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performance comparison 
of modified ComBat for 
harmonization of radiomic features 
for multicenter studies
R. Da-ano1 ✉, i. Masson1,2, f. Lucia1,3, M. Doré2, p. Robin4, J. Alfieri5, c. Rousseau6,11, 
A. Mervoyer2, c. Reinhold7, J. Castelli8,9, R. De crevoisier8,9, J. f. Rameé10, o. pradier1,3, 
U. Schick1,3, D. Visvikis1,12 & M. Hatt1,12

Multicenter studies are needed to demonstrate the clinical potential value of radiomics as a prognostic 
tool. However, variability in scanner models, acquisition protocols and reconstruction settings are 
unavoidable and radiomic features are notoriously sensitive to these factors, which hinders pooling 
them in a statistical analysis. A statistical harmonization method called ComBat was developed to deal 
with the “batch effect” in gene expression microarray data and was used in radiomics studies to deal 
with the “center-effect”. Our goal was to evaluate modifications in ComBat allowing for more flexibility 
in choosing a reference and improving robustness of the estimation. Two modified ComBat versions 
were evaluated: M-ComBat allows to transform all features distributions to a chosen reference, instead 
of the overall mean, providing more flexibility. B-ComBat adds bootstrap and Monte Carlo for improved 
robustness in the estimation. BM-ComBat combines both modifications. The four versions were 
compared regarding their ability to harmonize features in a multicenter context in two different clinical 
datasets. The first contains 119 locally advanced cervical cancer patients from 3 centers, with magnetic 
resonance imaging and positron emission tomography imaging. In that case ComBat was applied 
with 3 labels corresponding to each center. The second one contains 98 locally advanced laryngeal 
cancer patients from 5 centers with contrast-enhanced computed tomography. In that specific case, 
because imaging settings were highly heterogeneous even within each of the five centers, unsupervised 
clustering was used to determine two labels for applying ComBat. The impact of each harmonization 
was evaluated through three different machine learning pipelines for the modelling step in predicting 
the clinical outcomes, across two performance metrics (balanced accuracy and Matthews correlation 
coefficient). Before harmonization, almost all radiomic features had significantly different distributions 
between labels. These differences were successfully removed with all ComBat versions. The predictive 
ability of the radiomic models was always improved with harmonization and the improved ComBat 
provided the best results. This was observed consistently in both datasets, through all machine 
learning pipelines and performance metrics. The proposed modifications allow for more flexibility 
and robustness in the estimation. They also slightly but consistently improve the predictive power of 
resulting radiomic models.
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Recent advancements in radiomics, the process consisting of the extraction of vast arrays of quantitative features 
using high-throughput computing from medical images such as magnetic resonance (MR), computed tomogra-
phy (CT), and positron emission tomography (PET)1–4, leads to large quantitative sets of features made available 
to both research and clinical communities for investigation of potential impact in the clinical setting5. For onco-
logical applications in particular a number of radiomics-driven prognostic/predictive studies related to numerous 
cancer types have shown promising results with potential applications for personalized medicine6.

In order to generate convincing results regarding the potential clinical value of radiomics as a prognostic tool, 
it is essential to consider large patient cohorts that can be only available through multicenter studies7–10. Indeed, 
most radiomics studies to date have been single-center based and retrospective in nature, in small cohorts of 
patients, and most radiomic models are not externally validated11,12. One of the main benefits of multicenter 
studies lies in the higher statistical relevance of the results obtained in larger datasets of different samples which 
naturally leads to more robust inference. However, multicenter radiomic studies are challenging, as gathering data 
from several centers for a centralized analysis is complex for legal, ethical, administrative and technical reasons. 
Irrespective of whether or not data and images are stored/analyzed in a centralized manner, variability in scanner 
models, acquisition protocols and reconstruction settings are unavoidable in the current clinical practice. Yet 
radiomic features are notoriously sensitive to such variations, which subsequently hinders pooling data to carry 
out statistical analysis and/or machine learning (ML) in order to build robust models13–16. Hence, there is a clear 
need for the harmonization of features in order to allow consistent findings in radiomics multicenter studies17. 
Within this context, there are two main approaches to address this issue: (i). harmonizing images and (ii). har-
monizing radiomic features.

The first approach addresses the harmonization issue in the image domain and usually considers standard-
ization of acquisition protocols and reconstruction settings, relying for example on guidelines already available 
for PET/CT imaging18,19. It has been shown recently that although such an approach can help towards reducing 
multicenter effects, it may still be insufficient to fully compensate them19. More recently, techniques based on 
generative adversarial networks have also been considered in order to generate images with more similar prop-
erties20,21. The second approach addresses the issue in the feature domain by either selecting features prior to the 
statistical analysis based on their robustness in order to rely only on features insensitive to multicenter variability, 
or by keeping all features and harmonizing their statistical properties so they can be pooled during the modeling 
step. Within this context different methods have been considered, such as normalization22 or batch-effect correc-
tion using the ComBat method23.

In this study, our objective was to develop and evaluate hybrid techniques based on ComBat to allow for more 
flexibility in the choice of a reference, and improved robustness in the estimation of the required transform.

Materials and Methods
ComBat approach description. ComBat consists in dealing with the variability of parameters’ distribu-
tions so they can be pooled together. The method was initially described in genomics24, where the so-called “batch 
effect” is the source of variations in measurements caused by handling of samples by different laboratories, tools 
and technicians. This “batch effect” is conceptually similar to variations induced in radiomic features by the scan-
ner model, the acquisition protocol and/or the reconstruction settings, sometimes called “center effect”. ComBat 
identifies a batch-specific transformation to express all data in a common space devoid of center effects. A mod-
ified version called M-ComBat which centers the data to the location and scale of a pre-determined “reference” 
batch was later introduced25. ComBat eliminates batch effects primarily based on an empirical Bayes framework. 
It has demonstrated robustness with smaller sample sizes26, and continues to be a widely used approach27–29. 
ComBat was observed as being “best able to reduce and remove batch effects while increasing precision and accu-
racy” when compared to five other popular batch effect removal methods26. ComBat within the context of radi-
omic features harmonization works by first standardizing them according to:
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prior distributions, respectively. The method of moments is used to estimate hyperparameters which are used to 
compute the empirical Bayes estimates of conditional posterior means features-wise by center for the center 
effects parameters. The final center effect adjusted values are given by
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One of the limitations of ComBat is that it centers the data to the overall, grand mean of all samples, which 
results in an adjusted data matrix that is shifted to an arbitrary location that no longer coincides with the location 
of any of the original centers. This can lead to harmonized features losing their original physical meaning (and 
impossible values, e.g., negative volumes or SUV).

M-ComBat. A modified version of ComBat (M-ComBat) previously proposed25 shifts samples to the mean 
and variance of the chosen reference batch, rather than the grand mean and pooled variance. This is achieved by 
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changing the standardizing mean and variance of the estimates, α
g  and σ

g , to center-wise estimates, α
ig  and σ

ig , 
such that the standardized values are then given by
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Furthermore, the mean and variance estimates used in the final center effect adjusted data are calculated using 
the feature-wise mean and variance estimates of the ‘gold-standard’, reference center, i = r.

The M-ComBat adjusted data are then given by
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Proposed modifications: B-ComBat and BM-ComBat. We propose a parametric bootstrap addition 
for the parameters in the ComBat and M-ComBat models, respectively. Here, we will use the bootstrap to con-
struct a robust estimate and test improvement of the predictive ability of the models. Thus, from the estimates 
obtained in Eqs. (2) and (4), we perform the following:

 1. From the initial estimates obtained in the fitted ComBat and M-ComBat, resample B = 1000 times with 
replacement.

 2. Fit each resamples in the ComBat and M-ComBat models to obtain the B estimates of the coefficients, 
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Hence, the final B-ComBat and BM-ComBat bootstrapped adjusted data are given respectively by
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Datasets: patient cohorts, imaging and clinical endpoints. Locally advanced cervical cancer (LACC). A 
cohort of 197 patients with locally advanced cervical cancer from 3 centers (Brest, n = 119 and Nantes, n = 50, in 
France, and Montreal, n = 28, in Canada) was exploited. Fluorodeoxyglucose (FDG)-PET, post-injection gadolinium 
contrast-enhanced MRI (GADO), T2-weighted MRI (T2) and apparent diffusion coefficients (ADC) maps from 
diffusion-weighted MRI were available for the radiomics pipeline. PET/CT and MRI settings were the same for all 
patients in each specific center (see Supplemental Table 1). Treatment consisted of curative radiotherapy (RT, external 
and brachytherapy) and chemotherapy. Data were retrospectively collected and a minimum follow-up of one year 
was ensured. Prediction of local failure (LF) was chosen as the endpoint, as an assessment at the time of diagnosis of 
the likelihood of LF would provide a rationale to adapt treatment (e.g., avoid systemic treatment for patients with low 
risk of recurrence)30. In this case, labels to rely upon for ComBat harmonization were well-defined and known, as all 
patients within a given center had the same acquisition and reconstruction settings applied with the same scanner.

Locally advanced laryngeal cancer (LALC). A cohort of 98 patients with histologically proven locally advanced 
laryngeal or hypopharyngeal cancer who were treated with laryngeal preservation using induction chemo-
therapy regimen (a combination of docetaxel, cisplatin and 5-fluorouracil, TPF) from 5 French centers (Brest, 
Nantes, Rennes, La Roche-sur-Yon and Quimper) was exploited. All patients had a contrast-enhanced computed 
tomography (CE-CT) at diagnosis. Response to chemotherapy was assessed after 2 or 3 cycles depending on 
centers and was based on clinical examination (endoscopic evaluation of larynx mobility) and imaging evalua-
tion (CT scan and/or FDG PET/CT). The chosen primary endpoint is the lack of response to TPF, defined as a 
non-remobilization of the larynx if laryngeal mobility was decreased or abolished at diagnosis, or a response of 
the primary tumour <50% (RECIST criteria). This endpoint was chosen, as it significantly modifies the subse-
quent therapy for patients. Non-responders to TPF were indeed referred for a (pharyngo-)laryngectomy followed 
by postoperative RT, whereas responders could keep their larynx and received conservative RT with or with-
out chemotherapy, depending on pathological risk factors. In contrast to the LACC case, a great variability was 
observed in terms of scanner models, collimation/acquisition settings and reconstruction parameters, even within 
each of the five centres (see Supplemental Table 2). It was thus challenging to set labels manually and it would 
lead to apply ComBat with an unrealistic number of labels (at least 15 for 98 patients). Hence, we implemented a 
solution that allows for automatic identification of cluster of patients with similar radiomic features, as well as the 
optimal number of clusters (see section “Unsupervised hierarchical clustering with silhouette scoring”).

https://doi.org/10.1038/s41598-020-66110-w
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Radiomics: feature extraction. In the present work, only radiomic features extracted from the images 
and the available clinical factors were exploited. All image analysis steps including tumor delineation and features 
extraction are summarized below. Primary tumour volume-of-interests (VOIs) were delineated by one specialist 
(F. Lucia in the LACC cases and I. Masson in the LALC cases) as corresponding to the gross tumour volume 
(GTV). VOIs were delineated on every scan independently. PET images were contoured automatically with the 
fuzzy locally adaptive Bayesian (FLAB) algorithm31 and all CT and MR images, manually with the 3D SlicerTM 
software32. For each VOI, 79 morphological and intensity-based features, as well as 94 textural features were 
extracted in 3D according to the most up-to-date reference document of the Image Biomarker Standardization 
Initiative (IBSI)33 and validated with respect to the consensus values34. Each of the 94 textural features was com-
puted according to two grey-level discretization algorithms: “fixed bin number” (FBN) or “fixed bin width” 
(FBW). Regarding FBN, 64 bins were considered. For FBW, in the case of PET, width values of 0.25, 0.5, 1 and 2 
standardized uptake values (SUVs) were considered, whereas in the case of CT, 10 or 25 Hounsfield Units (HUs) 
were considered. Texture matrices were built according to the merging strategy (by summation of 13 matri-
ces calculated in each direction before texture calculation). The list of the extracted parameters are available in 
Supplemental Table 3.

Experiments and analysis. All versions of ComBat described in sections A, B and C above were applied 
using the non-parametric version of ComBat, using the labels defined either as the 3 clinical centers for LACC or 
the labels obtained through unsupervised hierarchical clustering with silhouette scoring35,36 in the case of LALC 
(see “Unsupervised hierarchical clustering with silhouette scoring”).

The four different versions of ComBat were evaluated in terms of the resulting coefficient of variation (COV) 
in the harmonized features, compared to the untransformed variables. Radiomic features were then compared 
with ANOVA in terms of their statistical distributions across labels before and after harmonization with the four 
ComBat versions. In order to further evaluate the impact of harmonization, principal components analysis (PCA) 
was performed. Finally, the impact of the different ComBat versions on the performance of multiparametric mod-
els relying on radiomic features (and clinical factors) to predict the endpoints described previously was evaluated.

In LACC, the Brest data (n = 119, 40 LF) was used as the training set (and reference for M-ComBat), whereas 
the testing set was built by combining Nantes and McGill data (n = 78, 27 LF). In LALC, unsupervised hierarchi-
cal clustering was performed to automatically determine the optimal number of clusters to use in ComBat (see 
Supplemental data and details below). The cluster with the largest number of patients was chosen as the reference 
(as far as M-ComBat was concerned) and training set, whereas the other was chosen as the testing set.

Models predicting endpoints (as a binary task) for both datasets were built using 3 different ML pipelines: (i) 
Multivariate regression (MR) with 10-fold cross-validation after feature selection based on least absolute shrink-
age and selection operator (LASSO), (ii) Random Forest (RF) and (iii) Support Vector Machine (SVM), both with 
embedded feature selection. All 3 pipelines used as input either the untransformed or the harmonized (with the 
4 ComBat versions) radiomic features in combination with the available clinical factors (age, gender, histology, 
stage, etc.) and included the use of synthetic minority over-sampling technique (SMOTE) to address the data 
imbalance during training.

The overall workflow is illustrated in Fig. 1.

Unsupervised hierarchical clustering with silhouette scoring (LALC only). Using ComBat directly in LALC was 
not reliable as it would have led to manually define more than 15 labels for 98 patients, based on a very complex 
and heterogeneous set of acquisition and reconstruction settings across and also within centers (see Supplemental 
Table 2). Hence, we decided to rely on unsupervised hierarchical clustering to group patients with similar radi-
omic features distributions,and we also needed an automatically determined optimal number of clusters. In doing 
this, we assumed that the differences amongst radiomic features due to imaging have higher impact than dif-
ferences due to different outcomes (i.e., responders vs. non responders). In order to evaluate the validity of this 
assumption, we first applied the proposed unsupervised clustering approach to the LACC case where the labels 
are known and well-defined (i.e., the 3 centers Brest, Nantes and McGill). The unsupervised approach correctly 
identified 3 clusters and was able to assign all patients except one to its correct center (see results section and 
Supplemental Fig. 4). As there was still a potential risk that the unsupervised clustering would cluster data based 
on clinical endpoint instead of imaging differences, the resulting clusters were also checked for consistency in 
terms of their percentage of events (i.e., lack of response to TPF).

Hierarchical clustering is a type of unsupervised algorithm which groups data by similarity, i.e., it classifies 
objects without any prior knowledge of the class they belong to, based on the measure of the Euclidean distance35. 
To determine the optimal number of clusters to consider before running the hierarchical clustering, we used 
‘silhouette’ scoring, a tool used to validate the clustering. The ‘silhouette’ is then constructed to determine the 
optimal number of clusters with a ratio scale data (as in the case of Euclidean distance) that is suitable for clearly 
separated clusters (Supplemental Fig. 1)36.

Imbalance adjustment. As there were 34% of LF in LACC and 15% of non-responders in LALC, we used 
SMOTE to facilitate training of the models. SMOTE iteratively performs oversampling of the minority class in 
order to provide a balanced number of positive and negative cases to the learning algorithm37: At every iteration, 
a new instance of the minority class is synthesized somewhere between one element of the existing minority class 
and a chosen closest minority class neighbour.

Machine learning pipelines. Multivariate regression with LASSO. The multivariate regression was trained 
using the features selected by LASSO. LASSO serves as a regularization and variable selection methods for any 

https://doi.org/10.1038/s41598-020-66110-w


5Scientific RepoRtS |        (2020) 10:10248  | https://doi.org/10.1038/s41598-020-66110-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

statistical models38. In the case of multivariate cox regression, it penalizes the negative log of the partial likelihood 
with the LASSO penalty38. The algorithm uses a cyclical coordinate descent, which successively optimizes the 
objective function over a parameter with others kept fixed, and cycles repeatedly until convergence.

Random forest. An RF algorithm, making use of an ensemble method for classification consisting of many 
simple tree classifiers39, was also considered. The idea behind ensemble methods is that a team of “weak learners” 
(single trees) can come together to structure a more suitable learner with a couple of trees creating a forest, which 
when it is randomized is known as RF.

Support vector machine. Finally, a SVM algorithm was included40. It works by nonlinearly projecting the train-
ing data in the input space to a feature space of higher (infinite) dimension by use of a kernel function. The 
outcome is a linearly separable dataset that can be separated with the aid of a linear classifier. This undertak-
ing enables the classification of datasets which are usually nonlinearly separable in the input space. In certain 
instances, classification in high dimension feature spaces results in over-fitting in the input space. Overfitting is 
controlled through the principle of structural risk minimization40.

Embedded features selection technique. Both RF and SVM rely on embedded feature selection, which means that 
the models validation, feature subset selection and hyper parameters optimization steps are performed simultane-
ously. This technique accommodates feature selection as a section of the model fitting/training process. It is there-
fore normally specific to a given learning algorithm, i.e., the feature subset selection can be considered as a search 
in the combined space of feature subsets and hypotheses. For RF, a measure of variable importance estimates the 
relevance of variables based on a couple of decision trees at the training step41. These importance scores from a 
RF are then used to guide the feature selection process. The feature selection method follows the nested validation 
approach. This procedure ensures unbiased feature selection and an optimal model less prone to overfitting and 
selection bias42. Starting with an inner validation loop, multiple RF with different bootstrap samples are trained 
(multiple RF models are fitted for multiple bootstrap samples). Then the variables are ranked using the averaged 
variables importance across the number of bootstrap iterations, which ensures that more stable features are being 
selected. After this, an outer validation loop that is a stepwise forward feature selection is being considered to 
select the number of features that minimize the validation error. As previously described, bootstrap setting is used 
to assess which subset of features provides the optimal mean prediction error rate. In the case of SVM, the same 
procedure was considered although, instead of the measure of variable importance as in RF, features are ranked 
based on the best fine cost of the models and are ranked according to the values of leave-one-out error (LOO–i), 
i.e., the feature i with the highest value of LOO–i is ranked first43.

Final model construction. In order to exploit the feature selection and parameter tuning results, the multiple 
regression with LASSO, RF and SVM final models were fitted separately with the selected optimal features subset 
and parameters.

Evaluation metrics. Usual performance metrics were computed. Area under the ROC curve (AUC), accuracy, 
sensitivity and specificity are provided in the Supplemental Material Figs. 5–10. In order to compare the results 
obtained without and with the different ComBat versions, we decided to focus on two metrics, balanced accuracy 
(BAcc) and Matthews correlation coefficient (MCC, worst value = −1; best value = +1)44. BAcc is calculated as 
the average of sensitivity and specificity and is an appropriate metric in the presence of strong class imbalance, 

Figure 1. Workflow for the analysis in LACC and LALC datasets.
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contrary to standard accuracy. MCC is a reliable metric producing a high score only if the prediction obtained 
good results in all of the 4 confusion matrices (true positives, false negatives, true negatives and false positives).

Approval, accordance and informed consent. The study was approved by the local ethics committee 
of the University Hospital of Brest (references 29BRC19.0006 and 29BCR18.0015 for LALC and LACC respec-
tively). All patients gave their informed consent via a non-opposition form. All procedures were in accordance 
with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its 
later amendments.

Results
Initial analysis. The unsupervised clustering applied to the LACC patient cohort (with known labels) was 
able to almost perfectly identify patients from the 3 different centers (Supplemental Fig. 4). Only 1 patient from 
Brest was misclassified and associated with the McGill label.

In the LALC cohort, the unsupervised clustering identified two clusters of 38 and 60 patients, which seems 
reasonable with respect to the size of the cohort (less than 100 patients), allowing for a sufficiently large number of 
patients in each label for ComBat estimation (Supplemental Fig. 2). Because both clusters had similar proportion 
of events (6 non-responders for 38 patients (16%) in cluster 1 and 9 non-responders for 60 patients (15%) in clus-
ter 2), it is very unlikely that this unsupervised differentiation was based on outcome, rather than on differences 
of features due to center-effect. Subsequently in terms of modelling, cluster 2 was chosen as the reference (for 
M-ComBat) training set, whereas cluster 1 was chosen as the testing set.

The COV measurements (Table 1) in each of the clinical applications show that: (i). The untransformed 
data exhibit more variability than their ComBat-harmonized counterparts, and (ii). The data harmonized with 
the bootstrapped ComBat (B-ComBat) exhibit reduced variability compared to the data harmonized with the 
non-bootstrapped ComBat. This means that B-ComBat and BM-ComBat have lower levels of dispersion around 
the mean which should in turn provide more precise and accurate estimates.

According to ANOVA, 98% and 96% (in LACC and LALC respectively) of untransformed radiomic features 
were significantly different between labels at p < 0.01. After harmonization, all of the four ComBat versions com-
pletely eliminated significant label related differences across the different cohorts in both datasets, i.e., none of the 
radiomic features remained significantly different between labels.

Scatterplots of the top two principal components of PCA (Figs. 2 and 3, representing 61% and 47% of the 
information in LACC and LALC, respectively) visually demonstrate the efficiency of all four ComBat versions in 
removing the differences in radiomic features between labels while shifting the data to different locations (shown 
by the mean and standard deviation in the tables below the graphs). By transforming all of the data to the global 
mean rather than a label-specific mean, ComBat (and B-ComBat) alter the location of potential reference sam-
ples. On the contrary, transformation by means of M-ComBat (and BM-ComBat), allows data from all labels to 
overlay each other and at the same time be centered on the chosen reference label (Brest in LACC and cluster 2 in 
LALC, as shown by the mean and standard deviation in the tables below the graphs). This result clearly demon-
strates the interest of the M-ComBat: providing the user with the capability to shift data to a chosen reference 
standard without losing the capability to correct for individual center effects.

Predictive modelling using machine learning approaches. Table 2 provides results for the 2 perfor-
mance evaluation metrics in the testing set, for considering the use of the different ML algorithms in combination 
with the two clinical datasets, using the 4 versions of ComBat. The same results (including training sets and addi-
tional evaluation metrics) are provided in Supplemental Figs. 5–10.

For both patient cohorts, RF provided the best classification accuracy (BAcc of 79-89% in LACC and 82–86% 
in LALC) compared to MR (60–70% in LACC, 27–71% in LALC) and SVM (75–83% in LACC, 41–62% in 
LALC).

The absolute increase in performance between the use of the original, untransformed features and the har-
monized ones varied depending on the ML algorithms used and between the patient populations considered. 
For example, a small improvement was seen with RF for LALC (BAcc from 82% to 83%) and a much larger one 
for MR with LALC (BAcc from 27% to 69%). However, results using harmonized features (whatever version of 
ComBat was used) were systematically better than using the untransformed ones for all three ML algorithms.

Regarding the two proposed modifications implemented within ComBat, the M modification had a very lim-
ited impact on the performance, which was expected since the objective of this modification is simply targeting 
improved flexibility and not improved performance. It provided very similar (actually most often exactly the 

Data

COV

LACC LALC

Untransformed 3039 1987

ComBat 1389 1108

B-ComBat 1385 1082

M-ComBat 1389 1108

BM-ComBat 1385 1082

Table 1. COV computed on the untransformed and four ComBat versions data.
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same) or slightly better results as the standard ComBat, while allowing for the chosen reference set not to be mod-
ified and avoiding some features being transformed into impossible values such as negative volumes.

On the other hand, B-ComBat aimed at improving the harmonization results. Indeed, it provided systemati-
cally better (although small in magnitude) performance compared to standard ComBat, in both LACC and LALC 
and across all ML approaches considered in this study. The comparison between BM-ComBat and B-ComBat led 
to similar conclusions as with the comparison between M-ComBat and ComBat, with mostly the same or slightly 

Figure 2. PCA and summary distribution in LACC: Scatter plots of top 2 principal components of the radiomic 
features across the three labels (centers) using untransformed data or data transformed with the 4 versions of 
ComBat. (using R (3.5.1) and R Studio (1.1.456, R Studios Inc., Boston, MA, https://cran.rproject. org/).
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improved performance. All these observations were consistent between the two evaluation metrics (i.e., BAcc and 
MCC), as well as with the ROC AUC (see Supplemental Figs. 5–10).

Discussion
In this work, we proposed an improvement of a well-known methodology for eliminating center-effects using 
radiomic feature based signatures. We have shown the added value of this improvement first using principal 
component analysis, descriptive statistics and coefficients of variation. Within this context we have shown that the 
proposed modified ComBat slightly but consistently improved the estimates and the resulting predictive ability 

Figure 3. PCA and summary distribution in LALC: Scatter plots of top 2 principal components of theradiomic 
features across the two labels (clusters) using untransformed data or data transformed with the 4 versions of 
ComBat (using R (3.5.1) and R Studio (1.1.456, R Studios Inc., Boston, MA, https://cran.rproject. org/).
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of models with all ML algorithms implemented in this work. This improvement was observed across all perfor-
mance metrics and for both clinical cohorts considered.

All versions of ComBat were able to remove the differences amongst radiomic features caused by system-
atic imaging effects. The features’ distributions (mean and standard deviation) were all aligned with the chosen 
reference using M-ComBat and BM-ComBat (Brest for LACC and cluster 2 for LALC). The non-biological var-
iation introduced by differences in imaging systems, acquisition protocols and reconstruction settings led to a 
dramatic impact on the overall radiomic features distributions as can be seen in the PCA plots (Figs. 2 and 3).  
These variations are often unavoidable in multicenter studies, as well as in retrospective studies with a long 
recruitment duration (e.g., when the scanner is replaced by another model at some point). The four ComBat 
versions were equally effective in eliminating related differences caused by confounding center effects. However, 
M-ComBat and BM-ComBat were shown to offer a more flexible and robust framework to overcome these differ-
ences. The M-modification provides the ability to control the location and scale of the transformed data, whereas 
the B-modification improves the accuracy of the estimates. Combining the two lead to an improvement in the 
development and validation of radiomic signatures by combining data from different centers.

Overall, results were consistent for both LACC and LALC cohorts across the 3 different ML approaches in 
terms of comparison between untransformed and ComBat harmonized datasets, although the absolute perfor-
mance varied between ML approaches, as already observed in other studies45. The performance of the developed 
models were always improved with any harmonized data compared to untransformed ones (e.g., 60% BAcc in 
LACC untransformed data compared to 68–70% for harmonized data and 27% BAcc in LALC vs. 69–71%, when 
using MR with LASSO). The absolute difference in performance amongst the 3 ML algorithms can be attributed 
to the different feature selection techniques46. The feature selection techniques embedded within RF and SVM 
modelling clearly allows to fully span the initial datasets space in order to identify the most relevant combination 
of features for a given task and are therefore leading to superior results.

The original ComBat algorithm follows a three steps procedure: (i). Data standardization, (ii). Empirical Bayes 
estimation of prior distribution hyperparameters from standardized data and subsequent estimation of batch 
effect parameters, which are used in (iii). Correction of batches17,47. ComBat has several interesting properties for 
the purpose of radiomics harmonization: it does not require altering the feature definitions16,48 and can therefore 
be used with any algorithm. It is easy to use and fast. It allows exploiting the entire available information since 
none of the features are eliminated prior to the analysis16,48 and it can be used for both prospective or retrospec-
tive data, provided that same disease and corresponding treatment patient cohorts are available in the different 
centers. ComBat was previously shown to outperform 6 other methods for batch effect removal in microarray 
datasets from brain RNA samples and two simulated datasets26. It was subsequently used successfully in several 
radiomic studies9,49. In contrast, other recent studies exploited basic normalization to achieve the same goal, 
although with the assumption that while making data more comparable, it does not remove any biological signal 
of interest7,22. A thorough comparison of ComBat with other normalization techniques remains to be carried out 
specifically in the context of radiomics.

The M- modification provides the user the flexibility to harmonize the features set to a chosen reference, 
which can be of interest for example if there is a higher confidence or understanding of one dataset compared to 
the others. The proposed use of bootstrap for initial estimates reduced variances within each center and helped 
in facilitating bias reduction during center effect parameter estimation by ComBat and M-ComBat respectively 
and therefore led to an improved center effect removal and predictive performance. Although relatively small, 
the improvement provided by the use of BM-ComBat was consistent whatever ML algorithm was used for both 
clinical datasets considering different cancer types and imaging modalities.

ML Data

BAcc(%) MCC [−1,+1]

LACC LALC LACC LALC

MR

Untransformed 60 27 0.19 −0.39

ComBat 68 69 0.35 0.31

B-ComBat 70 71 0.37 0.31

M-ComBat 68 69 0.35 0.31

BM-ComBat 70 71 0.35 0.31

RF

Untransformed 79 82 0.69 −0.15

ComBat 84 83 0.72 0.18

B-ComBat 86 85 0.73 0.23

M-ComBat 85 84 0.70 0.16

BM-ComBat 89 86 0.89 0.59

SVM

Untransformed 75 41 0.53 −0.13

ComBat 79 48 0.55 −0.08

B-ComBat 82 62 0.63 0.18

M-ComBat 79 58 0.55 0.12

BM-ComBat 83 60 0.67 0.17

Table 2. Performance metrics evaluation of predictive models in LACC and LALC testing sets using the three 
ML pipelines.
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Although the proposed modified ComBat provided a consistent improvement in the predictive performance 
of the developed models in different ML algorithms, we acknowledge the limitations associated with relatively 
small improvements in combination with small datasets. Our findings will thus require a validation in larger 
cohorts, as well as in other configurations of numbers of labels. In the case of LALC patient cohort, one limitation 
is the use of unsupervised hierarchical clustering to automatically identify a likely and reliable number of labels 
to apply ComBat to. It was especially important to check that the resulting clusters were not defined based on the 
clinical endpoint but rather systematic differences due to imaging variability: as each resulting clusters had a sim-
ilar percentage of non-responders, it can be safely assumed that the clusters were indeed obtained mostly based 
on measured differences due to imaging acquisition and associated processing protocols, rather than different 
outcome profiles. In addition, when performing the same technique to the LACC datasets with known labels, the 
unsupervised clustering identified correctly (except for one patient) its correct label (i.e., center). Although our 
proposed modifications improved the performance of ComBat for harmonization purposes, they do not allevi-
ate some of its inherent limitations. To work properly, ComBat requires available and labelled data in order to 
perform the estimate and batch correction. In addition, when new datasets are added, they have to be combined 
with the other available ones and the harmonization has to be re-established on the entire database. Similarly, in 
order to apply a developed/validated model (i.e., a combination of harmonized radiomic features with an asso-
ciated threshold value) to a new patient from another center not previously included, there is currently no direct 
method to apply the previously determined harmonization transform to the radiomic features values of this new 
patient in order to determine his/her prediction. Our future work will investigate how to address these remaining 
limitations.

Finally, in the present work we considered the entire set of radiomic features irrespectively of their robust-
ness. An alternative strategy consists in identifying features robust to changes in acquisition and reconstruction 
settings prior to feeding them to the machine learning pipeline. Such a feature selection procedure can help 
building more robust models, potentially without the need for harmonization, since only features insensitive to 
multicenter variability are exploited. However, it suffers from a potential loss of information, as features identified 
as unreliable are usually discarded before being evaluated and the most robust/reproducible features might not 
necessarily be the most discriminant. In addition, the size of the radiomic features set would depend on the cho-
sen threshold of what is considered robust enough. A full comparison between the two approaches will be carried 
out in our future work.

Conclusion
The hybrid bootstrapped ComBat (B-ComBat and BM-ComBat) versions are modifications to a well-established 
methodology allowing a more reliable estimation (B) and ability to control the location and scale of center-effect 
adjusted data (M). It was shown to slightly but consistently improve the performance of predictive radiomics 
models in a multicenter context, whatever machine learning technique was used. We thus recommend the use of 
this BM-modified ComBat approach for the future development and validation of predictive models in a multi-
center context.

Data availability
Radiomic features can be made available on request for specific research purposes.
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