
HAL Id: hal-02887620
https://hal.science/hal-02887620v1

Submitted on 14 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Architectural Strategy to Enhance the Availability
Quality Attribute in System-of-Systems Architectures: a

Case Study
Alexandre Delecolle, Rodrigo Silva Lima, Valdemar Vicente Graciano Neto,

Jérémy Buisson

To cite this version:
Alexandre Delecolle, Rodrigo Silva Lima, Valdemar Vicente Graciano Neto, Jérémy Buisson. Archi-
tectural Strategy to Enhance the Availability Quality Attribute in System-of-Systems Architectures:
a Case Study. 2020 IEEE 15th International Conference of System of Systems Engineering (SoSE),
Jun 2020, Budapest, France. pp.93-98, �10.1109/SoSE50414.2020.9130468�. �hal-02887620�

https://hal.science/hal-02887620v1
https://hal.archives-ouvertes.fr


Architectural Strategy to Enhance the Availability
Quality Attribute in System-of-Systems

Architectures: a Case Study
Alexandre Delécolle

Département Informatique
Écoles de Saint-Cyr Coëtquidan

Guer, France
alexandre.delecolle@st-cyr.terre-net.defense.gouv.fr

Rodrigo Silva Lima
Universidade do Sudoeste da Bahia

Vitória da Conquista, Brazil
rodrigolima2804@gmail.com

Valdemar Vicente Graciano Neto
Instituto de Informática

Universidade Federal de Goiás
Goiânia, Brazil

valdemarneto@ufg.br

Jérémy Buisson
CREC / IRISA

Écoles de Saint-Cyr Coëtquidan
Guer, France

jeremy.buisson@st-cyr.terre-net.defense.gouv.fr

Abstract—Independent software systems have been joined
together to form alliances known as System-of-Systems (SoS).
SoS are composed of constituent systems and deliver behaviors
as a result of the combination of their individual functionalities.
In both, single systems and SoS, the prediction of quality at
design-time is of utmost importance. Among several quality
attributes (QA) a SoS should cope with, availability is particularly
important. Given the critical nature of several domains supported
by SoS, failures and unavailability could lead to risks and
losses to the SoS users. SoS are then required to be highly
available. However, while the strategies to deal with availability in
single systems are well-known, techniques to predict and enhance
availability at SoS level while considering its inherent dynamics
can be still investigated. The main contribution of this paper
is the establishment of an architectural strategy at SoS level to
enable a simulation-based measurement of availability at SoS
architectural descriptions. Preliminary results reveal that the
established strategy can be successfully used for the purpose of
measurement of the QA availability in SoS architectures.

Index Terms—Systems-of-Systems, SoS, Quality Attribute,
Availability, Software Architecture, Tactic, Strategy, Simulation-
Based Study.

I. INTRODUCTION

The complexity of software systems has grown in a high
rate. Modern systems are intensely embedded with software to
automate their operation and support better precision for their
functionalities. Moreover, those so-called software-intensive
systems have been pressured to form alliances of multiple
systems and interoperate to deliver functionalities as a result of
the combination of their individual capabilities [2], [7], [12].
This dynamic set of interoperating systems has been called as
Systems-of-Systems (SoS1) [12], [17], [22].

1For sake of simplicity, herein the SoS acronym will be interchangeably
used to denote both singular and plural forms.

SoS are required to exhibit quality, i.e., SoS should cope
with users needs by delivering their behaviors according to
a set of quality attributes (QA). As a matter of consensus,
software architectures enhance quality as they materialize a
set of design decisions made to address a set of prioritized
QA [4], [19]. Among the several QA a SoS should address,
availability is particularly important. For instance, if a SoS for
Emergency Response Management is unavailable at a certain
moment, users can be exposed to higher risks and become
helpless. However, dealing with availability at SoS level is
even more complicated than doing it for isolated systems,
due to (i) the operational independence and autonomy of
the constituents, i.e., systems operate not only in the context
of SoS but also outside and for their own purposes, (ii)
constituents can join or leave the SoS at runtime, which
turns the SoS architecture to be dynamic and (iii) availability
assurance depends on the presence of constituents that provide
the required capabilities to deliver a set of expected behaviors.
Hence, it is prominently important to assure, still at design-
time, that the SoS architecture will be able to deliver the
expected behaviors and be available, despite the existence
of the above-mentioned complicating factors. The following
research question is then raised: How can we design and
specify architectural strategies to address the quality attribute
Availability in Systems-of-Systems?

The main contribution of this paper is the establishment and
design of an architectural strategy to deal with availability
at SoS architectural design level. In the classic literature,
architectural tactics comprise architectural strategies/decisions
developed to enhance QA. We reviewed the literature to
obtain the architectural tactics used to deal with availability
in single systems and adapted one of them to develop an
architectural strategy based on redundancy of capabilities and



replaceability to deal with availability at SoS level. We used a
new language (named SoSADL, an acronym from System-of-
Systems Architecture Description Language [15], [19], [22])
to specify this strategy and this SoS. Moreover, we relied on
a model transformation to automatically generate simulation
models specified in DEVS to assess the effectivness of the
established strategy [16]. We ran the simulation models to
observe (i) the expected behaviour and (ii) whether availability
was effectively addressed at that SoS. We specified a Smart
Parking composed of independent systems that interoperate to
achieve a common goal: sensing the parking and suggesting
a position for cars so they could park. If a sensor fails, an
alternative system replaces the sensor so that the expected
behaviour remains available. Simulation results reveal that
our architectural strategy was well-succeeded to deal with
availability at SoS level, achieving the goal in 100% of the
times.

The remainder of this paper is structured as follows:
Section II presents the foundations; Section III details the
scientific methodology we used; Section IV describes the study
and evaluation; Section V brings discussion and Section VI
concludes the paper with final remarks.

II. BACKGROUND

A software architecture comprises software elements, the
external properties of those elements, and the relationship
among them [25]. Architectures are important because they
are the backbone of any well-succeeded system [4]. According
to Kruchten [10], a software architecture describes not only
the software structure, but also the behavioral description.
The architecture should document the system to be used
by different stakeholders or to be reused in another system.
The same rationale is also valid for SoS [1], [22]. Indeed,
a SoS also has an associated software architecture, which
comprises the constituents, their interaction links, and the
shared decisions and rationale that trigger its building [21].
The constituent systems somehow interact with each other and
interactions follow architectural rules, which characterizes the
constituents interoperability.

SoS are often defined under Maier’s criteria [12]. According
to the principle of operational independence of constituents,
the constituent systems should respect rules to be part of the
SoS, while also operating independently of it. The managerial
independence of constituents stated that they can be owned
by different enterprises, so each system has to be enough
independent to be managed and repaired. The evolutionary
development comprises the ability of the overall SoS to
evolve as a result of the evolution of constituents, goals,
or architectural arrangements. Constituents are distributed
and interoperate via some interoperability link. Finally, the
emergent behaviors are behaviors or functionalities which
emerge thanks to the interactions of the constituents.

Several languages exist to support the specification of soft-
ware and system architectures, such as UML2 and SySML3.

2https://www.uml.org/
3http://www.omgsysml.org/

In this paper, we rather use SosADL (System-of-Systems
Architecture Description Language) [22]. Unlike SysML or
UML, which require precise description of the constituents,
SosADL is designed for SoS where the SoS architect cannot
precisely predict, at design-time, the constituent systems that
can be part of the SoS at runtime. In a SoS, a system can be
added, removed or changed at runtime, which certainly im-
pacts on the architecture. Formally founded on π-calculus for
SoS [23], a novel formalism to describe intercommunicating
processes, SosADL supports all these constructions [18]. In
short, SosADL describes SoS, which can be expressed as a
combination of architectures, systems, and mediators decla-
rations. Mediators are architectural elements concerned with
establishing communication between two or more systems.
Mediators and systems have gates and behaviors: gates are
abstractions that denote interaction endpoints; and behaviors
are given as π-calculus processes. Because a SoS is a system, a
SoS architecture has gates and behaviors as well, materialized
in this case by a coalition. Coalitions are an arrangement of
systems (constituents), which are mediated by mediators [24].

One of the goals an architect should achieve is to cope with
a specific set of quality attributes (QA). A QA is a measurable
or testable property of a system that is used to indicate how
well the system satisfies the needs of its stakeholders [25] (e.g.
the user or the owner of this system). QA are often result of the
software architecture design decisions. Design decisions can
enable or inhibit some QA [25]. For instance, if we decide
to restrict some communications between components in a
system, that decision can influence on the interoperability.
Architectural tactics are design decisions known to address
or reinforce a specific QA [25]. Architectural tactics result
from the analysis of several real projects to realize the design
decisions taken to deliberately address specific QA. We call
our design solutions as architectural strategies to denote
proposed design decisions, in contrast to architectural tactics
that describe state of practice (design decisions already taken
and prescribed).

A QA can be harder to be achieved in a SoS than in a single
system because SoS raises the following specific challenges:
1) For the overall SoS, the QA should be achieved as a result
of the guarantee of it for both the individual systems and for
the coalition; 2) There is no standardized quality model to
evaluate QA in SoS [27]; 3) Sometimes, emergent behaviours
can not be readily predicted.

A. Related work

The investigation on availability (and more broadly, relia-
bility) in SoS is not a new trend. Holt et al. [8] propose a
Model-Based System Engineering (MBSE) approach to reuse
existing design solutions and adapt them for SoS. Mokhtarpour
and Stracener [14] report the problem of reliability in SoS.
Reliability is actually considered a broader QA that involves
availability, according to ISO 25010 [9]. The study reports an
evaluation of this QA with the capability of the entire SoS
to share data. The study shows how to measure or evaluate
the QA in SoS. Sanduka and Obermaisser [26] explain how



to use MBSE approaches to deal with reliability in SoS.
UPDM (Unified Profile for DoDAF and MODAF, which are
US Department of Defense and British Ministry of Defense
Architecture Frameworks) models are extended along with
a process that connects some of their parts and combines
them into a methodology to support reliability. Finally, Garro
and Tundis [5] deal with the lack of methods to address the
evaluation of non-functional requirements especially in SoS.
Moreover, they propose, similarly to our investigation, to detail
those requirements or QA because of the insufficiency of
standardized definitions. The definition of SoS explains why
we should adapt existing techniques to make them suitable
to that specific domain. This last study is the closest to our
work because it proposes new definitions and adaptations for
treating QA and requirements in SoS domain. Next section
presents the established methodology.

III. METHODOLOGY

The investigation was led according to the following steps:
• Step 1. Literature Review. As presented in Section II,

we analysed several conference papers and journal arti-
cles on Software architecture and System-of-Systems in
order to understand how to design a system and what is
an architecture in the software engineering domain.

• Step 2. Project Setting. Once the gaps were identified
at step 1, we decided to contribute to the state-of-the-
art by establishing an architectural strategy to deal with
QA availability in SoS. We looked for an instance of a
SoS (a Smart Parking) that could be specified in order to
evaluate the success of our work.

• Step 3. Solution development - Replaceability. After
prototyping the SoS, we started to develop an architec-
tural strategy to deal with a specific QA we choose:
availability. The proposed solution was replaceability:
it consists in providing redundant functionalities and
constituents so that if a failure occurs, the availability
of the SoS is not affected.

• Step 4. Evaluation. For evaluation purposes, we decided
to use an existing model transformation [20] that auto-
matically generates DEVS simulation models to assess
whether the SoS exhibits the expected architecture (struc-
ture) as well as the expected behavior. This part also
shows the execution of the simulation. By simulating the
corresponding code, we could obtain results in order to
analyze them and answer our research question.

IV. STUDY CONDUCTION AND EVALUATION

We followed the steps described in Section III to perform
our investigation. The Step 1 (Literature Review) is described
at Section II.

Step 2. Project Setting (Domain description). The study
was conducted in a specific domain of SoS: Smart Parking.
Our Smart Parking is composed of the following systems, as
conceptually shown in Figure 1: cars, fixed sensors at parking
positions (the robot is explained later at Step 3). When a car
arrives at the parking, it asks for a position to park to the smart

Parking

Car Car

Mediator Mediator

Mediator

Robot

Environment

Fig. 1. Architecture of the Smart Parking.

parking system. Sensors at positions are used by the parking
to detect what positions are available or not. The parking then
responds with the location of one free position to the car.

Step 3. Solution Development. According to the ISO
25010 [6], availability comprises the degree to which a system,
product or component is operational and accessible when
required for use. But this definition is not really appropriate
for SoS. We assume that SoS availability comprises the degree
to which the SoS (as a coalition of its constituents) is capable
of delivering a behavior when required. We measure it as
the percentage of the times the SoS delivers the expected
behaviour in regard to how many times it is asked to.

To deal with availability, we choose to rely on Replace-
ability principle [11], which states that the SoS should offer
redundant (but not necessarily semantically identical) func-
tionalities in different constituent systems such that, if one
fails, there is another one to substitute it as a backup. In
our case, redundancy is obtained by introducting an additional
constituent system that provides a mobile sensor functionality.
This mobile sensor is an alternative mean for the parking
to detect whether a position is available or not. In a real
parking, the mobile sensor can be implemented, e.g., by a
sensor embedded in a shuttle system, whose route may be
adapted depending on the positions to check. In this paper,
we consider a robot to elude other missions of that system.

This smart parking is a SoS according to the Maier’s
criteria. The car and mobile sensor systems are operationally
and managerially independent. The car belongs to its driver,



Fig. 2. Presentation of the simulation window on MS4ME.

and obviously fulfills other missions as transportation of its
passengers and their goods. As previously explained, the
mobile sensor could be provided by a shuttle system, e.g.,
belonging to the public transportation system and transporting
customers. Interactions between the systems yield to the
emergent behavior of reduced wander by telling cars where
they can park.

Step 4. Evaluation. We modeled our Smart Parking us-
ing the SosADL workbench. Then, a model transforma-
tion (SosADL2DEVS) was used to automatically transform
SosADL models into DEVS models [20]. The resulting DEVS
models are dnl files and ses files interpreted by MS4ME
simulator4. On that simulator, the dnl files are automatically
converted to Java files to materialize the simulation exe-
cution engine. After that, the ses files are used to launch
the simulation. The environment is modeled by a Stimuli
Generator [19], which is generated along with the DEVS
models by the SosADL2DEVS transformation. A video5 is
externally available to explain the process and to present how
the simulator helps to show the SoS behaviour being delivered.

After launching the simulation, we could observe the dif-
ferent constituents of the Smart Parking, i.e., the systems
and the mediators (see the simulator window in Figure 2).
DRCWSmartParkingArchitecture is an artifact generated by
SosADL2DEVS to perform dynamic reconfiguration, which
is out of the scope of this paper. Figure 2, in turn, shows
the simulation execution as a step-by-step procedure, so that
emergent behaviors, messages exchange (and constituents in-
teroperability) and SoS architecture can be observed.

For improved readability of subsequent paragraphs, we use
symbolic constants rather than the values given in Table I.

The simulation of the Smart Parking starts when the Car
asks for a place. The Car sends a Demand with the value EF-
FECTIVEDEMAND (value 1). The CarTransmitter receives
it and forwards it to the Parking. After that, the Parking has
two possibilities to proceed: (i) answering according to the
fixed sensors; or (ii) asking to the Robot to look for free
positions. According to the result of sensing positions, the

4http://www.ms4systems.com/pages/ms4me.php
5https://vimeo.com/377294844

Datatype 0 1 2 3
Demand no request request

SensorNumber there is
no place
and the
Parking
indepen-
dently
works to
provide
the
answer

there is
a place
and the
Parking
provides
by its own

there is a
place and
the Robot
provides it

there is no
available
place and
the Robot
provides
the
answer

Place simulation
of a
sending
place

Sensor the
place is
available

the place
is filled

TABLE I
MEANING OF THE VALUES OF EACH DATATYPE IN THE SMART PARKING.

Parking answers either NOPLACEPARKING (value 0 - no
parking position is available) or PLACEPARKING (value 1 -
location of one free parking position).

The latter behaviour is triggered when some fixed sensors
fail. In such a case, the Parking can send PLACECHECKED
(value 1 - parameterized by the position with failed fixed sen-
sor) to the Robot through RobotTransmitter. By this message,
the Parking asks the Robot to change its route such that it
checks whether the position is available or occupied. When
the Robot passes in front of the position, the Robot senses
either AVAILABLE (value 0) or FILLED (value 1) depending
on the observed status of the position. In our simulation,
the Stimuli Generator establishes and delivers random values
(either AVAILABLE or FILLED) for the Robot sensing.
Depending on the sensed value, the Robot respectively answers
PLACEROBOT (value 2) or NOPLACEROBOT (value 3) to
the Parking, which can in turn replies back to the Car, as
previously described.

Figure 3 shows one message being sent: Car1 sends a
Demand with the value 1 to CarTransmitter1. In the next step,
the CarTransmitter1 sends the same message to the Parking1
as we explained. In the step-to-step simulation, we observe
messages such as those all the time and it reproduces the actual
communications in the SoS.

A. Reporting

Despite the high degree of abstraction, the SoS behavior
comprises, basically, a parking that delivers an empty place
or notifies when all places are occupied. Figure 4 plots
experimental results: it shows the answers of the Smart Parking
to the Car demands. Each square represents one demand-
answer: when green, the answer is provided by the fixed
sensors; when yellow, the Robot is involved. To simplify, our
simulation considers that at most one fixed sensor does not
work properly. The plot shows that, despite intermittent failure
of the fixed sensor, the Smart Parking always answers to the
Car: it is 100% available. So the replacement with the Robot
is effective.



Fig. 3. Example of a message in the simulation step-to-step of the Smart
Parking

Fig. 4. Graph showing how the SoS answers to a Car ask

After obtaining the results of our study, we can answer the
posed question: Can the SoS provide availability as a result of
a design decision? The answer is Yes, at least for the illustrated
scenario, by introducing redundant functionalities in the SoS.
In our case study, the Robot implementation of the mobile
sensor system would correspond to a directed SoS; while a
shuttle system would correspond to an acknowledged SoS.
In both cases, the Smart Parking architect actively requests
for the mobile sensor functionality to deliberately address the
availability QA.

Threats to Validity. Our study relied on a model transfor-
mation that generates simulation models from a SoS architec-
tural specification. One threat is related to the correctness of
the model transformation. However, this threat is alleviated by
the fact that, over the last years, more than 1,300,000 DEVS
lines of functional code were automatically and correctly
generated by the model transformation [13].

Another threat regards the empirical procedure itself. As a
matter of fact, an empirical investigation should establish a
varying set of randomness to obtain a reliable result on the
effectiveness of the proposed solution. We only investigated
one configuration of randomness. Hence, further studies are
required to empower evidence obtained in this study.

An additional threat is how realistic are the SoS and its
simulation. Having a robot whose sole purpose is checking
parking positions is questionable. But, as already discussed,
the mobile sensor system may be part of a larger system, such
as a shuttle system transporting persons or a delivery system
transporing goods. Considering one or the other does not affect
the architecture of the Smart Parking SoS, as such missions
are the ones operated independently of the SoS.

V. DISCUSSION

Standard practices for dealing with QA are well-established
for single systems. However, practices for SoS can be still
improved, particularly due to their inherent characteristics.
We use a model transformation to automatically generate an
executable simulation model in order to assess whether our
solution delivers the expected result: providing availability as
a result of replaceability. We show that our SoS architectural
specification is correct about the expected structure and be-
havior. This is a contribution to the establishment of reliable
methods to support evaluation of SoS software architectures.
We contribute to the state-of-the-art of this domain by estab-
lishing foundations on how to address the quality attribute
availability in a SosADL-described SoS.

In order to proceed with this project, we have to evolve
the model transformation to make it suitable to our original
and more complete specification. The transformation should be
adapted to all the SosADL specification (only a subset of the
language grammar is currently addressed). The most important
part is the data structures which are needed, and the language
does not support them yet.

For the smart parking, we can add some parameters to
improve it, regardless of the enhancement of the QA. For
example, we could add the coordinates for the parking to send
the coordinates of the available place to the car. Moreover, to
specify a feasible parking, we could add the payment methods
in the SoS specification, besides counting how many times the
car was parked there.

The interoperability can be another strategy to enhance
availability [3]. Another solution could enhance cars to com-
municate with other cars, such as in vehicular network ap-
proaches. It means that, if a car is parked and it can find an
available position closer to it, it can send this place to the
other cars. A car can also notify when it leaves a position.
This improvement paves the way to dealing with collaborative
SoS. In such a case, the design strategy should also advocate
incentives to make Cars voluntarily collaborate to the SoS, for
instance, by means of differentiated service levels depending
on the level of collaboration.

VI. FINAL REMARKS

In this paper, we report an investigation of the literature and
the development of a solution to answer the following research
question: how can we design and specify architectural strate-
gies to address the quality attribute availability in a System-
of-Systems? We specified a solution based on replaceability
and redundancy to deal with availability at SoS architectures.
The original idea was provided by a prior work [11]. We could
confirm its validity by specifying the solution and evaluating
it through simulation models. In our design (Smart Parking
SoS), availability can actually be addressed by replaceability.

We also contributed to the characterization of what could
be considered availability at SoS level: previously, availability
was not defined for SoS but only for single systems in the
standard ISO 25010 [6]. We then proposed a distinct definition,



which is the degree to which the entire SoS is capable of deliv-
ering a behaviour when required. In our solution, redundancy
of functionalities is provided by a Robot. Although the Robot
constituent could have other functionalities, in this context
its only purpose is to serve the SoS through replaceability.
As discussed, it could be part of a larger system, which in
turn retains operational and managerial independence, hence
satisfying Maier’s criteria.

This project also contributed to the evaluation of quality
attributes in SoS software architectures. As a matter of fact,
each QA requires a different approach and a specific strategy
to be addressed. This paper proposes to use redundancy or
replaceability to enhance availability. We had to adapt it to
make it work at SoS level and in fact exchange special
messages for that. This is quite different from all the other
ways to perform it for single systems and it is the main
contribution of this work. And it opens opportunities for
further studies on software quality for SoS.

ACKNOWLEDGEMENTS

The authors thank the institutions involved in the project.
Particularly, we thank Écoles de Saint-Cyr Coëtquidan by
financially supporting the first author during his internship in
Goiânia, Brazil, under the supervision of the third author. We
also thank the Federal University of Goiás by providing the
environment where the research was conducted. Finally, the
authors also thank MS4 Systems Inc. for the license of MS4Me
tool granted to the INSIGHT-GO research group (INF/UFG).

REFERENCES

[1] Architecture Capability Team. NATO Architecture Framework, version
4. Technical report, January 2018.

[2] Sabine Buckl, Sascha Krell, and Christian M Schweda. A formal
approach to architectural descriptions–refining the iso standard 42010.
In International Workshop on Cooperation and Interoperability, Archi-
tecture and Ontology, pages 77–91. Springer, 2010.

[3] Juliana Fernandes, Francisco Henrique Ferreira, Felipe Cordeiro, Valde-
mar Vicente Graciano Neto, and Rodrigo Santos. How can inter-
operability impact on Systems-of-Information Systems characteristics?
Providing guidelines for a tradeoff between architectural strategies for
interoperability in SoIS and the degree of autonomy of constituents. In
Brazilian Symposium on Information Systems (SBSI 2020), pages 1–8,
São Bernardo do Campo, Brazil, May 2020. ACM.

[4] Lina Garcés, Flavio Oquendo, and Elisa Yumi Nakagawa. Software
mediators as first-class entities of systems-of-systems software architec-
tures. Journal of the Brazilian Computer Society, 25(1):8, 2019.

[5] Alfredo Garro and Andrea Tundis. On the reliability analysis of systems
and sos: The ramsas method and related extensions. IEEE Systems
Journal, 9(1):232–241, 2014.

[6] Oleksandr Gordieiev, Vyacheslav Kharchenko, Nataliia Fominykh, and
Vladimir Sklyar. Evolution of software quality models in context of
the standard iso 25010. In Proceedings of the Ninth International Con-
ference on Dependability and Complex Systems DepCoS-RELCOMEX.
June 30–July 4, 2014, Brunów, Poland, pages 223–232. Springer, 2014.

[7] Tihana Galinac Grbac and Goran Mauša. On the distribution of
software faults in evolution of complex systems. In Proceedings of
the International Colloquium on Software-intensive Systems-of-Systems
at 10th European Conference on Software Architecture, page 2. ACM,
2016.

[8] Jon Holt, Simon Perry, Richard Payne, Jeremy Bryans, Stefan Haller-
stede, and Finn Overgaard Hansen. A model-based approach for
requirements engineering for systems of systems. IEEE Systems Journal,
9(1):252–262, 2014.

[9] ISO/IEC. Iso/iec 25010 system and software quality models. Technical
report, 2010.

[10] Philippe B Kruchten. The 4+ 1 view model of architecture. IEEE
software, 12(6):42–50, 1995.

[11] Rodrigo Silva Lima. Simulation-Based Availability Assessment
Systems-of-Systems Software Architectures (in portuguese), 2019. Final
report - Monograph presented to Universidade do Sudoeste da Bahia.

[12] Mark W Maier. Architecting principles for systems-of-systems, volume 1.
Wiley Online Library, 1998.

[13] Wallace Alves Esteves Manzano, Valdemar Vicente Graciano Neto,
and Elisa Yumi Nakagawa. Simulating systems-of-systems dynamic
architectures. Electronic Journal of Scientific Initiation in Computing,
17(2), 2019.

[14] Behrokh Mokhtarpour and Jerrell T Stracener. Mission reliability analy-
sis of phased-mission systems-of-systems with data sharing capability. In
2015 Annual Reliability and Maintainability Symposium (RAMS), pages
1–6. IEEE, 2015.

[15] Valdemar Vicente Graciano Neto. Validating emergent behaviours in
systems-of-systems through model transformations. In SRC at MoDELS,
pages 1–6, Saint Malo, France, 2016.

[16] Valdemar Vicente Graciano Neto. A simulation-driven model-based ap-
proach for designing software intensive systems-of-systems architectures.
PhD thesis, 2018.

[17] Valdemar Vicente Graciano Neto, Lina Garcés, Milena Guessi, Carlos
Paes, Wallace Manzano, Flavio Oquendo, and Elisa Nakagawa. Asas:
An approach to support simulation of smart systems. pages 5777–5786,
2018.

[18] Valdemar Vicente Graciano Neto, Flávio E. A. Horita, Everton Cav-
alcante, Adair José Rohling, Jamal El Hachem, Daniel Soares Santos,
and Elisa Yumi Nakagawa. A study on goals specification for systems-
of-information systems: Design principles and a conceptual model. In
Proceedings of the XIV Brazilian Symposium on Information Systems,
SBSI 2018, Caxias do Sul, Brazil, June 04-08, 2018, pages 21:1–21:8,
2018.

[19] Valdemar Vicente Graciano Neto, Carlos Eduardo Barros Paes, Lina
Garcés, Milena Guessi, Wallace Manzano, Flavio Oquendo, and
Elisa Yumi Nakagawa. Stimuli-sos: a model-based approach to derive
stimuli generators for simulations of systems-of-systems software archi-
tectures. Journal of the Brazilian Computer Society, 23(1):13, 2017.

[20] Valdemar Vicente Graciano Neto, Lina Maria Garcés Rodriguez, Milena
Guessi, Carlos Eduardo de Barros Paes, Wallace Manzano, Flávio
Oquendo, and Elisa Yumi Nakagawa. ASAS: an approach to support
simulation of smart systems. In 51st Hawaii International Conference on
System Sciences, HICSS 2018, Hilton Waikoloa Village, Hawaii, USA,
January 3-6, 2018, pages 5777–5786, 2018.

[21] Claus Ballegaard Nielsen, Peter Gorm Larsen, John Fitzgerald, Jim
Woodcock, and Jan Peleska. Systems of systems engineering: Basic
concepts, model-based techniques, and research directions. ACM Com-
put. Surv., 48(2):18:1–18:41, September 2015.

[22] Flavio Oquendo. Formally describing the software architecture of
systems-of-systems with sosadl. In 2016 11th system of systems
engineering conference (SoSE), pages 1–6. IEEE, 2016.

[23] Flavio Oquendo. π-Calculus for SoS: A Foundation for Formally
Describing Software-intensive Systems-of-Systems. In SOSE, pages 7–
12, Kongsberg, Norway, June 2016. IEEE.

[24] Flavio Oquendo and Axel Legay. Formal Architecture Description of
Trustworthy Systems-of-Systems with SosADL. ERCIM News, (102),
2015.

[25] Jared Reviewer-Herzog. Software Architecture in Practice Third Edition
Written by Len Bass, Paul Clements, Rick Kazman, volume 40. ACM,
2015.

[26] Imad Sanduka and Roman Obermaisser. Model-based development
of systems-of-systems with reliability requirements. In 2015 IEEE
13th International Conference on Industrial Informatics (INDIN), pages
1531–1538. IEEE, 2015.

[27] Daniel Soares Santos, Brauner R. N. Oliveira, Adolfo Duran, and
Elisa Yumi Nakagawa. Reporting an experience on the establishment
of a quality model for systems-of-systems. In The 27th International
Conference on Software Engineering and Knowledge Engineering, SEKE
2015, Wyndham Pittsburgh University Center, Pittsburgh, PA, USA, July
6-8, 2015, pages 304–309, 2015.


