
HAL Id: hal-02887591
https://hal.science/hal-02887591

Submitted on 2 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Refining HTN Methods via Task Insertion with
Preferences

Zhanhao Xiao, Hai Wan, Hankui Hankz Zhuo, Andreas Herzig, Laurent
Perrussel, Peilin Chen

To cite this version:
Zhanhao Xiao, Hai Wan, Hankui Hankz Zhuo, Andreas Herzig, Laurent Perrussel, et al.. Refining HTN
Methods via Task Insertion with Preferences. Thirty-Fourth AAAI Conference on Artificial Intelli-
gence (AAAi 2020), Feb 2020, New York, United States. pp.10009-10016, �10.1609/aaai.v34i06.6557�.
�hal-02887591�

https://hal.science/hal-02887591
https://hal.archives-ouvertes.fr

The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Refining HTN Methods via Task Insertion with Preferences

Zhanhao Xiao,1 Hai Wan,1* Hankui Hankz Zhuo,1† Andreas Herzig,2,3

Laurent Perrussel,3 Peilin Chen1

1School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
2IRIT, CNRS, Toulouse, France

3University of Toulouse, Toulouse, France

Abstract

Hierarchical Task Network (HTN) planning is showing its
power in real-world planning. Although domain experts have
partial hierarchical domain knowledge, it is time-consuming
to specify all HTN methods, leaving them incomplete. On the
other hand, traditional HTN learning approaches focus only
on declarative goals, omitting the hierarchical domain knowl-
edge. In this paper, we propose a novel learning framework
to refine HTN methods via task insertion with completely
preserving the original methods. As it is difficult to identify
incomplete methods without designating declarative goals
for compound tasks, we introduce the notion of prioritized
preference to capture the incompleteness possibility of
methods. Specifically, the framework first computes the
preferred completion profile w.r.t. the prioritized preference
to refine the incomplete methods. Then it finds the minimal
set of refined methods via a method substitution operation.
Experimental analysis demonstrates that our approach is
effective, especially in solving new HTN planning instances.

Introduction

Hierarchical task network (HTN) planning techniques (Erol,
Hendler, and Nau 1994) are increasingly used in a num-
ber of real-world applications (Lin, Kuter, and Sirin 2008;
Behnke et al. 2019). In the real-world logistics domain,
such as Amazon and DHL Global Logistics, the shipment
of packages is arranged via decomposition into a more de-
tailed shipment arrangement in a top-down way according to
the predefined HTN methods. In practice, there exist a vast
number of cases occurring, such as the delay caused by the
weather, leading that it is difficult and time-consuming for
humans to find all complete methods for all actions. This
suggests that it is important to learn complete methods.

Normally, domain experts have partially hierarchical do-
main knowledge, which possibly is not sufficient to cover
all desirable solutions (Kambhampati, Mali, and Srivas-
tava 1998). On one hand, with partially hierarchical do-

*Corresponding author
†Key Laboratory of Machine Intelligence and Advanced Com-

puting, Ministry of Education, China; Guangdong Province Key
Laboratory of Big Data Analysis and Processing, China.
Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

main knowledge, a planner may fail to obtain a solution
via decomposition according to the given methods. The
main reason lies in that the given method set is incomplete,
which includes at least an incomplete method lacking sub-
tasks. On the other hand, the hierarchical domain knowledge
comes from the experience and investigation of domain ex-
perts, which normally are supposed to be necessary. How-
ever, the traditional approaches to learning HTN methods,
such as (Hogg, Muñoz-Avila, and Kuter 2008), only con-
centrate on declarative goals of compound tasks and omit
hierarchically procedural knowledge obtained from domain
experts.Indeed, these procedural knowledge cannot be ex-
pressed by only operator structures (action models), which
can be concluded from (Goldman 2009; Höller et al. 2014).
Therefore, in this paper, we focus on refining HTN meth-
ods and keeping the original hierarchical domain knowledge
from domain experts.

To tackle the method incompleteness, Geier and Bercher
(2011) proposed a hybrid planning formalization, HTN plan-
ning with task insertion (TIHTN planning), to allow gener-
ating plans via decomposing tasks according to the meth-
ods but also inserting tasks from outside the given methods.
Example 1 shows a plan with task insertion (called TIHTN
plan) for an HTN problem with incomplete methods. Actu-
ally, the TIHTN plan offers a reference to refine the meth-
ods by adding the inserted tasks. For example, the method of
airShip can be refined by adding fly as its subtask. It allows
us to absolutely preserve the original domain knowledge to
refine the incomplete methods, further to assist domain ex-
perts to improve the HTN domain.

Example 1. Consider an example in the logistics do-
main, suppose every task has only one method and a de-
composition tree is shown in Figure 1. The initial task
ship(pkg1,whA, shopB) is to ship a package from city A
to city B and it has a method: to ship the package from
the warehouse to the airport by truck, from city A to city
B by plane and from the airport to the shop by truck. But
in case that the plane is not in the airport of city A, the
air transportation task airShip(pkg1, airpA, airpB) cannot
be accomplished, neither can the initial task. When arrang-
ing the plane to airport A, fly(plane1, airpA), is done before
loading to the plane, an executable plan is found.

10009

t0:ship(pkg1,whA,shopB)

t1:cityShip(pkg1,whA,airpA) t2:airShip(pkg1,airpA,airpB) t3:cityShip(pkg1,airpB,shopB)

t11:load(.) t12:drive(.) t13:unload(.)

t21:load(pkg1,plane1) t22:fly(.) t23:unload(.)

t31:load(.) t32:drive(.) t33:unload(.)

t4:fly(plane1,airpA)

Figure 1: An example of a decomposition tree from incomplete methods (the parameters of some actions are hidden). The
initial task ship(pkg1,whA, shopB) is decomposed into a sequence of primitive tasks (the black leaves) according to the original
methods. But when plane1 is not in airport A, the sequence is not executable. It becomes executable if arranging plane 1 to
airport A before loading the package, which implies that fly(plane1, airpA) should be considered as a subtask of airShip.

Whereas, even if a TIHTN plan is found, without desig-
nating declarative goals for compound tasks, it is still dif-
ficult to identify incomplete methods – because an inserted
task can be considered as a missed subtask of different meth-
ods. For example, the inserted task fly can also be used to
refine the method of cityShip. In practice, the missing of
subtasks happens more likely on certain methods than on
some other methods. It motivates us to introduce the notion
of prioritized preference on methods to capture the incom-
pleteness possibility of methods.

Our contributions are listed as follows. First, we intro-
duce the notion of completion profiles to refine HTN meth-
ods from TIHTN plans. Second, we propose a framework
METHODREFINE to refine HTN methods with completely
preserving the original methods. Specifically, we first com-
pute the preferred completion profile w.r.t. the prioritized
preference to refine incomplete methods and then propose
a method substitution operation to obtain the preferred set
of refined methods. Third, by taking experiments on three
well-known planning domains, we compare our approach
with different method incompleteness against the classical
HTN learning approach, HTN-MAKER, on the ability of
solving new instances in the same domain and show that our
approach is more effective.

Related Work

Besides HTN-MAKER, there are a number of HTN learning
approaches (Lotinac and Jonsson 2016; Zhuo, Muñoz-Avila,
and Yang 2014) which only focus on declarative goals and
omit hierarchically procedural knowledge. Specially, they
require annotated preconditions and effects of compound
tasks and only consider the declarative goals like classi-
cal planning, so they require a complete executable plan as
input. Whereas, in many domains, it is difficult to verify
the correctness of the task annotations. Besides, these ap-
proaches restrict the tasks in the methods to be totally or-
dered, while we allow them to be partially ordered. Last but
not least, comparing with these approaches, we also consider
the prioritized preference on the learned methods.

Another related work is (Garland, Ryall, and Rich 2001)
which proposes an approach to construct and maintain hi-
erarchical task models from a set of annotated examples
provided by domain experts. Similar to the annotated tasks,
obtaining these annotated examples is difficult and needs a
lot of human effort. Our work also is related to the works

on learning the precondition of HTN methods (Ilghami et
al. 2005; Xu and Muñoz-Avila 2005), which takes the hi-
erarchical relationships between tasks, the action models,
and a complete description of the intermediate states as in-
put. The similar work also includes (Nejati, Langley, and
Könik 2006) and (Reddy and Tadepalli 1997), which used
means-end analysis to learn structures and preconditions of
the input plans. The precondition and effect of primitive ac-
tions can also be learned in (Zhuo et al. 2009). All these
approaches of learning method precondition require a com-
plete method set as input.

For TIHTN planning, Geier and Bercher (2011) first ad-
dressed the decidability of propositional TIHTN planning.
Later Alford et al. (2015) proved that propositional TIHTN
planning is EXPTIME-complete and proposed an acycli-
cally searching approach to compute TIHTN plans, which
provides a route to refine incomplete HTN methods.

Definitions

We adapt the definitions of lifted HTN planning (Alford,
Bercher, and Aha 2015). First, we define a function-free first
order languageL from a set of variables and a finite setL0 of
predicates and constants. We take parts of variables in L as
task symbols to identify tasks. A state is any subset of ground
atoms in L and the finite set of states are denoted by 2L. In
HTN planning, actions (or task names), notedA, are syntac-
tically first-order atoms, which are classified into two cate-
gories: the actions the agent can execute directly are called
primitive actions or operators, noted O, while the rest are
called compound actions, noted C. Every primitive action o
is a tuple (name(o), pre(o), add(o), del(o)) where name(o)
consists of a predicate out of L and a list of variables, called
its name; pre(o) is a first-order logic formula, called its
precondition; add(o) and del(o) are two conflict-free sets
of atoms called its positive and negative effect. Then we
define a state-transition function γ : 2L × O −→ 2L:
γ(s, o) is defined if o is applicable in s (i.e., s |= pre(o));
γ(s, o)=(s\del(o))∪add(o). A sequence of primitive ac-
tions o1,...,on is executable in a state s0 iff there is a state
sequence s1,...,sn such that ∀1 ≤ i ≤ n, γ(si−1, oi)=si.

Given a set R, we use �R to denote the set of all sequences
over R and use |R| to denote the cardinality of R. For its
subset X and a function f : R −→ S, its restriction to X
is f |X = {(r, s) ∈ f | r ∈ X}. For a binary relation Q ⊆
R×R, we define its restriction to X by Q|X = Q∩(X×X).

10010

Task networks. A task network is a tuple tn=(T,≺, α)
where T is a set of tasks, ≺ ⊆T×T is a non-empty set of
ordering constraints over T and α :T−→A labels every task
with an action. Every task is associated to an action and the
ordering constraints restrict the execution order of tasks. A
task t is called primitive if α(t) is primitive (otherwise called
compound), and called ground if α(t) is ground. A task net-
work is called primitive if it contains only primitive tasks,
and called ground if it contains only ground tasks.
HTN methods. Compound actions cannot be directly ex-
ecuted and need to be decomposed into a task network ac-
cording to HTN methods. An HTN method m=(c, tnm) con-
sists of a compound action c (called head) and a task net-
work tnm whose inner tasks are called subtasks. Generally,
an HTN method includes variables, which can be grounded
as actions are grounded. Note that a compound action c may
have more than one HTN method.

Intuitively, decomposition is done by selecting a com-
pound task, adding its subtask network and replacing it. The
constraints about the decomposed task t are propagated to
its subtasks: the tasks before t are before all its subtasks and
the tasks after t are after all its subtasks.

A task network tn= (T,≺, α) is a grounding of another
task network tn′ = (T ′,≺′, α′) if there exists a bijection
f :T −→T ′ such that α(t) is a grounding of α(f(t)) and for
all t1 ≺ t2, f(t1)≺′f(t2).
HTN problems. An HTN planning domain is a tuple D =
(L,O, C,M) where M is a set of HTN methods and O ∩
C = ∅. We call a pair (s0, t0) an instance where s0 is a
ground initial state and t0 is a ground initial task. An HTN
problem is a tuple P = (D, s0, t0).
Solutions. A solution to an HTN problem P = (D, s0, t0)
is a valid decomposition tree T w.r.t. P and we say (s0, t0)
is solved under D and is satisfied by T .

In different literature, the solution to the HTN problem
has different forms: mostly a plan (such as (Erol, Hendler,
and Nau 1994)), a primitive task network (such as (Behnke,
Höller, and Biundo 2017)) and a list of decomposition trees
(such as (Zhuo, Muñoz-Avila, and Yang 2014)). In this pa-
per, we consider a solution to the HTN problem as a decom-
position tree rooted in the initial task t0.

A decomposition tree (DT) is a tuple T = (T,E,≺, α, β)
where (T,E) is a tree, with nodes T and with directed edges
E : T −→ �T mapping each node to an ordered list of its
children;≺ is a set of constraints over T ; function α : T −→
A links tasks and actions; function β : T −→ M labels
every inner node with an HTN method.

We use � to denote the transitive closure of ≺ and the
order defined by E. We say t1 is a predecessor of t2 if t1 �
t2. Dually, we also say t2 is a successor of t1. According to
�, we say the sequence constituted by the ground leaf nodes
of T is its plan, denoted by ϑ(T).
Definition 1 (Valid DTs). A DT T is valid w.r.t. an HTN
problem P = (D, s0, t0) iff its plan ϑ(T) is executable in
s0 and its root is t0 and for every inner node t where β(t) =
(c, tnm), it satisfies:

1. α(t) = c;
2. (E(t),≺|E(t), α|E(t)) is a grounding of tnm;

3. if (t, t′) ∈≺ then for every st ∈ E(t), (st, t′) ∈≺;
4. if (t′, t) ∈≺ then for every st ∈ E(t), (t′, st) ∈≺;
5. there are no t1, t2 such that t1 � t2 and t2 � t1.

Example 2 (Example 1 cont.). If plane1 is already at air-
port A in s0, the DT drawn with black arrows in Figure
1 is a solution to the HTN problem with a plan σ1 =
〈load;drive;unload;load;fly;unload;load;drive;unload〉.

Refining Methods via Task Insertion

In this paper, we focus on the HTN problem with an in-
complete method set, where there is no valid decomposition
tree w.r.t. the problem. In other words, there is no executable
plan obtained only by applying methods. By allowing insert-
ing tasks, (Geier and Bercher 2011) proposes a hybrid plan-
ning formalization, TIHTN planning. For an HTN problem
P = (D, s0, t0), we say a primitive action sequence σ is it
TIHTN plan, if σ is executable in s0 and there is a valid DT
T w.r.t. P whose ϑ(T) is not required to be executable in s0
satisfying ϑ(T) is a sub-sequence of σ.

Example 3 (Example 2 cont.). If plane1 is not at air-
port A in s0, the DT in Example 2 is not valid as its
plan σ1 is not executable in s0. While σ2 = 〈load;drive;
unload;fly;load;fly;unload;load;drive;unload〉 is a TI-
HTN plan to the problem.

Refining Methods and Completing DTs

Actually, the inserted tasks in the TIHTN plan are subtask
candidates: they provide clues for refining the original meth-
ods by adding them as subtasks. Then, based on a TIHTN
plan, we propose the completion profile to refine methods
and complete decomposition trees.

Suppose the TIHTN planner outputs a plan σ and its cor-
responding decomposition tree T , we use Iσ to denote all
the inserted tasks in σ. The TIHTN plan actually is an or-
dering of primitive tasks and we extend the � relation of
T by considering the execution order of primitive actions in
σ. To get the compound tasks, we use NT to denote the in-
ner nodes of T . Next, we show how to link these inserted
tasks with the inner nodes NT of the decomposition tree T
to generate a new decomposition tree.

Definition 2. We define a completion profile as a function
ρ :Iσ −→ NT , such that for every inserted task t′ ∈ Iσ there
is not a primitive task tp ∈ σ where either both tp� ρ(t′)
and t′ � tp, or ρ(t′)� tp and tp � t′.

Intuitively, every inserted task is associated with a com-
pound task as its subtask. Every inserted task is restricted to
be performed before the predecessors and after the succes-
sors of its corresponding compound task.

Next, we define how to refine a method by inserting tasks.
A completion profile leads to a set of refined methods by
adding the relevant inserted tasks into the original meth-
ods. Formally, for a completion profile ρ and t ∈ NT ,we
use T t

ρ = {t′ | ρ(t′) = t} to denote all inserted tasks asso-
ciated with t. The inserted subtasks with the original sub-
tasks of t compose a new subtask network, written by tntρ =

(T t
ρ,�|T t

ρ
, ασ), where ασ which labels the inserted task

10011

with ground primitive actions. Suppose m = (c, (Tm,≺m

, αm)) is the method of t, i.e., β(t) = m, for every con-
stant in the inserted primitve actions which occurs in the
ground actions associated with the children of t or α(t), we
replace it with its corresponding variable in the unground
action in tnm and update the function ασ to α′

σ . Then we
define the refined method of m as mt

ρ = (c, (Tm ∪ T t
ρ,≺m

∪� |Tm∪T t
ρ
, αm ∪ α′

σ)) w.r.t. ρ. We useMρ to denote the
set of refined methods from the completion profile ρ.
Example 4 (Example 3 cont.). We have a completion pro-
file ρ where ρ(t4) = t2. The refined method of the original
method m is mt2

ρ =(airShip(?pkg,?loc1,?loc2), (T ′,≺′,α′))
where
• T ′ = {t′4, t′21, t′22, t′23};
• ≺′=≺m ∪{(t′4, t′21), (t′4, t′22), (t′4, t′23)};
• α′(t′4) = fly(?plane, ?loc1),
α′(t′21) = fly(?pkg, ?plane, ?loc1), etc.
The completion profile actually completes the DT: the

inserted tasks are connected with their corresponding in-
ner nodes as their children. When we add new nodes into
the DT, the integrity of ordering constraints will be de-
stroyed. To avoid that, we define an operator closure to com-
plete the ordering constraints. Formally, for a tree T =
(T,E), we define its closure on the ordering constraint ≺
as closure(T,E,≺), given by:

≺ ∪
⋃

t∈T

{(t′, ch), (ch, t′′)|ch ∈ E(t), t′ ≺ t, t ≺ t′′}.

Intuitively, the closure operation completes the ordering
constraints about the children which should be inherited
from their parent.

Next, we define the completion of DT T by completion
profile ρ w.r.t. TIHTN plan σ as Tρ = (T ′, E′,≺′, α′, β′),
which is given by:

T ′ := T ∪
⋃

t∈T (ρ) T
t
ρ

E′ := E ∪ {(t, st) | t ∈ T, st ∈ T (tntρ)}
≺′ := closure(T ′, E′,≺) ∪

⋃
t∈T (ρ) �|T t

ρ∪E(t)

α′ := α ∪ ασ

β′ := (β \ {(t,m) | t ∈ T (ρ)}) ∪ {(t,mt
ρ) | t ∈ T (ρ)}

where T (ρ) is the set of the inner nodes associated by ρ.
The procedure of completing a DT consists of first con-

necting the inserted tasks with the inner nodes, then com-
pleting the ordering constraints and finally updating the
method applied as the refined method. The DT being com-
pleted will satisfy the instance:
Proposition 1. Given an HTN problem P=(D, s0, t0), let σ
be one of its TIHTN plans, T be its corresponding DT and ρ
be one of their completion profiles. Then the completed DT
Tρ satisfies (s0, t0) under the new domain D+Mρ.

Proof. First, we show that Tρ is a valid DT w.r.t. D+Mρ.
For every node t in Tρ with β′(t) = (c, tntρ), i) the func-
tion α is not reduced, so α′(t) = c; ii) the edges between
the task t and its inserted tasks T t

ρ are added, so the task

network induced by its children is a grounding of mt
ρ; iii)

closure(T ′, E′,≺) guarantees that all ordering constraints of
t are propagated to the inserted tasks and�|T t

ρ∪E(t) only in-
troduces the ordering constraints among the subtasks in the
same method, so conditions 3. and 4. are satisfied; iv) as the
completion profile guarantees that no contradict pair about
� is introduced, condition 5. is satisfied.

Without removing nodes, the root of Tρ is still t0. As the
plan ϑ(Tρ) is the TIHTN plan σ executable in s0, Tρ satisfies
the instance (s0, t0).

When an HTN problem has incomplete methods, the com-
pletion profile offers a way to improve the HTN domain:

Theorem 1. If an HTN problemP=(D, s0, t0) has a TIHTN
plan but no solution, then there is a completion profile ρ
where the HTN problem P ′ = (D+Mρ, s0, t0) is solvable.

Proof. Straightforward.

Prioritized Preferences

To formalize the phenomenon that the missing of subtasks
happens more likely on some methods than other methods,
we consider a prioritization on the methods.

Given a method set M, we define a prioritization as a
partition on it: P=〈P1, ..., Pn〉 where

⋃
1≤j≤n Pj = M.

Intuitively, the HTN methods in Pi have a higher priority
to be refined than those in Pj if i > j. We further con-
sider the prioritized preference ≤P in terms of cardinality:
for M1,M2 ⊆ M, if there is some 1 ≤ i ≤ n such that
|M1∩Pi| ≤ |M2∩Pi| and that ∀ 1 ≤ j < i, |M1∩Pj | =
|M2 ∩ Pj |, then we write M1 ≤P M2. We say M1 is
strictly preferred overM2 w.r.t. P , written byM1<PM2,
ifM1≤PM2 andM2 �≤PM1.

Generally, the prioritization comes from the confidences
of domain experts on methods: the method believed to lack
subtasks more likely to have a higher priority to be refined.
In particular, there exists a class of HTN domains where
actions can be stratified according to the decomposition hi-
erarchy (Erol, Hendler, and Nau 1996; Alford et al. 2012).
We found an interesting phenomenon that the more detailed
tasks are more sensitive to these situations and more easily
to be thoughtless. In this case, we assume that an action is
more abstract than its subtasks and we consider a preference
in terms of a stratum-based prioritization: the more abstract
actions have a lower priority to be refined.

Preferred Completion Profiles

Generally, we hope to find a completion profile changing the
original methods minimally under the prioritized preference.

We first define some notations: for a refined method mt
ρ,

we use τ(mt
ρ) to denote its original method m. For a re-

fined method setM′, we use τ(M′) to denote all the orig-
inal methods of the refined methods in M′, i.e., τ(M′) =
{m ∈M| m = τ(m′),m′ ∈ M′}. Note that several com-
pletions may be associated with the same HTN method. For
two HTN methods m′

1 and m′
2, if τ(m′

1) = τ(m′
2), we say

m′
1 and m′

2 are homologous.

10012

Definition 3. Given a TIHTN plan and its corresponding
DT, a completion profile ρ is preferred w.r.t. preference P if
there is not a completion profile ρ′ s.t. τ(Mρ′) <P τ(Mρ).

Intuitively, the preferred completion profile refines meth-
ods minimally under the prioritized preference.

Next, we will show how to find the preferred completion
profile, as shown in Algorithm 1. First, we consider all in-
serted tasks in the plan as unlabelled (line 1). Then we scan
all inner nodes from the nodes with a method of higher pri-
ority to the nodes with a method of lower priority (line 2-3).
Next, for an inner node, we find the set of candidate sub-
tasks Δt from the inserted tasks, which do not violate the
ordering constraints if they were inserted as its subtasks (line
5). More specifically, for the inner node t, the inserted tasks
which are executed between the last task required to be exe-
cuted ahead of t and the first task required to be after t, are
allowed to be added as subtasks of t. According to the total
order ‘�’ in the DT, we define the subtasks candidate set
Δt of t as the set of the unlabelled inserted tasks between
the last predecessor of t and the first successor of t. Finally,
we associate all tasks in the subtask candidate set to t (line 5)
and label them as subtasks (line 6). When all inserted tasks
are labeled, it returns a preferred completion profile. It must
terminate and the worst case is that the inserted tasks are
associated with the root task.

Algorithm 1 only scans the inner nodes of the DT once
and searching the subtask candidate set can be done in linear
time, so the algorithm terminates in polynomial time.

Algorithm 1: COMPLETE(σ, T , P)

input : A TIHTN plan σ, its DT T and a prioritization
P = (P1, ..., Pn) onM

output: A completion profile ρ
1 I ← Iσ;
2 for j ← n to 1 do
3 for each t ∈ NT s.t. β(t) ∈ Pj do
4 if I �= ∅ then
5 for every t′ ∈ Δt ∩ I , set ρ(t′) = t;
6 I ← I \Δt;

7 return ρ

Actually, to find a preferred completion profile, we only
need to scan the inner nodes in the DT according to the pref-
erence and link appropriate inserted tasks with inner nodes,
which can be done in polynomial time.

Refining Methods from Instances

As stated above, we focus on keeping the original meth-
ods coming from domain experts and consider adding the
refined methods into the original domain. For an HTN do-
main D = (L,O, C,M) and a method set M′, we use
D+M′ = (L,O, C,M ∪M′) to denote the resulting do-
main by addingM′ into D. An HTN method refining prob-
lem is defined as a tuple (D, I) where D is an HTN domain
and I is a set of instances.

However, an excess of methods introduced may slow
down problem-solving significantly, as there are excessive
choices to decompose tasks. So, we hope the refined meth-
ods to be as minimal as possible. Then we define a solution
of the HTN method refining problem (D, I) is a set of re-
fined methodsM′ which should satisfy:

• all instances in the set I are solvable under D+M′;

• the refined method setM′ is as minimal as possible;

• the refined methods inM′ have as few inserted subtasks
as possible.

Given a set of HTN instances, we first compute a TIHTN
plan and a DT for each instance and then compute the pre-
ferred completion profile. Indeed, the completion profiles
for various instances induce many different refined methods
with the same head which possibly handel the same situa-
tion.Such refined methods are redundant because they can
be replaced by other methods.

To compute the minimal set, we define a method sub-
stitution operation for a decomposition tree. More specif-
ically, for a DT T and two homologous refined methods
m′

1 and m′
2, we use sub(T ,m′

1,m
′
2) to denote the result-

ing DT obtained by replacing every subtree induced by m′
1

with a subtree by m′
2 and completing the closure of the or-

dering constraints. Then for an instance (s0, t0), if T sat-
isfies it and ϑ(sub(T ,m′

1,m
′
2)) is executable in s0, then

sub(T ,m′
1,m

′
2) also satisfies it. In other words, for this in-

stance, the refined method m′
1 is replaceable by m′

2.
Then we generalize the method substitution operation

into sets: given a DT set T and two refined method sets
M′

1,M′
2, we use sub(T ,M′

1,M′
2) to denote the set of

the DTs that substitutes every method in M′
1 with certain

method inM′
2. If each resulting DT still satisfies the corre-

sponding instance, we sayM′
1 is replaceable byM′

2. Given
a set M′ of refined methods, for the minimality, we need
to compute the minimal subset M′′ of M′ which are not
replaceable by any strict subset ofM′′.

Indeed, it is difficult to find the minimal method set under
the replaceability relation between refined methods, as all
subsets of the refined method set require to be considered.
Fortunately, the prioritized preference indicates what meth-
ods should be refined in a higher priority. The prioritized
preference can be extended to the refined methods: m′∈Pj

if τ(m′) ∈ Pj . Then we seek for the sub-optimal solution by
computing the minimal subset w.r.t. the replaceability rela-
tion under the refined methods with the same priority, which
reduces the searching space significantly.

Next, we give an algorithm to refine methods for a set of
HTN problems and a given prioritization, as shown in Algo-
rithm 2. The framework consists of two main components:
the first iteration for refining methods (line 2-8) and the sec-
ond iteration for reducing refined methods (line 9-11).

We developed the TIHTN planning approach in (Alford,
Bercher, and Aha 2015) (noted HPLAN). In order to pursue
as few inserted subtasks as possible in refined methods, we
exploited a breadth-first strategy to search inserted tasks.

In the first iteration, it first invokes HPLAN to compute
TIHTN plan and the corresponding DTs (line 3) and then

10013

computes preferred completion profiles (line 4) by COM-
PLETE. According to these completion profiles, it completes
these DTs and constructs a set of refined methods.

In the second iteration, we use a greedy strategy to find
the minimal set: the refined methods with lower priority are
reduced first, which is the opposite against the procedure
of searching the preferred completion profile. Here we use
Pj [M′] to denote the refined methods inM′ with the prior-
ity Pj . The algorithm enumerates the power set of Pj [M′]
and computes the minimal subset M′

j of Pj [M′] w.r.t. the
replaceability relation under Pj [M′] and the union of the
minimal subsets with lower priorities.

Algorithm 2: METHODREFINE(D, I, P)

input : An HTN domain D, an instance set I and a
prioritization P = (P1, ..., Pn) onM

output: A set of refined methodsM′′

1 M′ ←M′′ ← ∅; T ← ∅;
2 for each i in I do

3 compute a plan and DT (σi, T i) = HPLAN(D, i);
4 ρi = COMPLETE(σi, T i, P);
5 complete the DT T i to T i

ρ by ρi;
6 T ← T ∪ T i

ρ ;
7 construct a new method setMi

ρ from ρi;
8 M′ ←M′ ∪Mi

ρ;

9 for j ← 1 to n do
10 compute the minimal subsetM′

j w.r.t. the
replaceability relation under Pj [M′] ∪M′′;

11 M′′ ←M′′ ∪M′
j ;

12 returnM′′

In fact, due to the greedy strategy, our approach cannot
guarantee criterion 2 and 3, but must satisfy criterion 1:

Theorem 2. Suppose M′′ is the method set refined by
METHODREFINE(D, I, P), if every instance in I has a TI-
HTN plan under the domain D, then it is also solvable under
the domain D+M′.

Proof. As every instance has a TIHTN plan, by Proposition
1, there exists a set of DTs T , each of which satisfies each
instance w.r.t. the domain D+M′ whereM′ is a method set
obtained via completion profiles. As in the second iteration,
the algorithm keeps the satisfiability of the instances,M′ is
replaceable byM′′ and each DT in sub(T ,M′′,M′) satis-
fies its corresponding instance in I. Thus, every instance is
solvable w.r.t. the new domain D+M′.

Experimental Analysis

In this section, we evaluate METHODREFINE1 in three well-
known planning domains comparing with HTN-MAKER2

on the ability of solving new instances.

1Available in https://github.com/sysulic/MethodRefine
2http://www.cse.lehigh.edu/InSyTe/HTN-MAKER/

We consider the three domains which HTN-MAKER
uses: Logistics, Satellite, and Blocks-world. We first get
the problem generators from International Planning Com-
petition website3 and randomly generate 100 instances for
each domain and take 50 instances as the training set and
50 instances as the testing set. We run METHODREFINE
and HTN-MAKER with 50 instances growingly as input
and obtain different learned method sets from these two ap-
proaches. A testing instance is considered as solved, if its
goal is achieved by a plan computed under the learned HTN
method set via an HTN planner. For HTN-MAKER we use
the HTN planner from their website2 and for our approach
METHODREFINE we still use our TIHTN planner with for-
bidding task insertion. Experiments are run on the 3.00 GHz
Intel i5-7400 with 8 GB RAM with a cutoff time of one hour.
In order to check if an instance is solved, we add a verify-
ing action whose precondition is the goal and whose effect
is empty in the last subtask of the initial task. The learning
performance is measured via the proportion of the solved in-
stances on the testing instances, which is called solving rate.

Experimental results on comparing different domain
incompleteness. First, we evaluate the influence of the dif-
ferent incompleteness of the given method sets on the solv-
ing rate. To simulate the incomplete method set as the in-
put of METHODREFINE, we take the HTN domain descrip-
tions in the website4 of SHOP2 HTN planner, and remove
different sets of subtasks from these domains. Then we con-
sider three removal cases: 1) remove one primitive task from
each method (if exists), with meaning the high complete-
ness, noted by MR-H; 2) remove two primitive tasks from
each method (if exists), noted by MR-M, with meaning the
middle completeness; 3) remove one more compound task in
some method of MR-L, noted by MR-L, with meaning the
low completeness. Taking the method set shown in Figure 1
as example, for MR-H, we remove the first drive and the first
fly in the methods cityShip and airShip, respectively, while
for MR-M, we remove all drive and fly in the methods. For
MR-L, the first cityShip is additionally removed from the
method of ship based on the MR-M setting. As these do-
main are stratifiable, we use the stratum-based prioritized
preference as the input of METHODREFINE.

The experimental results are shown in Figure 2. It demon-
strates that the more complete the domain is, the better
the learning performance is. Generally, the solving rate in-
creases along with the training set growing. For the Lo-
gistics and Satellite domains, in the settings of MR-H and
MR-M, METHODREFINE learns the necessary methods to
solve all testing problems from a few instances. It is because
the structure of these two domains is relatively straightfor-
ward and the DTs still can be constructed by the incomplete
method sets. In the MR-L setting, the compound action re-
moved in the Logistics Domain, cityShip, contains more ar-
guments, making the learned methods become more case-
specific, which cannot contribute to other instances.

MR-H eventually learns 2 methods which already effec-
tively solve all testing instances on the three domains. While

3http://ipc02.icaps-conference.org/
4https://www.cs.umd.edu/projects/shop/

10014

(a) The Logistics Domain (b) The Satellite Domain (c) The Blocks-World Domain

Figure 2: Experimental Results on the Solving Rate of METHODREFINE with Different Domain Incompleteness and HTN-
MAKER

(a) The Logistics Domain (b) The Satellite Domain (c) The Blocks-World Domain

Figure 3: Experimental Results on the Solving Rate of METHODREFINE with Different Preferences

MR-M and MR-L learn more than 10 methods in the Blocks-
World domain but still fail to achieve the full solving rate.

Experimental results on comparing METHODREFINE

against HTN-MAKER. From Figure 2, we observe that
HTN-MAKER learns methods less slowly than METHOD-
REFINE with MR-H setting. Comparing with the other two
settings, HTN-MAKER is superior on the Blocks-World do-
main but inferior on the Logistics and Satellite domain. In
the Satellite domain, after training a number of instances,
HTN-MAKER exceeds memory limitation when solving
some instances, causing a sudden drop in its curve. It is be-
cause HTN-MAKER learns a method which causes an in-
finitely recursive decomposition. It never occurs in our ap-
proach because we only learn methods from acyclic decom-
position trees. But they are solved when suitable methods are
learned with the training set growing. HTN-MAKER finally
learns 87, 23, 92 methods in the Logistics, Satellite, Blocks-
World domain, respectively. Comparing with our approach,
it learns more methods but many of which are redundant.

Experimental results on the performances of METHO-
DREFINE with different preferences. To evaluate our as-
sumption on the stratum-based prioritized preference, we
also compare it against its opposite prioritization where
tasks are inserted in as abstract compound tasks as possible
(‘MR-M-Abs’), and the case with no preference where any
completion profile is allowed (‘MR-M-rand’). We choose
the domains with the middle completeness.

From the experimental results (Figure 3), our stratum-
based prioritized preference outperforms the other two
cases. It is because the completion profile associates the in-

serted tasks to a more abstract task and it generates a more
case-specific method which may not suit other instances.

Discussion and Conclusion

Without declarative goals, we suppose that in the original
method set, every compound action at least has a method to
decompose. Our approach also can accept a declarative goal:
we can trivially introduce a compound action of achiev-
ing the goal which is decomposed into a ‘verifying’ action
whose precondition is the goal and whose effect is empty.

To sum up, we present a framework to help domain ex-
perts to improve HTN domains by refining methods. The ex-
periment results demonstrate that our approach outperforms
the method learning approach, HTN-MAKER, given an ap-
propriately incomplete method set as input. It is also illus-
trated that the stratum-based prioritized preference is effec-
tive to solve new instances.

Acknowledgements

This paper was supported by the National Natural Science
Foundation of China (61906216, 61573386, 61976232,
U1611262, 51978675), the Fundamental Research Funds
for the Central Universities (19lgpy226), Guangdong
Province Natural Science Foundation (2016A030313292,
2017A070706010 (soft science), 2018A030313086),
Guangdong Province Science and Technology Plan
Projects (2016B030305007, 2017B010110011), Guang-
dong Natural Science Funds for Distinguished Young
Scholar (2017A030306028), Guangdong Special Branch

10015

Plans Young Talent with Scientific and Technological
Innovation, Pearl River Science and Technology New
Star of Guangzhou, Guangzhou Science and Technology
Project (201804010435), and the ANR project AGAPE
(ANR-18-CE23-001).

References

Alford, R.; Bercher, P.; and Aha, D. W. 2015. Tight bounds
for HTN planning with task insertion. In Proceedings of
the 24th International Joint Conference on Artificial Intelli-
gence (IJCAI-15), 1502–1508.
Alford, R.; Shivashankar, V.; Kuter, U.; and Nau, D. S. 2012.
HTN problem spaces: Structure, algorithms, termination. In
Proceedings of the 5th Annual Symposium on Combinatorial
Search, (SOCS-12), 2–9.
Behnke, G.; Schiller, M. R. G.; Kraus, M.; Bercher, P.;
Schmautz, M.; Dorna, M.; Dambier, M.; Minker, W.;
Glimm, B.; and Biundo, S. 2019. Alice in DIY wonder-
land or: Instructing novice users on how to use tools in DIY
projects. AI Communication 32(1):31–57.
Behnke, G.; Höller, D.; and Biundo, S. 2017. This is a solu-
tion! (... but is it though?) - verifying solutions of hierarchi-
cal planning problems. In Proceedings of the 27th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 20–28. AAAI Press.
Erol, K.; Hendler, J.; and Nau, D. S. 1994. HTN plan-
ning: Complexity and expressivity. In Proceedings of the
12th AAAI Conference on Artificial Intelligence (AAAI-94),
1123–1128.
Erol, K.; Hendler, J.; and Nau, D. S. 1996. Complexity
results for HTN planning. Annals of Mathematics and Arti-
ficial Intelligence 18(1):69–93.
Garland, A.; Ryall, K.; and Rich, C. 2001. Learning hier-
archical task models by defining and refining examples. In
Proceedings of the 1st International Conference on Knowl-
edge Capture (K-CAP-01), 44–51. ACM.
Geier, T., and Bercher, P. 2011. On the decidability
of HTN planning with task insertion. In Proceedings of
the 21st International Joint Conference on Artificial Intel-
ligence, (IJCAI-11), 1955–1961.
Goldman, R. P. 2009. A semantics for HTN methods. In
Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling (ICAPS). AAAI Press.
Hogg, C.; Muñoz-Avila, H.; and Kuter, U. 2008. HTN-
MAKER: learning HTNs with minimal additional knowl-
edge engineering required. In Proceedings of the 23rd AAAI
Conference on Artificial Intelligence, (AAAI-08), 950–956.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2014.
Language classification of hierarchical planning problems.
In ECAI-14, 447–452.
Ilghami, O.; Muñoz-Avila, H.; Nau, D. S.; and Aha, D. W.
2005. Learning approximate preconditions for methods in
hierarchical plans. In Proceedings of the 22nd International
Conference on Machine Learning (ICML-05), 337–344.
Kambhampati, S.; Mali, A.; and Srivastava, B. 1998. Hybrid
planning for partially hierarchical domains. In Proceedings

of the 17th National Conference on Artificial Intelligence
and the 12th Conference on Innovative Applications of Arti-
ficial Intelligence (AAAI/IAAI-98), 882–888.
Lin, N.; Kuter, U.; and Sirin, E. 2008. Web service com-
position with user preferences. In Proceedings of European
Semantic Web Conference (EWSC), 629–643. Springer.
Lotinac, D., and Jonsson, A. 2016. Constructing hierarchical
task models using invariance analysis. In Proceedings of the
22nd European Conference on Artificial Intelligence (ECAI-
16), 1274–1282.
Nejati, N.; Langley, P.; and Könik, T. 2006. Learning hi-
erarchical task networks by observation. In Proceedings
of the 23rd International Conference on Machine Learning
(ICML-06), 665–672.
Reddy, C., and Tadepalli, P. 1997. Learning goal-
decomposition rules using exercises. In Proceedings of
the 14th International Conference on Machine Learning
(ICML-97), 278–286.
Xu, K., and Muñoz-Avila, H. 2005. A domain-independent
system for case-based task decomposition without domain
theories. In Proceedings of the 20th National Conference on
Artificial Intelligence (AAAI-05), 234–240.
Zhuo, H. H.; Hu, D. H.; Hogg, C.; Yang, Q.; and Muñoz-
Avila, H. 2009. Learning HTN method preconditions and
action models from partial observations. In Proceedings of
the 21st International Joint Conference on Artificial Intelli-
gence (IJCAI-09), 1804–1810.
Zhuo, H. H.; Muñoz-Avila, H.; and Yang, Q. 2014. Learning
hierarchical task network domains from partially observed
plan traces. Journal of Artificial Intelligence 212:134–157.

10016

