
HAL Id: hal-02887602
https://hal.science/hal-02887602v1

Submitted on 22 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sampled-data Controller Design with Application to the
Quanser AERO 2-DOF Helicopter

Adriano N.D. Lopes, Laurent Arcèse, Kevin Guelton, Abdelmadjid Cherifi

To cite this version:
Adriano N.D. Lopes, Laurent Arcèse, Kevin Guelton, Abdelmadjid Cherifi. Sampled-data Controller
Design with Application to the Quanser AERO 2-DOF Helicopter. IEEE International Confer-
ence on Automation, Quality and Testing, Robotics (AQTR), 2020, Cluj-Napoca, Romania. pp.1-6,
�10.1109/AQTR49680.2020.9129983�. �hal-02887602�

https://hal.science/hal-02887602v1
https://hal.archives-ouvertes.fr


Sampled-data Controller Design with Application to
the Quanser AERO 2-DOF Helicopter
Adriano N.D. Lopes∗†, Laurent Arcese∗, Kevin Guelton∗ and Abdelmadjid Cherifi∗

∗CReSTIC EA3804 - Université de Reims Champagne-Ardenne
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Abstract—This paper investigates the importance of con-
sidering the discrete-time nature of embedded controllers for
continuous-time dynamical systems, namely the sampled-data
control approach. To illustrate such approach, an experimental
study is conducted with the Quanser®AERO platform in its 2-
DOF helicopter configuration. New LMI-based conditions are
provided for the design of sampled-data controllers for linear
systems. These are obtained from the usual Lyapunov-Krasovskii
approach and useful bounding techniques. The results are vali-
dated in simulation as well as experimentally, with a successful
comparison to conventional continuous-time controllers design
by Quanser®, especially when the sampling period is high.

Index Terms—Sampled-data controllers, Lyapunov Krasovskii
Functionals (LKF), Quanser® AERO, 2-DOF Helicopter.

I. INTRODUCTION

Over the past decades, due to the technological improve-
ments on microprocessors and/or low-cost computers (e.g.
Raspberry, BeagleBone, Arduino, etc.), advances in mecha-
tronic devices or embedded systems allow their size reduc-
tions, scalability, and the optimization of their energy con-
sumption. In this context, controllers are often implemented in
a discrete-time framework when the systems to be controlled
may present continuous-time dynamics. Hence, practically
speaking, two approaches are usually considered for such con-
troller design: i) designing the controllers for the continuous-
time systems and directly apply them by assuming that the
sampling rate is fast enough to capture as much as possible
the plants behavior [1]–[3], ii) perform a plant discretiza-
tion, considering a constant sampling period that preserves
as much as possible the system dynamics and then, make
the synthesis of a discrete-time controller [4]–[6]. However,
it is essential to highlight that with the above mentioned
approaches, the inter-sampling behavior of the continuous-
time system is not considered, which may leads to instability
and/or loss of robustness of the controlled plant, especially
when large sampling periods are considered [7]. Furthermore,
enlarging the sampling period allows to reduce computational
burden and/or energy consumption. Accordingly, to cope with
such issues, sampled-data control approaches emerged as a
promising research topic in control theory. It consists in the
investigation of the overall closed-loop stability of continuous-
time plants driven by digital controllers based on sampled-

data measurements, see e.g. [7], [8]. To do so, an elegant and
powerful way to design such controllers consists in rewriting
the closed-loop dynamics as a continuous-time system with
input time-varying delay, also known as a time-delay approach
for the stabilization of sampled-data systems [8].

In this paper, we are concerned with the real-time appli-
cation of recent techniques for the design of sampled-data
controller on an unmanned aerial vehicles (UAVs) benchmark,
which present some interesting characteristics such as its ver-
satility, maneuverability, and ease of use. Namely, we choose
for these experiments the Quanser® AERO benchmark config-
ured as a dual-rotor helicopter [9]. For this real system, some
works can be found in the literature dealing with reinforcement
learning strategies [10], model reference adaptive controllers
[2], [3] and robust controllers [1], [11], [12]. Nevertheless, all
the above mentioned works assume continuous-time behaviour
of the controller part and, to the best of the authors knowledge,
no previous studies can be found dealing with the design of a
sampled-data controller for this system.

This paper presents new design conditions for sampled-data
controllers dedicated to stabilize continuous-time linear sys-
tems. It follows a recent study dedicated to the conservatism
reduction in the Takagi-Sugeno model-based framework [13],
by providing real-time experimental validation of the proposed
sampled-data controller design procedure. The effectiveness
of this proposal is illustrated in simulation, then validated
experimentally, and compared to conventional continuous-time
PID and LQR controllers, which design procedure can be
found in the Quanser® AERO laboratory guide [9].

Notations. Stars * in symmetric matrices denote block trans-
pose quantities. We denote the set of integers Ir = {1, ..., r}.
For any matrix M , H(M) = M + MT . I is an identity
matrix with appropriate dimension. For vectors v1, v2,..., vn,
col{v1, v2, ..., vn} =

[
vT1 vT2 . . . vTn

]T
.

II. QUANSER®AERO MODEL AND PRELIMINARIES ON
SAMPLED-DATA CONTROL

In this section, we first present the dynamical model of the
Quanser®AERO in its 2-DOF Helicopter configuration, then
useful lemmas to derive the design conditions proposed in
section III.



A. 2-DOF helicopter dynamical model

Figure 1 presents the free-body diagram of the considered
Quanser®AERO benchmark.
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Fig. 1. Simple free-body diagram of a 2-DOF helicopter system.

This system is configured as a conventional dual-rotor he-
licopter with two identical high-efficiency rotors that produce
the thrust forces Fp(t) and Fy(t) acting at points with dis-
tances rp and ry from the z-axis along the x-axis, respectively.
Hence, one propeller generates a torque around the y-axis
leading to a pitch (θ(t)) motion, while the other one deals
with a yaw (ψ(t)) motion (around the z-axis). The dynamical
model of this benchmark is given by [9]:

Jpθ̈(t) +Dpθ̇(t) +Kspθ = τp(t) (1)

Juψ̈(t) +Dyψ̇(t) = τy(t) (2)

with the parameters given in Table 1.
The torques acting on the pitch (τp(t)) and yaw (τy(t))

axes are assumed proportional to the inputs voltages Vp(t)
and Vy(t) of the DC-motors such that:

τp(t) = KppVp(t) +KpyVy(t) (3)
τy(t) = KypVp(t) +KyyVy(t) (4)

with the parameters also defined in Table 1.

B. State-space model and sampled-data problem statement

Let us consider the state vector xT (t) =[
θ(t) ψ(t) θ̇(t) ψ̇(t)

]
and the input vector

uT (t) =
[
Vp(t) Vy(t)

]
, the linear state-space model

of the 2-DOF Helicopter is given by:

ẋ(t) = Ax(t) +Bu(t) (5)

with A =

 0 0 1 0
0 0 0 1

−Ksp
Jp

0 −Dp
Jp

0

0 0 0 −Dy
Jy

 , B =

 0 0
0 0

Kpp
Jp

Kpy
Jp

Kyp
Jy

Kyy
Jy

.

In this paper, we consider the stabilization of the linear
system (5) from the following sampled-data state feedback
control law:

u(t) = −Fx(tk) (6)

where K ∈ Rm×n is the controller gain matrix to be designed
and tk denotes sampling instants.

TABLE I
2-DOF HELICOPTER PARAMETERS

Parameter Value Unit
Jp Moment of Inertia about the pitch axis 0.0215 kg.m2

Jy Moment of Inertia about the yaw axis 0.0215 kg.m2

Ksp Stiffness about the pitch axis 0.0374 N.m/rad
Dp Pitch viscous friction constant 0.0071 N.m.s/rad
Dy Yaw viscous friction constant 0.0220 N.m.s/rad
Kpp Thrust-torque gain acting on pitch

axis from pitch propeller
0.0011 N.m/V

Kyy Thrust-torque gain acting on yaw axis
from yaw propeller

0.0022 N.m/V

Kpy Thrust-torque gain acting on
pitch axis from yaw propeller

0.0021 N.m/V

Kyp Thrust-torque gain acting on yaw axis
from pitch propeller

−0.0027 N.m/V

A zero holder is applied to maintain x(tk) during aperiodic
inter-sampling intervals [tk, tk+1), with an inner sampling
period ηk > 0 that can be non uniform over samples and with
a maximal allowable sampling period η̄ to be estimated (i.e.
tk+1− tk ≤ ηk ≤ η̄). In this context, for actual t ∈ [tk, tk+1),
we define τ(t) = t − tk ∈ [0, ηk) with τ̇(t) = 1. Hence, the
control law (6) can be rewritten as:

u(t) = −Fx(t−τ(t)) (7)

then substituting (7) in (5) allows to express the closed-loop
dynamics as:

ẋ(t) = Ax(t)−BFx(t−τ(t)) (8)

Our goal is to design the sampled-data controller gain matrix
F with a maximal sampling period η̄, which guarantee the
asymptotic stability of the closed-loop dynamics (8).

C. Useful lemmas

The following lemmas will be considered to derive the
sampled-data controller design conditions proposed in the next
section.

Lemma 1: [14]: For any constant matrix R ∈ Rn×n, R =
RT > 0, a scalar function τ(t) with 0 < τ(t) ≤ τM and a
vector function ẋ : [−τM , 0] → Rn such that the integration
concerned is well defined, let:∫ t

t−τ(t)

ẋ(s)ds = Eψ(t) (9)

where E ∈ Rn×k and ψ(t) ∈ Rk. Then the following
inequality holds for any matrix M ∈ Rn×k:

−
∫ t

t−τ(t)

ẋT (s)Rẋ(s)ds ≤ ψT (t)Υψ(t) (10)

where Υ = −ETM −MTE + τ(t)MTR−1M .
Lemma 2: [15] For any matrix P = PT > 0 with ap-

propriate dimensions, τ(t) ∈ [0, ηk), the following inequality
holds:∫ t

t−τ(t)

xT (s)Px(s)ds ≥ η−1
k

∫ t

t−τ(t)

xT (s)P

∫ t

t−τ(t)

x(s)ds

(11)



Lemma 3: [16] Let ξ ∈ Rn, G ∈ Rm×n and Q = QT ∈
Rn×n such that rank(G) < n. The following statements are
equivalent.

ξTQξ < 0, ∀ξ ∈ {ξ ∈ Rn : ξ 6= 0, Gξ = 0} (12)

∃R ∈ Rn×m : Q+RG+GTRT < 0 (13)

III. MAIN RESULTS

In this section LMI-based conditions for the design of
sampled-data controllers (6) dedicated to stabilize continuous-
time linear systems (1) is provide. The following Theorem
summarize the conditions. For the sake of generality, one
denotes respectivelly n and m the number of state variables
and inputs.

Theorem 1: For aperiodic sampling periods ηk ≤ η̄ to be
maximized, the linear system (5) is stabilized by the sampled-
data controller (6) if there exists the matrices 0 < L̄= L̄T ∈
Rn×n, M̄ = M̄T ∈R4n×4n, 0 < N̄ = N̄T ∈Rn×n, P̄ = P̄T ∈
Rn×n, X ∈Rn×n, K ∈Rm×n, Ȳ ∈R4n×n, Ū = ŪT ∈ R3n×3n

and the scalars ε1, ε2 and ε3, such that the following conditions
are satisfied:

M̄0 − Ū < 0 (14)

Φ̄0
Σ+IεḠ+ḠT ITε < 0 (15)η2

kS̄+ηkΦ̄
1
Σ +Φ̄0

Σ+IεḠ+ḠT ITε ηkȲ
T ηkQ̄

T

ηkȲ −ηkP̄ 0
ηkQ̄ 0 −Ū

 <0

(16)
Iε = [ I ε1I ε2I ε3I ]

T
, Q̄=[ 0 W̄ ] ,

Ḡ = [ AX −BK 0 −X ] , S̄ =
[
Ū − M̄0 0

0 0

]
Φ̄1

Σ =H
(
η̄ET2 M̄E3−ET2 M̄E2

)
−

[
N̄ 0 0 0
0 0 0 0
0 0 0 0
∗ 0 0 P̄

]
,

Φ̄0
Σ = η̄ET2 M̄E2 −H

(
ET1 Ȳ

)
+

 η̄N̄ 0 0 L̄
0 0 0 0

0 0 −η−1
k N̄ 0

∗ 0 0 η̄P̄

 ,
M̄=

[
M̄11 M̄12 M̄13 M̄14

∗ M̄22 M̄23 M̄24

∗ ∗ M̄33 M̄34

∗ ∗ ∗ M̄44

]
, W̄ =

[ H(M̄14)+M̄11+M̄44

M̄24−M̄44+M̄T
12−M̄

T
14

M̄34+M̄T
13

]
,

M̄0 =

[
H(M̄13+M̄34) M̄T

23−M̄34 M̄T
33

∗ 0 0
∗ 0 0

]
, ET1 =

[
I
−I
0
0

]T
,

E2 =

[
I 0 0 0
0 I 0 0
0 0 I 0
I −I 0 0

]
, E3 =

[
0 0 0 I
0 0 0 0
I 0 0 0
0 0 0 I

]
,

In that case, the sampled-data gain matrix can be recover by
F = KX−1.

Proof: Let us consider the following LKF candidate:

V (t) = V1(t) + V2(t) + V3(t) + V4(t) (17)

where:
V1(t) = x(t)TLx(t) (18)

V2(t) = (ηk−τ(t))

∫ t

t−τ(t)

xT (s)Nx(s)ds (19)

V3(t) = (ηk−τ(t))

∫ t

t−τ(t)

ẋT (s)Pẋ(s)ds (20)

V4(t) = (ηkτ(t)− τ2(t))ζT (t)Mζ(t) (21)

with ζ(t)=col
{
x(t), x(t−τ(t)),

∫ t
t−τ(t)

x(s)ds,
∫ t
t−τ(t)

ẋ(s)ds
}

.
Assuming L = LT > 0, the whole LKF (17) is continuous

and positive at each sample time tk since we have V1(tk) > 0
and V`(t

−
k ) = V`(tk) = 0, for ` = 2, ..., 4. Hence, since the

LKF V (t) is continuous ∀t ∈ [tk, tk+1), if it can be proven
to be monotonously decreasing during this interval, then it is
positive ∀t ∈ [0,+∞) and the closed-loop dynamics (8) is
stable. That is to say if, ∀t ∈ [tk, tk+1):

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t) + V̇4(t) < 0 (22)

In the sequel of the proof, the state vector extension ξ(t) =

col
{
x(t), x(t−τ(t)),

∫ t
t−τ(t)

x(s)dsẋ(t)
}

is considered. The
derivative of V1(t) can be written as:

V̇1(t)=2xT (t)Lẋ(t)=ξT (t)Φ0
1ξ(t),Φ

0
1 =

[
0 0 0 L
0 0 0 0
0 0 0 0
L 0 0 0

]
(23)

Assuming N > 0 and applying lemma 2, for the derivative of
V2(t) we can write:

V̇2(t)=(ηk−τ(t))xT (t)Nx(t)−
∫ t

t−τ(t)
xT (s)Nx(s)ds

≤(ηk−τ(t))xT (t)Nx(t)− η−1
k

∫ t

t−τ(t)
xT (s)N

∫ t

t−τ(t)
x(s)ds

=τ(t)ξT (t)Φ1
2ξ(t) + ξT (t)Φ0

2ξ(t)
(24)

with Φ1
2 =

[ −N 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

]
, Φ0

2 =

[
ηkN 0 0 0

0 0 0 0

0 0 −η−1
k N 0

0 0 0 0

]
.

It follows, assuming P > 0, for the derivative of V3(t):

V̇3(t)=(ηk−τ(t))ẋT (t)Pẋ(t)−
∫ t

t−τ(t)

ẋT (s)Pẋ(s)ds (25)

Note that
∫ t
t−τ(t)

ẋT (s)ds=E1ξ(t) with E1 =
[
I −I 0 0

]
.

From lemma 1, for any matrix Y we can write:

V̇3(t) ≤(ηk−τ(t))ẋT (t)Pẋ(t)

+ξT (t)
(
−ET1 Y −Y TE1 + τ(t)Y TP−1Y

)
ξ(t)

=τ(t)ξT (t)(Φ1
3 + Y TP−1Y )ξ(t) + ξT (t)Φ0

3ξ(t)

(26)

with Φ1
3 = −

[
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 P

]
and Φ0

3 = −H
(
ETY

)
+[

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 ηkP

]
.

Finally, with the derivative of V4(t) we get:

V̇4(t) =(ηk − 2τ(t))ζT (t)Mζ(t)

+ 2(ηkτ(t)− τ2(t))ζT (t)Mζ̇(t)
(27)



That is to say, with ζ(t) = E2ξ(t) and ζ̇(t) = E3ξ(t):

V̇4(t) =τ2(t)ξT (t)Φ2
4ξ(t)

+ τ(t)ξT (t)Φ1
4ξ(t) + ξT (t)Φ0

4ξ(t)
(28)

where Φ2
4 =−H

(
ET2 ME2

)
, Φ1

4 =H
(
ηkE

T
2 ME3−ET2 ME2

)
and Φ0

4 =ηkE
T
2 ME2.

Now, considering (23), (24), (26) and (28), the inequality (22)
holds if:

P(τ(t)) =τ2(t)ξT (t)Φ2
4ξ(t)

+τ(t)ξT (t)(Φ1
Σ + Y TP−1Y )ξ(t)

+ ξT (t)Φ0
Σξ(t) < 0

(29)

with Φ1
Σ =Φ1

4+Φ1
3+Φ1

2 and Φ0
Σ = Φ0

4+Φ0
3+Φ0

2+Φ0
1.

Note that, ∀ξ(t) the convexity of the polynomial P(τ(t)) = 0
is granted if:

ξT (t)Φ2
4ξ(t) > 0 ⇔ Φ2

4 > 0 (30)

In this case, the inequality (29) holds if:

P(0) < 0 and P(ηk) < 0 (31)

Hence, focusing first on (30), we assume:

M=MT =

[
M11 M12 M13 M14

∗ M22 M23 M24

∗ ∗ M33 M34

∗ ∗ ∗ M44

]
(32)

and, from (28) we can write:

Φ2
4 =−

[
M0 W
∗ 0

]
(33)

with M0 =

[
H(M13+M34) MT

23−M34 MT
33

∗ 0 0
∗ 0 0

]
,

and W =

[ H(M14)+M11+M44

M24−M44+MT
12−M

T
14

M34+MT
13

]
.

For any regular matrix U ∈ R3n×3n we have the null terms
WTU−1W−WTU−1W = 0 andM0−M0 = 0, which allows
us to write, by the application of the Schur complement:[

U −M0 +M0 W

WT WTU−1W

]
= 0 (34)

And so, we can write:

Φ2
4 =−

[
M0 W

WT 0

]
=S+QTU−1Q (35)

with S =
[
U −M0 0

0 0

]
and Q = [0 W ].

In the sequel, we substitute the right-hand side of (35) as Φ2
4

in (29), so the inequality (30) holds if:

U > 0 and U−M0 > 0 (36)

Now, we need to introduce the closed-loop dynamics in the
stability conditions. To do so, let us rewrite (8) as:

Gξ(t) = 0 (37)

with G = [ A −BF 0 −I ].
Furthermore, (29) can be rewritten as:

ξT (t)
(
τ2(t)Φ2

4+τ(t)(Φ1
Σ + Y TP−1Y )+Φ0

Σ

)
ξ(t)<0 (38)

From lemma 3, the inequality (38) holds if there exists R ∈
R4n×n such that:

τ2(t)Φ2
4+τ(t)(Φ1

Σ +Y TP−1Y ) +Φ0
Σ+RG+GTRT <0 (39)

From (31), the inequality (39) hold if both the following
inequalities holds:

Φ0
Σ+RG+GTRT <0 (40)

η2
kΦ2

4+ηk(Φ
1
Σ + Y TP−1Y ) +Φ0

Σ+RG+GTRT <0 (41)

Considering the right-hand side of (35) as Φ2
4, then applying

the Schur complement on (41), we get:[
η2
kS+ηkΦ

1
Σ +Φ0

Σ+RG+GTRT ηkY
T ηkQ

T

ηkY −ηkP 0
ηkQ 0 −U

]
<0 (42)

Assuming R = [ X−1 ε1X
−1 ε2X

−1 ε3X
−1 ]

T , with X a
regular matrix, then pre- and post-multiplying (40) respectively
by DT

X = diag [ X X X X ]
T and its transpose, we get

(15). Similarly, pre- and post-multiplying (42) respectively
by DT

X = diag [ X X X X X X X X ]
T and its trans-

pose, we get (16). Where Iε = [ I ε1I ε2I ε3I ]
T , Ḡ =

[ AX −BK 0 −X ], K = FX , and all decision matrices
inside Φ̄2

4, Φ̄1
Σ and Φ̄0

Σ are rewritten with the bijective change
of variables D̄ = XTDX (D={L,M11,. . .,M44,N,P,U}).

Remark 1: Because of the parameters ε1, ε2 and ε3, The
conditions presented in Theorem 1 are not strictly LMI.
However, as stated in many previous works applying the
Finsler’s lemma, see e.g. [13], [17]–[21], these parameters help
to significantly improve the conservatism of the conditions and
can be, as usual, tuned offline by grid search. This allows to
reach a large value of η̄ in the considered context of sampled-
data control.

IV. SIMULATION AND EXPERIMENTAL RESULTS

In this section, simulation and experimental results are pro-
vided to illustrate the usefulness of the proposed sample-data
controller design regarding to the conventional continuous-
time methodologies, namely Proportional-Derivative (PD) and
LQR controllers design, proposed by the Quanser® team in
the AERO Laboratory Guide [9], when large enough sampling
periods are considered for the embedded controller.

A. Overview on the control approaches proposed in
Quanser®AERO laboratory guide

First, based on the standard linear control theory for SISO
systems, decoupled PD control laws are proposed for the the
pitch and yaw axis as:

uθ(t) = −KPpθ(t)−KDp θ̇(t)

uψ(t) = −KPyψ(t)−KDy ψ̇(t)
(43)

with the gains KPp = 107.7148, KDp = 52.4365, KPy =
54.1163 and KDy

= 19.5924, designed from standard decou-
pled second-order transfer functions models and some perfor-
mances index based on the natural frequency wn, damping
ratio ζ, peak time tp and overshoot specification PO (see the
Quanser®AERO laboratory guide [9] for more details).



Then, based on the fact that the above mentioned PD
controllers doesn’t cope with coupling effects, the following
linear state feedback controller is considered:

u(t) = −KLQRx(t), (44)

Its design is proposed in [9] from the LQR approach consid-
ering the minimization of the following cost function:

J(u(t)) =

∫ ∞
0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt (45)

with Q =

[
200 0 0 0
0 75 0 0
0 0 0 0
0 0 0 0

]
and R =

[
0.005 0

0 0.005

]
,

which provides the following gain matrix:

KLQR =
[

98.2088 −103.0645 32.2643 −29.0750
156.3469 66.1643 45.5122 17.1068

]
Let us highlight that these controllers are projected in

continuous-time and are implemented in the Quanser® lab
assuming a very small sampling period (ηk = 2ms), which
is satisfactory for a pedagogical tool to teach basics on
this topics. Nevertheless, since the embedded electronics of
the Quanser®AERO provides only digital computations, from
the theoretical point of view, this is not accurate since the
inter-sampling stability is not guarantee in these two cases,
especially for large sampling periods as illustrate in the next
subsections.

B. Simulation results with a large sampling period

In this section, we provide some simulation results consid-
ering a large sampling period of η̄ = 4.5s. In this case, solving
the conditions of Theorem 1 with YALMIP and SEDUMI
in the MATLAB framework, setting ε1 = 3, ε2 = 1 and
ε3 = 300, we obtain the following sampled-data control gain
for (7):

F =
[
−0.0432 −1.1617 0.1687 0.1789
−0.0530 0.6085 0.2070 −0.0937

]
Fig. 2 shows the closed-loop continuous-time responses of

the pitch and yaw axis under the design sampled-data control
law with the initial conditions x(0) =

[
10 45 0 0

]T
.

We can notice that the closed-loop sampled-data systems is
successfully stabilized in simulation.

Now, let us consider that the continuous-time controllers
(43) and (44) are implemented on a digital device with the
same huge sampling period of 4.5s. As mentioned above, since
these controller doesn’t cope with inter-sampling behaviour,
the closed-loop systems are unstable as shown in the simula-
tions depicted in Fig. 3.

These simulations confirm the significance of the proposed
sampled-data control methodology for large sampling periods.
The next section provides an experimental validation.

C. Experimental validation of the proposed sampled-data con-
troller design methodology

In the previous subsection, simulation results of the pro-
posed sampled-data control strategy has been proposed with a
large sampling period of 4.5s. Nevertheless, in practice, some
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Fig. 2. Time response of Quanser®AERO model under the Sampled Data
Controller.
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Fig. 3. Time response of Quanser®AERO model, subjected to a LQR
Controller (–) and PD Controller (· · · ) under a sampling period of 4.5s.

unmodeled phenomena (frictions, motors dead zone which
make then static under a tension smaller than 0.4V,...) does not
allow a direct implementation with the same values. Hence,
to provide a fair comparison with a realistic sampling period,
we chose for experimental validation ηk = 150ms. In this
case, Theorem 1 have a solution with ε1 = 0.25, ε2 = 10
and ε3 = 0.37, which provide the following sampled-data
controller (7) gain matrix:

F =
[

28.4589 −34.6979 27.5479 −21.9293
34.9268 18.1751 33.8088 11.4868

]
The experimental results are shown in Fig. 4 where the time
response and the input signals (Motors’ voltage) are depicted
for the PD, the LQR and the sampled-data controller. We can
notice that, while the PD and LQR control plants that are
unstable with a sampling period ηk = 150ms, the sampled-
data controller successfully stabilizes the Quanser®AERO.

Finally, to take benefit of the fact that our conditions hold
for aperiodic sampling periods, we proposed the following
strategy to trigger it. Note that V1(tk) ≤ V1(0). The purpose
is to update the sampling period ηk at each sampling instant
tk so that, when V1(tk) is closed to V1(0), then the updated
sampling period ηk is small (2ms), and when it is close to 0,
then ηk is large (0.15s). This can be achieved by implementing
the simple rule ηk = 0.002−0.15

V1(0) V1(tk)+0.15. Fig. 5 compares
the simulation results with the experimental ones under the
proposed aperiodic sampled-data control scheme. As expected,
the closed-loop system is properly stabilized. However, we can
see some differences during the transients from the simulation
and the experimentation. Indeed, these are due to the actuators



saturation, which occurs in practice and which is not taken into
account in the present controller design methodology. This will
be the subject of our future prospects.
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Fig. 4. Comparison of the time responses of the Quanser®AERO under a
sampling period of 150ms.
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Fig. 5. Time responses of the Quanser®AERO under triggered sampling
period.

V. CONCLUSION

In this paper, the design and the implementation of a
sampled-data controller for the Quanser® AERO 2-DOF heli-
copter system has been proposed. The sampled-data controller
design has been achieved from LMI-based conditions obtained
from the choice of a convenient LKF and bounding techniques.
The results have been validated in simulation as well as ex-
perimentally and the designed sampled-data controller shown
its superiority regarding to previous designed continuous-
time controllers from the Quanser® AERO laboratory guide,
especially for large sampling periods. Our further prospects
will focus on taking into account actuators saturation in the
design conditions as well as to deal with the tracking sampled-
data control.
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