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Introduction

Synthetic aperture radar images are known to be affected by speckle noise effect because of the coherent technique used in their generation. This noise effect limits the performance of airborne sensors. The statisti cal formulation is therefore of interest for designing detection, segmentation, filtering and pattern recogni tion algorithms and for optimum radar performance analysis. These analyses need, in order to be per formed, a statistical image model that is usually obtained by two approaches.

The first consists of a parametric estimation of the SAR image-intensity distribution. Among the known distributions are the lognormal [1], Weibull [START_REF] Trunk | Detection of targets in non-Gaussian sea-clutter[END_REF], gamma [START_REF] Garello | Use of statistical analysis for Ice-Ocean discrimination[END_REF][START_REF] Chapron | Non linear theory of ocean-SAR transformation and statistical analysis of ERSl-l SAR wave mode imagettes[END_REF] and more recently the beta of the first and second kind [START_REF] Maffett | The modified beta density function as a mode) for synthetic aperture radar clut ter statistics[END_REF][START_REF] Delignon | Statistical study of sea surface radar images[END_REF] distributions. The lognormal or Weibull distributions sometimes fit correctly with the SAR image histograms. In a previous work [START_REF] Delignon | Statistical study of sea surface radar images[END_REF][START_REF] Johnson | Distribution in statistics: Con tinuous univariate distributions[END_REF], we have proposed modelling the grey level probability density fonction using the Pearson system of distributions. By using the estimation of higher moments, we have shown that the selected distribution in the Pearson system (beta of the first kind and beta of the second kind distributions) fits the histograms [START_REF] Delignon | Statistical study of sea surface radar images[END_REF][START_REF] Johnson | Distribution in statistics: Con tinuous univariate distributions[END_REF] better than the usual parametric distributions. Although relevant, these fonctions are not derived from a physical model or clutter scattering mechanism.

The second approach to radar image-intensity distribution consists of considering the physical mechanism responsible for the backscattering from the surface. The mathematical foundations for this approach were first established in relation to the random-walk problem. The main result of this theory models the speckle texture by a multiplying noise following the exponential distribution [START_REF] Goodman | Laser speckle and related phenomena[END_REF][START_REF] Ulaby | Active micro wave sensing of the ocean[END_REF] for the images in intensity.

The gamma law of observation without noise is most commonly used and corresponds to the K law for the intensity [10][START_REF] Jakeman | A model for non-Rayleigh sea echo[END_REF][START_REF] Jakeman | Significance of K distribu tion in scattering experiments[END_REF][START_REF] Jao | Amplitude of composite terrain radar clutter and the K distribution[END_REF][START_REF] Laur | Radar image analysis in remote sensing: texturai nd radiometric discriminators[END_REF][START_REF] Barakat | Weak scattering generalisation of the K density function with application to laser scattering in atmospheric turbu lence[END_REF]. Indeed, this distribution was used for modelling the statistical properties of radiation scat tered by land [START_REF] Jao | Amplitude of composite terrain radar clutter and the K distribution[END_REF], sea [START_REF] Jakeman | A model for non-Rayleigh sea echo[END_REF] and extended area [START_REF] Laur | Radar image analysis in remote sensing: texturai nd radiometric discriminators[END_REF] in the case of radar images, and also for the optical scattering of the random phase [START_REF] Barakat | Weak scattering generalisation of the K density function with application to laser scattering in atmospheric turbu lence[END_REF].

This paper introduces and studies a new set of parametric distributions for modelling ocean radar images.

The statistical method developed is based on the sys tem of distributions. It comprises collecting in a system many well known distributions of varied shapes, and selecting, for a given sample, the parametric distribu tion which fits its histogram. This statistical method presents two main advantages : it avoids the subjective choice of a parametric law and provides a more reliable estimation than the classical one.

The implications of this programme are extensive because we will be able to propose more efficient seg mentation, filtering and detection algorithms.

Compound distribution model

The compound distribution model for sea clutter was introduced by Ward [10]. This model represents the clutter as a noise-like speckle signal modulated by a fonction, which is derived from the radar reflectivity of the resolution cell and the radar point-spread fonction.

In the case of SAR imagery, the point spread fonction depends on motion within the resolution cell and includes the effects of this motion, such as the well known 'velocity bunching' phenomenon for ocean waves. For single-look radar data, the speckle signal may be described by an exponential distribution. For multi-look radar data, this becomes a x-squared distribution, which is a special case of the gamma distribution.

The distribution of the intensity in the image is the compound distribution which is obtained by r += !I( x) = J o h;s=s(x)fs (s)ds

(1) with [START_REF] Trunk | Detection of targets in non-Gaussian sea-clutter[END_REF] where N is the number of looks of the image, s depends on the reflectivity and the radar point-spread fonction, and r(.) is the gamma fonction.

As S is not observable, Wackerman [START_REF] Wackerman | Calculation of the spatial distribution of the scatterers in a diffuse scene from SAR data[END_REF] has proposed a nonparametric method for estimating its distribution. We propose a set of distributions which contains U, J, and bell-shaped probability density fonctions, and a large variety of unimodal distributions such as gamma, beta of the first kind, beta of the second kind, inverse gamma distributions, etc. The proposed system is a subset of the Pearson system [START_REF] Delignon | Statistical study of sea surface radar images[END_REF][START_REF] Johnson | Distribution in statistics: Con tinuous univariate distributions[END_REF]. All the parametric distributions are linked by the following differential equation dfs(s) fs(s ) with a, c 1 , c 2 parameters of the distributions.

(3) By solving this differential equation (eqn. 3), we obtain the Pearson distribution of types I, III, V and VI.

1 Pearson distribution of type I or beta law of the first kind
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f3 is the scaling parameter such that /3 =-ci , /32:0 C2 and B(.,.) is the beta fonction:
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x P -1 ( 1-x ) q-ld x In the Pearson system, the beta distribution of the first kind presents the largest variety of shapes among the Pearson distributions (Fig. 1 ). U-shape density for p < I and q < I, J-shape density for p < 1 and q > I, L-shape density for p > I and q < I, and bell-shape density for p > I and q > I. The normal distribution is a limit form of the beta distribution of the second kind, when c 1 and c 2 tend to zero and the gamma distribution is the limit form of the beta distribution as c 2 tends to zero. 
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a=I a= 0.5 Fig. 2 shows the gamma distribution for various val ues of a. It may be shown that the gamma distribution tends to the normal distribution when c 1 tends to zero.
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The type-V density is bell-shaped (Fig. 3) and tends to the normal distribution when c 2 tends to zero.
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The beta distribution of the second kind is well known by statisticians because it approaches many distributions, such as the normal, lognormal, exponential and gamma distributions. Actually, this flexibility is due to the two shape parameters (Fig. 4). Note that the gamma distribution is the limit form of the beta distribution of the second kind when c 2 tends to zero, that the normal distribution is the limit form when c 1 and c 2 tend to zero, and that the inverse gamma distribution can be obtained from the beta distribution of the second kind when c 1 tends to zero. \ ____ -----s S-distribution system: type-VI density p = 3, q = 0.8 p = 3, q = 3 p = 1, q = 3 3

Parametric intensity distribution

For each distribution of S, we process the corresponding intensity distribution. The new set of distributions forms a new system called KUBW which is explained in this Section. The corresponding intensity distributions are obtained by solving the integral eqn. 1, where / 11s =ix) is given by eqn. 2 and fs(s) belongs to the system described in the preceding Section.

1 f s type-/ Pearson density or beta law of the first kind

The intensity distribution [START_REF] Lopes | Statistical distribution and texture in multilook and complex SAR images[END_REF] is expressed by
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This distribution, which depends on the Whittaker fonction, is called the W probability-density fonction. Note that the W distribution tends to the K distribu tion when c 2 tends to zero. Various W densities are shown in Fig. 5. X Fig. 5 !-distribution system: W density p = 5, q = 2 p = 5, q = 5 p = 1, q = 1 p = 0.6, q = 0.6 p = 0.6, q = 5

f s type-li/ Pearson density or gamma law

We obtain the K law for the intensity [10-15]: Fig. 6 shows the K probability-density fonction for various values of a. Recalling that the K distribution tends to the exponential distribution as a tends to infinity, we obtain the speckle distribution which corresponds to a sea with no swell modulation.

1 b (by'x ) a+N-1 JI ( x ) = r(N)r(a) VX -2- Ka-N(b./x ) x E [0, +oo[ (9 
:g: -- 6 [-distribution system: K density a = 6 a = 3 a= 1 a = 0.5

'\ 1\ 1 \ 1-\, , 1 \ , 1 \ \ ' 1 1 \ . 1 \ \ \ 1 X Fig.

fs type-V Pearson density or inverse gamma law

For the intensity, the beta law of the second kind is obtained:

N/3 (Nf3x) N -l fI ( x ) = B ( N,a ) (N/Jx + l)N+a'
with a shape parameter, a a= --+ 1
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The distribution of type-1 is represented in Fig. 7 for the same values that were used for the type-V distribu tion shown in Fig. 3.
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The intensity distribution, processed by eqns. 1, 2 and 7, is expressed by the following equation:

f(N + q) 1 Nx Nx ( ) N ( ) fI ( x ) = f (N)B( p, q ) � /3 Up+q,1-N +p /3 X E [0, +oo[ (11) 
with U ). ,µ(z) as the hypergeometric function of À. andµ, p and q as shape parameters: a l p = --+ 1, q = -+ 1 Cl C2 and /3 as the scale parameter: /3 = c1 C2 As this density depends on the U fonction, it is called the U probability-density fonction. This last distribu tion is illustrated by Fig. 8 for the same parameter val ues as the S distribution given in Fig. 4.
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The U distribution tends to the K distribution when c 2 tends to zero, whereas it will tend to the beta distri bution when c 1 tends to zero.

As the K, U, B and W densities of the intensity depend on the Bessel modified of the second kind, the hypergeometric, the beta and the Whittaker special fonctions, respectively, the system of distributions is called the KUBW system.

Estimation

The parameters a, c 1 and c 2 in eqn. 3 can be expressed in terms of the moments of the distribution. Eqn. 3 may be written (after multiplying both sides by x r ):

s r (c 1 s + c2 s 2 ) df : ; s) + s r (a + s)f s (s) = 0 (12)

By integrating eqn. 12 between --oo and + 00 , and assum ing x' .fs(s) ➔ 0 as s ➔ +oo for r � 4, we obtain the equation:

(-c2 ( r+2)+1)m� +1 + ( -( r+l)c1 +a)m� = 0 (13) where (m' y) y = 1 , 3 are the first, second and third-order moments about zero of S.

Putting r = 0, l, 2 in eqn. 13, and noting m' 0 = 1, we obtain three simultaneous equations for a, c 1 and c 2 • These equations depend on the three first moments of S (m' i , m' 2 and m' 3 ). The formulas for a, c 1 and c 2 are m' m' -4m' m' 2 + 3m' 2 m'
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Note that [3 1 and [3 2 are, respectively, the square of the skewness and the kurtosis of the reflectivity,

m� m4 /31 = -3 ' /32 = -2 ( 1 7) m2 m2
where (m y ) y = l , 3 are the first, second and third-order centred moments of S.

Each S distribution can be represented by a separate subspace in the (/3 1 , [3 2 ) plane (Fig. 9). /3 1 and /3 2 describe, respectively, the flatness and the dissymmetry of the distribution, so they characterise the distribution shape. The subspace dimension depends on the number of shape parameters in the associated distribution. Thus, the beta of the first kind and beta of the second kind distributions are represented by an area, because they have two shape parameters. The gamma distribution, which depends on one shape parameter, is represented in the (/3 1 ,/3 2 ) plane by a line. a, c 1 , c 2 parameters are estimated by the method of moments. The estimated y order moment of S is the following:

A/ A/ µ/ m =--�-- ' E[J--Y /S = s] (18)
where the yth moment of the intensity µ' r is estimated with the intensity image. E[IY/S=s] is calculated using eqn. 2:

E[P /S = s] = r(ni + 1 ) nJr(n1) (19) 
So, the moment estimators of S are obtained by the following:

A, _ ,,, r(n1) A' m,,, -nl r(n1 + 1) µ,

By uBing eqn. 17, we obtain an estimation of the (/3 1, [3 2 ) of the S random variable, for a given sample.

The automatic selection of a parametric distribution in the KUBW system is, therefore, performed according to the location (/3 1 , /3 2 ) in the (/3 1 , [3 2 ) graph (Fig. 9). Finally, the estimation of a, c 0 and c 1 is obtained by using eqns. 14, 15 and 16.

As the histogram of S is not known, the parametric distribution cannot be compared with it. Consequently, we analyse the results of adjusting S with regard to the test result of the intensity. The selected distribution in the KUBW system is compared to the histogram using a fitting Kolmogorov-Smirnov test. This test is based on the Kolmogorov statistic Àn which depends on the empirical cumulative histogram Fn(x) and the parametric cumulative density fonction F(x):

Àn = y'n sup IFn (x) -F(x)I (21 ) xE1J
where 0 is the grey-level support and n the size of the sample.

Four selected Seasat radar images of various sea states were used to present the results of the statistical method developed in this paper.

OLERON is an image obtained near France's Oleron island. The image shows only a speckle texture, and so the swell does not appear in the image.

JASINl was obtained during an oceanographic sur vey in the North of Scotland. A periodic modulation of the backscattering by the swell can be seen.

JASIN4 cornes from the same survey. The period of the swell is very short and the texture is very spiky.

ATLANTIQUE is an image taken over the Atlantic Ocean. The organised texture component has a wave length in between the JASIN4 to JASINl examples.

Table 1 shows the K, U, B and W distributions fit ting results for the Seasat images. The Kolmogorov Smirnov statistic, as defined in the preceding test, is below 1.31, and so the statistical method developed in this paper offers good results. Estimation of the [3 1 and [3 2 parameters illustrates their dependence on the sea surface. As the (0,3) couple is a normal distribution, we can conclude that the qui eter the sea is, the more the distribution will resemble a normal distribution. The estimation method retains, for S, the beta of the first kind distribution for a relatively quiet sea surface and the beta of the second kind for other sea states. For the intensity, the corresponding distributions are the W and U laws.

The S distribution is also modelled by the gamma probability-density fonction, which provides the K law for the intensity. Table 2 shows the fitting results. It may be noted that the results are worse than those obtained by the KUBW system of distributions (Table 1 ). In fact, the gamma law off ers a compromise between the beta of the first kind and the beta of the second kind distributions. This compromise is justified in the (/3 1 ,/3 2 ) plane because the gamma curve is a transition line between the beta laws' subspaces (Fig. 10). This explains the fitting results obtained with the K law. Also note that our method is more robust, because the Kolmogorov-Smirnov threshold varies from 0.8 to 1.31 and the K law fitting results vary from 2.45 to 32. This is a second advantage of this statistical study.

Finally, we propose to compare our results with those obtained by considering the parametric distributions, without making any hypotheses about backscattering. The estimation method is more traditional because it does not take into account the specific nature of the radar images. The usual distributions are the lognormal, beta of the first and second kind distributions, and also the Weibull one. The results are shown in Table 3. The Kolmogorov Smirnov test demonstrates the superiority of the lognormal and beta distributions for the intensity. These results can be explained by considering that the random-walk theory is based on hypotheses which are not always fully justified. Nevertheless, these advantages should be balanced by the fact that this method does not give us the distribution of S. In this paper, we have introduced a method for model ling the variability of the scene texture of ocean SAR images. To avoid making a choice of S distribution, we have proposed a method to automatically select a well suited distribution of the histogram in a system of par ametric distributions. This has been chosen so that it contains distributions of varied shapes and most of the well known parametric distributions. For a given sam ple, a distribution is selected in accordance with the skewness and the flatness of its histogram. The corre sponding intensity distribution set has been processed and called KUBW, with reference to the K, U, Band W special functions. We can show definite advantages for this estimation method. The automatic selection of the S distribution ensures good fitting results to the histogram and also a more robust estimation than the one produced by the classical gamma distribution. The same remark can be made about the intensity variable. We have introduced new distributions for S and the intensity variables. These are the beta of the first and second kind distributions for S and the U and W distributions for the intensity. The former distributions depend on one more shape parameter than the gamma probability density function. Note also that the latter is a limit form of the beta of the first and second kind density. Consequently, these new distributions are more flexible than the classical gamma distribution and offer better adjustment to the histogram. Hence, we retain the beta of the first and second kind distributions for the reflectivity variable and the U and W distributions for the intensity.

Nevertheless, the K law results are not bad, its loca tion in the (/3 1 , /Ji) graph shows that the gamma line location is a good compromise between the two beta laws. This statistical modelling, therefore, provides an adequate parametric distribution of the intensity which can be used for the design of segmentation, texture analysis or filtering algorithms [START_REF] Hillion | SAR images filtering[END_REF][START_REF] Quelle | Unsupervised bayesian segmentation of SAR images using the Pearson system distributions[END_REF][START_REF] Delignon | Estimation of generalised mixture and unsupervised statistical radar image segmentation[END_REF].
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Table 1 : Estimation results of KUBW system of distribu tions on the Seasat images

 1 

		OLERON ATLANTIQUE JASIN1 JASIN4
	S-distribution				VI
	type				
	/-distribution	w	w	w	u
	type				
	/3 1 reflectivity	0.02	1.44	0.89	4.66
	/3 2 refl ectivity	3.13	5	5.16	11.96
	Àn	0.82	1.31	0.858	0.97

Table 2 : Estimation results of the K distributions on the Seasat images

 2 

		OLERON ATLANTIQUE		
	S-distribution type	Ill	Ill	Ill	Ill
	/-distribution	K	K	K	K
	type				
	Ân	32	2.45	8.67	9
			Il,		

Fig.10 S distributions of images in (/3 1 ,/Ji) plane JASIN1 JASIN4

Table 3 : Results of the estimation of beta, lognormal and Weibull distributions of the Seasat images

 3 

			OLERON ATLANTIQUE JASIN1 JASIN4
	Beta		0.55	0.91	0.71	0.73
	Log normal	0.93	0.76	1.38	0.68
	Weibull	3.08	5,11	3.54	7.06
	6	Conclusion		

Results