enough constants. This is consistent with (1.12), and can be
thought of as a proof of the tightness of the family of variables{

(t−1/2(τ − (1− vα)t), X∅(τ)− (
√

2αt−mt−τ ),Mt −
√

2αt, Et), t ≥ 0
}
.

For any Borel sets I ⊂ [0, t] and B ⊂ R, let

Uφ2 (
√

2αt, t, I, B) :=
∫
I

ds
∫
B

dz e
−(t−s)− (ms+z−

√
2αt)2

2(t−s)√
2π(t− s)

uφ(ms + z, s)2.

Lemma 3.3. Let α ∈ (−γ, 1), we set It,A =
[
vαt−A

√
t, vαt+A

√
t
]
∩ [0, t] for all

A, t > 0. For all φ ∈ C+
c (R), we have

lim sup
K→∞

lim sup
t→∞

e2γ(1−α)t

t3γ/2

[
Uφ2 (
√

2αt, t)− Uφ2 (
√

2αt, t, It,A, [−K,K])
]

= oA(1). (3.5)

The proof of Lemma 3.3 is postponed to Appendix A.2. A consequence of this result
is that the asymptotic behaviour of Uφ2 (

√
2αt, t) as t→∞ is captured by the following

lemma.

Lemma 3.4. Let α ∈ (−γ, 1), we set It,a,b =
[
vαt+ a

√
t, vαt+ b

√
t
]
∩ [0, t] for all

a < b ∈ R. Then for all a < b and a′ < b′, we have

lim
t→∞

e2γ(1−α)t

(vαt)3γ/2U2(
√

2αt, t, It,a,b, [a′, b′]) =
∫ b

a

e−
2
√

2r2
1−α√

2π 1−α√
2

dr
∫ b′

a′
e−
√

2γwφ(z)2dz. (3.6)

Proof. Recall that we can write

Uφ2 (
√

2αt, t, It,a,b, [a′, b′]) =
∫ vαt+b

√
t

vαt+a
√
t

ds e−(t−s)√
2π(t− s)

∫ b′

a′
e
− (
√

2αt−ms−z)2
2(t−s) uφ(ms + z, s)2dz.

By the uniform convergence (2.5), we observe that uniformly in s ∈ It,a,b,∫ b′

a′
e
− (
√

2αt−ms−z)2
2(t−s) uφ(ms + z, s)2dz ∼

∫ b′

a′
e
− (
√

2αt−ms−z)2
2(t−s) wφ(z)2dz,

as t→∞. Then, with the change of variable s = ut, we have

U2(
√

2αt, t, It,a,b, [a′, b′])

∼
∫ vα+ b√

t

vα+ a√
t

du te−tgα(u)√
2πt(1− u)

∫ b′

a′
e
u−α
1−u ( 3

2 log(ut)−
√

2z)−

(
3

2
√

2
log(ut)−z

)2

2t(1−u) wφ(z)2dz,
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as t→∞, by setting

gα(u) : u ∈ (0, 1) 7→ (1− u) + (α− u)2

1− u . (3.7)

Note that uniformly in z ∈ [a′, b′] and in u ∈ [vα + a√
t
, vα + b√

t
], as t→∞ we have(

3
2
√
t

log(ut)− z
)2

2t(1− u) = ot(1)

and u− a′

1− u

(3
2 log(ut)−

√
2z
)

= 3γ
2 log(vαt)−

√
2γz + ot(1).

It then follows that as t→∞,

U2(
√

2αt, t, It,a,b, [a′, b′]) ∼
(vαt)3γ/2√
2π(1− vα)

∫ vα+ b√
t

vα+ a√
t

e−tgα(u)√tdu
∫ b′

a′
e−
√

2γzwφ(z)2dz.

(3.8)
We estimate that quantity by doing an asymptotic expansion of gα around vα.

By change of variable r =
√
t(u− vα), we have∫ vα+ b√

t

vα+ a√
t

e−tgα(u)√tdu =
∫ b

a
e
−tgα(vα+ r√

t
)dr.

We note that gα is smooth and strictly convex, and attains its minimum of 2γ(1−α) at
u = vα. By Taylor’s expansion at vα, we have as |h| ↓ 0,

gα(vα + h)− gα(vα) = g′(vα)h+ 1
2g
′′(vα)h2 + o(h2) = 2

√
2

1− αh
2 + o(h2). (3.9)

Hence,∫ vα+ b√
t

vα+ a√
t

e−tgα(u)√tdu = e−2γ(1−α)t
∫ b

a
e−

2
√

2
1−α r

2+ot(1)dr ∼ e−2γ(1−α)t
∫ b

a
e−

2
√

2
1−α r

2
dr,

as t → ∞ by dominated convergence. In view of (3.8), this is enough to complete the
proof of (3.6).

To prove (1.4), (1.5) and (1.12), first, for all φ ∈ C+
c (R), x1, x2 ∈ R and x3 ≥ 0, we

set

Ft(φ;x1, x2, x3)

:= E
(
e−
∫
φdEt(α); τ−(1−vα)t√

t
≤ x1, X∅(τ) ≥

√
2αt−mt−τ − x2,Mt ≤

√
2αt− x3

)
,

and we shall study the asymptotic behaviour of this quantity as t → ∞. Applying the
Markov property at time τ , we have

Ft(φ;x1, x2, x3) = U
τx3φ
2

(√
2αt, t,

[
vαt− x1

√
t, t
]
, (−∞, x2]

)
,
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with τx3φ : y 7→ φ(y − x3). Therefore, using Lemma 3.3 gives

lim
t→∞

e2γ(1−α)t(vαt)−3γ/2Ft(φ;x1, x2, x3)

=
∫ A

−x1

e−
2
√

2r2
1−α√

2π 1−α√
2

dr
∫ x2

−K
e−
√

2γzwφ(z − x3)2dz + oA(1) + oK(1),

with the oA(1) term being uniform in K, using that by definition, wτxφ = wφ(· − x).
Hence, letting K →∞ then A→∞, we conclude that

lim
t→∞

e2γ(1−α)t

(vαt)3γ/2Ft(φ;x1, x2, x3) =
∫ ∞
−x1

e−
2
√

2r2
1−α√

2π 1−α√
2

dr
∫ x2

−∞
e−
√

2γzwφ(z − x3)2dz. (3.10)

With (3.10) in hand, we are now ready to prove (1.4), (1.5) and (1.12).

Proof of (1.12). We first prove (1.12). By (1.22), we have

P(Mt ≤
√

2αt) = U1(
√

2αt, t) + U2(
√

2αt, t) = U2(
√

2αt, t) + o(t3γ/2e−(1+α2)t),

using Lemma 3.1. Applying then Lemma 3.3, for all A,K > 0 we have

lim
t→∞

(vαt)−3γ/2e(1+α2)tP(Mt ≤
√

2αt)

= lim
t→∞

(vαt)−3γ/2e(1+α2)tFt(0;A,K, 0) + oA(1) + oK(1).

Hence, letting K → ∞ then A → ∞, by the monotone convergence theorem, (3.10)
yields

lim
t→∞

(vαt)−3γ/2e(1+α2)tP(Mt ≤
√

2αt) =
∫
R

e−
2
√

2r2
1−α√

2π 1−α√
2

dr
∫
R
e−
√

2γzw(z)2dz = C(1).

Proof of (1.4). By (3.10), for all x1, x2 ∈ R and x3 ∈ R+, we have

P
(
τ ≤ 1− α√

2
t+ x1

√
t,X∅(τ) ≥

√
2αt−mt−τ − x2,Mt ≤

√
2αt− x3

)

= Ft(0;x1, x2, x3) ∼ (vαt)3γ/2e−(1+α2)t
∫ ∞
−x1

e−
2
√

2r2
1−α√

2π 1−α√
2

dr
∫ x2

−∞
e−
√

2γzw(z − x3)2dz,

which we can rewrite as

lim
t→∞

Ft(0;x1, x2, x3)
P(Mt ≤

√
2αt)

= 1
2C(1)

∫ x1

−∞
dr e

− 2
√

2r2
1−α√

2π 1−α
4
√

2

× e−
√

2γx3

∫ x2−x3

−∞
e−
√

2γzw(z)2dz,

which completes the proof of (1.4).
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Proof of (1.5). We finally turn to the proof of (1.5), i.e., the joint convergence in dis-
tribution of the extremal process seen from

√
2αt, conditioned on {Mt ≤

√
2αt}. By a

straightforward adaptation of [9, Proposition 2.2], to obtain this weak convergence, it is
enough to obtain for all φ ∈ C+

c (R) and x1, x2 ∈ R, x3 ≥ 0 the convergence

lim
t→∞

E
[
e−
∫
φdEt(α); τ ≤ (1− vα)t+ x1

√
t,X∅(τ) ≥

√
2αt−mt−τ − x2

∣∣∣Mt ≤
√

2αt
]

= E
[
e−
∫
φdE− ;χ ≤ x2

]
P
(
ξ ≤ x1

√
4
√

2
1−α

)
.

By (3.10) and (1.5), we have immediately that

lim
t→∞

F (φ, x1, x2, 0)
P(Mt ≤

√
2αt)

= 1
2C(1)

∫ x1

−∞
dr e

− 2
√

2r2
1−α√

2π 1−α
4
√

2

×
∫ x2

−∞
e−
√

2γzwφ(z)2dz.

Observe that according to the definition of E−, writing E for the limiting extremal process
of the unconditioned branching Brownian motion, we have

E
[
e−
∫
φdE− ;χ ≤ x2

]
=
∫ x2

−∞
E
[
e−
∑

x∈E φ(x−z)
∣∣∣max E ≤ z

]2
P(χ ∈ dz)

= 1
2C(1)

∫ x2

−∞
e−
√

2γzwφ(z)2dz,

which is therefore enough to end the proof.

Remark 3.5. Theorem 1.5 could be obtained following a similar line of proof as above.
The principal difference is that the Laplace method in the proof of Lemma 3.4 has to
be applied with a maximum obtained on the boundary of the interval of definition. All
other estimates follow with straightforward modifications, by replacing 1−α by at/

√
2t.

4 The case α < −γ
We now treat the case of α < −γ. We use in this section that, conditioned on the event
{Mt ≤

√
2αt}, with high probability no branching occurs before time t−O(1). We use

this observation to prove (1.8), (1.9) and (1.14), by using the same decomposition of
uφ(t, x) as Uφ1 + Uφ2 as in the previous section. Contrarily to the previous section, Uφ1
and Uφ2 are of the same order of magnitude.

Note that the asymptotic behaviour of Uφ1 (
√

2αt, t) is given by Lemma 3.1. To
study the asymptotic behaviour of Uφ2 (

√
2αt, t), we begin by showing that t− τ is tight

conditioned on {Mt ≤
√

2αt}.

Lemma 4.1. Assume that α < −γ, then for all φ ∈ C+
c (R) we have

lim
A→∞

lim
t→∞

√
te(1+α2)tUφ2 (

√
2αt, t, [A, t],R) = 0. (4.1)
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The proof of Lemma 4.1 is postponed to Appendix A.3. The next lemma completes
the description of the asymptotic of Uφ2 .

Lemma 4.2. If α < −γ, then for any x > 0 and −∞ ≤ c < d ≤ ∞ we have

lim
t→∞

√
te(1+α2)tUφ2 (

√
2αt, t, [0, x], (c, d)) =

∫ x

0

∫ d

c
e
√

2αyuφ(y, s)2e(1−α2)sdyds. (4.2)

Moreover, we have ∫ ∞
0

∫
R
e(1−α2)s+

√
2αyu(y, s)2dyds <∞. (4.3)

Proof. Observe that we can rewrite

Uφ2 (
√

2αt, t, [0, x], [c, d]) =
∫ x

0
ds
∫ d

c
dy e

−(t−s)− (
√

2αt−y)2
2(t−s)√

2π(t− s)
uφ(y, s)2

=e−(1+α2)t
√

2πt

∫ x

0
ds
∫ d

c
dy
√

t

t− s
e(1−α2)se

√
2αy− (

√
2αs−y)2
2(t−s) uφ(y, s)2

∼e
−(1+α2)t
√

2πt

∫ x

0
ds
∫ d

c
dye(1−α2)se

√
2αy− (

√
2αs−y)2
2(t−s) uφ(y, s)2,

as t→∞. Then, by the monotone convergence theorem, as t→∞ we have∫ x

0

∫ d

c
e
√

2αy− (
√

2αs−y)2
2(t−s) uφ(y, s)2e(1−α2)sdyds→

∫ x

0

∫ d

c
e
√

2αyuφ(y, s)2e(1−α2)sdyds,

which completes the proof of (4.2).
The rest of the proof is devoted to show that

∫∞
0
∫
R e

(1−α2)s+
√

2αyu(y, s)2dsdy <∞.
As a first step, we bound for any s ≥ 0 the quantity Is :=

∫
R e
√

2αyu(y, s)2dy. First, by
(2.8), for all y ≤ 0 we have 0 ≤ u(y, s) ≤ s1/2

|y| e
−y2/2s ∧ 1, therefore

Is ≤
∫ 1

−∞
e
√

2αydy +
∫ ∞

1
e
√

2αye−y
2/sdy ≤ e

√
2α

−
√

2α
+ s
√
πseα

2s,

by (2.6). As a result, for all A > 0, we have∫ A

0

∫
R
e(1−α2)s+

√
2αyu(y, s)2dsdy =

∫ A

0
e(1−α2)sIsds <∞. (4.4)

To complete the proof of (4.3), it is enough to bound
∫∞
A

∫
R e

(1−α2)s+
√

2αyu(y, s)2dyds
for A ≥ 1 large enough. Recall that u(y, s) = P(Ms ≤ y) is close to 1 for y �

√
2s and

to 0 for y �
√

2s. Observe that∫ ∞
A

∫ ∞
√

2s
e(1−α2)s+

√
2αyu(y, s)2dyds ≤

∫ ∞
A

∫ ∞
√

2s
e(1−α2)s+

√
2αydyds

= 1
−
√

2α

∫ ∞
A

e(1−α2)s+2αsds <∞, (4.5)
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using that for all α < −γ, 1− α2 + 2α < 0. Therefore, we only need to bound∫ ∞
A

∫ √2s

−∞
e(1−α2)s+

√
2αyu(y, s)2dyds =

∫ ∞
A

∫ 1

−∞
e(1−α2)s+2xαsu(

√
2xs, s)2√2sdxds,

by change of variable y =
√

2sx. We now apply Lemma 2.1 to bound u(
√

2xs, s)2 for s
large enough, depending on the region to which x belongs.

Let ε > 0, that will be taken small enough later on, and β > 1−α/2 > 1. We assume
that A > tε,β, and we bound the above integral using (2.9). First, for x in the interval
[−γ, 1], we have∫ ∞

A

∫ 1

−γ
e(1−α2)s+2αxsu(

√
2xs, s)2√2sdxds

≤
∫ ∞
A

∫ 1

−γ
e(1−α2)s+2αxse−4γ(1−x)s+2εs√2sdxds

≤
∫ ∞
A

√
2se(1−α2−4γ+2ε)s

∫ 1

−γ
e(2α+4γ)xsdxds

≤


1√

2(α+2γ)
∫∞
A e(1−α2+2α)s+2εsds, if − 2γ < α < −γ;

√
2(1 + γ)

∫∞
A se(1−α2+2α)s+2εsds, if α = −2γ;

1
−
√

2(α+2γ)
∫∞
A e(1−α2−4γ−2αγ−4γ2)s+2εsds, if α < −2γ.

As 1 − α2 − 4γ − 2αγ − 4γ2 < 0 for all α < −2γ, we conclude that for all ε > 0 small
enough, ∫ ∞

A

∫ 1

−γ
e(1−α2)s+2αxsu(

√
2xs, s)2√2sdxds <∞. (4.6)

We then consider the case x ∈ [−β,−γ]. In fact∫ ∞
A

∫ −γ
−β

e(1−α2)s+2αxsu(
√

2xs, s)2√2sdxds

≤
∫ ∞
A

∫ −γ
−β

e(1−α2)s+2αxse−2(1+x2)s+2εs√2sdxds

≤
∫ ∞
A

√
2se−(1+α2/2−2ε)s

∫ −γ
−β

e−2(x−α/2)2sdxds

≤
∫ ∞
A

√
πs

2 e−(1+α2/2−2ε)sds <∞, (4.7)

for all ε < 1/2. Similarly, for x < −β:∫ ∞
A

∫ −β
−∞

e(1−α2)s+2αxsu(
√

2xs, s)2√2sdxds ≤
∫ ∞
A

√
2se(1−α2/2)s

∫ −β
−∞

e−2(x−α/2)2sdxds

≤
∫ ∞
A

√
2se(1−α2/2)s

∫ −β−α/2
−∞

e−2y2sdyds.
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Using that −β − α/2 < −1, we have for all s > 0:∫ −β−α/2
−∞

e−2y2sdy ≤
∫ ∞

1
e−2y2sdy ≤ 1

4se
−2s,

by (2.7), yielding∫ ∞
A

∫ −γ
−β

e(1−α2)s+2αxsu(
√

2xs, s)2√2sdxds ≤ 1
2
√

2

∫ ∞
A

e(−1−α2/2)s <∞. (4.8)

Consequently, using (4.5–4.8), for any A > 0 large enough∫ ∞
A

∫ 1

−∞
e(1−α2)s+2xαsu2(

√
2xs, s)

√
2sdxds <∞,

which, with (4.4), completes the proof of (4.3).

We now first prove the joint convergence in law of the first branching time and
position, and the shifted extremal process, conditioned on {Mt ≤

√
2αt}, when α < −γ.

Observe that by Lemma 3.1, we have

E
(
e−
∫
φdEt(α); τ ≥ t,Mt ≤

√
2αt− z

)
= E

(
e−φ(Bt−

√
2αt);Bt ≤

√
2αt− z

)
∼ e−(1+α2)t
√

2πt

∫ −z
−∞

e−φ(y)−
√

2αydy, (4.9)

as t→∞. Similarly to the case α ∈ (−γ, 1), the key to the proof of this theorem is the
determination of the asymptotic behavior of

Ft(φ;x1, x2, x3)

:= E
(
e−
∫
φdEt(α); τ ∈ [t− x1, t], X∅(τ ∧ t) ≤

√
2αt− x2,Mt ≤

√
2αt− x3

)
,

as t→∞.
Using the branching property at time τ , we observe that

Ft(φ;x1, x2, x3) = U
τx3φ
2 (

√
2αt, t, [0, x1], [x2,∞)),

and therefore, by Lemma 4.2 we have

lim
t→∞

t1/2e(1+α2)tFt(φ;x1, x2, x3) =
∫ x1

0
e(1−α2)s

∫ ∞
x2

e
√

2αyuφ(y − x3, s)2dyds. (4.10)

We are now in the position to prove (1.8), (1.9) and (1.14). We begin with proving
(1.14).
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Proof of (1.14). Observe that by (3.2), we have

P(Mt ≤
√

2αt) = U1(
√

2αt, t) + U2(
√

2αt, t).

Using (4.10) with x2 = −∞ and x1 = A together with Lemma 4.1, we have letting
t→∞ then A→∞:

lim
t→∞

t1/2e(1+α2)tU2(
√

2αt, t) =
∫ ∞

0
e(1−α2)s

∫
R
e
√

2αyu(y − x3, s)2dyds,

which, together with (4.9), implies P(Mt ≤
√

2αt) ∼ Φ(α)√
4πte

−(1+α2)t as t→∞.

Proof of (1.8) and (1.9). To prove (1.8), it is enough to observe that

lim
t→∞

Ft(0;x1, x2, x3)
P(Mt ≤

√
2αt)

=
√

4π
Φ(α)

∫ x1

0
e(1−α2)se

√
2αx3

∫ x2−x3

−∞
e
√

2αyuφ(y, s)2dyds,

by (4.10). This proves that (t− t ∧ τ,
√

2αt−X∅(t ∧ τ),
√

2αt−Mt) jointly converge in
distribution as t→∞.

We now prove the convergence of the extremal process Et(α). For any φ ∈ C+
c (R),

using again the decomposition at first branching time of the branching Brownian motion,
we have

E
[
e−
∫
φdEt(α);Mt ≤

√
2αt

]
= Uφ1 (

√
2αt, t) + Uφ2 (

√
2αt, t),

which, by (4.10) and (1.14), yields

lim
t→∞

E
[
e−
∫
φdEt(α)

∣∣∣Mt ≤
√

2αt
]

=
√

2
Φ(α)

(∫ 0

−∞
e−φ(z)−

√
2αzdz +

∫ ∞
0

ds
∫
R
e
√

2αz+(1−α2)suφ(z, s)2dz
)
.

As u(z, s) = E
(
e
−
∑

u∈N(t) φ(Xu(s)−z);Ms ≤ z
)

, we observe that we can rewrite this limit
as

∫
R+×R

E

exp

− ∑
u∈N(s)

φ(Xu(s)− z)

∣∣∣∣∣∣Ms ≤ z

2

P(ξα ∈ ds, χα ∈ dz)

= E[e−
∫
φdE∞(α)],

proving that Et(α) converges weakly to E∞(α) in P(·|Mt ≤
√

2αt)-distribution. In the
same spirit as in the proof of case α > −γ, one could obtain the joint convergence in
distribution of Et(α) with (t− t ∧ τ,X∅(t ∧ τ)), thus completing the proof of (1.9).
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5 The critical case α = −γ
We consider in this section the case α = 1 −

√
2 = −γ and prove (1.6), (1.7) and

(1.13). In this case, the first branching time should occur around time t − O(t1/2)
with high probability. We use again (1.22) to compute the asymptotic behaviour of
P(Mt ≤ −

√
2γt), and decompose the integral (3.1) onto sub-intervals of interest to

prove the joint convergence in distribution of the first branching time and position and
the extremal process of the branching Brownian motion.

Recall that, by (3.2), we have u(−
√

2γt, t) = U1(−
√

2γt, t) + U2(−
√

2γt, t), and by
Lemma 3.1, we have, as t→∞,

U1(−
√

2γt, t) ∼ 1√
4πt

e−(1+γ2)t � t3γ/4e−(1+γ2)t. (5.1)

Therefore, to complete the proof of (1.13), it is enough to show that

U2(−
√

2γt, t) ∼ C(2)t3γ/4e−(1+γ2)t, as t→∞. (5.2)

Moreover, for any 0 < a < b < t and a′ < b′, we set

U2(−
√

2γt, t, [a, b], [a′, b′]) :=
∫ b

a
e−(t−s)ds

∫ b′

a′

e
− (z+ms+

√
2γt−at)2

2(t−s)√
2π(t− s)

u(ms + z, s)2dz.

Equation (5.2) follows from the next two lemmas.

Lemma 5.1. For all A,K > 0, we have

lim sup
t→∞

e(1+γ2)t

t3γ/4

∣∣∣U2(−
√

2γt, t)− U2(−
√

2γt, t, [
√
t/A,A

√
t], [−K,K])

∣∣∣ = oA(1) + oK(1).

This lemma allows to localise the first branching time and position, conditioned on
{Mt ≤ −

√
2γt}. We note that it is similar to the proof of Lemma 3.3, and postpone its

proof to Appendix A.4. The next lemma gives a more detailed estimate of the time at
which this branching event occurs.

Lemma 5.2. For any 0 < a < b and c < d fixed, for all φ ∈ C+
c (R), we have

lim
t→∞

e(1+γ2)t

t3γ/4
Uφ2 (−

√
2γt, t, [a

√
t, b
√
t], [a′, b′])

= 1√
2π

∫ b

a
r3γ/2e−2r2dr

∫ b′

a′
e−
√

2γzwφ(z)2dz.

Proof. This proof is similar to the proofs of Lemmas 3.4 and 4.2. By (2.5), we have

Uφ2 (−
√

2γt, t, [a
√
t, b
√
t], [a′, b′]) =

∫ b
√
t

a
√
t
e−(t−s)ds

∫ b′

a′

e
− (z+ms+

√
2γt)2

2(t−s)√
2π(t− s)

uφ(ms + z, s)2dz

∼
∫ b
√
t

a
√
t
e−(t−s)ds

∫ b′

a′

e
− (z+ms+

√
2γt)2

2(t−s)√
2π(t− s)

wφ(z)2dz,
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as t→∞. Note that 1 + γ2 = 2
√

2γ. Hence by simple calculations we obtain

Uφ2 (−
√

2γt, t, [a
√
t, b
√
t], [a′, b′])

∼ e−(1+γ2)t
∫ b
√
t

a
√
t
s3γ/2e−

2s2
t

ds√
2πt

∫ b′

a′
e−
√

2γzw2
φ(z)dz, as t→∞.

With a change of variable s = r
√
t, the proof is now complete.

Now we are ready to prove (1.8), (1.9) and (1.14).

Proof of (1.13). Recall that it is enough to prove (5.2). For all t > 0 and A,K > 0, we
have

U2(−
√

2γt, t) =
(
U2(−

√
2γt, t)− U2(−

√
2γt, t, [

√
t/A,A

√
t], [−K,K])

)
+ U2(−

√
2γt, t, [

√
t/A,A

√
t], [−K,K]).

Therefore, using Lemmas 5.1 and 5.2, we obtain

lim
t→∞

t−3γ/4e(1+γ2)tU2(−
√

2γt, t)

= oA(1) + oK(1) + 1√
2π

∫ A

1/A
r3γ/2e−2r2dr

∫ K

−K
e−
√

2γzw2(z)dz,

which converges to C(2) as A,K →∞.

Proof of (1.6) and (1.7). For any x1, x3 ∈ R+ and x2 ∈ R, applying the Markov prop-
erty at time τ , and using (5.1), we have

P
(
τ ≥ t− x1

√
t,X∅(τ) ≥ (−

√
2γt+mt−τ )− x2,Mt ≤ −

√
2γt− x3

)
=
∫ t

t−x1
√
t
e−rdr

∫ ∞
(−
√

2γt−mt−r)−x2
P(Br ∈ dy)u2(−

√
2γt− x3 − y, t− r)

+ ot(1)t3γ/4e−(1+γ2)t

=
∫ x1

√
t

0
ds
∫ x2−x3

−∞

e
− (z+ms+

√
2γt+x3)2

2(t−s)√
2π(t− s)

u2(ms + z, s)dz + ot(1)t3γ/4e−(1+γ2)t,

using the change of variables s = t − r and z = −
√

2γt − x3 − y −ms. We now apply
Lemma 5.1 to obtain

P
(
τ ≥ t− x1

√
t,X∅(τ) ≥ (−

√
2γt+mt−τ )− x2,Mt ≤ −

√
2γt− x3

)
=(oA,t(1) + oK,t(1) + ot(1))t3γ/4e−(1+γ2)t

+
∫ x1

√
t

√
t/A

ds
∫ x2−x3

−K

e
− (z+ms+

√
2γt+x3)2

2(t−s)√
2π(t− s)

u2(ms + z, s)dz.
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Then Lemma 5.2 gives

P
(
τ ≥ t− x1

√
t,X∅(τ) ≥ (−

√
2γt+mt−τ )− x2,Mt ≤ −

√
2γt− x3

)
∼ 1√

2π
t3γ/4e−(1+γ2)t

∫ x1

0
r3γ/2e−2r2dr

∫ x2−x3

−∞
e−
√

2γ(z+x3)w2(z)dz as t→∞,

which, together with (1.13) proves (1.6).
We now turn to the proof of (1.7). For any φ ∈ C+

c (R), using again the Markov
property at time τ , we have

E[e−
∫
φdEt(−γ);Mt ≤ −

√
2γt]

=e−t E[e−φ(Bt+
√

2γt);Bt ≤ −
√

2γt]

+
∫ t

0
e−rdr

∫
R
P(Br ∈ dy)E

[
e
−
∑

u∈N(t−r) φ(Xu(t−r)+y+
√

2γt);Mt−r ≤ −
√

2γt− y
]2
.

On the one hand, by (3.4),

e−t E[e−φ(Bt+
√

2γt);Bt ≤ −
√

2γt] ≤ e−tP(Bt ≤ −
√

2γt) = ot(1)t3γ/4e−(1+α2)t.

On the other hand, using again Lemmas 5.1 and 5.2, we obtain∫ t

0
e−rdr

∫
R
P(Br ∈ dy)E[e−

∑
u∈N(t−r) φ(Xu(t−r)+y+

√
2γt);Mt−r ≤ −

√
2γt− y]2

∼t3γ/4e−(1+γ2)t
∫ ∞

0
r3γ/2e−2r2 dr√

2π

∫
R
e−
√

2γzw2
φ(z)dz,

as t→∞. It thus follows, using (1.13), that

lim
t→∞

E
[
e−
∫
φdEt(−γ)|Mt ≤ −

√
2γt
]

= 1
2C(1)

∫
R
e−
√

2γzw2
φ(z)dz = E

[
e−
∫
φdE−

]
,

which, by [9, Proposition 2.2] is enough to conclude (1.7).

A Proof of Lemmas

We prove in this section some of the more technical lemmas, that are needed to complete
the proofs.

A.1 Proof of Lemma 2.2

Recall that Lemma 2.2 consists in the following non-asymptotic estimate : for all δ > 0,
P(Mt ≤ mt − z) ≤ cδe−

√
2γ(1−δ)z for all t, z ≥ 1.
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Proof of Lemma 2.2. We begin by bounding P(Mt ≤ mt − z) for 1 < z ≤ t. Denote by
n(t) := #N(t) the total number of particles alive at time t. As every individual gives
birth at exponential rate to two children, the process (n(t), t ≥ 0) is a standard Yule
process. Hence P(n(t) = k) = e−t(1−e−t)k−1 for any k ∈ N. Let η ∈ (0, δ) small enough,
such that J := b

√
2γ
η c ≥ 1. Observe that

P(Mt ≤ mt − z) ≤P(n(Jzη) ≤ z3) + P(n(Jzη) > z3;Mt ≤ mt − z)

≤z3e−Jzη +
J∑
k=1

P(n((k − 1)zη) ≤ z3 < n(kzη);Mt ≤ mt − z). (A.1)

Let (Wt)t≥0 be a standard Brownian motion, independent of the branching Brownian
motion. Using [22, Lemma 5.1], for any 0 < s < t and x ∈ R, we have

P(Mt ≤ x) ≤ P
(

max
u∈N(s)

(Ws +Mu
t−s) ≤ x

)
,

where Mu
y := maxv∈N(y+s),u4vXv(y+s)−Xu(s), and u 4 v means that v is a descendant

of u. For any 1 ≤ k ≤ J , one has

P(n((k − 1)zη) ≤ z3 < n(kzη);Mt ≤ mt − z)
≤P(n((k − 1)zη) ≤ z3 < n(kzη); max

u∈N(kzη)
(Wkzη +Mu

t−kzη) ≤ mt − z)

≤P(n((k − 1)zη) ≤ z3 < n(kzη);Wkzη ≤ mt −mt−kzη − z) + P(Mt−kzη ≤ mt−kzη)z
3
.

(A.2)

On the one hand, for 1 ≤ k ≤ J , by (2.7),

P(n((k − 1)zη) ≤ z3 < n(kzη);Wkzη ≤ mt −mt−kzη − z)
≤P(n((k − 1)zη) ≤ z3)P(Wkzη ≤ −(1−

√
2kη)z)

≤z3e−(k−1)zη
√
kzη

(1−
√

2kη)z
e
− (1−

√
2kη)2

2kη z
.

As (1−
√

2kη)
√
z ≥ (1− 2γ)

√
z >
√
Jη for z > 100, we deduce that

P(n((k − 1)zη) ≤ z3 < n(kzη);Wkzη ≤ mt −mt−kzη − z)

≤ z3eηz exp
{
−
[
kη + (1−

√
2kη)2

2kη

]
z

}
. (A.3)

On the other hand, as t−Jηz ≥ (1−
√

2γ)t→∞ as t→∞, using that z ≤ t and the
convergence (2.4), there exist t0 ≥ 1 and c0 > 0 such that for all t ≥ t0 and 1 ≤ z ≤ t,
one has P(Mt−kzη ≤ mt−kzη) ≤ e−c0 < 1. Then,

P(Mt−kzη ≤ mt−kzη)z
3 ≤ e−c0z3

. (A.4)
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As a result, using (A.2), (A.3) and (A.4), for t > t0 and 100 < z ≤ t, (A.1) becomes that

P(Mt ≤ mt − z)

≤z3eηze−
√

2γz + J sup
1≤k≤J

(
z3eηz exp

(
−
[
kη + (1−

√
2kη)2

2kη

]
z

)
+ e−c0z3

)

≤z3eηze−
√

2γz +
√

2γ
η

sup
0<s<

√
2γ

(
z3eηz exp

(
−
[
s+ (1−

√
2s)2

2s

]
z

)
+ e−c0z3

)

=z3eηze−
√

2γz +
√

2γ
η

(
z3eηze−

√
2γz + e−c0z3)

.

For δ ∈ (0, 1) small enough, we could take η =
√

2γδ/2, t ≥ t0 and z ∈ [Kδ, t] such that

P(Mt ≤ mt − z) ≤ cδe−
√

2γ(1−δ)z.

Up to enlarging the constant cδ, this equation will hold for all 1 ≤ z ≤ t.
We now bound P(Mt ≤ mt − z) with z ≥ t. We apply (2.9) and obtain that for

z ≥ t ≥ tε,β,

P(Mt ≤ mt − z) ≤ u
(√

2
(
1− z√

2t

)
t, t
)

≤


e−
√

2γz+εt, if t ≤ z < 2t;
e
−(1+(1− z√

2t
)2)t+εt

, if 2t ≤ z ≤
√

2(1 + β)t;
e
−(1− z√

2t
)2t
, if z ≥

√
2(1 + β)t.

Note that 1 + a2 ≥ 2γ(1− a) for a < 1−
√

2. So, (1 + (1− z√
2t)

2)t ≥
√

2γz if z ≥ 2t. We

also have
(
1− z√

2t

)2
t ≥
√

2γz if z ≥
√

2(1 +
√

2)t. By taking β =
√

2 and ε =
√

2γδ,
we thus get that for t ≥ tε,β and z ≥ t,

P(Mt ≤ mt − z) ≤ e−
√

2γz+εt ≤ e−
√

2γ(1−δ)z.

We hence conclude that for any δ ∈ (0, 1), there exist Tδ = tε,β ∨ t0 and Kδ ≥ 1 such
that for any t ≥ tδ and z ≥ Kδ, (2.13) holds. Thus, up to enlarging again constant cδ,
the proof is now complete.

A.2 Proof of Lemma 3.3

We assume here that α ∈ (−γ, 1). The aim of this section is to prove that for all
φ ∈ C+

c (R), setting It,A = [vαt−At1/2, vαt+At1/2], we have

lim
A,K→∞

lim sup
t→∞

e2γ(1−α)t

t3γ/2

∫
(It,A×[−K,K])c

dsdz e
−(t−s)− (ms+z−

√
2αt)2

2(t−s)√
2π(t− s)

uφ(ms + z, s)2 = 0. (A.5)
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As φ is non-negative, we observe that

uφ(z, t) = E
(
e
−
∑

u∈N(t) φ(Xu(t)−z);Mt ≤ z
)
≤ P(Mt ≤ z) = u(z, t).

It is enough to prove that (A.5) holds for φ ≡ 0.
Therefore, the objective of the section can be restated as follows: conditioned on

{Mt ≤
√

2αt}, we show that the first branching time τ is with high probability located
around (1 − vα)t + O(

√
t), and the position at which that particle branches satisfies√

2αt−mt−τ +O(1) with high probability.
The idea of the proof is the following: we use (1.22) to rewrite u as the sum of U1

and U2. By Lemma 3.1, U1 add a negligible contribution to u, so that

u(
√

2αt, t) ≈
∫

[0,t]×R
dsdz e

−(t−s)− (ms+z−
√

2αt)2
2(t−s)√

2π(t− s)
u(ms + z, s)2.

Moreover, by Lemma 3.4, a large contribution to u is carried by the regions of the form
IA,t × [−K,K], with A > 0 and K large enough. We now use a priori domination
estimates for u (e.g. Lemma 2.1) and methods similar to the proof of Laplace’s method.

We decompose the proof of Lemma 3.3 into three parts, by considering the contri-
bution of various domains of [0, t]× R.

A.2.1 Linear bounds on the first splitting time

As a first step towards the proof of Lemma 3.3, we show that for all ε > 0,

P
(
|τ − (1− vα)t| > εt,Mt ≤

√
2αt

)
� u(

√
2αt, t).

Lemma A.1. Let α ∈ (−γ, 1). For all ε > 0 small enough, we have

lim sup
t→∞

1
t

logU2(
√

2αt, t, [0, (vα − ε)t]) < −2γ(1− α), (A.6)

lim sup
t→∞

1
t

logU2(
√

2αt, t, [(vα + ε)t, t]) < −2γ(1− α). (A.7)

To prove this result, we begin by bounding the probability that a split occurs at the
very end of the process.

Lemma A.2. Let α ∈ (−γ, 1). There exists ε0 > 0 such that for all ε ∈ (0, ε0),

lim sup
t→∞

1
t

logU2(
√

2αt, t, [0, εt]) < −2γ(1− α). (A.8)

Proof. Equation (A.8) can be rewritten as

P(0 ≤ t− τ ≤ εt,Mt ≤
√

2αt)� t3γ/2e−2γ(1−α)t.
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First note that P(0 ≤ t− τ ≤ εt,Mt ≤
√

2αt) ≤ P(τ ≥ (1− ε)t) = e−(1−ε)t. Thus (A.8)
holds for all α such that 2γ(1− α) < 1, i.e. α > −γ/2, for all ε > 0 small enough.

We now assume that α ≤ −γ/2 < 0, and decompose the above probability as

P(0 ≤ t− τ ≤ εt,Mt ≤
√

2αt) ≤
P(0 ≤ t− τ ≤ εt,X∅(τ) ≤

√
2(α+ 2ε)t,Mt ≤

√
2αt)

+ P(0 ≤ t− τ ≤ εt,X∅(τ) ≥
√

2(α+ 2ε)t,Mt ≤
√

2αt), (A.9)

and bound these two quantities separately.
First note that

P(0 ≤ t− τ ≤ εt,X∅(τ) ≤
√

2(α+ 2ε)t,Mt ≤
√

2αt)
≤ P(0 ≤ t− τ ≤ εt,X∅(τ) ≤

√
2(α+ 2ε)t)

≤
∫ t

(1−ε)t
e−sP(Bs ≤

√
2(α+ 2ε)t)ds ≤ Ct−1/2e−(1−ε)te

− (α+2ε)2
2(1−ε) t,

using (2.7). As 1 + α2

2 > 2γ(1− α) for all α ∈ (−γ,−γ/2], we deduce that for all ε > 0
small enough, there exists δ > 0 such that

P(0 ≤ t− τ ≤ εt,X∅(τ) ≤
√

2(α+ 2ε)t) ≤ Ce−2γ(1−α)t−δt. (A.10)

We now turn to bounding the second probability in (A.9)
Using the Markov property at time τ , we bound it as

P(0 ≤ t− τ ≤ εt,X∅(τ) ≥
√

2(α+ 2ε)t,Mt ≤
√

2αt)

≤
∫ t

(1−ε)t
e−s E

(
u(t− s,

√
2αt−Bs)2

1{Bs≥
√

2(α+2ε)t}
)

ds.

By Lemma 2.1, for all s < εt and y ≤ −2εt, we have u(s, y) ≤ e−y2/2s, yielding

P(0 ≤ t− τ ≤ εt,X∅(τ) ≥
√

2(α+ 2ε)t,Mt ≤
√

2αt)

≤ e−(1−ε)t
∫ εt

0

∫ ∞
√

2(α+2ε)t
e−

(
√

2αt−y)2
s e

− y2
2(t−s) dyds.

Using that

− y2

2(t− s) −
(y −

√
2αt)2

s
= − 2α2t2

2t− s −
(y −

√
2α2(t−s)

2t−s )2

2(t−s)s
2t−s

,

we obtain

P(0 ≤ t− τ ≤ εt,X∅(τ) ≥
√

2(α+ 2ε)t,Mt ≤
√

2αt)

≤ e−(1+α2−ε)t
∫ εt

0

∫ ∞
√

2(α+2ε− 2(t−s)
2t−s )t

e
− z2

2(t−s)s
2t−s dzds ≤

√
2πε3/2√
1− ε/2

t3/2e−(1+α2−ε)t.
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Therefore, as 1 +α2 > 2γ(1−α) for all α ∈ (−γ, 1), we conclude that for all ε > 0 small
enough, there exists δ > 0 such that

P(0 ≤ t− τ ≤ εt,X∅(τ) ≥
√

2(α+ 2ε)t,Mt ≤
√

2αt) ≤ Ce−2γ(1−α)t−δt. (A.11)

In view of (A.9), equations (A.10) and (A.11) show that there exists ε0 so that for
all 0 < ε < ε0, (A.8) holds.

We now bound the probability that the first splitting time in the branching Brownian
motion occurs after time at a distance at least εt from the expected time (1− vα)t.

Lemma A.3. Let α ∈ (−γ, 1). There exists ε1 > 0 such that for all ε ∈ (0, ε1),

lim sup
t→∞

1
t

logU2(
√

2αt, t, [εt, (vα − ε)t]) < −2γ(1− α), (A.12)

lim sup
t→∞

1
t

logU2(
√

2αt, t, [(vα + ε)t, t]) < −2γ(1− α). (A.13)

Proof. Let a < b such that [a, b] ⊂ (0, vα) ∪ (vα, 1]. By definition of U2, we have

U2(
√

2αt, t, [at, bt]) ≤
∫ bt

at

∫
R

dz√
2πt

e
−(t−s)− (z−

√
2αt)2

2(t−s) u(z, s)2dzds

≤
∫ b

a

∫
R
e
−t(1−r)−t (

√
2hr−

√
2α)2

2(1−r) u(
√

2htr, tr)2√2t3/2rdr dh√
2π
,

by change of variables r = s/t and h = z/
√

2s. We then use Lemma 2.1 to bound
u(
√

2htr, r) uniformly in (h, r) for t large enough. For all δ > 0 and β ≥ 1, for all t large
enough we have

U2(
√

2αt, t, [at, bt]) ≤ t3/2√
π

∫ b

a

∫
R
e
−t
(

1−r+ (hr−α)2
1−r +2Ψβ(h)−δ

)
dhdr, (A.14)

where we set

Ψβ(a) :=


0, if a ≥ 1;√

2γ(1− a), if − γ ≤ a < 1;
(1 + a2), if − β ≤ a < −γ;
a2, if a < −β.

(A.15)

To complete this proof, it is therefore enough to prove that the right-hand side of (A.14)
decays exponentially fast, at a rate larger than 2γ(1− α). To do so, we decompose the
integral over R into thee subsets : (−∞,−β), [−β, 1] and (1,∞).

We first observe that on the interval [1,∞), by change of variable v = hr − α, we
have∫ b

a

∫ ∞
1

e
−t
(

1−r+ (hr−α)2
1−r −δ

)
dhdr ≤ b

∫ b

a

∫ ∞
r−α

e−t(1−r+
v2

1−r−δ)dvdr

≤ Ct−1/2
(∫ α

a
e−t(1−r)dr +

∫ b

α
e−t(1−r+

(r−α)2
1−r )

)
dr,
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using (2.7) to bound the integrals over v. Hence, one straightforwardly obtains that

lim sup
t→∞

1
t

log
∫ b

a

∫ ∞
1

e
−t
(

1−r+ (hr−α)2
1−r −δ

)
dhdr

≤ δ −min(1− α, gα(b)) < −2γ(1− α), (A.16)

for δ > 0 small enough, where gα is the function defined in (3.7), which attains its
maximum at vα with value 2γ(1− α).

Similarly, as [a, b]× [−β, 1] is compact, we also have

lim sup
t→∞

1
t

log
∫ b

a

∫ 1

−γ
e
−t
(

1−r+ (hr−α)2
1−r +2Ψβ(h)−δ

)
dhdr

≤ δ− inf
r∈[a,b]
h∈[−β,1]

1−r+ (hr − α)2

1− r +2Ψβ(h) ≤ δ− inf
r∈[a,b]
h∈[−β,1]

1−r+ (hr − α)2

1− r +2
√

2γ(1−h).

The function (h, r) ∈ (−∞, 1]× [ε, 1] 7→ 1−r+ (hr−α)2

1−r +2
√

2γ(1−h) attaining its unique
minimum at (vα, 1), we conclude again that, choosing δ > 0 small enough, we have

lim sup
t→∞

1
t

log
∫ b

a

∫ 1

−γ
e
−t
(

1−r+ (hr−α)2
1−r +2Ψβ(h)−δ

)
dhdr < −2γ(1− α). (A.17)

Finally, choosing β > 0 large enough so that the function h 7→ (hr−α)2

1−r +2h2 is strictly
decreasing on (−∞,−β], we have

∫ b

a

∫ −β
−∞

e
−t
(

1−r+ (hr−α)2
1−r +2h2−δ

)
dhdr ≤

∫ b

a
e
−t
(

1−r+ (−βr−α)2
1−r −δ

)
dr
∫ −β
−∞

e−2h2tdh

≤ Ct−1/2e−2β2t
∫ b

a
e
−t
(

1−r+ (−βr−α)2
1−r −δ

)
dr ≤ Ct−1/2e−t(2β

2−δ),

which, if we choose β large enough, will be smaller than e−t(2γ(1−α)+η) for some η > 0,
for all t large enough. Using this estimate in combination with (A.16) and (A.17) allows
us, by (A.14), to show that

lim sup
t→∞

1
t

logU2(
√

2αt, t, [at, bt]) < −2γ(1− α),

which completes the proof of (A.12) and (A.13).

The proof of Lemma A.1 is then a combination of Lemmas A.2 and A.3.
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A.2.2 Tightness of the normalized first splitting time

We now precise the estimates on P
(
|τ − vαt| > A

√
t,Mt ≤

√
2αt

)
, bounding this quan-

tity as t→∞ then A→∞.

Lemma A.4. Given α ∈ (−γ, 1), we have

lim
A→∞

lim sup
t→∞

e2γ(1−α)tt−3γ/2U2(
√

2αt, t, [0, vαt−A
√
t]) = 0; (A.18)

lim
A→∞

lim sup
t→∞

e2γ(1−α)tt−3γ/2U2(
√

2αt, t, [vαt+A
√
t, t]) = 0. (A.19)

As a first step, we show that with high probability, |τ−vαt| = o(t1/2 log t) conditioned
on the maximal displacement being small.

Lemma A.5. Let α ∈ (−γ, 1). There exists εα > 0 such that for all ε ∈ (0, εα), for all
% > 0 we have

lim sup
t→∞

t%e2γ(1−α)tU2(
√

2αt, t, [(vα − ε)t, vαt−
√
t log t]) = 0; (A.20)

lim sup
t→∞

t%e2γ(1−α)tU2(
√

2αt, t, [vαt+
√
t log t, (vα + ε)t]) = 0. (A.21)

Proof. The two formulas being proved in a very similar way, we only prove the first
one. Note that without loss of generality, one can choose ε > 0 small enough that
vα − 2ε > min(α, 0). By definition of U2, we have

U2(
√

2αt, t, [(vα − ε)t, vαt−
√
t log t])

=
∫ vαt−

√
t log t

(vα−ε)t
ds
∫
R

dz√
2πt

e
−(t−s)− (

√
2s+z−

√
2αt)2

2(t−s) u(
√

2s+ z, s)2

≤t1/2
∫ vα− log t√

t

vα−ε
du
∫
R

dze−t(1−u)+ (z+
√

2t(u−α))2

2t(1−u) u(
√

2ut+ z, ut)2

≤t1/2
∫ vα− log t√

t

vα−ε
due−tgα(u)

∫
R

dze−
z(2
√

2t(u−α)+z)
2t(1−u) u(

√
2ut+ z, ut)2,

with gα the function defined in (3.7). Using (3.9), there exists c > 0 such that for all
r ∈ [vα − ε, vα], gα(r) ≤ gα(vα)− c(r − vα)2. Thus

e2γ(1−α)tU2(
√

2αt, t, [(vα − ε)t, vαt−
√
t log t])

≤ t
∫ − log t

t1/2

−ε
dve−ctv2

∫
R

dze−
z(2
√

2t(vα+v−α)+z)
2t(1−vα−v) u(

√
2(vα + v)t+ z, (vα + v)t)2.

We now use Lemma 2.2, i.e. that for all δ > 0 there exists cδ > 0 such that for all
t ≥ 1 and z ∈ R, we have u(mt − z, t) ≤ cδe

−
√

2γ(1−δ)z+ . Therefore, up to a change of
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variables, for all v ∈ [−ε, 0], writing at(v) = 3
2
√

2 log((vα + v)t), we have

∫
R

dze−
z(2
√

2t(vα+v−α)+z)
2t(1−vα−v) u(

√
2(vα + v)t+ z, (vα + v)t)2

≤
∫
R

dye
(y+at(v))(2

√
2t(vα+v−α)−(y+at(v)))
2t(1−vα−v) u(m(vα+v)t − y, (vα + v)t)2

≤cδ
∫
R

dye
(y+at(v))(2

√
2t(vα+v−α)−(y+at(v)))
2t(1−vα−v) e−2

√
2γ(1−δ)y+ .

As a result, we get

e2γ(1−α)tU2(
√

2αt, t, [(vα − ε)t, vαt−
√
t log t])

≤ Ct1/2
∫ − log t

t1/2

−ε
dve−ctv2

∫
R

dye
(y+at(v))(2

√
2t(vα+v−α)−(y+at(v)))
2t(1−vα−v) e−2

√
2γ(1−δ)y+ . (A.22)

We now bound this quantity in two different ways for y ≥ 0 and y ≤ 0.
We first observe that for all v ∈ [−ε, 0], using that vα > α+ 2ε,

∫ 0

−∞
dye

(y+at(v))(2
√

2t(vα+v−α)−(y+at(v)))
2t(1−vα−v) ≤

∫ 0

−∞
dye

(y+at(v))(2
√

2t(vα+v−α))
2t(1−vα−v)

≤ 1− vα − v√
2(vα + v − α)

((v + vα)t)
3
2
vα+v−α
1−vα−v ≤ 1− vα + ε

2
√

2ε
(vαt)

3
2
vα−α

(1−vα) . (A.23)

Similarly, we have

∫ ∞
0

dye
(y+at(v))(2

√
2t(vα+v−α)−(y+at(v)))
2t(1−vα−v) e−2

√
2γ(1−δ)y

≤ e2
√

2γ(1−δ)at(v)
∫ ∞
at(v)

dxex
(√

2 (vα−α)
(1−vα)−2

√
2γ(1−δ)

)
≤ 1√

2γ(1− 2δ)
(vαt)3γ(1−2δ)/2, (A.24)

for all δ > 0 small enough, using that vα − α = γ√
2(1− α) = γ(1− vα).

Hence, plugging (A.23) and (A.24) into (A.22), we deduce that there exist C > 0
and % > 0 so that for all t ≥ 1 large enough,

e2γ(1−α)tU2(
√

2αt, t, [(vα − ε)t, vαt−
√
t log t])

≤ Ct%
∫ − log t

t1/2

−ε
dve−ctv2 ≤ Ct%e−c(log t)2

,

which concludes the proof of (A.20).

Proof of Lemma A.4. By Lemmas A.1 and A.5, to prove Lemma A.4, it is enough to
bound for all t large enough, the quantities U2(

√
2αt, t, [vαt −

√
t log t, vαt − A

√
t]) and

U2(
√

2αt, t, [vαt+A
√
tvαt−

√
t log t]) by M(A)e−2γ(1−α)tt−3γ/2, with A 7→M(A) a pos-

itive function converging to 0 as A→∞.
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The proofs of (A.18) and (A.19) being very similar and symmetric, we only prove
the second one. We write

U2(
√

2αt, t, [vαt+A
√
t, vαt+

√
t log t])

≤t−1/2
∫ vαt+

√
t log t

vαt+A
√
t

ds
∫
R

dze−(t−s)+ (z−ms)2
2(t−s) u(ms + z, s)2

≤t1/2e−2γ(1−α)t
∫ t−1/2 log t

At−1/2
dve−ctv2

∫
R

dye
(y+at(v))(2

√
2t(vα+v−α)−(y+at(v)))
2t(1−vα−v) e−2

√
2γ(1−δ)y+ ,

with the same computations as the ones used to obtain (A.22), using Lemma 2.2.
Using that |v| ≤ t−1/2 log t, hence that at(v) = 3

2
√

2 log((vα + v)t) = at(0) + ot(1), we
obtain, for all t large enough:

U2(
√

2αt, t, [vαt+A
√
t, vαt+

√
t log t])

≤2cδt1/2e−2γ(1−α)t
∫ t−1/2 log t

At−1/2
dve−ctv2

∫
R

dye
(y+at)(2

√
2t(vα+v−α)−(y+at)

2t(1−vα−v) e−2
√

2γ(1−δ)y+ , (A.25)

where at = at(0) = 3
2 log(vαt).

We then compute for all |v| < t−1/2 log t,∫ 0

−∞
dye

(y+at)(2
√

2t(vα+v−α)−(y+at))
2t(1−vα−v) ≤

∫ 0

−∞
dye
√

2 (y+at)(vα+v−α)
(1−vα−v)

≤ exp
(√

2at
vα + v − α
1− vα − v

)
≤ exp

(√
2at

(
vα − α
1− vα

+ Cv

))
,

for all t large enough, using Taylor’s expansion. Hence, with (vα − α)/(1 − vα) = γ,
there exists C > 0 such that for all t large enough,∫ 0

−∞
dye

(y+at)(2t(vα+v−α)−(y+at))
t(1−vα−v) ≤ C(vαt)3γ/2. (A.26)

Similarly, we have∫ ∞
0

dye
(y+at)(2

√
2t(vα+v−α)−(y+at))
2t(1−vα−v) e−2

√
2γ(1−δ)y

≤e2
√

2γ(1−δ)at
∫ ∞
at

dxe
x(2
√

2t(vα+v−α)−x)
2t(1−vα−v) −2

√
2γ(1−δ)x

≤(vαt)3γ(1−δ)
∫ ∞
at

dxe
√

2x
(
vα+v−α
1−vα−v

−2γ(1−δ)
)
≤ C(vαt)3γ(1−δ)(vαt)

3
2
vα−v−α

1−vα
−3γ(1−δ).

Hence, using that vα−v−α
1−vα = γ +O(t−1/2 log t), we obtain that for all t large enough∫ ∞

0
dye

(y+at)(2t(vα+v−α)−(y+at))
t(1−vα−v) ≤ C(vαt)3γ/2. (A.27)

As a result, with (A.26) and (A.27), (A.25) becomes

U2(
√

2αt, t, [vαt+A
√
t, vαt+

√
t log t]) ≤ Ct3γ/2e−2γ(1−α)t

∫ ∞
A

e−cw
2dw.

By dominated convergence, the proof of (A.19) is now complete.
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A.2.3 Tightness of the centred splitting position

To complete the proof of Lemma 3.3, we prove that the position at which the first
splitting occurs X∅(τ) is tightly concentrated around the position

√
2αt−mt−τ , on the

event |τ − vαt| ≤ A
√
t.

Lemma A.6. Let α ∈ (−γ, 1). For any fixed A > 0,

lim
K→∞

lim
t→∞

e2γ(1−α)t

t3γ/2
U2(
√

2αt, t, [vαt−A
√
t, vα +A

√
t], [−K,K]c) = 0. (A.28)

Proof. Let K > 0 and A > 0. We observe that with similar computations as in the proof
of Lemma A.4, setting at = 3

2
√

2 log(vαt), we have

e2γ(1−α)tU2(
√

2αt, t, [vαt−A
√
t, vαt+A

√
t], [−K,K]c)

≤Ct1/2
∫ At−1/2

−At−1/2
dve−ctv2

∫
[−K,K]c

dye
(y+at)(2

√
2t(vα+v−α)−(y+at))
2t(1−vα−v) u(m(vα+v)t − y, (vα + v)t)

≤Ct1/2
∫ At−1/2

−At−1/2
dve−ctv2

∫
[−K,K]c

dye
(y+at)(2

√
2t(vα+v−α)−(y+at))
2t(1−vα−v) e−2

√
2γ(1−δ)y+ ,

where we used again Lemma 2.2.
We then observe, with similar computations as in the proof of Lemma A.4 again that∫ −K

−∞
dye

(y+at)(2
√

2t(vα+v−α)−(y+at))
2t(1−vα−v) ≤ t3γ/2e−(γ−δ)K ,∫ ∞

K
dye

(y+at)(2
√

2t(vα+v−α)−(y+at))
2t(1−vα−v) e−2

√
2γ(1−δ)y ≤ t3γ/2e−(γ−δ)K ,

using that for all t large enough,
∣∣∣vα−v−α1−vα − γ

∣∣∣ ≤ δ. Therefore, letting t → ∞ then
K →∞, we obtain, for all A > 0, that (A.28) holds.

Lemma 3.3 is then a consequence of Lemmas A.1, A.4 and A.6.

A.3 Proof of Lemma 4.1

Similarly to the previous section, it is enough to prove Lemma 4.1 for φ ≡ 0 by a
straightforward domination argument. The proof is obtained in a similar, but slightly
simple fashion.

Proof. Let α < −γ here. Note that by change of variable y =
√

2as and (2.9), for any
ε > 0 and A ≥ tε,β, with β = Kα,

U2(
√

2αt, t, [A, t]) =
∫ t

A
ds
∫
R

e
−(t−s)− (

√
2αt−

√
2as)2

2(t−s)√
2π(t− s)

u2(
√

2as, s)
√

2sda

≤Σ1(A, t) + Σ2(A, t) + Σ3(A, t) + Σ4(A, t),
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where

Σ1(A, t) :=
∫ t

A
ds
∫ ∞

1

e
−(t−s)− (

√
2αt−

√
2as)2

2(t−s)√
2π(t− s)

√
2sda,

Σ2(A, t) :=
∫ t

A
ds
∫ 1

−γ

e
−(t−s)− (

√
2αt−

√
2as)2

2(t−s)√
2π(t− s)

e−4γ(1−a)s+2εs√2sda,

Σ3(A, t) :=
∫ t

A
ds
∫ −γ
Kα

e
−(t−s)− (

√
2αt−

√
2as)2

2(t−s)√
2π(t− s)

e−2(1+a2)s+2εs√2sda,

Σ4(A, t) :=
∫ t

A
ds
∫ Kα

−∞

e
−(t−s)− (

√
2αt−

√
2as)2

2(t−s)√
2π(t− s)

e−2a2s
√

2sda.

Recall gα from (3.7). By change of variables z =
√

2as−
√

2αt and s = ut and by (2.7),
one gets that

Σ1(A, t) =
∫ 1

A/t
te−t(1−u)du

∫ ∞
√

2ut−
√

2αt

e
− z2

2t(1−u)√
2π(1− u)t

dz

≤
∫ 1

A/t
te−t(1−u)

√
t(1− u)√

2(u− α)t
e−

(u−α)2
1−u tdu ≤

√
t

|α|

∫ 1

A/t
e−tgα(u)du.

Clearly, gα(h) = gα(0) + g′α(0)h + o(h) as |h| → 0. Note that gα(0) = 1 + α2 and
g′α(0) = (α− 1)2 − 2 > 0 for α < 1−

√
2. Note that, for any u ∈ [ A√

t
, 1],

gα(u) ≥ gα
(
A√
t

)
= gα(0) + (g′α(0) + ot(1)) A√

t
,

which implies that, for t sufficiently large,
√
t

|α|

∫ 1

A√
t

e−tgα(u)du ≤ e−(1+α2)t
√
t|α|

te−
Ag′α(0)

2
√
t = ot(1)e

−(1+α2)t
√
t

.

On the other hand, since gα(h) = gα(0) + g′α(0)h+ o(h) as |h| → 0, then
√
t

|α|

∫ A√
t

A
t

e−tgα(u)du = e−(1+α2)t
√
t|α|

∫ A√
t

A
t

te−t(g
′
α(0)+ot(1))udu = ot,A(1)e

−(1+α2)t
√
t|α|

.

Thus Σ1(A, t) ≤ ot,A(1) e−(1+α2)t
√
t|α| . Next, we shall handle Σ2(A, t). If α < −2γ, then
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γs− (α+ 2γ)t > 0. So, by change of variable z = as− αt+ 2γ(s− t) and (2.7),

Σ2(A, t) =
∫ t

A
e−(t−s)−4γs+4γαt+4γ2(t−s)+2εsds

∫ (1+2γ)s−(α+2γ)t

γs−(α+2γ)t

e−
z2
t−s√

2π(t− s)
√

2dz

≤
∫ t

A
e−(t−s)−4γs+4γαt+4γ2(t−s)+2εs

√
t− s√

2 (γs− (α+ 2γ)t)
e−

(γs−(α+2γ)t)2
t−s ds

=
∫ 1

A/t

√
t(1− u)√

2 (γu− (α+ 2γ))
e−t[

(α+γ)2
1−u −2γ(1+γ)(1−u)+2−2αγ−2εu]du

≤
√
t

|α| − 2γ

∫ 1

A/t
e−tgα,ε(u)du,

where gα,ε(u) = (α+γ)2

1−u − (1 + γ2)(1− u) + 2− 2αγ − 2εu. Observe that for ε ∈ (0, 1/2)
and u ∈ (0, 1),

g′α,ε(u) = (α+ γ)2

(1− u)2 + (1 + γ2)− 2ε ≥ Lε := (α+ γ)2 + (1 + γ2)− 2ε,

and that gα,ε(0) = α2 + 1. Then, for any h ∈ (0, 1),

min
u∈[h,1]

gα,ε(u) ≥ gα,ε(h) ≥ α2 + 1 + Lεh.

This implies that if α < −2γ, then

Σ2(A, t) ≤
√
t

|α| − 2γ

∫ 1

A/t
e−t(α

2+1+Lεu)du = e−(1+α2)t
√
t(|α| − 2γ)

∫ 1

A/t
e−Lεuttdu,

which is oA(1) e−(1+α2)t
√
t

. If −2γ ≤ α < −γ, then

Σ2(A, t) ≤
∫ t

A

∫ 1

−γ

e
−(t−s)− (

√
2αt−

√
2as)2

2(t−s)√
2π(t− s)

e−2γ(1−a)s+2εs√2sda

 ds

=
∫ t

A

∫ (1+γ)s−(α+γ)t

−(α+γ)t

e−
z2
t−s√

2π(t− s)
√

2dz

 eγ2(t−s)+2γαt−(t−s)−2γs+2εsds

≤
∫ t

A

√
t− s

−(α+ γ)te
− (α+γ)2t2

t−s +γ2(t−s)+2γαt−(t−s)−2γs+2εsds

=
∫ 1

A/t

√
t(1− u)
|α| − γ

e−th(u)du,

where in the first equality, we change variable z = sa − αt + γ(s − t), the second
inequality holds by (2.7) and h(u) = (α+γ)2

1−u − 2εu+ (1 + α2)− (α + γ)2. Note that for
any ε ∈

(
0, (α+γ)2

2

)
and u ∈ (0, 1),

h′(u) = (α+ γ)2

(1− u)2 − 2δ ≥ L̃ε := (α+ γ)2 − 2ε > 0,
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with h(0) = α2 + 1. It hence follows that if −2γ ≤ α < −γ, then

Σ2(A, t) ≤
∫ 1

A/t

√
t(1− u)
|α| − γ

e−t(α
2+1+L̃εu)du = oA(1)e

−(1+α2)t
√
t

.

For Σ3(A, t), one sees that

Σ3(A, t) =
∫ t

A
e−t−s+2εs− 2α2t2

2t−s ds
∫ −γ
Kα

e−
s(2t−s)
t−s (a− αt

2t−s )2 s√
π(t− s)

da

≤
∫ t

A

√
s√

2t− s
e−t−s+2εs− 2α2t2

2t−s ds ≤ e−(1+α2)t
√
t

∫ t

A

√
se−(1−2ε)sds,

which is oA(1) e−(1+α2)t
√
t

as long as ε ∈ (0, 1/2). On the other hand,

Σ4(A, t) =
∫ t

A
ds
∫ Kα

−∞

e
−(t−s)− (

√
2αt−

√
2as)2

2(t−s)√
2π(t− s)

e−2a2s
√

2sda

=
∫ t

A
e−t+s−

2α2t2
2t−s ds

∫ Kα

−∞
e−

s(2t−s)
t−s (a− αt

2t−s )2 s√
π(t− s)

da

=
∫ t

A
e−t+s−

2α2t2
2t−s

√
s

2t− sds
∫ Kα− αt

2t−s

−∞
e−

s(2t−s)
t−s z2 dz√

π t−s
s(2t−s)

.

Choose K > 1 such that (K − 1)|α| > 1 and Kα− αt
2t−s < −1. Then by (2.7),

Σ4(A, t) ≤
∫ t

A
e−t+s−

2α2t2
2t−s

√
s

2t− s

√
t− s√

s(2t− s)
e−

s(2t−s)
t−s ds

=
∫ t

A

√
t− s

2t− s e
−t− 2α2t2

2t−s e−s−
s2
t−sds ≤ e−(1+α2)t

√
t

∫ t

A
e−sds,

as 1
2t ≤

1
2t−s ≤

1
t and

√
t− s ≤

√
t. Therefore, Σ4(A, t) = oA(1) e−(1+α2)t

√
t

.

A.4 Proof of Lemma 5.1

Using again a domination argument, it is enough to prove Lemma 5.1 for φ ≡ 0. We
decompose it into the two following lemmas, that we prove one by one.

Lemma A.7.

lim
A→∞

lim
t→∞

e(1+γ2)t

t3γ/4
U2(−

√
2γt, t, [A

√
t, t]) =0; (A.29)

lim
A→∞

lim
t→∞

e(1+γ2)t

t3γ/4
U2(−

√
2γt, t, [0,

√
t/A]) =0. (A.30)
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Lemma A.8. For any A > 0 fixed,

lim
K→∞

lim
t→∞

e(1+γ2)t

t3γ/4
U2(−

√
2γt, t, [ 1

A

√
t, A
√
t], (−∞,−K]) = 0 (A.31)

and lim
K→∞

lim
t→∞

e(1+γ2)t

t3γ/4
U2(−

√
2γt, t, [

√
t/A,A

√
t], [K,∞)) = 0. (A.32)

Proof of Lemma A.7. Proof of (A.29): Observe that

U2(−
√

2γt, t, [A
√
t, t])

= U2(−
√

2γt, t, [A
√
t, t], [−K,∞)]) + U2(−

√
2γt, t, [A

√
t, t], (−∞,−K))

=: U(A.33)a + U(A.33)b. (A.33)

As u(ms + z, s) ≤ 1, one sees that

U(A.33)a ≤
∫ t

A
√
t
ds
∫ ∞
−K

dz e
−(t−s)− (z+ms+

√
2γt)2

2(t−s)√
2π(t− s)

=
∫ t

A
√
t
e−(t−s)ds

∫ ∞
−K+ms+

√
2γt

e
− z2

2(t−s)√
2π(t− s)

,

which by (2.7) is bounded by∫ t

A
√
t
e−(t−s)

√
t− s

−K +ms +
√

2γt
e
− (K+ms+

√
2γt)2

2(t−s) ds

≤c4
e−(1+γ2)t
√
t

∫ t

A
√
t
e−

2s2
t−s+(

√
2K+ 3

2 log s) s+γt
t−s ds.

For t large enough, one has(√
2K + 3

2 log s
)
s+ γt

t− s
≤


s2

t−s , if s ∈ [
√
t log t, t];

3γ
2 log s+ 2

√
2K + 3

√
2(log t)2
√
t

, if s ∈ [A
√
t,
√
t log t],

which implies that

U(A.33)a ≤c5
e−(1+γ2)t
√
t

(∫ t

√
t log t

e−
s2
t−sds+ e2

√
2K
∫ √t log t

A
√
t

s3γ/2e−
2s2
t ds

)
= ot

(
e−(1+γ2)t
√
t

)
.

On the other hand, for s sufficiently large and z < −K, by similar reasonings as in
Lemma A.4, we have for δ ∈ (0, 1/2], η = 1− 2δ, ε < γη

1+2γ(1−δ) ,

U(A.33)b ≤ c2
δ

∫ εt

A
√
t

√
t− se−(t−s)− (−

√
2γt−ms+K)2

2(t−s)

−2s+
√

2γη(t− s)
ds

+ c2
δ

∫ t

εt
e−(t−s)(1−γ2(1+η)2)−

√
2γ(1+η)(ms−

√
2γt)ds

=: U(A.33)b1 + U(A.33)b2,
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that we bound separately.
Note that

U(A.33)b2 =
∫ 1

ε
(ut)3γ(1+η/2)te−t[(1−u)(1−γ2(1+η)2)+2γ(1+η)(u+γ)]du

≤ t
3γ
2 (1+η)+1e−tminu∈[ε,1][(1−u)(1−γ2(1+η)2)+2γ(1+η)(u+γ)].

One can check that

min
u∈[ε,1]

[(1− u)(1− γ2(1 + η)2) + 2γ(1 + η)(u+ γ)]

= (1 + γ2) + ε(1 + γ2)η − η2γ2(1− ε).

Take ε ∈ ( ηγ2

1+γ2 ,
γη

1+2γ(1−δ)) as η = 1− 2δ ∈ (0, 1). Then,

U(A.33)b2 ≤ t
3γ
2 (1+η)+1e−t(1+γ2+εη2γ2) = ot(1)t3γ/4e−t(1+γ2).

It remains to bound U(A.33)b1. Recalling (3.7), we observe that

U(A.33)b1 ≤
C

(7)
δ,ε√
t

∫ εt

A
√
t
e
−(t−s)− (−

√
2γt−ms+K)2

2(t−s) ds

≤C(7)
δ,ε e

C
(8)
δ,ε
K
√
t

∫ ε

A√
t

e−tg−γ(u)+ 3
2 log(ut)u+γ

1−u du,

where we use the fact that for s ∈ [A
√
t, εt],

(−
√

2γt−ms +K)2

2(t− s) =
2(γt+ s)2 + ( 3

2
√

2 log s+K)2 − 2
√

2(γt+ s)( 3
2
√

2 log s+K)
2(t− s)

≥ (γt+ s)2

t− s
− 3(γt+ s) log s

2(t− s) −
√

2γK
(1− ε) .

(A.34)

Since g−γ(u) = 1 + γ2 + 2u2 + o(u2), as u ↓ 0, then

√
t

∫ ε

log t√
t

e−tg−γ(u)+ 3
2 log(ut)u+γ

1−u du ≤
√
t

∫ ε

log t√
t

(ut)3(ε+γ)/2e−u
2t−(1+γ2)tdu,

which is ot(1)t3γ/4e−(1+γ2)t. For u ∈ [ A√
t
, log t√

t
], log(ut)u+γ

1−u = γ log(ut)+ot(1). Therefore,

√
t

∫ log t√
t

A√
t

e−tg−γ(u)+ 3
2 log(ut)u+γ

1−u du ≤ e
∫ log t√

t

A√
t

(ut)3γ/2e−t(1+γ2)−u2tdu

≤ et3γ/4e−(1+γ2)t
∫ log t

A
x3γ/2e−2x2dx = oA(1)t3γ/4e−(1+γ2)t.
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We have completed the proof of (A.29).
Proof of (A.30): We have

U2(−
√

2γt, t, [0,
√
t/A])

= U2(−
√

2γt, t, [0,
√
t/A], [−K,∞)) + U2(−

√
2γt, t, [0,

√
t/A], [−∞,−K])

=: U(A.35)a + U(A.35)b. (A.35)

As u(ms + a, s) ≤ 1, applying (2.7) gives that for t large enough,

U(A.35)a ≤
∫ √t/A

0

√
t− s

−K +ms +
√

2γt
e
−(t−s)− (ms+

√
2γt−K)2

2(t−s) ds

≤ c7e
√

2Ke−(1+γ2)t
∫ √t/A

0
s3γ/2e−

2s2
t

ds√
t

= c7e
√

2Kt3γ/4e−(1+γ2)t
∫ 1/A

0
u3γ/2e−2u2du,

which is oA(1)t3γ/4e−(1+γ2)t. Similarly as U(A.33)b1,

U(A.35)b ≤C
(12)
δ,ε eC

(11)
δ,ε

K
√
t

∫ 1
A
√
t

0
e−tg−γ(u)+ 3γ

2 log(ut)u+γ
1−u du

≤C(1)
δ,ε,Kt

3γ/4e−(1+γ2)t
∫ 1

A
√
t

0
(u
√
t)3γ/2e−u

2t
√
tdu

=c8t
3γ/4e−(1+γ2)t

∫ 1/A

0
u3γ/2e−u

2du = oA(1)t3γ/4e−(1+γ2)t,

concluding (A.30).

Proof of Lemma A.8. Proof of (A.31): Take δ ∈ (0, 1/3) and η = 1 − 2δ. By similar
reasoning as above, we have

∫ A
√
t

√
t
A

ds
∫ −K
−∞

dz e
−(t−s)− (z+ms−

√
2ct)2

2(t−s)√
2π(t− s)

u2(ms + z, s)

≤c2
δ

∫ A
√
t

√
t
A

√
t− se−(t−s)− (−

√
2γt−ms+K)2

2(t−s) −
√

2γ(1+η)K

−2s+
√

2γη(t− s)
ds

≤C(1)
δ,γ,At

3γ/4e−K
√

2γ(1−3δ)
∫ A
√
t

√
t
A

1√
t
e−(t−s)− (s+γt)2

t−s ds

≤C(2)
δ,γ,Ae

−K
√

2γ(1−2δ)t3γ/4e−(1+γ2)t,

where for the second inequality, we used the fact that for s ∈ [
√
t
A , A

√
t],

(−
√

2γt−ms +K)2

2(t− s) ≥ (γt+ s)2

t− s
− 3(γt+ s) log s

2(t− s) −
√

2(γt+ s)γK
(t− s)

≥ (γt+ s)2

t− s
− 3γ

4 log t−
√

2γ2K + ot(1).
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and the last inequality follows from the fact that (t− s) + (s+γt)2

t−s = (1 + γ2)t+ (1+γ)2s2

t−s .
Proof of (A.32): For z ≥ K, using the fact u(ms + z, s) ≤ 1, we obtain that

U2(−
√

2γt, t, [
√
t/A,A

√
t], [K,∞)) ≤

∫ A
√
t

√
t
A

ds
∫ ∞
K

dz e
−(t−s)− (z+ms+

√
2γt)2

2(t−s)√
2π(t− s)

=
∫ A
√
t

√
t
A

e−(t−s)ds
∫ ∞
K+ms+

√
2γt

dz e
− z2

2(t−s)√
2π(t− s)

,

which by (2.7) is less than
∫ A
√
t

√
t
A

e−(t−s)
√
t−s

K+ms+
√

2γte
− (K+ms+

√
2γt)2

2(t−s) ds ≤ Cγ,A√
t

∫ A
√
t

√
t
A

e
−(t−s)− (ms+

√
2γt)2

2(t−s) −K
√

2γt+ms
t−s ds.

Similarly as above, we end up with

U2(−
√

2γt, t, [
√
t/A,A

√
t], [K,∞)) ≤ Cγ,Ae−K

√
2γt3γ/4e−(1+γ2)t.

This suffices to conclude (A.32).
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