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Abstract: The paper considers the statistical 
modelling of fully developed backscattering in the 
case of SAR images of the ocean surface. 
According to the random-walk theory, the SAR 
image grey level is modelled as the product of a 
speckle noise and a variable which is dependent 
on the reflectivity of the illuminated surface and 
the radar-point-spread fonction. The purpose of 
the study is the statistical modelling of the latter 
variable. As nothing is known about these 
statistics, the authors propose the use of an 
estimation method based on a system of 
distributions. The set contains known density­
probability fonctions with very flexible shapes 
that are supposed to fit its distribution. The 
associated image intensity distributions are 
processed and form a new system called KUBW, 
referring to the special fonctions used to generate 
the distributions. The classical K law belongs to 
the new system of distributions. By using a 
statistical test on the intensity distribution, the 
authors assess the relevance of the system of 
distributions in comparison with the classical 
model. The paper concludes with a discussion of 
the merits of the method and its extension to the 
case of ocean SAR image applications. 

1 Introduction 

Synthetic aperture radar images are known to be 
affected by speckle noise effect because of the coherent 
technique used in their generation. This noise effect 
limits the performance of airborne sensors. The statisti­
cal formulation is therefore of interest for designing 
detection, segmentation, filtering and pattern recogni­
tion algorithms and for optimum radar performance 
analysis. These analyses need, in order to be per­
formed, a statistical image model that is usually 
obtained by two approaches. 

The first consists of a parametric estimation of the 
SAR image-intensity distribution. Among the known 
distributions are the lognormal [1], Weibull [2], gamma 
[3, 4] and more recently the beta of the first and second 

kind [5, 6] distributions. The lognormal or Weibull 
distributions sometimes fit correctly with the SAR 
image histograms. In a previous work [6, 7], we have 
proposed modelling the grey level probability density 
fonction using the Pearson system of distributions. By 
using the estimation of higher moments, we have 
shown that the selected distribution in the Pearson 
system (beta of the first kind and beta of the second 
kind distributions) fits the histograms [6, 7] better than 
the usual parametric distributions. Although relevant, 
these fonctions are not derived from a physical model 
or clutter scattering mechanism. 

The second approach to radar image-intensity 
distribution consists of considering the physical 
mechanism responsible for the backscattering from the 
surface. The mathematical foundations for this 
approach were first established in relation to the 
random-walk problem. The main result of this theory 
models the speckle texture by a multiplying noise 
following the exponential distribution [8, 9] for the 
images in intensity. 

The gamma law of observation without noise is most 
commonly used and corresponds to the K law for the 
intensity [10-15]. Indeed, this distribution was used for 
modelling the statistical properties of radiation scat­
tered by land [13], sea [11] and extended area [14] in the 
case of radar images, and also for the optical scattering 
of the random phase [15]. 

This paper introduces and studies a new set of 
parametric distributions for modelling ocean radar 
images. 

The statistical method developed is based on the sys­
tem of distributions. It comprises collecting in a system 
many well known distributions of varied shapes, and 
selecting, for a given sample, the parametric distribu­
tion which fits its histogram. This statistical method 
presents two main advantages : it avoids the subjective 
choice of a parametric law and provides a more reliable 
estimation than the classical one. 

The implications of this programme are extensive 
because we will be able to propose more efficient seg­
mentation, filtering and detection algorithms. 

2 Compound distribution model 

The compound distribution model for sea clutter was 
introduced by Ward [10]. This model represents the 
clutter as a noise-like speckle signal modulated by a 
fonction, which is derived from the radar reflectivity of 
the resolution cell and the radar point-spread fonction. 
In the case of SAR imagery, the point spread fonction 
depends on motion within the resolution cell and 
includes the effects of this motion, such as the well 



known 'velocity bunching' phenomenon for ocean 
waves. For single-look radar data, the speckle signal 
may be described by an exponential distribution. For 
multi-look radar data, this becomes a x-squared 
distribution, which is a special case of the gamma 
distribution. 

The distribution of the intensity in the image is the 
compound distribution which is obtained by 

r+= 

!I(x) = Jo h;s=s(x)fs(s)ds (1) 

with 

(2) 
where N is the number of looks of the image, s depends 
on the reflectivity and the radar point-spread fonction, 
and r(.) is the gamma fonction. 

As S is not observable, Wackerman [16] has 
proposed a nonparametric method for estimating its 
distribution. We propose a set of distributions which 
contains U, J, and bell-shaped probability density 
fonctions, and a large variety of unimodal distributions 
such as gamma, beta of the first kind, beta of the 
second kind, inverse gamma distributions, etc. The 
proposed system is a subset of the Pearson system [6, 
7]. All the parametric distributions are linked by the 
following differential equation 

dfs(s) 
fs(s) 

with a, c 1 , c2 parameters of the distributions. 
(3) 

By solving this differential equation (eqn. 3), we 
obtain the Pearson distribution of types I, III, V and 
VI. 
2. 1 Pearson distribution of type I or beta law
of the first kind

where p and q are the shape parameters 

s E [0, /3] 
(4) 

a a 1 p = --+1, q = ---+1 so that p 2: 0, q 2: 0 
C1 C1 C2 

f3 is the scaling parameter such that 
/3=-ci, /32:0

C2 

and B(.,.) is the beta fonction: 

B(p,q) = 1
1 

xP- 1 (1-x)q-ldx 

In the Pearson system, the beta distribution of the first 
kind presents the largest variety of shapes among the 
Pearson distributions (Fig. 1 ). U-shape density for 
p < I and q < I, J-shape density for p < 1 and q > I, 
L-shape density for p > I and q < I, and bell-shape 
density for p > I and q > I. 

The normal distribution is a limit form of the beta 
distribution of the second kind, when c 1 and c2 tend to 
zero and the gamma distribution is the limit form of 
the beta distribution as c2 tends to zero. 

2.2 Pearson distribution of type Ill or gamma 
law 

13a so,-1 

fs(s)= r(a) e-f3s, sE[O,+oo[ (5)
where a is the shape parameter, 

a a= -- + 1, a 2: 0C1 
/3 is the scaling parameter, 

/3 = _!_, /3 2: 0C1 
and r(.) is the gamma fonction, 

r(a) = 1
+= 

xa-l e-xdx 

If a $; I, L the probability-density fonction is L-shaped. 
If a > I, gamma density is bell-shaped. 

s 

Fig. 1 S-distrihution system: type-/ density 
p = 5, q = 2 
p = 5, q = 5 
p = 1, q = 1 
p = 0.6, q = 0.6 
p = 0.6, q = 5 
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Fig.2 S-distrihution system: type-Ill density 
a=6 
a=3 
a=I 
a= 0.5 

Fig. 2 shows the gamma distribution for various val­
ues of a. It may be shown that the gamma distribution 
tends to the normal distribution when c 1 tends to zero. 
2.3 Pearson distribution of type V or inverse 
gamma /aw 

-o,-1 

f ( ) - s -1/fJs ]O [ (6) s s - !30tr(a) e , s E , +oo 
with a shape parameter, 

1 
a=-, a 2: 0 

C2 



and /3 is the scale parameter,

13 
__ C2 /3"2:_0
- a' 

The type-V density is bell-shaped (Fig. 3) and tends to
the normal distribution when c2 tends to zero. 

Fig.3 
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S-distribution system: type- V density
a=l 

a = 3 
a=6 
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2.4 Pearson distribution of type VI or beta 
law of the second kind 

/3q sP-1 
fs(s) = B(p, q) (/3 + s)P+q, s E ]O, +oo[ (7) 

where p and q are shape parameters, 
a 1 p = -- + 1, q = - -1, so that p "2:. 0, q "2:. 0
C1 C2 

and /3 is the scale parameter, 
/3� c1

, /3"2:_0
C2 

The beta distribution of the second kind is well known
by statisticians because it approaches many
distributions, such as the normal, lognormal,
exponential and gamma distributions. Actually, this
flexibility is due to the two shape parameters (Fig. 4). 
Note that the gamma distribution is the limit form of
the beta distribution of the second kind when c2 tends
to zero, that the normal distribution is the limit form
when c1 and c2 tend to zero, and that the inverse
gamma distribution can be obtained from the beta
distribution of the second kind when c 1 tends to zero. 

Fig.4 
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S-distribution system: type- VI density 

p = 3, q = 0.8
p = 3, q = 3 
p = 1, q = 3 

3 Parametric intensity distribution 

For each distribution of S, we process the 
corresponding intensity distribution. The new set of

distributions forms a new system called KUBW which
is explained in this Section. The corresponding intensity
distributions are obtained by solving the integral
eqn. 1, where /11s=ix) is given by eqn. 2 and fs(s)
belongs to the system described in the preceding
Section. 

3. 1 f s type-/ Pearson density or beta law of
the first kind 
The intensity distribution [17] is expressed by

f ( ) = r(q) _!_ (Nx) (p+N-1)/2 -Nx/2fJ
I X r(N)B(p, q) X /3 e 

xW(-p-2q+N+1)/2,(N-p)/2 ( �x ) 
x E [0, +oo[ (8)

with WÂ,µ (À,µ real numbers) as t_he Whittaker fonction,
p and q are the shape parameters 

a a 1 p = --+ 1, q = ---+ 1 so that p "2:. 0, q "2:. 0
C1 C1 C2 

and /3 is the scaling parameter, 

/3= c1
, /3"2:_0

C2 
This distribution, which depends on the Whittaker
fonction, is called the W probability-density fonction.
Note that the W distribution tends to the K distribu­
tion when c2 tends to zero. Various W densities are
shown in Fig. 5. 

X 

Fig.5 !-distribution system: W density
p = 5, q = 2
p = 5, q = 5
p = 1, q = 1
p = 0.6, q = 0.6 
p = 0.6, q = 5 

3.2 f s type-li/ Pearson density or gamma law 
We obtain the K law for the intensity [10-15]:

1 b (by'x) a+N-1

JI
(
x)

= r(N)r(a) VX -2- Ka-N(b./x)
x E [0, +oo[ (9)

with scale parameter,

shape parameter,

{J-2� 

a 
a=--+1

C1 
and K is the modified Bessel fonction of the second
kind. 



Fig. 6 shows the K probability-density fonction for
various values of a. Recalling that the K distribution
tends to the exponential distribution as a tends to
infinity, we obtain the speckle distribution which
corresponds to a sea with no swell modulation. 
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Fig.6 [-distribution system: K density 
a = 6 
a = 3 
a= 1 
a = 0.5 

3.3 fs type-V Pearson density or inverse 
gamma law
For the intensity, the beta law of the second kind is
obtained: 

N/3 (Nf3x)N-l 
fI(x) = B(N,a) (N/Jx + l)N+a' 

with a shape parameter, 
a 

a= -- + 1 
C1 

and /3 scale parameter, 

/J = - C2
' 

S 
> 

Ü

XE [0, +oo[

(10) 

The distribution of type-1 is represented in Fig. 7 for
the same values that were used for the type-V distribu­
tion shown in Fig. 3. 
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Fig. 7 !-distribution system: B density 
a = 1 
a = 3
a = 6 
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3.4 fs type-VI Pearson density or beta law of 
the second kind
The intensity distribution, processed by eqns. 1, 2 and
7, is expressed by the following equation: 

f(N + q) 1 Nx Nx 
( )

N 

( ) fI(x) = f(N)B(p,q) � /3 Up+q,1-N+p /3 

X E [0, +oo[ (11) 

with U).,µ(z) as the hypergeometric function of À. andµ,
p and q as shape parameters: 

a l p = -- + 1, q = - + 1 
Cl C2 

and /3 as the scale parameter: 

/3 = c1
C2 

As this density depends on the U fonction, it is called
the U probability-density fonction. This last distribu­
tion is illustrated by Fig. 8 for the same parameter val­
ues as the S distribution given in Fig. 4. 
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Fig.8 [-distribution system: U density 
p = 3, q = 0.8 
p = 3, q = 3 
p = 1, q = 3 

The U distribution tends to the K distribution when
c2 tends to zero, whereas it will tend to the beta distri­
bution when c 1 tends to zero. 

As the K, U, B and W densities of the intensity
depend on the Bessel modified of the second kind, the
hypergeometric, the beta and the Whittaker special
fonctions, respectively, the system of distributions is
called the KUBW system. 

4 Estimation 

The parameters a, c1 and c2 in eqn. 3 can be expressed
in terms of the moments of the distribution. Eqn. 3
may be written (after multiplying both sides by xr): 

sr(c1s + c2s2 ) df:;
s) 

+ sr(a + s)fs(s) = 0 (12)

By integrating eqn. 12 between --oo and +00, and assum­
ing x' .fs(s) ➔ 0 as s ➔ +oo for r � 4, we obtain the
equation: 

(-c2(r+2)+1)m�+1 +(-(r+l)c1 +a)m� = 0 (13) 
where (m' y)y = 1,3 are the first, second and third-order
moments about zero of S. 

Putting r = 0, l, 2 in eqn. 13, and noting m' 0 = 1, we 
obtain three simultaneous equations for a, c 1 and c2 • 

These equations depend on the three first moments of 
S (m' i , m'2 and m'3). The formulas for a, c 1 and c2 are 

m' m' - 4m' m'2 + 3m'2m' 
a= 3 2 3 1 2 1 

2(2m' m' + m' m'2 - 3m'2) 3 1 2 1 2 

C _ m3m; - 2m3m�2 + m;2m� 
1 - 2(2m' m' + m' m'2 - 3m'2) 3 1 2 1 2 

(14) 

(15) 

(16) 



Note that [31 and [32 are, respectively, the square of the 
skewness and the kurtosis of the reflectivity, 

m� m4 
/31 = -3 ' /32 = -2 ( 1 7) 

m2 m2 

where (my)y=l ,3 are the first, second and third-order
centred moments of S.

Each S distribution can be represented by a separate 
subspace in the (/31 , [32) plane (Fig. 9). /31 and /32 
describe, respectively, the flatness and the dissymmetry 
of the distribution, so they characterise the distribution 
shape. 

·• ............ � 

4 

limit for the distributions of S 
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0 

�1 

Fig. 9 S distributions in the ( /31 ,/32) plane 
N = normal distribution 
I = beta distribution of the first kind 
III = gamma distribution 
V = inverse gamma distribution 
VI = beta distribution of the second kind 

The subspace dimension depends on the number of 
shape parameters in the associated distribution. Thus, 
the beta of the first kind and beta of the second kind 
distributions are represented by an area, because they 
have two shape parameters. The gamma distribution, 
which depends on one shape parameter, is represented 
in the (/31,/32) plane by a line. a, c 1 , c2 parameters are 
estimated by the method of moments. The estimated y­
order moment of S is the following: 

A/ 

A/ µ/ m =--�--
' E[J--Y /S = s]

(18) 

where the yth moment of the intensity µ'r is estimated 
with the intensity image. 

E[IY/S=s] is calculated using eqn. 2: 

E[P /S 
= s] = r(ni + 1)

nJr(n1) 
(19) 

So, the moment estimators of S are obtained by the 
following: 

A, _ ,,, r(n1) A'm,,, - nl 
r(n1 + 1) µ, 

(20) 

By uBing eqn. 17, we obtain an estimation of the 
(/31 , [32) of the S random variable, for a given sample. 
The automatic selection of a parametric distribution in 
the KUBW system is, therefore, performed according 
to the location (/31 , /32) in the (/31, [32) graph (Fig. 9). 
Finally, the estimation of a, c0 and c 1 is obtained by 
using eqns. 14, 15 and 16. 

5 Results 

As the histogram of S is not known, the parametric 
distribution cannot be compared with it. Consequently, 
we analyse the results of adjusting S with regard to the 
test result of the intensity. 

The selected distribution in the KUBW system is 
compared to the histogram using a fitting 
Kolmogorov-Smirnov test. This test is based on the 
Kolmogorov statistic Àn which depends on the 
empirical cumulative histogram Fn(x) and the 
parametric cumulative density fonction F(x):

Àn = y'n sup IFn (x) - F(x)I (21) 
xE1J 

where 0 is the grey-level support and n the size of the 
sample. 

Four selected Seasat radar images of various sea 
states were used to present the results of the statistical 
method developed in this paper. 

OLERON is an image obtained near France's Oleron 
island. The image shows only a speckle texture, and so 
the swell does not appear in the image. 

JASINl was obtained during an oceanographic sur­
vey in the North of Scotland. A periodic modulation of 
the backscattering by the swell can be seen. 

JASIN4 cornes from the same survey. The period of 
the swell is very short and the texture is very spiky. 

ATLANTIQUE is an image taken over the Atlantic 
Ocean. The organised texture component has a wave­
length in between the JASIN4 to JASINl examples. 

Table 1 shows the K, U, B and W distributions fit­
ting results for the Seasat images. The Kolmogorov­
Smirnov statistic, as defined in the preceding test, is 
below 1.31, and so the statistical method developed in 
this paper offers good results. 

Table 1: Estimation results of KUBW system of distribu­

tions on the Seasat images 

OLERON ATLANTIQUE JASIN1 JASIN4 

S-distribution VI 

type 

/-distribution w w w u 

type 

/31 reflectivity 0.02 1.44 0.89 4.66 

/32 refl ectivity 3.13 5 5.16 11.96 

Àn 0.82 1.31 0.858 0.97 

Estimation of the [31 and [32 parameters illustrates 
their dependence on the sea surface. As the (0,3) couple 
is a normal distribution, we can conclude that the qui­
eter the sea is, the more the distribution will resemble a 
normal distribution. The estimation method retains, for 
S, the beta of the first kind distribution for a relatively 
quiet sea surface and the beta of the second kind for 
other sea states. For the intensity, the corresponding 
distributions are the W and U laws. 

The S distribution is also modelled by the gamma 
probability-density fonction, which provides the K law 
for the intensity. Table 2 shows the fitting results. It 
may be noted that the results are worse than those 
obtained by the KUBW system of distributions 
(Table 1 ). In fact, the gamma law off ers a compromise 
between the beta of the first kind and the beta of the 
second kind distributions. This compromise is justified 
in the (/31,/32) plane because the gamma curve is a 



transition line between the beta laws' subspaces 
(Fig. 10). This explains the fitting results obtained with 
the K law. 

Table 2: Estimation results of the K distributions on the 
Seasat images 

OLERON ATLANTIQUE 

S-distribution Ill Ill 

type

/-distribution K K 

type 

Ân 32 2.45 

Il, 

Fig.10 S distributions of images in (/31 ,/Ji) plane 

JASIN1 JASIN4 

Ill Ill 

K K 

8.67 9 

Also note that our method is more robust, because 
the Kolmogorov-Smirnov threshold varies from 0.8 to 
1.31 and the K law fitting results vary from 2.45 to 32. 
This is a second advantage of this statistical study. 

Finally, we propose to compare our results with 
those obtained by considering the parametric 
distributions, without making any hypotheses about 
backscattering. The estimation method is more 
traditional because it does not take into account the 
specific nature of the radar images. The usual 
distributions are the lognormal, beta of the first and 
second kind distributions, and also the Weibull one. 
The results are shown in Table 3. The Kolmogorov­
Smirnov test demonstrates the superiority of the 
lognormal and beta distributions for the intensity. 
These results can be explained by considering that the 
random-walk theory is based on hypotheses which are 
not always fully justified. Nevertheless, these 
advantages should be balanced by the fact that this 
method does not give us the distribution of S.

Table 3: Results of the estimation of beta, lognormal and 
Weibull distributions of the Seasat images 

OLERON ATLANTIQUE JASIN1 JASIN4 

Beta 

Log normal 

Weibull 

0.55 

0.93 

3.08 

6 Conclusion 

0.91 

0.76 

5,11 

0.71 

1.38 

3.54 

0.73 

0.68 

7.06 

In this paper, we have introduced a method for model­
ling the variability of the scene texture of ocean SAR 
images. To avoid making a choice of S distribution, we 
have proposed a method to automatically select a well 
suited distribution of the histogram in a system of par­
ametric distributions. This has been chosen so that it 

contains distributions of varied shapes and most of the 
well known parametric distributions. For a given sam­
ple, a distribution is selected in accordance with the 
skewness and the flatness of its histogram. The corre­
sponding intensity distribution set has been processed 
and called KUBW, with reference to the K, U, Band 
W special functions. We can show definite advantages 

for this estimation method. 
The automatic selection of the S distribution ensures 

good fitting results to the histogram and also a more 
robust estimation than the one produced by the 
classical gamma distribution. The same remark can be 
made about the intensity variable. We have introduced 
new distributions for S and the intensity variables. 
These are the beta of the first and second kind 
distributions for S and the U and W distributions for 
the intensity. The former distributions depend on one 
more shape parameter than the gamma probability­
density function. Note also that the latter is a limit 
form of the beta of the first and second kind density. 
Consequently, these new distributions are more flexible 
than the classical gamma distribution and offer better 
adjustment to the histogram. Hence, we retain the beta 
of the first and second kind distributions for the 
reflectivity variable and the U and W distributions for 
the intensity. 

Nevertheless, the K law results are not bad, its loca­
tion in the (/31 , /Ji) graph shows that the gamma line 
location is a good compromise between the two beta 
laws. This statistical modelling, therefore, provides an 
adequate parametric distribution of the intensity which 
can be used for the design of segmentation, texture 
analysis or filtering algorithms [18-20]. 
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