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Abstract—Neural networks are one of the most well-known
artificial intelligence technique. These networks have known a
huge evolution since their first proposal, represented by the
three known generations. On the other hand, neuromorphic
architectures are a very promising way to overcome the limitation
of the Von Neumann architecture and the end of Moore’s law.
Neuromorphic architectures can lead to a huge energy consump-
tion decrease mostly due to the colocation of computation and
storage.

These architectures implement spiking neural networks
(SNNs), the third generation of artificial neural networks that
model very finely biological neural networks. One of the main
problematics that prevents us from optimizing and getting the
best performance of SNNs and as a result the neuromorphic
architectures development and production, is the lack of a clear
and complete understanding of their behavior, especially what
makes learning efficient. One of the approaches to answer that
is analyzing by visualization of simulation traces of such networks
and architectures. In this paper, we propose a comparison of the
visualization techniques proposed by SNN simulators for analysis
purposes.

Index Terms—Neural Network, Data Science, Visualization,
Simulation, Analysis, Neuromorphic Architectures, SNN.

I. INTRODUCTION

In the last years, neural networks have had a big impact
in many fields like image processing and decision making
systems. Being able to understand and to model such networks
was a key to achieve the remarkable performances which can
be observed in the second generation of neural networks (Con-
volutional Neural Networks, ConvNets). These performances
come at the price of a huge energy consumption, especially
during learning. On the contrary, the brain is very power
efficient, thus researchers have tried to design artificial neural
networks whose behavior is more precisely modeled after the
biological neural networks. These Spiking Neural Networks
(SNNs) are indeed much more power efficient than ConvNets
and are suitable to electronic implementation, the so called
neuromorphic architectures.

Before any implementation, the need of passing by simu-
lation is very important and for this type of networks, many
simulators have been created and used over the last years to
get and test the suitable network configuration (or to simu-
late biological SNNs). Those simulators offer also a variety
of visualization techniques that can lead to very interesting
observations and improvements in network performance, the
combination of these visualization techniques and the best

choice to use, can have an important influence on the user
experience, the information that can be extracted from it
and the ability to improve the performance of neuromorphic
architectures.

The aim of this work is to present the visualization tech-
niques offered by the known SNN simulators and discuss
their ability to produce visualizations suitable to analyze the
behaviour of the simulated networks in order to improve neu-
romorphic architectures. This paper is structured as follows.
After a briefing introduction to neural networks and SNNs,
we present the state-of-the art of SNN simulators. We then
compare these simulators from the technical and visualization
points of view and discuss our findings.

II. NEURAL NETWORKS

Neural networks are an architecture inspired from our brain,
it contains a large number of simple interconnected units
which simulate the neurons. Each unit (neuron) has multiple
inputs and outputs neurons. The first generation of neural
network was able to solve only linear problems, it is repre-
sented by the formal mathematical models like McCulloch and
Pitts neurons [1], Perceptron, Hopfield network and Boltzmann
machine. In the second generation where multi layer neural
networks have been introduced, it was able to solve non-linear
problems by the use of continuous activation function, for
example the MultiLayer Perceptron (MLP).

Being inspired from our brain, we can find the learning
term and this phenomenon exists also in this type of networks.
In the life cycle of every neural network, there are mainly
two phases which are: the learning (tuning) phase and the
use (production) phase. The learning phase consists of tuning
the network parameters using test dataset in order to get
the best configuration with the lowest error rate and the use
phase is the actual use of this network with real data. The
learning in neural networks can be classified in more then one
type, which are: supervised learning, unsupervised learning,
half supervised learning and learning by strengthening. The
supervised learning represents a learning way based on a
tested dataset that are labeled, which means that every entry
is composed from two information, the actual data and the
label that describes it. The unsupervised learning, this type
does not provide a labeled learning dataset and learns by
itself to classify the inputs into categories, this type is very
interesting in real life scenarios because it is very consuming



to make a labeled dataset and having a network working
with this type of learning increases its ability to adapt for
many use cases, but may take more time in learning process
compared to the first type of learning in order to achieve a
good performance. Half supervised learning, this type exists
because having labeled dataset is often a very consuming task
in time and resources, that is why having a hybrid dataset
(labeled and not labeled) can reduce negative points known
in supervised and unsupervised types of learning (such as
time and resource consumption). Learning by strengthening,
which is a method used while the network is in the use phase,
by keeping the tuning of this network up and running to
increase its performance using the information that is actively
processing.

A. Neuron

A neuron is the principal component of a neural network,
it has many input and output neurons. The functionality of
a single neuron is simple and useless alone, but the global
activity of the million connected neurons is what makes
it powerful. Scientists in biology, electronics and computer
science field have tried to understand this component due
to its advantages and abilities. From the biological point of
view. Like it is shown in Fig. 1, a neuron is composed of:
The membrane, which is considered as the core of the neuron
where ions activity happens. Synapse, that is the interaction
space between two neurons to transfer information, this space
uses liquid channels and ions for transportation. Dendrite,
which represent the element that is responsible for transmitting
the information after being received by the synapse into the
membrane. Axone, that is the output support, used by the
neuron to send out the information, it can vary in length from
some millimeters to many meters.

In the electronics field, scientists have tried to model such a
component for use in hardware due to the advantages it offers,
this type of architectures which are called neuromorphic are
considered actually as an active research field in particular with
the appearance of Memristor [2], that was produced for the first
time by HP [3]. In the computer science field, many models
have been proposed in order to implement such components,
the main elements of a neuron have got their equivalent in
computer science field that provides the same role, such as
synaptic weights which represent the biology synapse, the
activation function which represents the membrane and the
output elements which represent the axone.

B. SNN

Spiking neural networks are considered as the main model
in the neuromorphic architectures which are a very promising
approach to replace the actual Von Neumann architecture
because of the way memory and information are processed
in this kind of networks [4], this type of networks is the
closest one to what we have in our brain due to the fact
that SNN use spikes for communication, they offer a real
parallelism, fault tolerance and a low energy consumption thats
what make it an attractive alternative. SNN has the ability

Fig. 1. Neuron.

to process a big amount of data with a small number of
spikes, they emulate data processing, plasticity and learning
in our brain. Spiking neural network is a network composed
of a big number of neurons connected by synapses (millions
of neurons and more synapses), the communication between
those neurons are made by spikes that are considered as the
language of communication, the information is coded inside
a single spike and many neural information encoding have
been proposed based on what is known in biology [5]. This
network has known the apparition of time notion, that is
considered as a very important factor in performance and
the information transfer process, some scientists have even
proposed that time can actually hold information in this type
of network and considered as information coding technique
[6]. One of the reasons why this type of network has got
attention lately, is the discovery of the memristor, this element
is capable of emulating the functionality of the synapse and
helps implementing such networks in hardware which was not
easy to implement before. [7]

III. SNN SIMULATORS

Simulation is an important step in every experiment, like in
SNN before going to implementation of any kind of architec-
tures, we have to pass by simulation in order to conduct the
required tests. Many simulators have been created in order
to help researchers to test their hypotheses. In this paper,
we are interested in simulators that offer visualization of this
type of network, which are: Neuron, Brian, Nengo, Neuronify,
Simbrain, N2S3 and NEST.

SNN are essentially defined by standard differential equa-
tions, but because of the discontinuities caused by the spikes,
designing an efficient simulation of spiking neural networks
is a non-trivial problem. There are two families of simulation
algorithms: event-based simulators and clock-based ones. Syn-
chronous or clock-driven simulation simultaneously updates
all the neurons at every tick of a clock, and is easier to
code, especially on GPUs, for getting an efficient execution
of data-parallel learning algorithms. Event-driven simulation
behaves more like hardware, in which conceptually concurrent
components are activated by incoming signals (or events) [8].

Event-driven execution is particularly suitable for untethered
devices such as neurons and synapses, since the nodes can be



put into a sleep mode to preserve energy when no interesting
event is happening. Energy-aware simulation needs informa-
tion about active hardware units and event counters to establish
the energy usage of each spike and each component of the
neural network. Furthermore, as the learning mechanisms of
spiking neural networks are based on the timings of spikes,
the choice of the clock period for a clock-based simulation
may lead either to imprecision or to a higher computational
cost.

There is also a fundamental gap between this event-driven
execution model and the clock-based one: the first one is
independent of the hardware architecture of computers on
which it is running. So, event-driven simulators can naturally
run on a grid of computers, with the caveat of synchronization
issues in the management of event timings.

A. NEURON

NEURON is one of the oldest simulators. It was devel-
oped in 1997 by Michael Hines, John W. Moore and Ted
Carnevale at Yale and Duke [9]. It offers the possibility
to model individual or network of neurons. The primary
scripting language of NEURON is based on HOC (High Order
Calculator) programming language [10] but a Python interface
is also available and can be used, with the possibility of
loading programs from a file or written in a shell. It supports
parallelization using the MPI protocol [11].

Visualization techniques offered by NEURON can be re-
sumed in a variety of graphs as shown in Fig.2, such as
membrane potential graph and dendrite voltage graph.

Fig. 2. Visualization example in NEURON

B. Brian

Brian was developed by Marcel Stimberg, Dan Goodman
and Romain Brette, this tool was made in order to make
the coding of spiking neural networks fast, easy to use and
flexible. Brian was written in an interpretative language, but
is still effective in many situations thanks to vectorized algo-
rithms [12], but Brian is not made for very big simulations that
need important resources or for simulating detailed biophysical
models. [13]

Brain offers many possibilities of visualization some are
shown in Fig.3, it has the possibility to automatically change
the visualization depending on the size of the network, those
visualization techniques include but not only membrane po-
tential graph, spikes plot, firing rate graph and synapses
connections representation.

Fig. 3. Visualization example in Brian

C. Nengo

Nengo is a python library used to create and simulate
very large scale neural networks, it can create spiking neural
simulations and other sophisticate types in a few lines of code.
[14] Nengo offers the possibility to define neuron type and
learning rules, create and execute deep neural network and
simulate on hardware devices such as Spinnaker [15]. Nengo
offers many types of backend that can be used for simulation,
which are Nengo, Nengo ocl, Nengo mpi, Nengo distilled
and for the hardware simulators Nengo offers two types which
are Nengo brainstorms, and Nengo spinnaker.

Nengo is composed of a server written in python connected
to Nengo core and an interactive interface for users to manip-
ulate which is based on web technologies like HTML, D3.js
and jQuery.

When it comes to user experience, Nengo provides a unique
experience for users to interact with the code directly on the
interface and see the changes in real time with an acceptable
degree of interactivity. Nengo offers a variety of visualization
techniques that can be used to follow the network activity Fig.
4, like membrane potential graph, spikes plot and activation
patterns.

Fig. 4. Visualization example in Nengo

Nengo was used to build Spaun, the worlds largest func-
tional brain model. Spaun currently contains 6.6 million neu-
rons and over 10 billion synapses.

D. Neuronify

Neuronify is an educative tool created to simulate neurons
and neural network behavior, it can be used to combine
neurons with different connections and see how changes
in individual neurons can lead to behavior change of big
networks, it is developed in C++ and QML using the cross-
platform application framework Qt by Ovilab [16], which is a



group of developers dedicated to creating tools for scientific
and education field at the University of Oslo. [17]

In Neuronify, exploring and creating neural networks is
made easy by drag and drop of the elements on the screen. It
is available to use on desktop or mobile devices.

Neuronify offers a nice interface and interactivity for users
and for the network visualization, Neuronify has three tech-
niques to offer which are Spike detector plot, firing rate plot
and the membrane potential graph, examples are represented
in Fig. 5.

Fig. 5. Visualization example in Neuronify

E. Simbrain

Simbrain is a tool for constructing artificial neural networks,
written in Java and is under GNU license, this simulator con-
cerns more scientists in biology or medical field and this can
be observed by the big number of biological representations
and networks. Simbrain is created by the philosophy of making
things easier for users, it comes with a variety of examples and
types of networks with description, in an organized way and
an easy interface to interact and work with. [18]

For the visualization techniques, Simbrain is well docu-
mented and due to the general nature of this simulator, it offers
many techniques for the user to choose from as shown in
Fig. 6, like Spikes plot, Spike visualizer, membrane potential
variation graph and the possibility to combine more than one
technique.

Fig. 6. Visualization example in Simbrain

F. N2S3

N2S3 (Neural Network Scalable Spiking Simulator) is a
simulator created to simulate neuro-inspired hardware accel-
erators, it is written in Scala and Akka which give it all the
scalability and portability features that Scala offers. N2S3
is considered as an event-driven simulator, which is based

on exchanging messages between concurrent actors to mimic
the spikes exchange between neurons [19]. Being flexible,
extensible and scalable make the integration of new models
or tools easy. [20]

N2S3 has been developed from the ground up for ex-
tensibility, allowing to model various kinds of neuron and
synapse models, various network topologies, various learning
procedures, various reporting facilities, and to be user friendly
with a domain specific language to express the experiments
the user wants to simulate. It is available online as open
source software. It comes as a library with some classic
experiments ready to use, such as handwritten digit recognition
on the MNIST dataset [21] and the highway vehicle counting
experiment. [22]

N2S3 offers the possibility for users to observe simulation
outputs through network observers, which can vary from
textual loggers to dynamic visualizations, it offers also a
synaptic weight evolution visualizer, spike activity map and
the visualization of actual input data processed. Fig.7.

Fig. 7. Visualization example in N2S3

G. NEST

NEST is an SNN simulator coordinated by the NEST
Initiative, it has a focus on the network dynamics, size and
structure rather than the individual neurons. It is considered
as one of the most attractive tools to use for SNN because
of its ability to work with any size of network. [23] NEST
offers two ways for creating simulations. First, by using it
as a Python library (PyNEST), which offers many commands
to access NESTs simulation kernel and conduct a simulation.
Secondly, by using the stand alone application (NEST). Having
the simulation kernel written in C++ provides NEST with the
speed and the possibility to have optimized simulations, the
used simulation language is SLI [24] which is considered as
a stack oriented language.

NEST does not offer a visual interface for the user to create,
edit and manage the simulation, its all done by either working
with the command line offered by this tool or using NEST as
a Python library.

NEST offers the possibility to view the network in text
form to verify if the network was built correctly, with the help
of Python packages like Matplotlib [25] and NumPy [26], it
offers a variety of visualization techniques as shown in Fig.8,
like Membrane potential representation, Synaptic weights rep-
resentation and neurons spikes plot. Some contributions have



been made in order to create tools based on NEST simulations
to conduct a visualization, like VisNEST [27] which was able
to visualize a network with 20 million neurons and many more
synapses in medical field.

Fig. 8. Visualization example in NEST

IV. COMPARISON AND DISCUSSION

A. Comparison

In the data science field, many visualization techniques and
models have been proposed, especially with the rise of Big
Data and the need for a way to analyze such a big quantity
of data, in order to give the user the best performance and
experience exploring them. A good and useful visualization
may lead to highlight potential models and in our case network
and architecture improvement, so having the possibility to
judge and compare a visualization technique is very important.

From a technical point of view, the simulators presented
have interesting characteristics like the used technology and
support for large scale simulations and more, presented in
Table I.

From the visualization point of view, we will use seven
criteria for comparison, those criteria have been chosen by
combining the ones presented by Freitas [28] and those by
Stephen Few which is recognized as a world leader in the
field of data visualization [29] and another important criterion
in our case which is the interactivity level. The criteria are
divided into three categories: Informative, which contain the
criteria that represents the degree to which a visualization
is informative. Emotive, that represents criteria concerning
design and conception and finally the Interactivity.

The first category called ”Informative”, contains five cri-
teria, which are Usefulness, whether this visualization is
providing a useful information or not. Completeness, if the
visualization contains all the required components to be easy
to understand and transmit the information or not. Percepti-
bility, whether it is clear and easy to understand it or not.
Truthfulness, represents the degree of accuracy and validity of
the visualization. Finally, Intuitiveness represents the degree
of familiarity of this visualization technique for the user.
The second category, called ”Emotive”, contains one criterion
chosen for our case, Aesthetics, that concerns the design
part and quality of the visualization technique. For the last
criterion, it is the Interactivity level of this technique.

B. Discussion

From Table I, we can see that a variety of programming
languages have been used in the development process, while

Python is the most used between them due to its nature
as a scripting language and the huge libraries it offers for
visualization. Another thing to notice, is the parallelism and
large scale simulations which are not supported by all the
simulators and this may affect their performance and limit
their usability while working with big networks and big data.

From the comparison of provided visualizations of the SNN
simulators represented in Table II, we can see that all of those
simulators offer a good level of usefulness and perceptibility,
by providing a useful and easy to understand visualization.
For the completeness criterion, we can see that NEURON and
Neuronify does not provide a visualization with the necessary
components in order to be able to get and extract useful
information, the reason for that can be the old techniques
provided by one of the oldest simulators which is NEURON.
For Neuronify, it is the fact that this is a simple tool for
beginners to discover this kind of network and is not made for
scientific analysis. For truthfulness and intuitiveness, we can
see that all the simulators got an easy and clear visualization
techniques that are used and known by almost everyone.
Almost all simulators had good score when in comes to
aesthetics, except NEURON which lacks the artistic and design
part in the offered techniques. Finally, for the interactivity, the
basic requirements, alike zooming and moving are included
in the most of the simulators except N2S3 and NEST, which
is due to the fact that these two simulators do not provide
visualization for the analysis purpose at the required level and
for this reason tools are being developed.

All the presented simulators do very well with small
networks, but when the network gets larger, not all of the
simulators can perform well. The visualization techniques used
for simple networks become less useful and compatible for a
large scale analysis. We claim the neuromorphic computing
research community needs multi-scale interactive visualization
tools to better understand the learning processes in large SNNs.

V. CONCLUSION

In this work, we presented a brief introduction about neu-
romorphic architectures and spiking neural networks, where
we discussed the importance of this kind of architectures
and the challenges that exist and that can be resolved via
a good analysis and visualization of the network activity.
We then presented the state-of-the-art SNN simulators and
the visualization techniques they offer. Finally, we proposed
comparison criteria to analyze the visualization offered by
those simulators and revealed the fact that for the purpose
of improving neuromorphic architectures, we need high level
interactive visualization tools designed for analysis taking in
consideration multi-scale visualization and analysis for large
networks.
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TABLE I
TECHNICAL REVIEW

Technology Parallelism Type of simulation Large scale support GUI Commandline

NEURON C,C++,python + Event-driven + + +
Brian Python,NeuroML,PyNN + Clock-driven - - +
Nengo Python,Numpy,HTML + Clock-driven + + +

Neuronify C++, Qt - Clock-driven - + -
Simbrain Java - Clock-driven - + -

N2S3 Scala,Akka - Event-driven + - +
NEST C++,Python,SLI + Event-driven and Clock-driven + - +

TABLE II
VISUALIZATION COMPARISON

Usefulness Completeness Perceptibility Truthfulness Intuitiveness Aesthetics Interactivity

NEURON ++ - ++ + ++ - +
Brian ++ ++ ++ + ++ + +
Nengo ++ + ++ ++ ++ ++ ++

Neuronify + - ++ + ++ ++ ++
Simbrain ++ ++ ++ ++ + + +

N2S3 ++ + ++ ++ ++ + -
NEST ++ + ++ ++ ++ + -

Good = ++, Medium = +, Bad = -
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