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Abstract

In this article we are interested in the stability of finite difference schemes approximation for hyperbolic
boundary value problems defined on the interval [0, 1]. The seminal work of [B. Gustafsson and Sundstrom., 1972],
mainly devoted to the half-line, gives a necessary and sufficient invertibility condition ensuring the
stability of the scheme, the so-called discrete uniform Kreiss-Lopatinskii condition. An interesting
point is that this condition is a discretized version of the one imposed in the continuous setting to
ensure the strong well-posedness of the hyperbolic boundary value problem. However as pointed in
[B. Gustafsson and Sundstrom., 1972] and as soon as several boundary conditions are concerned the so-
lution of the scheme may develop an exponential growth with respect to the discrete time variable. The
question addressed here is to characterize the schemes having this growth or not. This is made under new
invertibility conditions which are discretized versions of the ones preventing the exponential growth in
time of the solution to continuous hyperbolic boundary value problems in the strip studied in [Benoit, a].
In some sense it shows that this continuous to discrete extension of the characterization occurs in the
interval like in the half-line.
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1 Introduction

In this article we consider the approximation of the solution to first order linear hyperbolic boundary value
problems by finite difference schemes. The continuous problem reads:

L(∂)u := ∂tu+A∂xu = f for (t, x) ∈ ]0, T ]× ]0, 1[ ,

B0u|x=0 = g0, for t ∈ ]0, T ] ,

B1u|x=1 = g1, for t ∈ ]0, T ] ,

u|t≤0 = u0, for x ∈ [0, 1] ,

(1) {systeme_intro}{systeme_intro}

where the unknown u ∈ RN , N ≥ 1, the interior coefficient A is a constant matrix in MN×N (R) and where
the boundary coefficient B0 (resp. B1) is a given matrix in Mp×N (R) (resp. M(N−p)×N (R)), for a fixed
integer p encoding the good number of boundary conditions. More precisely if one considers the case where
A = diag(λ1, ..., λN ) then (1) decouples into N transport equations so that p must be equal to the number
of strictly positive eigenvalues of A in order to make sure that the problem is not over or under determined.

The strong well-posedness (meaning existence and uniqueness of the solution satisfying an energy estimate
in some exponentially weighted in time space based on L2) of this kind of problem is rather easy to establish
if both problems in the half-lines {x ≤ 0} and {x ≥ 1} are strongly well-posed. With more details the desired
energy estimate for (1) is the following straightforward generalization of the one in the half-line that is there
exist C, γ0 > 0 such that for all γ ≥ γ0,

γ

∫
R

∫ 1

0

e−2γt|u(t, x)|2 dxdt+

∫
R
e−2γt|u|x=0(t)|2 dt+

∫
R
e−2γt|u|x=1(t)|2 dt (2) {eq_est_intro}{eq_est_intro}

≤ C
(

1

γ

∫
R

∫ 1

0

e−2γt|f(t, x)|2 dx dt+

∫
R
e−2γt|g0(t)|2 dt+

∫
R
e−2γt|g1(t)|2 dt

)
.

In particular let us point that (2) implies that the growth of u compared to t is bounded by the exponential
factor eγ0t

Indeed localization arguments give the desired estimate near the boundaries of the interval while the
desired estimate away from the boundaries follows from the well-posedness of the pure Cauchy problem.

However this proof gives a priori a solution admitting some exponential growth with respect to time,
encoded by the threshold γ0, growth which does not appear in the half-line geometry. A natural question is
thus ”Does this growth really occurs ?”.

When one is dealing with finite difference schemes for boundary value problems then, for computational
reasons, all the components of the approximated solution in the boundary conditions must be prescribed.
However recall that in (1) only p or N − p components of the solution are given by the continuous problem
in itself, so arbitrary choices of boundary conditions have to be made to complete the discrete problem.

A natural question is to ask ”How can we choose good extra conditions ?”. Indeed the issue is that
typically a bad choice of the extra boundary conditions can lead to an exponentially growing solution of the
scheme while the solution of the original continuous problem does not have this growth and vice versa. The
aim of this paper is to try to give an answer to this question.
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As far as the author knows little results can be found in the litterature about this question. Finite dif-
ference scheme approximations in the interval are considered in [B. Gustafsson and Sundstrom., 1972] and
the phenomenon of the exponential growth of the solution is studied on explicit examples and more precisely
for some specific boundary conditions. We also have to mention [Trefethen, 1985] in which the author uses
the notion of P -stability (P standing for practical) introduced in [Brown, 1984] that is to say stable schemes
without exponential growth in time and like in [B. Gustafsson and Sundstrom., 1972] it is shown on exam-
ples that some choices of the discretized boundary conditions lead to this exponential growth of the solution.

Before to turn to a precise description of the characterization given in this article, let us recall some
results concerning the stability of finite difference scheme approximations in the more studied geometry of
the half-line.

The strong well-posedness of the continuous hyperbolic boundary value problem in the half-space:
∂tu(t, x) +A∂xu(t, x) = f(t, x) (t, x) ∈ ]−∞, T ]× ]0,∞[ ,

Bu|x=0(t) = g(t) t ∈ ]−∞, T ] ,

u|t≤0(x) = 0 x ∈ ]0,∞[ ,

(3) {ibvp_intro}{ibvp_intro}

has first been demonstrated in [Kreiss, 1970] in which the author establishes the energy estimate (that is an
estimate analogous to (2) up to the control of only one boundary term) via the construction of a so-called
Kreiss symmetrizor. The main tool used in this construction is the uniform Kreiss-Lopatinskii condition
ensuring that in the normal mode analysis, no stable mode is solution to the homogeneous resolvent equation
of (3) (that is the equation obtained after Laplace transform with respect to time).

Then in [Kreiss, 1968] and later in [B. Gustafsson and Sundstrom., 1972] the stability (without enter into
the details by stability we mean that a discretized version of (2) holds) of numerical schemes obtained by
finite difference approximations of (3) is established. We refer the interested reader to the full exposition of
[Coulombel, ].

In the author’s opinion one of the most significant point of the analysis is that the stability of the scheme
is obtained via the construction of some discrete symmetrizor under some discrete version of the continuous
uniform Kreiss-Lopatinskii condition.

Going back to the main question adressed in this article that is the possible exponential growth of the
solution to the finite difference scheme approximation of (1), the analogous question has been considered
for continuous problems in [Benoit, a] in which a characterization of the problems developing this growth is
established. With more details this characterization asks the invertibility of some explicit matrices reading
under the form I − T and seems to be linked to the amplification coefficients of repetitive reflections of
trapped wave packets (see [Benoit, b]).

Like in the half-space geometry the energy estimate is obtained via the construction of a symmetrizor
(based on the one introduced in [Osher, 1973] to deal with the quarter space geometry).

The main result of this article is that, like in the half-line geometry and mutatis mutandis, the same dis-
cretized/continuous version of the same condition characterize the lower exponential stability of the scheme
and the lower exponential strong stability of the continuous problem. More precisely that means that in-
versibility conditions on matrices reading I − T, where T is some kind of discrete version of T, characterize
the lower exponential stability of the finite difference scheme approximation.

The paper is organized as follows. In Section 2 we describe the scheme, introduce some notations and
state the main assumptions. The main result of the article (namely Theorem 3.1) that is a characterization
of lower exponential stability occupies Section 3. The proof of the main result is given in Sections 4 and 5.

More precisely Section 4 is divided in two: a preliminary required cancellation of the interior source term
(see Paragraph 4.1) and a study of the reduction to the so-called resolvent problem, already used in the
half-line geometry, where we recall the properties needed for the rest of the proof (see Paragraph 4.2).

Section 5 is the core of the proof of Theorem 3.1. Firstly we show that the invertibility conditions
mentioned above are necessary for lower exponential stability and then we show that a little reinforcement of
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one of these conditions is also sufficient for lower exponential stability via the construction of some discrete
symmetrizor.

At last, Section 6 gives the explicit study of a simple example that is the scalar transport equation.
However the study of this example permits in particular to recover some of the recent results about the finite
difference scheme approximation of a transport equation in the interval with Neumann boundary condition
of [Coulombel and Lagoutière, ].

2 Notations, description of the scheme and assumptions. {part_notations}

2.1 Notations

In all this article, for a, b ∈ R, the notation Ja, bK stands for the ”interval” of integers between a and b. More
precisely, Ja, bK := [a, b] ∩ Z.

For convenience, we define the following subsets of the complex plane which will be intensively used in
the following:

U := {z ∈ C \ |z| > 1} , U := {z ∈ C \ |z| ≥ 1} and D := {z ∈ C \ |z| < 1} .

We also denote by S1 the usual unit ball of C.

Let K ∈ N∗ be fixed, the space step of discretization is defined by ∆x := 1/K and we consider the regular
space subdivision of [0, 1], (xj)j defined by xj := j∆x for j ∈ J0,KK.

The time step of discretization is denoted by ∆t > 0 and the associated time subdivision (tn) is defined
by tn = n∆t, for all n ∈ N.

In order to make sure that the solution of the finite difference scheme in the full line R converges to the
solution of the continuous Cauchy problem a CFL (Courant-Friedrichs-Lewy) condition has to be assumed.
More precisely we make the classical assumption that the ratio λ := ∆t/∆x is kept constant when ∆t, ∆x ↓ 0.

Let µ ∈ Z then for all sequence u = (unj )n∈N,j∈Z we introduce Tµ the space-shifting operator defined by
(Tµu)n,j = unj+µ.

At last all the vectors in the following are assumed to be written in columns; for a fixed real matrix A
the notation AT stands for the transpose of A while when A is a complex matrix A∗ stands for the usual
composition of the transpose and complex conjugation of A.

2.2 Description of the scheme

We define the following finite difference scheme approximation of the interior equation of (1):

Un+1
j = QUnj + ∆tfnj for n ≥ 0 and j ∈ J1,KK, (4) {discretization_int}{discretization_int}

where the matrix Q ∈MN×N (R) is defined by:

Q :=

r∑
µ=−`

AµTµ. (5) {def_Q}{def_Q}

In (5), `, r ∈ N are fixed (these integers correspond respectively to the stencil of the scheme in the
left-hand side and in the right-hand side) and the matrices Aµ ∈MN×N (R) are given.

As usual in the definition of finite difference schemes for boundary value problems we remark that the
computation of Un+1

1 (resp. Un+1
K ) from (4) requires the values of the boundary terms Unj for j ∈ J1− `, 0K

(resp. j ∈ JK + 1,K + rK). In both cases these terms are not determined by the interior equation (that is
(4)) so we need to add to (4) discretized boundary conditions in order to define properly these terms.
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The discretized boundary conditions that we consider in this article are rather classical (see for example
[B. Gustafsson and Sundstrom., 1972]) and are quite generic. More precisely we define:

Un+1
j =

1∑
σ=0

Bσ,j0 Un+σ
1 + gn+1

0,j , for n ≥ 0 and j ∈ J1− `, 0K, (6) {discretization_bord1}{discretization_bord1}

for the left-hand side boundary condition and

Un+1
j =

1∑
σ=0

Bσ,j1 Un+σ
K = gn+1

1,j , for n ≥ 0 and j ∈ JK + 1,K + rK, (7) {discretization_bord2}{discretization_bord2}

for the right one. In (6) and (7) the discretization coefficients are defined by:

Bσ,j0 :=

b0∑
µ=0

Bσ,j,µ0 Tµ and Bσ,j1 :=

b1∑
µ=0

Bσ,j,µ1 T−µ. (8) {def_B}{def_B}

where b0 and b1 ∈ N are fixed. Moreover to make sure that the two boundary conditions are uncorrelated
we assume that b0 + b1 � K (another restriction on these parameters will be made in Assumption 2.3). The
coefficients at the boundaries, that is the Bσ,j,µ0 and the Bσ,j,µ1 , are fixed matrices in MN×N (R).

At last to the finite difference approximation scheme we add a discretization of the initial condition and
in this article we restrict our attention to homogeneous initial conditions:

U0
j = 0 for j ∈ J1− `,K + rK. (9) {discretization_initiale}{discretization_initiale}

To sum up the full finite difference scheme approximation considered in the following is given by:
Un+1
j = QUnj + ∆tfnj for n ≥ 0 and j ∈ J1,KK,

Un+1
j =

∑1
σ=0B

σ,j
0 Un+σ

1 + gn+1
0,j for n ≥ 0 and j ∈ J1− `, 0K,

Un+1
j =

∑1
σ=0B

σ,j
1 Un+σ

K + gn+1
1,j for n ≥ 0 and j ∈ JK + 1,K + rK,

U0
j = 0 for j ∈ J1− `,K + rK.

(10) {approximation}{approximation}

Let us briefly give some comments about how the scheme (10) operates.
Assume that the values of the Unj for j ∈ J1− `,K + rK are given at some time step n, we shall describe

how the values of the Un+1
j are computed. Firstly the interior equation of (10) gives the values of the Un+1

j

for j ∈ J1,KK, because the interior equation of (10) only depends on the Unj for j ∈ J1 − `,K + rK. So it

remains to determine the value of the Un+1
j for j ∈ J1− `, 0K ∪ JK + 1,K + rK.

From the definition of the discretization of the boundary condition on {x = 0} (resp. {x = 1}), see (6)
(resp. (7)) the Un+1

j for j ∈ J1− `, 0K (resp. j ∈ JK + 1− b1,K + 1K) depend on the Ukj for k ∈ {n, n+ 1}
and j ∈ J1, 1 + b0K (resp. j ∈ JK − b1,KK), terms that all have been determined at the previous step.

So that the determination of the Un+1
j from the Unj for j ∈ J1− `,K + rK is complete.

2.3 Assumptions on the scheme

In this paragraph we describe the several assumptions made upon the scheme (10) in order to show its
stability.

The first one, which can be shown to be necessary for the stability of (10), is to ask that the Cauchy
problem associated to (10) is stable. The aim of this paper is not to give a precise description of the stability
of the Cauchy problem associated to (10) but it is a well-known result that this condition is equivalent to
so-called Von Neumann condition. We refer, for example, to [[Coulombel, ] section 2.1] for more details

{hyp_Neumann}
Assumption 2.1 (Von Neumann condition) For κ ∈ C \ {0}, let A be the amplification matrix associ-
ated to (10) defined by

A (κ) :=

r∑
µ=−`

κµAµ

then there exists C > 0 such that for all n ∈ N and for all η ∈ R we have |A (eiη)n| ≤ C.
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Figure 1: Time-space discretization of the full set of resolution for K = 5, ` = 3 and r = 2. The red areas
corresponds to the interior domain, the blue zones correspond to the boundaries

Then we define

∀z ∈ C \ {0} , ∀µ ∈ J−`, rK, Aµ(z) := δµ,0I −
1

z
Aσ,µ, (11) {def_A}{def_A}

where the δ·,· stands for the Kronecker symbol.

The following assumption is rather classical in the study of boundary value problems and is referred as
the non-characteristicity of the boundary condition; more precisely

{hyp_non_car}
Assumption 2.2 [Non characteristic discrete condition] For all z ∈ U , the matrices A−`(z) and Ar(z) are
invertible.

The following assumption is possibly not necessary. It is a restriction on the value of the parameters
defining the stencils in the scheme made to make sure that the so-called resolvent matrix M(z) (see (24))
and the associated boundary matrices B0(z) and B1(z) (see (27) and (28)) have a suitable structure.

Indeed in the following these precise structures are used in a not tottaly trivial way. The generalization
of our main result without Assumption 2.3 is possible in the author’s opinion but it is left for future studies.

{hyp_restriction1}
Assumption 2.3 [On the parameters b0 and b1] We assume that the parameters b0 (resp. b1) defining the
stencil of the boundary condition on the side {x = 0} (resp. {x = 1}) (see (6) (resp. (7))) satisfies b0 < r
(resp. b1 < `).

Finally our last assumption on the finite difference approximation scheme is made to deal with possibly
non-homogeneous source term in the interior. This assumption seems to be not harmless because firstly the
construction of a symmetrizor requires a first reduction of the problem to a homogeneous forcing term in
the interior and secondly because the proof of the stability estimate in itself requires some kind of discrete
integration by part argument which uses Assumption 2.4.

{hyp_restriction2}
Assumption 2.4 The scheme (10) satisfies that for all u ∈ `2(Z) the following inequality holds:

‖Qu‖`2(Z) ≤ ‖u‖`2(Z).

3 Main result {part_resultat}

Let us be more precise about the concept of stability used in this article. It is a natural generalization of the
one used in the half-line geometry introduced in the seminal work of [B. Gustafsson and Sundstrom., 1972].

{def_bien_pose}
Definition 3.1 [B. Gustafsson and Sundstrom., 1972]The approximation scheme (10) is stable if for all
source terms (fnj )n∈N,j∈J1,KK, (gn0,j)n∈N,j∈J1−`,0K and (gn1,j)n∈N,j∈JK+1,K+rK the unique solution of the scheme
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(10) namely (Unj )n∈N,j∈J1−`,K+rK satisfies the following energy estimate: there exists C, γ0 > 0 such that for
all γ ≥ γ0 and ∆t > 0 we have

γ − γ0

γ∆t+ 1

∑
n≥0

∆te−2γn∆t
K+r∑
j=1−`

∆x|Unj |2 +
∑
n≥0

∆te−2γn∆t
r∑

j=1−`

|Unj |2 +
∑
n≥0

∆te−2γn∆t
K+r∑

j=K+1−`

|Unj |2 (12) {eq_bien_pose}{eq_bien_pose}

≤ C

γ∆t+ 1

γ − γ0

∑
n≥0

∆te−2γ(n+1)∆t
K∑
j=1

∆x|fnj |2 +
∑
n≥1

∆te−2γn∆t
0∑

j=1−`

|gn0,j |2 +
∑
n≥1

∆te−2γn∆t
K+r∑
j=K+1

|gn1,j |2
 .

ii) In particular when (12) holds with γ0 = 0 we say that the scheme (10) is Lower Exponentially (LE in
the following) stable.

Let us give some comments about the energy estimate (10):

• Firstly note that (12) is just a discrete version of the the energy estimate for in the continuous setting
(see (2)). Indeed let formally ∆t ↓ 0 in (12) then we recover the energy estimate in the strip considered
in [Benoit, a].

• Secondly recall that the parameters ∆t and ∆x are assumed to be linked by some CFL condition on
∆t
∆x so that up to change the value of C in (12) there is no loss of generality by assuming that (12) does
not depend of ∆x. Moreover following [Coulombel, ], we can also assume that ∆t = 1 so that (12) is
equivalent to the following energy estimate: there exists C, γ0 > 0 for all γ ≥ γ0 we have the inequality

γ − γ0

γ + 1

∑
n≥0

e−2γn
K+r∑
j=1−`

|Unj |2 +
∑
n≥0

∆te−2γn
r∑

j=1−`

|Unj |2 +
∑
n≥0

e−2γn∆t
K+r∑
j=K−`

|Unj |2 (13) {eq_bien_pose_utile}{eq_bien_pose_utile}

≤ C

 γ + 1

γ − γ0

∑
n≥s+1

∆te−2γn
K∑
j=1

|fnj |2 +
∑

n≥s+1

e−2γn
0∑

j=1−`

|gn0,j |2 +
∑

n≥s+1

e−2γn
K+r∑
j=K+1

|gn1,j |2
 ,

equation that we will use up to now as the definition for the energy estimate.

• Then we describe the main difference between the strong stability and the LE−stability. The solution of
a strong stable scheme may have a growth in the time variable with a exponential rate ruled by γ0 while
in the case γ0 = 0 the solution of a LE-stable scheme have, as pointed in [[B. Gustafsson and Sundstrom., 1972]-
Theorem 3.3], no exponential growth with respect to time. As mentioned in the introduction of this
article we are here interested in LE−stable schemes. So that we are concern in (13) with γ − 0 = 0.

• Finally we point that the control of the traces values in the left-hand side of (12) are assumed to hold
on the extended traces that is on J1− `, rK and on JK− `,K + rK so the control differs a little from the
one asked in [B. Gustafsson and Sundstrom., 1972] (in which the authors consider for the trace the the
values of the J1− `, 0K only). This difference will be of real importance when we will define the traces
operators (see equation (47)).

We now turn to the statement of the main result of this paper. More precisely this result characterizes
the LE-stability of the scheme (10) in terms of an invertibility condition on some matrices referred as trace
operators (that is matrices that take in input the value of the trace of the solution on one boundary and give
in output the value of the trace on the other boundary (see (51) and (53) for a precise definition of these
matrices).

This situation already occurs if one considers the continuous problem instead of the discrete one (see
[Benoit, a] for more details). Moreover it is also already the case for the uniform Kreiss-Lopatinskii condition
in the half-line geometry. We refer to [Kreiss, 1970]-[Benzoni-Gavage, 2007]-[Chazarain and Piriou, 1981]
for a description of this condition in the continuous setting and [B. Gustafsson and Sundstrom., 1972]-
[Coulombel, 2011] or Assumption 4.1 for a description in the discrete setting. In the author’s opinion the
generalization of this continuous/discrete requirement is interesting in its own because it seems to indicate
that the same mechanisms occur in the strip and in the half-line.
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{main_th1}
Theorem 3.1 Under Assumptions 2.1-2.4 if the scheme (10) is LE-stable in the sense of Definition 3.1
then for all z ∈ U the matrix1 I −T0→0(z) is uniformly invertible from the stable subspace Es(z) into Es(z)
while the matrix2 I − T0→0(z) is invertible from kerB0(z) into kerB0(z).

Conversely and under Assumptions 2.1-2.4 if I − T0→0(z) is uniformly invertible from Es(z) into Es(z)
and if I −T0→0(z) is uniformly invertible from kerB0(z) into kerB0(z) then the scheme (10) is LE-stable
in the sense of Definition 3.1.

4 First analysis {part_premiere_analysis}

4.1 Reduction to a homogeneous source term in the interior {part_reduction}

In this paragraph we describe a method to restrict the study of the LE-stability of (10) to homogeneous
source term in the interior. It is done because in Paragraph 5.2.2 the construction of the symmetrizor needs
the scheme to be homogeneous in the interior.

This is also the case for the continuous problem (see [Benoit, a] for more details). However in the
continuous setting we can, using some kind of integration by parts argument (which can easily be performed
for symmetric interior matrices and strictly dissipative boundary conditions see [[Benzoni-Gavage, 2007],
Section 3]) assume that the source term in the interior is zero.

The proof given here is a rather straightforward generalization of a proof establishing the so-called
semi-group stability for finite difference schemes in the half-line given in [Coulombel and Gloria, 2011]. Con-
sequently we will not give all the details of the proof but only describe the main points. Our aim is to show
the following proposition:

{proposition_reduction_homogene}
Proposition 4.1 [Reduction to a homogeneous source term in the interior]Under Assumptions 2.2 and 2.3
and Assumption 2.4. We consider the homogeneous scheme approximation with homogeneous source term
in the interior: 

Wn+1
j = QWn

j n ≥ 0, j ∈ J1,KK,
Wn+1
j = B0,j

0 Wn
1 +B1,j

0 Wn+1
1 + gn+1

0,j n ≥ 0, j ∈ J1− `, 0K,
Wn+1
j = B0,j

1 Wn
K +B1,j

1 Wn+1
K + gn+1

1,j n ≥ 0, j ∈ JK + 1,K + rK,
W 0
j = 0 j ∈ J1− `,K + rK.

(14) {approximation_homogene}{approximation_homogene}

Then (10) is LE-stable if and only if (14) is LE-stable.

The proof of Proposition 4.1 relies on the LE-stability of finite difference approximations with Dirichlet
boundary conditions on each side of the boundary. Then the solution (Unj )n∈N,j∈J1−`,K+rK to (10) is decom-
posed into the solution of this pure Dirichlet problem, namely (V nj )n∈N,j∈J1−`,K+rK plus the solution to (14)
with suitable source terms on the boundaries depending on the boundary value of (V nj )n∈N,j∈J1−`,K+rK.

Finally, by error analysis, it remains to use the stability of (14) to estimate (Unj ) in terms of (V nj ) only.
The stability of (10) then immediately follows from the one of the Dirichlet scheme.

4.1.1 LE-stability of the pure Dirichlet problem. {part_dir_ok}

In this paragraph we show that under Assumption 2.4 the finite difference scheme approximation with
Dirichlet boundary conditions is automatically LE-stable3 .

1We refer to (51) for a precise definition.
2See (??).
3In fact following all the proof exposed in [Coulombel and Gloria, 2011], that is by considering the case where the boundary

terms and the initial condition are not trivial it is possible to show a stronger estimate that (16). Indeed, one can show that
with Dirichlet boundary conditions the scheme in the half-line is semi-group stable in the sense that its solutions (V nj ) satisfies

the desired estimate with the extra term supn≥0 e
−2γn

∑K+r
j=1−` |V

n
j |2 in the left-hand side. This stronger estimate is of course

interesting in its own, because little results are known about the semi-group stability of finite difference schemes with several
boundaries but it will not be used in the following.

8



Proposition 4.2 Under Assumptions 2.2, 2.3 and Assumption 2.4, we consider (V nj )n∈N,j∈J1−`,K+rK the
solution of 

V n+1
j = QV nj + fnj n ≥ 0, j ∈ J1,KK,
V n+1
j = 0 n ≥ 0, j ∈ J1− `, 0K,
V n+1
j = 0 n ≥ 0, j ∈ JK + 1,K + rK,
V 0
j = 0, j ∈ J1− `,K + rK.

(15) {problem_diri}{problem_diri}

Then (V nj )n∈N,j∈J1−`,K+rK satisfies the energy estimate: there exists C > 0 such that for all γ > 0 we have

γ

γ + 1

∑
n≥0

e−2γn
K+r∑
j=1−`

|V nj |2 +
∑
n≥0

e−2γn
r∑

j=1−`

|V nj |2 +
∑
n≥0

e−2γn
K+∑̀

j=K+1−`

|V nj |2 (16) {eq_est_dirichlet_homogene}{eq_est_dirichlet_homogene}

≤ C γ + 1

γ

∑
n≥0

e−2γ(n+1)
K∑
j=1

|fnj |2.

Proof : The proof exposed here follows the one given in the half-line geometry in [Coulombel and Gloria, 2011].
So that in the following we will only describe the main ideas of the proof for a sake of completeness. Let
(V nj )n∈N,j∈J1−`,K+rK be the solution to (15), we introduce the decomposition Q = I + Q̃ so that we have

K∑
j=1

|V n+1
j |2 =

K∑
j=1

|V nj |2 + 2

K∑
j=1

(V nj )T Q̃V nj +

K∑
j=1

|Q̃V nj |2 + 2

K∑
j=1

(QV nj )T fnj +

K∑
j=1

|fnj |2.

We define (Wn
j )n∈N,j∈Z the extension of (V nj ) by zero for j ≤ 0 and j ≥ K+1. In terms of Q̃, Assumption

2.4 ensures that we have
∞∑

j=−∞
(QWn

j )TWn
j +

∞∑
j=−∞

|Wn
j |2 ≤ 0

that is

2

K∑
j=1

(V nj )T Q̃V nj +

K∑
j=1

|Q̃V nj |2 +

0∑
j=−r

|Q̃Wn
j |2 +

K+∑̀
j=K+1

|Q̃Wn
j |2 ≤ 0

From Lemma 2.24 of [Coulombel and Gloria, 2011] there exist two constants c0, c1 > 0 such that

0∑
j=−r

|Q̃Wn
j |2 ≥ c0

r∑
j=1−`

|V nj |2 and

K+∑̀
j=K+1

|Q̃Wn
j |2 ≥ c1

K+r∑
j=K+1−`

|V nj |2.

So we have:

K∑
j=1

e−2γ(n+1)|V n+1
j |2−e−2γ

K∑
j=1

e−2γn|V nj |2 + e−2γ
r∑

j=1−`

e−2nγ |V nj |2 + e−2γ
K+r∑

j=K+1−`

e−2γn|V nj |2

≤ C

 K∑
j=1

e−2(n+1)γ |fnj |2 + e−2γ
( K∑
j=1

e−2γn|V nj |2
) 1

2
( K∑
j=1

e−2(n+1)γ |fnj |2
) 1

2


We sum from n = 0 to N we have from Young inequality in the right-hand side with parameter (1−e−2γ):

e−2γ(N+1)|V N+1
j |2 +

1− e−2γ

2

N∑
n=0

K∑
j=1

e−2γn|V nj |2 + e−2γ
N∑
n=0

r∑
j=1−`

e−2γn|V nj |2

+ e−2γ
N∑
n=0

K+r∑
j=K+1−`

e−2γn|V nj |2 ≤ C
1

1− e−2γ

N∑
n=0

e−2γ(n+1)|fnj |2,

4Note in particular that this lemma requires Assumption 2.2.

9



from which we derive

γ

γ + 1

N∑
n=0

K∑
j=1

e−2γn|V nj |2 + e−2γ
N∑
n=0

r∑
j=1−`

e−2γn|V nj |2 + e−2γ
N∑
n=0

K+r∑
j=K+1−`

e−2γn|V nj |2

≤ C γ + 1

γ

N∑
n=0

e−2γ(n+1)|fnj |2,

that is to say (16) up to the factor e−2γ in front of the boundary term. So that (16) holds for small values
of γ that is the values in which we are particularly interested in when we are dealing with LE-stability. The
large values of γ, let us say γ ≥ 1, are ruled exactly like in Lemma 2.4 of [Coulombel and Gloria, 2011].

�

4.1.2 Proof of Proposition 4.1.

Clearly it is sufficient to show that the LE-stability of (14) implies the one of (10). Let (Unj ) be the solution
of (10) we decompose Unj = V nj +Wn

j where (V nj ) satisfies the pure Dirichlet problem:
V n+1
j = QV nj + fnj n ≥ 0, j ∈ J1,KK,
V n+1
j = 0 n ≥ 0, j ∈ J1− `, 0K,
V n+1
j = 0 n ≥ 0, j ∈ JK + 1,K + rK,
V 0
j = 0 j ∈ J1− `,K + rK,

(17) {eq_V}{eq_V}

and where (Wn
j ) satisfies

Wn+1
j = QWn

j n ≥ 0, j ∈ J1,KK,
Wn+1
j = B0,j

0 Wn
1 +B1,j

0 Wn+1
1 + g̃n+1

0,j n ≥ 0, j ∈ J1− `, 0K,
Wn+1
j = B0,j

1 Wn
K +B1,j

1 Wn+1
K + g̃n+1

1,j n ≥ 0, j ∈ JK + 1,K + rK,
W 0
j = 0 j ∈ J1− `,K + rK.

, (18) {eq_W}{eq_W}

with for all n ≥ 0,

∀j ∈ J1− `, 0K, g̃n+1
0,j := gn+1

0,j +B0,j
0 V n1 +B1,j

0 V n+1
1 ,

∀j ∈ JK + 1,K + rK, g̃n+1
1,j := gn+1

1,j +B0,j
1 V nK +B1,j

1 V n+1
K .

Equation (16) gives the desired estimate for the V nj in terms of the source term (fnj ) only. Then the
LE-stability of (14) gives

γ

γ + 1

∑
n≥0

e−2γn
K+r∑
j=1−`

|Wn
j |2 +

∑
n≥0

e−2γn
K+r∑

j=K+1−`

|Wn
j |2 +

∑
n≥0

e−2γn
r∑

j=1−`

|Wn
j |2

≤C

∑
n≥0

e−2γn
0∑

j=1−`

e−2γn|g̃n0,j |2 +
∑
n≥0

e−2γn
K+r∑
j=K+1

e−2γn|g̃n0,j |2
 ,

and from the definition of g̃n+1
0,j and g̃n+1

1,j it is sufficient to control the |V nj |2 and the |V n+1
j |2 for j ∈ J1, 1+b0K

and j ∈ JK − b1,KK which is possible from (16) and Assumption 2.3.

�
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4.2 Study of the resolvent problem {part_resolvent}

Like in the proof of the stability of the finite difference approximation scheme in the half-line the first step
is to perform a normal mode analysis with respect to the time variable. More precisely we decompose for all
z ∈ C \ {0}, Unj := znWj , where (Unj ) stands for the solution of (10). At the formal level the sequence (Wj)
satisfies the scheme: 

Wj − z−1QWj = 0 j ∈ J1,KK,
Wj − z−1B0,j

0 W1 −B1,j
0 W1 = G0,j j ∈ J1− `, 0K,

Wj − z−1B0,j
1 WK −B1,j

1 Wk = G1,j j ∈ JK + 1,K + rK,
(19) {schema_resolvant}{schema_resolvant}

where the precise expression of the new source terms (G0,j)j∈J1−`,0K and (G1,j)j∈JK+1,K+rK is of little interest
(because the new definition of the stability will be assumed to hold for all source terms). More precisely
we now use the following definition of stability which from [B. Gustafsson and Sundstrom., 1972] (see also
[Coulombel, ]) is equivalent to the stability of the scheme (10) in the sense of Definition 3.1.

{gateau}
Definition 4.1 (LE-stability of the normal scheme) The finite difference approximation (19) is said to
be LE-stable if there exists C > 0 such that for all source terms (G0,j)j∈J1−`,0K ⊂ CN and (G1,j)j∈JK+1,K+rK ⊂
CN the problem (19) admits a unique solution (Wj)j∈J1−`,K+rK satisfying that for all z ∈ U we have the
estimate

|z| − 1

|z|

K+r∑
j=1−`

|Wj |2 +

r∑
j=1−`

|Wj |2 +

K+r∑
j=K+1−`

|Wj |2 ≤ C

 0∑
j=1−`

|G0,j |2 +

K+r∑
j=K+1

|G1,j |2
 . (20) {eq_bien_pose_resol}{eq_bien_pose_resol}

We conclude this paragraph with the following proposition which establishes that the control of the
interior term in the left hand side of (20) comes for free in terms of the control of the boundary terms of the
left hand side. More precisely

Proposition 4.3 Under Assumption 2.4, the resolvent finite difference approximation (19) is LE-stable in
the sense of Definition 4.1 if and only if we have the following stability estimate: there exists C > 0 such that
for all source terms (G0,j)j∈J1−`,0K ⊂ CN and (G1,j)j∈JK+1,K+rK ⊂ CN the problem (19) admits a unique
solution (Wj)j∈J1−`,K+rK satisfying that for all z ∈ U we have the estimate

r∑
j=1−`

|Wj |2 +

K+r∑
j=K+1−`

|Wj |2 ≤ C

 0∑
j=1−`

|G0,j |2 +

K+r∑
j=K+1

|G1,j |2
 . (21) {eq_bien_pose_resol_bis}{eq_bien_pose_resol_bis}

{lapin}

Proof : Clearly it is sufficient to show that the energy estimate (21) implies the stronger estimate (20). Let

(Wj)j∈J1−`,K+rK be the solution of (19) and let (W̃j)j∈Z be the extension of (Wj)j∈J1−`,K+rK by zero for

j < 1− ` and j > K+ r. Then (W̃j)j∈Z satisfies the equation W̃j = 1
zQW̃j + F̃j for all j ∈ Z where the error

source term is given by

F̃j :=



0 if j < 1− `− r
Wj − 1

z

∑r
σ=1−`−j A

σWσ if j ∈ J1− `− r, 1K
0 if j ∈ J1− `,KK
Wj − 1

z

∑r+K−j
σ=−` AσWj+σ if j ∈ JK + 1,K + r + `K

0 if j > K + r + `

(22)

So that multiplying the evolution equation for (W̃j)j∈Z in the left hand side by W̃ ∗j and summing over j ∈ Z
gives by Cauchy-Scharwz inequality:

K+r∑
j=1−`

|Wj |2 ≤
1

|z|

∞∑
j=−∞

|W̃j ||QW̃j |+
0∑

j=1−`

W ∗j F̃j +

K+r∑
j=K+1

W ∗j F̃j .

11



From Assumption 2.4 and because from the definition of F̃j for j ∈ J1 − `, 0K (resp. j ∈ JK + 1,K + r)
this term only involves the Wj for j ∈ J1− `, rK (resp. j ∈ JK + 1− `,K + rK) we obtain the estimate that
for all z ∈ U :

|z| − 1

|z|

K+r∑
j=1−`

≤ C

 r∑
j=1−`

|Wj |2 +

K+r∑
j=K+1−`

|Wj |2
 , (23) {lapinou}{lapinou}

and the estimate (20) follows from (21) combined with (23)

�

4.2.1 Reduction to the resolvent equation

To study (19) it is more convenient to change its expression in such a way that this scheme becomes an
iterative process compared to j, for the higher dimensional vector Wj := (Wj+r−1, ...,Wj−`)

T ∈ C(`+r)N .
To this aim, thanks to Assumption 2.2, we introduce the matrix:

M(z) :=


−A−1

r (z)Ar−1(z) · · · · · · A−1
r (z)A`(z)

I 0 0 0

0
. . . 0 0

0 0 I 0

 ∈M(`+r)N×(`+r)N (C) (24) {def_M}{def_M}

We also define the auxiliary boundary conditions:

∀z ∈ C \ {0} ,∀j ∈ J1− `, 0K,∀µ ∈ J0, b0K, Bj,µ0 (z) :=
1

z
B0,j,µ

0 +B1,j,µ
0 , (25) {def_B0_aux}{def_B0_aux}

∀z ∈ C \ {0} ,∀j ∈ JK + 1,K + rK,∀µ ∈ J0, b1K, Bj,µ1 (z) :=
1

z
B0,j,µ

1 +B1,j,µ
1 , (26) {def_B1_aux}{def_B1_aux}

and then

B0(z) :=

0 · · · 0 −B0,b0
0 (z) · · · −B0,0

0 (z) I 0
...

...
...

...
. . .

0 · · · 0 −B1−`,b0
0 (z) · · · −B1−`,0

0 (z) 0 I

 ∈M`N×(`+r)N (C) (27) {def_B0}{def_B0}

where the first block in (27) has (r − b0 − 1)N columns, the second (b0 + 1)N and the last one `N . Finally
we define similarly

B1(z) :=

I −BK+r,0
1 · · · −BK+r,b1

1 0 · · · 0
. . .

...
...

...
...

I −BK+1,0
1 · · · −BK+1,b1

1 0 · · · 0

 ∈MrN×(`+r)N (C), (28) {def_B1}{def_B1}

where the first block in (28) has rN columns, the second (b1 + 1)N and the last one (`− b− 1− 1)N .
This change of unknown leads us to consider the following reformulation of (19)

Wj+1 = M(z)Wj j ∈ J1,KK,
B0(z)W1 = G0,

B1(z)WK+1 = G1,

(29) {eq_total_resol}{eq_total_resol}

where G0 := (G0,0, ..., G0,1−`) ∈ C`N and G1 := (G1,K+r, ..., G1,K+1) ∈ CrN .
We thus have the following proposition which is a slight adaptation [[Coulombel, ] Section 3.2] in order

to deal with the extra boundary condition in the right hand-side.
{prop_stable_resol}

Proposition 4.4 Under Assumption 2.2 the approximation (10) is LE-stable in the sense of Definition 4.1
if and only if there exists C > 0 such that for all z ∈ U and for all G0 ∈ C`N , G1 ∈ CrN the resolvent
equation (29) has a unique solution (Wj)j∈J1,K+1K satisfying that

|z| − 1

|z|

K∑
j=1

|Wj |2 + |W1|2 + |WK+1|2 ≤ C
(
|G0|2 + |G1|2

)
. (30) {est_stable_resol_aux}{est_stable_resol_aux}
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So that with the results of Paragraph 4.1 and Proposition 4.2 in hand the question of the LE-stability of
the finite difference scheme approximation (10) in the sense of Definition 3.1 can be reduced to the existence
of C > 0 such that for all z ∈ U and for all G0 ∈ C`N , G1 ∈ CrN the resolvent equation (29) has a unique
solution (Wj)j∈J1,K+1K satisfying that

|W1|2 + |WK+1|2 ≤ C
(
|G0|2 + |G1|2

)
. (31) {est_stable_resol}{est_stable_resol}

Before to turn to the description of the necessary and sufficient conditions ensuring the LE-stability of
(29), we shall give more informations about this scheme.

In the next paragraphs we firstly recall some classical properties about the resolvent matrix M(z) which
come from the study of finite difference schemes in the half-line. Then we construct a ”dual” scheme for
(29) because as we will see in Paragraph 5.2.2 the construction of the symmetrizor (that shows the stability
estimate of the scheme) is intrinsically linked to this ”dual” scheme. Moreover this ”dual” scheme is an easy
way to show the existence of a solution to (29).

4.2.2 Properties of the matrix M(z)

In this paragraph we recall the principal properties of the matrix M(z) and more specifically the different
behaviours of its spectrum when z ∈ U and when z ∈ U .

We start by the following lemma describing the spectrum of the resolvent matrix M(z) when z ∈ U .
More precisely this lemma indicates that when z ∈ U the spectrum of M(z) is well-separated in the sense
that it only contains eigenvalues associated to exponentially decreasing modes and exponentially inscreasing
modes. This lemma may be seen as the analogue of Hersh lemma for continuous problems (see [Hersh, 1963])

{hersh_num}
Lemma 4.1 ([Kreiss, 1968]) Under Assumptions 2.1 and 2.2 for all z ∈ U the eigenvalues κ of the matrix
M(z) satisfy κ 6= 0 and κ 6∈ S1. Moreover for all z ∈ U , M(z) has `N eigenvalues in D and rN in U .

We denote by Es(z) (resp. Eu(z)) the stable (resp. unstable) subspace of M(z) that is the generalized
eigenspace associated to eigenvalues in D (resp. U ).

In particular for all z ∈ U the following decomposition holds:

C(`+r)N = Es(z)⊕ Eu(z). (32) {decomp_su}{decomp_su}

An important corollary of Lemma 4.1 (see for example [Coulombel, ]) is the fact that the so-called
discrete uniform Kreiss-Lopatinskii condition is necessary for the stability of the problem in the half-line.
More precisely if we consider the schemes{

Wj+1 = M(z)Wj j ≥ 1

B0(z)W1 = G0,
(33) {approx_demi1}{approx_demi1}

and {
Wj = M−1(z)Wj+1 j ≤ K
B1(z)WK+1 = G1,

(34) {approx_demi2}{approx_demi2}

then a necessary condition for these schemes to be stable is the following condition that we state as an
assumption:

{hyp_ukl}
Assumption 4.1 (Discrete uniform Kreiss-Lopatinskii condition) Under Assumptions 2.1 and 2.2
we assume that the discrete uniform Kreiss-Lopatinskii condition holds for the finite difference scheme (33)
(resp. (34)) that is to say that there exists C0 > 0 (resp. C1 > 0) such that for all z ∈ U we have that

∀W ∈ Es(z), |W | ≤ C0|B0(z)W | (resp. ∀W ∈ Eu(z), |W | ≤ C1|B1(z)W |) ,

where we stress that the constant C0 (resp. C1) does not depend on z.
In particular the restriction of B0(z) (resp. B1(z)) to Es(z) (resp. Eu(z)) is uniformly invertible for all

z ∈ U , we denote this inverse by Φ0(z) (resp. Φ1(z)).
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The work of [B. Gustafsson and Sundstrom., 1972] then extended by [Coulombel, 2011] shows that in
fact the discrete uniform Kreiss-Lopatinskii condition is also a sufficient condition for the stability of the
finite difference scheme approximation in the half-line.

The sufficiency of this condition is shown from the construction of a so-called symmetrizor which brings
back the proof of the energy estimate to a direct discrete integration by parts argument. However the
construction of the symmetrizor in itself is rather technical and requires to understand what is the extension
by continuity of the stable subspace Es(z) up to U . Without enter into technical details, we refer for example
to [[Coulombel, ], Section 4], we admit here that Es(z) and Eu(z) can be extended by continuity up to U .
Thanks to this property we can give an equivalent formulation of the uniform Kreiss-Lopatinskii condition
that will be used intensively in the following.

{cor_ukl_re}
Corollary 4.1 Under Assumptions 2.1, 2.2 and 4.1, for all z ∈ U we have the following decompositions:

C(`+r)N = kerB0(z)⊕ Es(z), (35) {decomp_0}{decomp_0}

and
C(`+r)N = kerB1(z)⊕ Eu(z). (36) {decomp_1}{decomp_1}

To conclude this paragraph we introduce in the following definition the different projections that will be
required later on.

{def_projo}
Definition 4.2 Under Assumptions 2.1 and 2.2:

• for all z ∈ U we denote by Πs(z) (resp. Πu(z)) the projection upon Es(z) (resp. Eu(z)) with respect
to the decomposition (32).

• Under Assumption 4.1, for all z ∈ U we denote by Πs(z) (resp. ΠkerB0
(z)) the projection upon Es(z)

(resp. kerB0) with respect to the decomposition (35).

Similarly we denote by Πu(z) (resp. ΠkerB1(z)) the projection upon Eu(z) (resp. kerB1) with respect
to the decomposition (36).

• Finally, from the definition of the boundary matrices B0(z) and B1(z) (see (27) and (28)) we can define
the projection ΠkerB0(z) (resp. ΠkerB1(z)) with respect to the decomposition C(`+r)N = kerB0(z) ⊕
kerB1(z) for all z ∈ U .

4.2.3 Construction of a dual problem for the resolvent equation {part_dual}

In this paragraph we construct a dual problem for the scheme (29).
In the continuous setting dual problems are commonly used to show the existence of a solution of the

partial differential equation. The argument is the following: in a first time an a priori energy estimate (the
equivalent of the stability inequality (31), in the continuous setting) is established. Then we construct a dual
problem to the continuous partial differential equation and show that this dual problem satisfies the a priori
energy estimate. Consequently, by linearity, it shows the uniqueness of the solution of the dual problem and
a duality argument gives the existence of a solution to the primal problem.

In the discrete setting this method is not used because the existence of a solution to (10) is clear. However,
as first noticed in [Osher, 1973] for the corner geometry and then used in [Benoit, a] for the continuous
problem in the strip, a simple way to construct a symmetrizor (used to show the a priori energy estimate
(or equivalently the stability inequality (31))) is to consider the propagation operators, given by Duhamel
formula for the dual problem.

The construction of the discrete symmetrizor for the discrete problem that we describe in Paragraph
5.2.2 also requires propagation operator for some dual scheme of approximation. That is why we introduce
it and examine some of its properties.

Firstly we write (29) under the form:
Lpri(z)Wj = Fj j ∈ J1,KK,
B0(z)W1 = G0,

B1(z)WK+1 = G1,

(37) {eq_total_resol_dual}{eq_total_resol_dual}
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where Lpri(z)Wj := Wj+1 −M(z)Wj .
{def_dual}

Definition 4.3 [Dual scheme]We say that the scheme
Ldua(z)Vj = F̃j j ∈ J1,KK,
C0(z)V1 = G̃0,

C1(z)VK+1 = G̃1,

(38) {eq_dual}{eq_dual}

is a dual scheme for (37) if for all (Vj)j∈J1,K+1K ⊂ CN , (Wj)j∈J1,K+1K ⊂ CN we have the duality formula:

K∑
j=1

(Lpri(z)Wj)
∗Vj+1 −

K∑
j=1

W ∗
j Ldua(z)Vj =− (W ∗

1 N∗0(z)C0(z)V1 + W ∗
1 B∗0(z)M0(z)V1) (39) {eq_def_dual}{eq_def_dual}

+ W ∗
K+1N∗1(z)C1(z)VK+1 + W ∗

K+1B∗1(z)M1(z)VK+1,

where the matrices C0(z),N0(z),M1(z) ∈MrN×(`+r)N (C) and C1(z),N1(z),M0(z) ∈M`N×(`+r)N (C)

The following proposition, is an adaptation from the construction of [[Benzoni-Gavage, 2007]-Theorem
4.1 p116] in the continuous setting and shows the existence of a dual scheme.

{prop_existence_dual}
Proposition 4.5 (Existence of a dual problem) Let Ldua(z)Vj := Vj − M∗(z)Vj+1, then there exist
matrices C0(z),N0(z),M1(z) ∈ MrN×(r+`)N (C) and C1(z),N1(z),M1(z) ∈ M`N×(r+`)N (C) such that (38)
is a dual scheme for (37) in the sense of Definition 4.3.

Moreover the matrices C0(z),N0(z),M1(z),C1(z),N1(z) and M0(z) are characterized by the relations

I = C∗0(z)N0(z) + M∗0(z)B0(z) = C∗1(z)N1(z) + M∗1(z)B1(z), (40) {car_dual1}{car_dual1}

and
kerC0(z) = kerB0(z)⊥, kerC1(z) = kerB1(z)⊥. (41) {car_dual2}{car_dual2}

Proof : We compute:

K∑
j=1

(Lpri(z)Wj)
∗Vj+1 =

K∑
j=1

W ∗
j+1Vj+1 −

K∑
j=1

W ∗
j M∗(z)Vj+1,

= W ∗
K+1VK+1 −W ∗

1 V1 +

K∑
j=1

W ∗
j (Vj −M∗(z)Vj+1) ,

so that
K∑
j=1

(Lpri(z)Wj)
∗Vj+1 −

K∑
j=1

W ∗
j Ldua(z)Vj = W ∗

K+1VK+1 −W ∗
1 V1,

and (39) follows if we can define matrices C0(z),N0(z),M1(z) ∈MrN×(`+r)N (C) and C1(z),N1(z),M0(z) ∈
M`N×(`+r)N (C) such that (40) holds.

We describe here the construction of C0(z), N0(z) ∈MrN×(`+r)N (C) and M0(z) ∈M`N×(`+r)N (C) (the
construction of C1(z), N1(z) and M1(z) follows the same lines).

The matrix B0(z) is clearly onto (because of the last block in its definition see (27)) so that we can

find an onto matrix N0(z) ∈ MrN×(r+`)N (C) such that the matrix

[
B0(z)
N0(z)

]
∈ GL(`+r)N×(`+r)N (C) is in-

vertible. We denote its inverse in the block form
[
Y0(z) D0(z)

]
where D0(z) ∈ M(`+r)N×rN (C) and

Y0(z) ∈M(`+r)N×`N (C), so we have I = D0(z)N0(z) + Y0(z)B0(z) and the first equality in (40) holds if we
define C0(z) = D∗0(z) and M0(z) = Y∗0(z).

We now turn to the characterization (41). From its definition we have kerC0(z) = Ran D0(z)⊥ =
kerB0(z)⊥, because B0(z)D0(z) = 0 in M`N×rN (C).
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We denote by Ẽs(z) (resp. Ẽu(z)) the stable (resp. unstable) subspace associated to the dual scheme

(38). Let z ∈ U because of the definition of Ldua we have the decomposition C(`+r)N = Ẽs(z) ⊕ Ẽu(z) for

all z ∈ U . Moreover the subspace Ẽs(z) and Ẽu(z) are characterized by the following proposition

Proposition 4.6 For all z ∈ U we have the equalities:

Ẽs(z) = Es(z)⊥, Ẽu(z) = Eu(z)⊥. (42) {eq_prop_dual1}{eq_prop_dual1}

Proof : Let V ∈ Es(z) and W ∈ Ẽs(z). Consider (Vj)j≥1 (resp. (Wj)j≥1) the solution of LpriVj = 0 ,
V1 = V , j ≥ 1 (resp. LduaWj = 0 , W1 = W ). Then from the definition of the primal and the dual schemes
we have that for all j ≥ 1:

W ∗
j Vj = W ∗

j+1M(z)M−1(z)Vj+1 = W ∗
j+1Vj+1,

so the sequence (W ∗
j Vj)j≥1 is constant and by definition of the stable subspaces this constant is zero. So

that we obtain the first equality in (42). The proof of the second one is totally similar.

�

The following proposition states that the fulfilment of the discrete uniform Kreiss-Lopatinskii condition
for the primal problem is equivalent to the one for the dual problem. Once again the proof is adapted from
the one of [[Benzoni-Gavage, 2007]-Theorem 4.2, p117] in the continuous setting.

Proposition 4.7 Let z ∈ U , then we have the equivalence

C(`+r)N = kerB0(z)⊕ Es(z)⇔ C(`+r)N = kerC0(z)⊕ Ẽs(z).

C(`+r)N = kerB1(z)⊕ Eu(z)⇔ C(`+r)N = kerC1(z)⊕ Ẽu(z).

Consequently for all z ∈ U we define Φ̃0(z) (resp. Φ̃1(z)) the inverse of the restriction of C0(z) (resp.

C1(z)) to Ẽs(z) (resp. Ẽu(z)).

Moreover Φ0(z) (resp. Φ1(z)) is uniformly bounded with respect to z ∈ U if and only if Φ̃0(z) (resp.

Φ̃1(z)) is uniformly bounded with respect to z ∈ U .

Proof : We only consider the boundary condition on the left-hand side, the proof follows the same lines for
the right one. Let z ∈ U we assume that C(`+r)N = kerB0(z) ⊕ Es(z). Let W ∈ Ẽs(z) ∩ kerC0(z), then
for all V ∈ Es(z) we have, from the preceding proposition W ∗V = 0. So that from (40) it implies that
W ∈ kerC0(z) ∩ kerM0(z) = {0} and the converse can be demonstrated in the same way.

We now turn to the proof of the uniform bound on Φ̃0(z), it amounts to show that for all z ∈ U and

for all W ∈ Ẽs(z), |W | ≤ C|C0(z)W |. From (40) we have |W | ≤ C (|C0(z)W |+ |M0(z)W |). Assuming the
discrete uniform Kreiss-Lopatinskii condition for the primal scheme holds we can write (using again (40)):

|M0(z)W | ≤ C sup
V ∈Es(z)

{
〈B0(z)V ,M0(z)W 〉

|V |

}
≤ C sup

V ∈Es(z)

{
〈V , (I − N0(z)∗C0(z))W 〉

|V |

}
so that the desired result follows from (42).

�

For later purpose we also give the following proposition. Once again it is a discrete version of the
analogous one in the continuous setting (see [Benoit, a]).

{prop_dual2}
Proposition 4.8 For all z ∈ U we have the equalities:

(Φ̃0(z)C0(z))∗ = I − Φ0(z)B0(z), (Φ̃1(z)C1(z))∗ = I − Φ1(z)B1(z). (43) {eq_prop_dual2}{eq_prop_dual2}
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Proof : We only show the first equality in (43), the proof of the second is totally similar. Because Φ̃0(z)C0(z)

is a projection (Φ̃0(z)C0(z))∗ is characterized by its kernel and its range. However on the one hand we have:

ker(Φ̃0(z)C0(z))∗ = RanΦ̃0(z)C0(z)⊥ = Ẽs(z)⊥ = Es(z),

Ran(Φ̃0(z)C0(z))∗ = ker Φ̃0(z)C0(z)⊥ = kerC0(z)⊥ = kerB0(z).

On the other hand I − Φ0(z)B0(z) is also a projection satisfying that

ker(I − Φ0(z)B0(z)) = Es(z), and Ran(I − Φ0(z)B0(z)) = kerB0(z),

so we deduce the desired equality.

�

5 Necessary and sufficient conditions for LE−stability : proof of
the main result {part_proof}

5.1 Necessary conditions for LE-stability

In this subsection we want to exhibit necessary conditions for the LE-stability of (10). From Proposition
4.4, the LE-stability of (10) in the sense of Definition 3.1 is equivalent to the one of the resolvent scheme
(29) consequently we assume that 

Wj+1 = M(z)Wj j ∈ J1,KK,
B0(z)W1 = G0,

B1(z)WK+1 = 0,

(44) {scheme_nec1}{scheme_nec1}

is LE-stable in the sense described in Proposition 4.4. We recall that the matrices M(z), B0(z) and B1(z)
are defined in (24), (27) and (28) respectively and that Wj := (Wj+r−1, ...,Wj−`)

T ∈ C(`+r)N .

We consider (W̃j)j≥1 the extension of (Wj)j∈J1,K+1K by zero for j > K+ 1. Clearly, (W̃j)j≥1 ∈ `2(J1,∞J)
satisfies: {

W̃j+1 = M(z)W̃j + F̃j(z) j ≥ 1,

B0(z)W̃1 = G0,
(45) {scheme_nec2}{scheme_nec2}

where (F̃j)j≥1 is an error term due to the extension by zero given by F̃j(z) := −δj,K+1M(z)Wj , where δ·,·
stands for the Kronecker symbol.

We thus have

∀j ≥ 1, W̃j = M(z)j−1W1 +

j−1∑
k=1

M(z)j−1−kF̃k(z).

For z ∈ U from the decomposition (32) (see Definition 4.2) we decompose the solution (W̃j)j≥1 of (45)
as:

W̃j := Πs(z)W̃j + Πu(z)W̃j ,

where each term in the right hand side is given by:

Πs(z)W̃j = M(z)j−1Πs(z)W1 +

j−1∑
k=1

M(z)j−1−kΠs(z)F̃k(z),

Πu(z)W̃j = −
∞∑
k=j

M(z)j−1−kΠu(z)F̃k(z).
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But from Assumption 4.1, the discrete uniform Kreiss-Lopatinskii condition holds for the boundary
condition on {x = 0} so that we can write the stable part of W1 as a function of the unstable part. More
precisely we have

Πs(z)W̃1 = Φ0(z)G0 − Φ0(z)B0(z)Πu(z)W̃1,

from which we deduce that

W̃1 = Φ0(z)G0 + (Φ0(z)B0(z)− I)

∞∑
k=1

M(z)−kΠu(z)F̃k(z). (46) {nec1tracebrute}{nec1tracebrute}

However recall that from the definition of (F̃k)k∈Z all the terms (except the one associated to k = K+1)
are zero so that the sum in the right-hand side of (46) reduces to:

W1 = W̃1 = Φ0(z)G0 + (Φ0(z)B0(z)− I)M(z)−(K+1)Πu(z)F̃K+1(z),

= Φ0(z)G0 + (I − Φ0(z)B0(z))M(z)−KΠu(z)WK+1, (47) {relation_traces1}{relation_traces1}

where we used the definition of F̃K+1 combined with the fact that M(z) and Πu(z) commute.

So that we obtain a relation between the boundary value of (Wj)j∈J1,K+1K on the left-hand side of the
interval in terms of the one on right-hand side of the interval.

Remark Note that W1 depends on the (Wj)j∈J1−`,rK and that WK+1 depend on the (Wj)j∈JK+1−`,K+rK.
This observation justifies the fact that in the LE-stability definition (see Definition 3.1) we have con-
sidered as the boundary values the extended ones like in [Coulombel, 2011] and not the ones used in
[B. Gustafsson and Sundstrom., 1972].

Then the extension of (Wj)j∈J1,K+1K by zero for j ≤ 0 , namely (W̃j)j≤K+1 ∈ `2(K−∞,K + 1K) satisfies
the scheme: {

W̃j = M−1(z)W̃j+1 + F̃j(z) j ≤ K,
B1(z)W̃K+1 = 0,

where the source term (F̃j)j≤K is now given by F̃j(z) := −δj,0M−1(z)W1. So we have

∀j ≥ 0, W̃K−j = M(z)−(j+1)W̃K+1 +
∑
k=0

M(z)−(j−k)F̃K−k,

so reiterating the same kind of computations as the ones exposed for the extension by zero for j > K + 1
leads us to the following relation between WK+1 and W1:

WK+1 = (I − Φ1(z)B1(z))M(z)KΠs(z)W1. (48) {relation_traces2}{relation_traces2}

Combining (47) with (48) immediately gives that the trace W1 satisfies the compatibility condition:(
I − (I − Φ0(z)B0(z))M−K(z)Πu(z)(I − Φ1(z)B1(z))MK(z)Πs(z)

)
W1 = Φ0(z)G0. (49) {eq_compatibility}{eq_compatibility}

The end of this paragraph is devoted to a study of (49) to obtain two invertibility conditions from the
compatibility condition (49).

Let z ∈ U , identifying equation (49) on Es(z) and Eu(z) with respect to the decomposition C(`+r)N =
Es(z)⊕ Eu(z) gives{

Πs(z)W1 −Πs(z)(I − Φ0(z)B0(z))M−K(z)Πu(z)(I − Φ1(z)B1(z))MK(z)Πs(z)W1 = Φ0(z)G0,

Πu(z)W1 = Πu(z)(I − Φ0(z)B0(z))M−K(z)Πu(z)(I − Φ1(z)B1(z))MK(z)Πs(z)W1.
(50) {eq_premier_systeme}{eq_premier_systeme}

Let us consider the first equation of (50). Indeed if this equation determines the stable component of
the boundary value then the second equation of (50) determines in a unique way the unstable component in
terms of the stable one.
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Some computations gives:

Πs(z)W1 −Πs(z)(I − Φ0(z)B0(z))M−K(z)Πu(z)(I − Φ1(z)B1(z))MK(z)Πs(z)W1

=Πs(z)W1 + Πs(z)(I − Φ0(z)B0(z))M−K(z)Φ1(z)B1(z)MK(z)Πs(z)W1

−Πs(z)(I − Φ0(z)B0(z))M−K(z)Πu(z)MK(z)Πs(z)︸ ︷︷ ︸
=0

W1

=Πs(z)W1 − Φ0(z)B0(z)M−K(z)Φ1(z)B1(z)MK(z)Πs(z)W1

+ Πs(z)M−K(z)Πu(z)︸ ︷︷ ︸
=0

Φ1(z)B1(z)MK(z)Πs(z)W1.

Consequently we define the matrices T0→1(z),T1→0(z) ∈M(`+r)N×(`+r)N (C) by the relations:

∀z ∈ U , T1→0(z) := Φ0(z)B0(z)M−K(z) and T0→1(z) := Φ1(z)B1(z)MK(z), (51) {def_operateur_bord}{def_operateur_bord}

and the first equation of (50) becomes:

(I − T1→0(z)T0→1(z))Πs(z)W1 = Φ0(z)G0,

however recall that Φ0(z)C`N = Es(z), so that it implies that if we define T0→0(z) := T1→0(z)T0→1(z) then
this operator is invertible from Es(z) to Es(z) and Πs(z)W1 is determined in a unique way in terms of the
known source term G0. So that from the second equation of (50) we can also determine Πu(z)W1 and we
deduce that:

W1 =
(
I −M−K(z)Φ1(z)B1(z)MK(z)

)
(I − T0→0(z))−1

|Es(z)Φ0G0.

From the stability estimate (31) it turns out that there exists C > 0 independent of z such that:

|
(
I −M−K(z)Φ1(z)B1(z)MK(z)

)
(I − T0→0(z))−1

|Es(z)Φ0(z)G0| ≤ C|G0|,

so that using the fact that the decomposition C(`+r)N = Es(z) ⊕ Eu(z) implies that the matrix (I −
M−K(z)Φ1(z)B1(z)MK(z)

)
is injective on Es(z) and the discrete uniform Kreiss-Lopatinskii condition for

the left-hand side boundary condition we obtain the following proposition:
{hyp_inv1}

Proposition 5.1 (First necessary condition for LE-stability) Assume that the resolvent problem (29)
is LE-stable then for all z ∈ U the matrix I − T0→0(z) is uniformly invertible from Es(z) to Es(z). More
precisely there exists C > 0 such that

∀z ∈ U , ∀W ∈ Es(z), |W | ≤ |(I − T0→0(z))W |.

To obtain the second necessary condition for LE-stability we multiply (49) by Π
s
(z) and ΠkerB0

(z) where
we recall that these projections are the ones associated to the decomposition C(`+r)N = kerB0(z)⊕ Es(z),
z ∈ U given by the discrete uniform Kreiss-Lopatinskii condition on the left-hand side. Then we obtain the
system: {

Π
s
(z)W1 = Φ0(z)G0,

ΠkerB0
W1 = (I − Φ0(z)B0(z))M−K(z)Φ1(z)B1(z)MK(z)Πs(z)W1,

(52) {eq_second_systeme}{eq_second_systeme}

where we used the fact that Ran(I − Φ0(z)B0(z)) ⊂ kerB0(z).
The first equation of (52) determines in a unique way Π

s
(z)W1 in terms of the source term G0. To obtain

an invertibility condition like the one of Proposition 5.1 we thus make the right-hand side of the second
equation more explicit in terms of ΠkerB0W1. Some computations give
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(I − Φ0(z)B0(z))M−K(z)Φ1(z)B1(z)MK(z)Πs(z)W1

=(I − Φ0(z)B0(z))M−K(z)Φ1(z)B1(z)MK(z) Πs(z)Π
s
(z)︸ ︷︷ ︸

=Π
s
(z)

W1

+ (I − Φ0(z)B0(z))M−K(z)Φ1(z)B1(z)MK(z)Πs(z)ΠkerB0(z)W1,

=(I − Φ0(z)B0(z))M−K(z)Φ1(z)B1(z)MK(z)Φ0(z)G0

− (I − Φ0(z)B0(z))M−K(z)(I − Φ1(z)B1(z))MK(z)ΠkerB0(z)W1

− (I − Φ0(z)B0(z))Πs(z)︸ ︷︷ ︸
=0

ΠkerB0
(z)W1,

where we used the fact that for all X ∈ C(`+r)N we have

(I − Φ1(z)B1(z))MK(z)X = (I − Φ1B1(z))MK(z)Πu(z)︸ ︷︷ ︸
=0

X + M−K(z)(I − Φ1(z)B1(z))MK(z)Πs(z)X .

So that we obtain the following compatibility condition on ΠkerB0
(z)W1:

(I − T1→0(z)T0→1(z))ΠkerB0
(z)W1 = (I − Φ0(z)B0(z))M−K(z)Φ1(z)B1(z)MK(z)Φ0(z)G0,

where the matrices T0→1,T1→0 ∈M(`+r)N×(`+r)N (C) are defined by

∀z ∈ U , T0→1(z) := (I − Φ1(z)B1(z))MK(z) and T1→0(z) := (I − Φ0(z)B0(z))M−K(z). (53) {def_operator_bord2}{def_operator_bord2}

We also define T0→0 := T1→0(z)T0→1(z).
Using the fact that (I − Φ0(z)B0(z))Eu(z) = kerB0(z) we thus obtain the following necessary condition

for LE-stability:
{hyp_inv2}

Proposition 5.2 (Second necessary condition for strong stability) If the resolvent problem (29) is
LE-stable then for all z ∈ U the operator I − T0→0(z) is invertible from kerB0(z) to kerB0(z).

Note that compared to Proposition 5.1, Proposition 5.2 does not require any uniform bound of the inverse5

of I − T0→0(z). In the following paragraph we will however show that assuming some uniform property on
(I − T0→0(z))−1

| kerB0(z) in terms of z is a sufficient condition for the LE-stability of the resolvent problem

(29).

5.2 Sufficient conditions for LE-stability via symmetrizor

Let us assume that the conclusion of holds Proposition 5.1 and that the following stronger version of the
conclusion of Proposition 5.2 holds.

{hyp_inv_utile}
Assumption 5.1 For all z ∈ U we assume that:

i) the matrix I − T0→0(z) is uniformly invertible from Es(z) to Es(z), that is

∃ C > 0 s.t. ∀z ∈ U , ∀V ∈ Es(z), |V | ≤ C|(I − T0→0(z))V |.

ii) The matrix I − T0→0(z) is uniformly invertible from kerB0(z) to kerB0(z), that is

∃ C > 0 s.t. ∀z ∈ U , ∀W ∈ kerB0(z), |W | ≤ C|(I − T0→0(z))W |.

The aim of the following paragraphs is to show that Assumption 5.1 is a sufficient condition for the
LE-stability of the resolvent problem (29) and consequently for the one of (10). The proof of this sufficiency
holds on the construction of a discrete symmetrizor for the resolvent problem (29) and consequently follows

5In the author’s opinion it is probably possible to use (49) to show that the uniform bound is necessary.
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the same kinds of methods that the one used in the continuous framework in the strip exposed in [Benoit, a].

Let us recall that the LE-stability of the resolvent problem (29) amounts to show two points, the first
one is the stability estimate (31) while the second one is the existence of a solution to (29). The fact that the
existence of a discrete symmetrizor implies the stability estimate (31) is a direct consequence of its definition
(see Paragraph 5.2.1).

Then the construction of the symmetrizor is described in Paragraph 5.2.2. An important point to keep
in mind is that the construction of the discrete symmetrizor only requires ii) of Assumption 5.1.

Finally the construction of a solution to (29) is made in Paragraph 5.2.3, requires the dual problem
introduced in Paragraph 4.2.3 and uses i) of Assumption 5.1. Indeed i) of Assumption 5.1 for the primal
scheme is nothing but ii) of Assumption 5.1 so it gives the dual stability estimate from which we deduce the
existence of a solution to the primal scheme.

It is thus interesting to remark that points i) and ii) are used at two totally different levels to establish
the LE-stability of the resolvent problem (29).

5.2.1 Definition of the symmetrizor and the stability estimate {part_sym1}

In the following definition we introduce a tool, namely the discrete symmetrizor which gives the stability
estimate for (29).

{def_sym_1}
Definition 5.1 (Discrete symmetrizor) Under Assumption 2.2 we say that Sj = Sj(z), j ∈ J1,K + 1K,
z ∈ U is a symmetrizor for (29) if (Sj)j∈J1,K+1K ∈M(`+r)N×(`+r)N (C) satisfies the following properties:

i) for all z ∈ U , for all j ∈ J1,K + 1K, S∗j (z) = Sj(z).
ii) There exist C0, C1 > 0 such that for all z ∈ U , for all V ∈ Es(z) and for all W ∈ Eu(z) we have

|S1(z)V | ≤ C0|V | and |SK+1(z)W | ≤ C1|W |,

where we stress that C0 and C1 do not depend on z.
iii) For all z ∈ U , for all j ∈ J1,KK, Sj(z) satisfies

Sj(z) = M∗(z)Sj+1(z)M(z).

iv) There exists ε0 > 0 such that for all z ∈ U and V ∈ kerB0(z) we have:

V ∗S1(z)V ≤ −ε0|V |2.

v) There exists ε1 > 0 such that for all z ∈ U and W ∈ kerB1(z) we have:

W ∗SK+1(z)W ≥ ε1|W |2.

The following proposition shows that the existence of a symmetrizor in the sense of Definition 5.1 is a
sufficient condition for the stability estimate (31) to hold.

Proposition 5.3 Under Assumptions2.1, 2.2 and 4.1, assume that the scheme (29) admits a symmetrizor
in the sense of Definition 5.1 then the solution of (29) satisfies the stability estimate (31).

Proof : Let Wj be the solution of (29), multiply (in the left-hand side) the interior equation of (29) by
W ∗
j+1Sj+1(z) and sum for j ∈ J1,KK gives

K∑
j=1

W ∗
j+1Sj+1(z)Wj+1 −

K∑
j=1

W ∗
j+1Sj+1(z)M(z)Wj = 0,

consequently using the relation Wj+1 = M(z)Wj we obtain:

W ∗
K+1SK+1(z)WK+1 −W ∗

1 S1(z)W1 +

K∑
j=1

W ∗
j Sj(z)Wj −

K∑
j=1

W ∗
j M∗(z)Sj+1(z)M(z)Wj = 0,

21



so that we have the equality:
W ∗
K+1SK+1(z)WK+1 = W ∗

1 S1(z)W1, (54) {chatonton}{chatonton}

by iii) of Definition 5.1.
From the discrete uniform Kreiss-Lopatinskii condition on the left-hand side boundary condition we

decompose W1 = W [
1 + W ]

1 where W [
1 ∈ kerB0(z) and W ]

1 ∈ Es(z) satisfies B0(z)W ]
1 = G0. We thus have

using iv) combined with Cauchy-Schwarz and Young inequality:

W ∗
1 S1(z)W1 ≤ −

ε0

2
|W [

1 |2 + C
(
|S1(z)W ]

1 |2 + |W1|2
)

so that we use the discrete uniform Kreiss-Lopatinskii condition for the left-hand side boundary condition
combined with ii) of Definition 5.1 to obtain

W ∗
1 S1(z)W1 ≤ −

ε0

2
|W [

1 |2 + C|B1(z)W ]
1 |2 ≤ −

ε0

2
|W [

1 |2 + C|G0|2. (55) {chaton}{chaton}

We then reiterate the same kind of computations for the term W ∗
K+1SK+1(z)WK+1 to obtain the opposite

estimate and (31) follows easily from (54) and (55).

�

5.2.2 Construction of the symmetrizor {part_sym}

The aim of this paragraph is to describe a precise construction of the symmetrizor. More precisely we aim
to show the following proposition:

Proposition 5.4 Under Assumptions 2.1-4.1 and ii) of Assumption 5.1 then there exists a symmetrizor for
(29) in the sense of Definition 5.1.

We are looking for a discrete symmetrizor under the form:

Sj(z) := Jj(z)N(z)J∗j (z), (56) {form_sym}{form_sym}

where Jj(z), N(z) ∈M(`+r)N×(`+r)N (C) have to be constructed and where N(z) shall satisfy:

N∗(z) = N(z), (57) {cond_N}{cond_N}

in order that Sj(z) reading (56) satisfies i) of Definition 5.1.
Let Jj(z) be a solution to

∀j ∈ J1,KK, Jj(z) = M∗(z)Jj+1(z). (58) {cond_J}{cond_J}

so that for Vj ∈ C(`+r)N , Jj(z)Vj is the solution to the so-called dual problem of Paragraph 4.2.3. Then it is
clear that under this condition on Jj a symmetrizor Sj reading under the form (56) satisfies iii) of Definition
5.1. Indeed we have:

M∗(z)Sj+1(z)M(z) = M∗(z)Jj+1(z)N(z)(M∗(z)Jj+1(z))∗ = Jj(z)N(z)J∗j (z) = Sj(z).

We look for Jj(z) in the decomposition form J0,j(z) + JK,j(z) where the matrices J0,j and J1,j are
respectively defined by the following:{

J0,j(z) = M∗(z)J0,j+1(z) j ≥ 1,

J0,1(z) = Φ̃0(z)C0(z),
(59) {def_K_0}{def_K_0}

and {
J1,j(z) = M∗(z)J1,j+1(z) j ≤ K,
J1,K+1(z) = Φ̃1(z)C1(z),

(60) {def_K_K}{def_K_K}

where we recall that C0(z) and C1(z) are the boundary matrices for the dual problem and Φ̃0(z), Φ̃1(z) the
associated discrete Kreiss-Lopatinskii inverse matrices (see Paragraph 4.2.3).
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Equations (59) and (60) can be solved explicitly in terms of j. Indeed we have

∀j ≥ 1, J0,j(z) = M(z)−(j−1)∗Φ̃0(z)C0(z) and ∀j ≤ K, J1,j(z) = M(z)(K+1−j)∗Φ̃1(z)C1(z).

Now that iii) of Definition 5.1 is fulfilled we choose N in (56) in a way ensuring that iv) and v) of
Definition 5.1 hold.

These conditions read{
−((J∗0,1(z) + J∗1,1(z))V )∗N(z)(J∗0,1(z) + J∗1,1(z))V ≤ −ε0|V |2 ∀V ∈ kerB0(z),

((J∗0,K+1(z) + J∗1,K+1(z))W )∗N(z)(J∗0,K+1(z) + J∗1,K+1(z))W ≤ −ε1|W |2 ∀W ∈ kerB1(z).
(61) {confinement}{confinement}

From Proposition 4.8 combined with the explicit expressions of J0,j and J1,j it turns out that

J∗0,1(z) + J∗1,1(z) = I − Φ0(z)B0(z) + T0→1(z) and J∗0,K+1(z) + J∗1,K+1 = T1→0(z) + I − Φ1(z)B1(z). (62) {boules_quies}{boules_quies}

We write N(z) under the form

N(z) := Π∗kerB0
(z)N0(z)ΠkerB0

(z) + Π∗kerB1
(z)N1(z)ΠkerB1

(z) + 2Re(Π∗kerB0
(z)N01(z)ΠkerB1

(z)) (63) {boules_quies2}{boules_quies2}

where ΠkerB0(z) (resp. ΠkerB1(z)) is the projection on kerB0(z) (resp. kerB1(z)) with respect to the
decomposition C(`+r)N = kerB0(z)⊕ kerB1(z). So that the boundary conditions (61) are equivalent to{
−V ∗N0(z)V − V ∗T∗0→1(z)N1(z)T0→1(z)V − 2V ∗Re(N01(z)T0→1(z))V ≤ −ε0|V |2 ∀V ∈ kerB0(z),

W ∗T∗1→0(z)N0(z)T∗1→0(z)W + W ∗N1(z)W + 2W ∗Re(N∗01(z)T1→0(z))W ≤ −ε1|W |2 ∀W ∈ kerB1(z).

In the following we solve these equations in terms of positive matrices more precisely we look for matrices
N0, N1 and N01 such that{

−N0(z)− T∗0→1(z)N1(z)T0→1(z)− 2Re(N01(z)T0→1(z)) ≤ −ε0I,

T∗1→0(z)N0(z)T∗1→0(z) + N1(z) + 2Re(N∗01(z)T1→0(z)) ≤ −ε1I,
(64) {confinement2}{confinement2}

Without loss of generality we set ε0 = ε1 = 1. The ideas to find good candidates for N0, N1 and N01

solving (64) follows the ones exposed in [Osher, 1973] for the construction of symmetrizors for quarter space
continuous problems or in [Benoit, a] for the strip geometry. We reproduce here this analysis to explain the
appearance of the operator (I − T0→0(z))−1

| kerB0(z).

We multiply the second equation of (64) by T∗0→1 in the left-hand side and by T0→1 in the right-hand
side. Then we sum with the first equation of (64) to obtain

N0(z)− T∗0→0(z)N0(z)T0→0(z) + 2Re((I − T∗0→0(z))N01(z)T0→1(z)) ≤ −I − T∗0→1(z)T0→1(z). (65) {rond}{rond}

We choose the weights N0 and N01 such that the equality holds in (65). So that we define6 N0(z) := −I and
N01(z) := (I − T0→0(z))V(z) so that (65) becomes:

V(z)T0→1(z) + T∗0→1(z)V∗(z) + T∗0→0(z)T0→0(z) = −T∗0→1(z)T0→1(z).

We can check that V(z) := − 1
2 (I + T∗1→0(z)T1→0(z)) is a suitable choice to obtain the desired equality.

We then define N1(z) such that the equality in (64) holds. So the weighted are defined by:

N0(z) := −I , N01(z) = −1

2
(I − T0→0(z))−∗| kerB0(z)T

∗
0→1(z)(T∗1→0(z)T1→0(z) + I), (66) {def_poids1}{def_poids1}

and N1(z) := I − T∗1→0(z)T1→0(z)− 2Re(T1→0(z)N01(z)),

6The definition given here is possibly not the sharpest one, however it has the advantage of simplicity. But others definitions
are probably possible because in the author’s opinion we do not have uniqueness in the definitions of N0, N1 and N01. Indeed
(64) is essentially equivalent to the resolution of a system of two equations with three degrees of freedom.
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so that it remains to show that with such coefficients the first equation of (64) is satisfied. This equation
can be developed under the form

−T∗0→1(z)T0→1(z) + T∗0→0(z)T0→0(z) + 2Re((I − T0→0(z))∗N01(z)T0→1(z)) ≤ 0,

which by definition of N01(z) is equivalent to

−T∗0→1(z)T0→1(z) + T∗0→0(z)T0→0(z) + V(z)T0→1(z) + V∗(z)T0→1(z) ≤ 0⇐⇒ −2T∗0→0(z)T0→0(z) ≤ 0,

that is clearly satisfied so the weights defined in (66) satisfy (64).
To conclude we have to justify that with the weights defined in (66) the uniform boundedness property

ii) of Definition 5.1 holds. In the following we only consider the first bound that is |S1(z)V | ≤ C0|V | for all
V ∈ Es(z), the proof of the second one follows exactly the same computations. From the construction above
we have that for V ∈ Es(z),

S1(z)V = (J0,1(z) + J1,1(z))N(z)(J0,1(z) + J1,1(z))∗V

= (Φ̃0(z)C0(z) + MK∗(z)Φ̃1(z)C1(z))N(z)T0→1(z)V ,

because of equation (62). Next we combine the fact that Ran(T0→1(z)) ⊂ kerB1(z) with the definition of
N(z) (see (63)) to obtain the equality

S1(z)V =
(

Φ̃0(z)C0(z) + M(z)K∗Φ̃1(z)C1(z)
)(

Π∗kerB1(z)N1(z) + ΠkerB0(z)N01(z)
)
T0→1(z)V

We then use the following lemma to simplify one last time the expression of S1(z)V .

Lemma 5.1 For all z ∈ U we have the decomposition C(`+r)N = kerC0(z) ⊕ kerC1(z). If we denote
by ΠkerC0(z) (resp. ΠkerC1(z)) the projection upon kerC0(z) (resp. kerC1(z)) with respect to the previous
decomposition we thus have the identities

ΠkerC0(z) = Π∗kerB1(z) and ΠkerC1(z) = Π∗kerB0(z).

So that we shall study for V ∈ Es(z),

S1(z)V =
(

Φ̃0(z)C0(z)ΠkerC1(z)N01(z) + MK∗(z)Φ̃1(z)C1(z)ΠkerC0(z)N1(z)
)
T0→1(z)V . (67) {boules_quies3}{boules_quies3}

In the following we consider the two terms in the right-hand side of (67) separately. About the first one,
the uniform Kreiss-Lopatinskii condition for the dual problem implies that it is sufficient to show that
|ΠkerC1(z)N01(z)T0→1(z)V | ≤ C|V | holds for all V ∈ Es(z). From the definition of N01(z) we write

ΠkerC1(z)N01(z)T0→1(z)V =

−1

2

[
(I − T0→0(z))−1

| kerB0(z)ΠkerB0(z)

]∗
T∗0→1(z)

(
T1→0(z)∗T1→0(z) + I

)
T0→1(z)V ,

so that from ii) of Assumption 5.1 we have that

|ΠkerC1(z)N01(z)T0→1(z)V | ≤ C
(
|T∗0→1(z)T0→1(z)V |+ |T∗0→1(z)T∗1→0(z)T0→0(z)V |

)
.

We then use the explicit formulas

T∗0→1(z) = MK∗(z)Φ̃1(z)C1(z), T∗0→1(z) = M−K∗(z)Φ̃0(z)C0(z),

which implies, because Ran Φ̃0(z) = Ẽs(z) and Ran Φ̃1(z) = Ẽu(z) that we that the uniform bounds

|T∗0→1(z)W | ≤ C|W | and |T∗1→0(z)W | ≤ C|W | for all W ∈ C(`+r)N . So we only have to show that
|T0→1(z)V | ≤ C|V | and |T0→0(z)V | ≤ C|V | for all V ∈ Es(z). The first inequality is clear from the
definition of T0→1(z) and the fact that V ∈ Es(z) while the second one is not so clear at first glance because
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Ran T0→1(z) ⊂ kerB1(z). However from the discrete uniform Kreiss-Lopatinskii condition on the left-hand
side boundary condition we have

|T 0→0(z)V | ≤ C|M−K(z)(I − Φ1(z)B1(z))MK(z)V | ≤ C
(
|V |+ |M−K(z)Φ1(z)B1(z)MK(z)V |

)
,

and the result follows because Ran(Φ1(z)) ⊂ Eu(z) and V ∈ Es(z).
We then have to consider the second term in the right-hand side of (67). We firstly remark that it is

sufficient to consider the term N1(z)T0→1V for V ∈ Es(z). From the definition of N1(z) we have

N1(z)T0→1(z)V = T0→1(z)V − T∗1→0(z)T0→0(z)V − 2Re(T∗0→1(z)N01(z))T0→1(z)V ,

and we treat the terms separately. The first and the second one have already been considered in the proof
of the uniform boundedness of the first term in the right-hand side of (67). The third one is treated exactly
as the first term in the left-hand side of (67) with T0→1(z) instead of ΠkerB0

(z) so that we will omit the
details here.

This concludes the proof of the fact that the constructed symmetrizor satisfies i)-v) of Definition 5.1 and
more generally the one of the stability estimate.

We sum up the construction of the previous paragraph in the following proposition

Proposition 5.5 Under Assumptions 2.1, 2.2, 2.3, 4.1 and ii) of Assumption 5.1 the resolvent scheme (29)
admits a symmetrizor in the sense of Definition 5.1. Consequently under Assumption 2.4 the energy estimate
(30) is satisfied.

5.2.3 Construction of a solution to (29). {part_cons_sol}

To conclude the proof of the sufficiency of Assumptions 5.1 for the LE-stability it remains to construct a
solution W of the resolvent equation (29). The proof exposed here follows the same lines as the construction
of a weak solution by the duality method used in the continuous setting.

We introduce the following subspace

X :=
{
LduaV where Vj ∈ C(`+r)N , j ∈ J1,K + 1K satisfying V1 ∈ kerC0(z) and VK+1 ∈ kerC1(z)

}
,

and for (Fj)j∈J1,KK ⊂ C(`+r)N , G0,G1 ∈ C(`+r)N the following form f on X defined by

f(LduaV ) :=

K∑
j=1

F ∗j Vj+1 + G ∗0 M0(z)V1 − G ∗1 M1(z)VK+1.

We assume for a while that the dual scheme associated to (29), that is (38) is LE-stable so that we have
the stability estimate:

∀z ∈ U ,
|z| − 1

|z|

K∑
j=1

|Vj |2 + |V1|2 + |VK+1|2 ≤ C
|z|
|z| − 1

K∑
j=1

|(LduaV )j |2,

then it is easy to show that f is a continuous form on X, consequently from Hahn-Banach and Riesz
representation Theorem there exists (W j)j∈J1,KK ∈ C(`+r)N such that f(LduaV ) =

∑K
j=1 W ∗

jLduaVj .
Then we use the equation defining the dual scheme that is (39) for Wj = W j and Vj satisfying V1 =

VK+1 = 0 so that we obtain LpriWj = Fj for all j ∈ J1,KK. Next we test (39) with Wj = W j and Vj satisfying
VK+1 = 0 and V1 ∈ kerC0(z) (resp. V1 = 0 and VK+1 ∈ kerC1(z)) to obtain (G0 − B0(z)W 1)∗M0(z)V1 = 0
(resp. (G1 − B1(z)W K+1)∗M1(z)VK+1 = 0. To conclude it is sufficient to notice that M0(z)| kerC0(z) and
M1(z)| kerC1(z) are onto. So W j is a solution of (29) when the dual scheme (38) is LE-stable.

To conclude it is then sufficient to show that the dual scheme satisfy the stability inequality and from the

results of Paragraphs 5.2.1 and 5.2.2 we shall show that the matrix (I − T̃0→0(z)) : kerC0(z)→ kerC0(z) is
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uniformly invertible for all z ∈ U , where T̃0→0(z) stands for the analogous of the matrix T0→0(z) but for

the dual scheme. More precisely this matrix is defined by T̃0→0(z) := T̃1→0(z)T̃0→1(z) with

T̃0→1(z) := (I − Φ1(z)C1(z))M−K∗(z) and T̃0→1(z) := (I − Φ0(z)C0(z))MK∗(z). (68) {confinement12}{confinement12}

The main result of this paragraph is the following

Proposition 5.6 Under Assumptions 2.1, 2.2, 2.3 and 4.1 the primal scheme (29) satisfies i) of Assumption
5.1 if and only if the dual scheme (38) satisfies ii) of Assumption 5.1.

Proof : Let us first remark that for all V ∈ kerC0(z) we have (I − T̃ 0→0(z))V = (I − T̃ 0→0(z))(I −
Φ̃0(z)C0(z))V consequently we show in the following that (I − T̃ 0→0(z))(I − Φ̃0(z)C0(z)) is uniformly in-

vertible from kerC0(z) to kerC0(z). In order to do so we use the decomposition C(`+r)N = Ẽs(z)⊕kerC0(z)

for z ∈ U and we show that
[
(I − T̃ 0→0(z))(I − Φ̃0(z)C0(z))

]∗
is uniformly invertible from Ẽs(z)⊥ to Ẽs(z)⊥.

We recall that from (42) we have Ẽs(z)⊥ = Es(z). From (43) we have (I − Φ̃0(z)C0(z))∗ = Φ0(z)B0(z) then

(68) gives T̃
∗
0→1(z) = M−K(z)Φ1(z)B1(z) and T̃

∗
1→0(z) = MK(z)Φ0(z)B0(z). So that for W ∈ Es(z) we have[

(I − T̃ 0→0(z))(I − Φ̃0(z)C0(z))
]∗

W =Φ0(z)B0(z)
(
I −M−K(z)Φ1(z)B1(z)MK(z)Φ0(z)B0(z)

)
W

= (I − T0→0(z))W

because W ∈ Es(z). So that i) of Assumption 5.1 for the primal scheme (29) is equivalent to ii) of Assumption
5.1 for the dual scheme.

�

We sum up the results of this paragraph in the following proposition which concludes the proof of Theorem
3.1.

Proposition 5.7 Under Assumptions 2.1, 2.2, 2.3 and 4.1 also assume that i) of Assumption 5.1 holds
then the resolvent scheme (29) admits a solution (Wj)j∈J1,K+1K ⊂ C(`+r)N .

6 Application : the scalar transport equation {part_transport}{part_examples}

In this section we consider the discretization of a scalar transport equation and we recover some of the
stability results of [Coulombel and Lagoutière, ].

More precisely we study the outgoing (for the side {x = 0}) scalar transport equation defined in the
interval [0, 1]. That is to say: 

∂tu+ a∂xu = f t > 0, x ∈ ]0, 1[ ,

u|x=0 = g t > 0,

u|t=0 = 0 x ∈ ]0, 1[ ,

(69) {transport}{transport}

where f and g are given source terms and where a > 0.

Because a > 0, there is no boundary condition on the side {x = 1}. However if we want to approximate
the solution of (69) by a finite difference scheme with a non trivial stencil in the right-hand side then a
boundary condition on this side is required and in the following we focus our attention to Dirichlet or Neu-
mann boundary conditions for this side.

The finite difference scheme used to approximate the transport equation (69) is the classical Lax-Friedrichs
scheme. With more details we approximate the evolution equation of (69) by the finite difference relation:

un+1
j =

1

2

(
unj+1 + unj−1

)
− λa

2

(
unj+1 − unj−1

)
∆tfn+1

j , (70) {eq_LF_aux}{eq_LF_aux}
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where fn+1
j stands for some approximation of f . In the notations used throughout the article we have

r = ` = 1 so numerical boundary conditions on each side are required and should involve only one boundary
value in order to satisfy Assumption 2.3. They thus read

un+1
0 − αun+1

1 = gn+1
0 , and un+1

K+1 − βu
n+1
K = gn+1

1 ,

where α, β > 0 are given. In what follows we will mainly be interested in the cases α, β ∈ {0, 1} corresponding
to Dirichlet condition when α or β is zero and Neumann condition when α or β equals one7. So the full
scheme reads: 

un+1
j = 1

2

(
unj+1 + unj−1

)
− λa

2

(
unj+1 − unj−1

)
+ ∆tfn+1

j n ≥ 0, j ∈ J1,KK,
un+1

0 − αun+1
1 = gn+1

0 n ≥ 0,

un+1
K+1 − βu

n+1
K = gn+1

1 n ≥ 0,

u0
j = 0 j ∈ J0,K + 1K,

(71) {transport_approx}{transport_approx}

It is rather easy to show that this finite difference scheme satisfies Assumption 2.2, Assumption 2.4 and
that it satisfies Assumption 2.1 if

λa < 1,

which is nothing but the usual CFL condition for (70) to be stable in the full line.

In its resolvent form this approximation scheme reads:

for z ∈ C \ {0}


wj = 1

2z (1− aλ)wj+1 + 1
2z (1 + aλ)wj−1 + fj j ∈ J1,KK

w0 − αw1 = g0,

wK+1 − βwK = g1,

so in terms of the augmented vector Wj := [wj , wj−1]
T

we obtain:
Wj = M(z)Wj + Fj , j ∈ J1,KK
B0W1 = G0,

B1WK+1 = G1,

where we defined

M(z) :=

[
2z

1−λa − 1+λa
1−λa

1 0

]
, B0 := [−α, 1] and B1 := [1,−β] .

As justified in [[Coulombel, ] Paragraph 4.5], for z ∈ U the stable subspace Es(z) and the unstable
subspace Eu(z) of M(z) can be parametrized as follows:

Es(z) = vect
{

[κs(z), 1]
T
}

:= vect {vs(z)} and Es(z) := vect
{

[κu(z), 1]
T
}

= vect {vu(z)}

where κs(z) (resp. κu(z)) stands for the root in the κ variable of the equation

(1− λa)κ2 − 2zκ+ 1 + λa = 0, (72) {eq_dis_LF_transport}{eq_dis_LF_transport}

satisfying that |κs(z)| < 1 (resp. |κu(z)| > 1) for all z ∈ U . Formally we define the applications Φ0(z) :
C→ Es(z) and Φ1(z) : C→ Eu(z) by

Φ0(z)ζ :=
ζ

1− ακs(z)
vs(z) and Φ1(z)ζ :=

ζ

κu(z)− β
vu(z), (73) {ukl_transport}{ukl_transport}

and it is clear that they are well-defined and that they respectively correspond to the inverses of B0|Es(z)
and

B1|Eu(z)
when α, β < 1.

7In fact the analysis exposed bellow cover the range α, β ∈ [0, 1].
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However, as we have mentionned before, one of our main case of interest is the Neumann boundary
condition that corresponds to α or β equals to one. From (73) it is equivalent to ask : Can κs(z) or κu(z) be
equal to one ? Once again following the study made in [Coulombel, ] this situation can only occur if z = 1
and in this case (72) becomes (1− λa)κ2 − 2κ+ 1 + λa. It is clear that the roots of this new equation are

κ1 = 1 and κ2 =
1 + λa

1− λ
,

but recall that by assumption λa < 1 so κ2 > 1. Consequenlty the only possible continuation of κs(z) up to
1 is 1. So we have the following result

• If α = 1 the discrete uniform Kreiss-Lopatinskii condition breaks down for the frequency8 z = 1. Thus
we restrict our attention to α < 1.

• The discrete uniform Kreiss-Lopatinskii condition holds for all β ≤ 19.

In order to study the stability of (71) we first compute the restriction of T0→0(z) to Es(z). An easy
computations gives:

(I − T0→0(z))vs(z) =

(
1− (κs(z))K(κu(z))−K

κs(z)− β
κu(z)− β

1− ακu(z)

1− ακs(z)

)
vs(z), (74) {equation_T1_transport}{equation_T1_transport}

then we study the restriction of T0→0(z) to vect
{

[1, α]
T
}

and we also obtain

(I − T0→0(z))

[
1
α

]
=

(
1− (κs(z))K(κu(z))−K

κs(z)− β
κu(z)− β

1− ακu(z)

1− ακs(z)

)[
1
α

]
.

Consequently it is sufficient to consider (74) and we want to have a look to the cases (α, β) = (0, 0)
(Dirichlet/Dirichlet) and (α, β) = (0, 1) (Dirichlet/Neumann).

• Dirichlet/Dirichlet:

We remark that in such a setting T0→0(z)vs(z) = (κs(z))K+1(κu(z))−(K+1)vs(z) which clearly implies
that

|T0→0(z)vs(z)| < |vs(z)|,

because |κs(z)| ≤ 1 and |κu(z)| > 1. So (I − T0→0(z))|Es(z) is clearly uniformly invertible and the

same holds for (I − T0→0(z))| kerB0(z) Assumptions 5.1 holds, Theorem 3.1 applies and we deduce the
LE-stability of (71). Note that it is not surprising at all because we have already shown in Paragraph
4.1.1 that Dirichlet boundary conditions automatically lead to LE-stability.

However, let us point that imposing Dirichlet boundary condition on the side {x = 1} is a bad choice in
terms of consistency of the scheme, that is why in the following we consider the case Dirichlet/Neumann.

• Dirichlet/Neumann:

Impose Neumann boundary condition {x = 1} on the side gives rise to a consistent scheme. 1 natural
question is the stability of the scheme. We thus study the matrix T0→0(z) (once again the computations
are essentially the same for T0→0(z)) as in the Dirichlet/Dirichlet framework we have:

|T0→0(z)vs(z)| <|κu(z)|−K 2

|κu(z)− β|
|vs(z)|,

where we used the fact that for all z ∈ U , |κs(z)| ≤ 1. And up to choose K large enough (recall that
for all z ∈ U , |κu(z)| > 1) we can assume that T0→0(z) is a contraction on Es(z) so that Assumption
5.1 is satisfied and Theorem 3.1 gives the LE-strong stability of (71).

8Note that because the transport phenomenon is outgoing for the side {x = 0} it is not surprising that imposing Neumann
boundary condition leads to an unstable scheme.

9Consequently we can consider a Neumann boundary condition for the side {x = 1}, this is totally natural because the
transform phenomemon is incoming for the side {x = 1}
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