
HAL Id: hal-02887331
https://hal.science/hal-02887331v1

Preprint submitted on 3 Jul 2020 (v1), last revised 6 Jul 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep Importance Sampling
Benjamin Virrion

To cite this version:

Benjamin Virrion. Deep Importance Sampling. 2020. �hal-02887331v1�

https://hal.science/hal-02887331v1
https://hal.archives-ouvertes.fr

Deep Importance Sampling

Benjamin Virrion∗

July 3, 2020

Abstract

We present a generic path-dependent importance sampling algorithm where the Girsanov induced
change of probability on the path space is represented by a sequence of neural networks taking the
past of the trajectory as an input. At each learning step, the neural networks’ parameters are trained
so as to reduce the variance of the Monte Carlo estimator induced by this change of measure. This
allows for a generic path dependent change of measure which can be used to reduce the variance of any
path-dependent financial payoff. We show in our numerical experiments that for payoffs consisting
of either a call, an asymmetric combination of calls and puts, a symmetric combination of calls and
puts, a multi coupon autocall or a single coupon autocall, we are able to reduce the variance of the
Monte Carlo estimators by factors between 2 and 9. The numerical experiments also show that the
method is very robust to changes in the parameter values, which means that in practice, the training
can be done offline and only updated on a weekly basis.

Keywords: Importance Sampling, Neural Networks, Path-Dependence.

∗Natixis and CEREMADE, UMR CNRS, Université Paris-Dauphine, PSL University.

1

Contents

1 Introduction 3
1.1 Objective . 3
1.2 Litterature . 3
1.3 Importance Sampling with a Girsanov Induced Change of Measure 4
1.4 Finding the Optimal Change of Measure aθ Using Neural Networks 4

2 Construction of the Neural Networks 5

3 Numerical Implementation 7
3.1 Structure of the Neural Networks . 7
3.2 Discretization of the Processes . 8

4 Numerical Experiment 9
4.1 Experiment Settings . 9

4.1.1 Diffusion Processes . 9
4.1.2 Payoffs . 10

4.2 A Visual Representation of aθ . 13
4.3 A Simplified Version of the Algorithm with a Local a . 14
4.4 Results for a Bachelier Diffusion . 14

4.4.1 Call . 15
4.4.2 Asymmetric Calls and Puts . 17
4.4.3 Symmetric Calls and Puts . 19
4.4.4 Multi Coupons AutoCall . 21
4.4.5 Single Coupon AutoCall . 23

4.5 Results for a Local Volatility Diffusion . 23
4.5.1 Call . 24
4.5.2 Asymmetric Calls & Puts . 24
4.5.3 Symmetric Calls & Puts . 25
4.5.4 Multi Coupons AutoCall . 27
4.5.5 Single Coupon AutoCall . 27

5 Robustness of the Algorithm 29
5.1 Bachelier Diffusion . 30

5.1.1 Call . 30
5.1.2 Asymmetric Calls and Puts . 30
5.1.3 Symmetric Calls and Puts . 31
5.1.4 Multi Coupons AutoCall . 31
5.1.5 Single Coupon AutoCall . 32

5.2 LV Diffusion . 32
5.2.1 Call . 32
5.2.2 Asymmetric Calls and Puts . 33
5.2.3 Symmetric Calls and Puts . 35
5.2.4 Multi Coupons AutoCall . 36
5.2.5 Single Coupon AutoCall . 38

6 Code on Github Repository 39

7 Conclusion 39

A Parameter Tables 41

B Volatility Surfaces 47

2

1 Introduction

1.1 Objective

The objective of this paper is to compute the price of a possibly path-dependent option of payoff g, given
by:

f(x0) = EQ
[
g(Xx0

0≤t≤T)
]

(1)

Where
(
Xx0

0≤t≤T

)
is an Itô diffusion satisfying:

{
dXx0

t = btdt+ σtdWt

Xx0
0 = x0

(2)

Where Q is the risk neutral measure, Wt is a Brownian process under Q, and bt and σt are two
locally bounded predictable processes.

In order to reduce the variance of the Monte Carlo, we will compute f(x) by using importance
sampling. The change of probability measure used in this importance sampling will be obtained using an

adapted process aθ
(
t,Xx0

0≤s≤t

)
and the Girsanov Theorem. 1

1.2 Litterature

Using Importance Sampling to reduce the standard deviation of Monte Carlo estimators is a well known
and studied practice. Its use has been well described in both non-financial [1] and financial [2], [3] articles
and books on Monte Carlo techniques. Among the many possible ways of using importance sampling, we
decide here to separate two broad categories. In the first category, g is a function of a random variable
that is not on the path space, whereas in the second category, g is a function of a random process that
lives on the path space.

In the first category, importance sampling using neural networks has been studied in [4] and [5]. For
these papers, as the problem at hand does not inherintly live in the path space, the change of measure is
described directly using the densities, and there is no attempt to use the Girsanov theorem to describe
the change of measure.

On the other hand, when importance sampling is done on the path space, describing the change
of measure using the Girsanov theorem becomes natural. Such a use of the Girsanov theorem to do
importance sampling is well known, and has been been compared to other variance reduction methods in
[2] to price out of the money options. Out of this vast litterature, we would like to mention a few articles
that stand out in the sense that our method is close to theirs.

One of the first papers using an adaptive importance sampling scheme in order to reduce variance
in a Monte Carlo algorithm for a diffusion process in a financial context is that of [6]. In this paper, the
author shows how a Robbins-Monro algorithm allows to find the optimal Girsanov change of measure
that reduces the Monte Carlo variance. However, the author does not directly represent the change
of measure using a neural network, but restricts himself to using a deterministic drift vector. As our
neural-network can take the past of the trajectory as an input, our algorithm is more flexible and allows
for a path-dependent change of measure, which is not possible with the approach of [6].

In [7] the authors use importance sampling both for a function of a random variable and a function
of a random process. For a function of a random process, the authors use the Girsanov theorem to
represent the change of measure. Furthermore, assuming that they have some knowledge on the law of
the process, more precisely on p and ∇p , they show that a Robbins-Monro scheme using this knowledge

1In full generality, one might want to take as an input for aθ(t, .) all the information available at time t, that is Ft. For
example, for a stochastic volatility diffusion, taking the past of the volatility as an input would be useful. For simplicity’s
sake, we only take the past of the trajectory of the underlying as an input in this paper.

3

to update the θ parameter of a parametrized family of changes of measures converges to a minimizer of
this family that minimizes the standard deviation. The method in our paper is extremely close to theirs,
except that we do not use a model-dependant analytical formula to obtain p and ∇p, but instead use
a neural network and backpropagation to obtain this gradient, which then enables the gradient descent
algorithm. So in some sense, our paper is a natural extension of their paper when using a neural network
and backpropagation, which enables us to obtain the gradient for diffusion processes where no analytical
formulas could be explicited.

The paper by [4] uses importance sampling and a family of changes of measures parametrized by a
neural network to learn the change of measure. However, they naturally place themselves in the random
variable setting, whereas we place ourselves in the random process setting. This quite naturally brings
us to use the neural network as a function of the past of the process, which we believe is much more
adapted to most financial payoffs.

1.3 Importance Sampling with a Girsanov Induced Change of Measure

Let us consider a parametrized family of measurable functions aθ : [0, T]×R→ R, with θ ∈ Θ, satisfying:

∣∣aθ (t, x)
∣∣ ≤ C (1,+|x|) , for t ∈ [0, T], x ∈ R (3)∣∣aθ(t, x)− aθ(t, y)

∣∣ ≤ D |x− y| , for t ∈ [0, T], x, y ∈ R (4)

for some constants C and D.

We can then introduce the process:

dW θ
t = dWt − aθ(t,Xx0

0≤s≤t)dt (5)

The diffusion of our underlying process (Xx0
t) can be rewritten:

dXx0
t = btdt+ σtdWt = btdt+ σtdW

θ
t + aθ(t,Xx0

0≤s≤t)σtdt (6)

Furthermore, introduce the change of measure process, which is a Q-martingale:

Zθt =
dQθ

dQ

∣∣∣∣∣
Ft

= exp

(∫ t

s=0

aθ
(
s,Xx0

0≤u≤s

)
dWs −

1

2

∫ t

s=0

(
aθ
(
s,Xx0

0≤u≤s

))2

ds

)

= exp

(∫ t

s=0

aθ
(
s,Xx0

0≤u≤s

)
dW θ

s +
1

2

∫ t

s=0

(
aθ
(
s,Xx0

0≤u≤s

))2

ds

) (7)

By the Girsanov theorem, W θ
t is a Brownian Motion under the Qθ probability measure.

We then have:

f(x) = EQθ
[
g
(
Xx

0≤t≤T
) 1

ZθT

]
(8)

1.4 Finding the Optimal Change of Measure aθ Using Neural Networks

In order to reduce the variance in the Monte-Carlo, our aim is to find the aθ that minimizes the variance
of g

(
Xx

0≤t≤T
)

1
ZθT

under Qθ. Therefore, let us introduce:

h̃ (θ) := EQθ
[(

g
(
Xx

0≤t≤T
) 1

ZθT

)2
]

(9)

4

Considering that equation (Eq 8) is true for all θ, the square of the mean in the variance term

EQθ
[
g
(
Xx

0≤t≤T
)

1
ZθT

]2
= f(x)2 is the same for all θ. Therefore, we can simply ignore it, and our opti-

mization problem can be rewritten:

θ̃∗ := argmin
θ∈Θ

h̃ (θ) (10)

To do this, we will use multiple neural networks to represent aθ, and minimize for the parameters of
the neural networks using the variance as our loss function.

In practice, we do not want to allow changes of measures that are too extreme. Therefore, we will
add the following constraint to the error function:

h (θ) := EQθ
[(

g
(
Xx

0≤t≤T
) 1

ZθT

)2
]

+ λ ln

(
1 + EQθ

[(
1

ZθT
− C

)+
])

(11)

and consider the minimizer:
θ∗ := argmin

θ∈Θ
h (θ) (12)

Assuming that h is smooth, when Θ is compact, such a minimizer exists, albeit not necessarily
uniquely.

2 Construction of the Neural Networks

As the number of inputs in aθ
(
t,Xx0

0≤s≤t

)
increases with time, in practice, we need one neural network

per time step. If the maturity is long and we want to have a fine mesh for the diffusion process Xx0
t , it is

possible to introduce a coarser mesh for the aθ, so as not to have too many neural networks to calibrate.
We won’t do this in this paper so as to keep the notations simple.

Let us introduce a time grid [t0, ..., tNT] :=
[
0, T/NT , 2T/NT , ..., T

]
with NT ∈ N∗ time steps. For

i ∈ [[1, NT − 1]], we introduce the neural network aθi which has i + 1 inputs and one output. For i = 0,
as all trajectories start at the same initial point, we introduce instead a neural network aθ0 .

Mathematically, we have:

{
aθi : Ri+1 ×Θi → R, for i ∈ [[1, NT − 1]]

aθ0 : Θ0 → R, for i = 0
(13)

For a Bachelier diffusion, the algorithm is then as follows:

import numpy as np

import tensorflow as tf

def generate_trajectories_z_and_a_list(self):

Construct neural networks and trajectories

a_list = [None for i in range(self.N_T)]

trajectories = [None for i in range(self.N_T + 1)]

for n_time_step in range(self.N_T + 1):

if n_time_step == 0:

trajectories[n_time_step] = tf.tile(tf.reshape(self.x, [1, 1]),

[self.N_batch_size, 1])

else:

a_list[n_time_step - 1] = self.neural_net(trajectories[:n_time_step],

self.weights_list[n_time_step - 1],

self.biases_list[n_time_step - 1],

5

t_step=n_time_step - 1)

trajectories[n_time_step] = trajectories[n_time_step - 1]

+ a_list[n_time_step - 1] * self.sigma * self.dt

+ gaussian_term * self.sigma * self.sqrt_dt

Construct z

a_times_gaussians = tf.multiply(tf.reduce_sum(tf.stack(a_list, axis=1), axis=2),

self.random_gaussians * self.sqrt_dt)

a_squared_list = tf.square(tf.reduce_sum(tf.stack(a_list, axis=1), axis=2)) * self.dt

first_term_z = tf.expand_dims(tf.reduce_sum(a_times_gaussians, axis=1), axis=-1)

second_term_z = 0.5 * tf.expand_dims(tf.reduce_sum(a_squared_list, axis=1), axis=-1)

z = tf.exp(first_term_z + second_term_z)

return trajectories, z, a_list

def neural_net(self, trajectories, weights, biases, t_step):

if t_step == 0:

If t_step is 0, we return the same trainable variable for all trajectories

variable = tf.Variable(tf.zeros([1, 1], dtype=tf.float64))

Y = tf.tile(variable, multiples=[self.N_batch_size, 1])

else:

If t_step > 0, we return the output of a neural network

taking t_step + 1 inputs

num_layers = len(weights) + 1

Inputs of initial layer are the past values of the trajectories

We center past of the trajectories by substracting initial value: self.x

H = tf.reduce_sum(tf.stack(trajectories, axis=1), axis=1) - self.x

for l in range(0, num_layers - 2):

W = weights[l]

b = biases[l]

H = tf.nn.relu(tf.add(tf.matmul(H, W), b))

W = weights[-1]

No bias for the neural network output

Y = tf.matmul(H, W)

return Y

Let us comment on the above algorithm.

In the generate trajectories z and a list method, in the loop on the variable n time step, we do the
following. If n time step == 0, we simply initiate the first value of the trajectories, trajectories[0],
with the initial value self.x. If n time step > 0, we do two things. First, we evaluate aθn time step - 1

on the past of the trajectories. This is done when we call self.neural net(trajectories[:n time step],
self.weights list[n time step - 1], self.biases list[n time step - 1], t step=n time step + 1) 2. Second, we
construct the next step of the trajectory, with trajectories[n time step] = trajectories[n time step - 1] +
a list[n time step - 1] * self.sigma * self.dt + gaussian term * self.sigma * self.sqrt dt. This second step
is simply the Euler scheme for the Bachelier process under Qθ.

In the function neural net, we should notice a few things. First when we call the neural net in
the method generate trajectories z and a list, the trajectories input of neural net actually consists of the
variable trajectories[:n time step] of the method generate trajectories z and a list. That is, is consists
of all the past of the trajectories up to step n time step - 1 included. Ignoring the tf.reduce sum and
tf.stack which are there for reshaping purposes, we then define H as trajectories[:n time step] - self.x,
where self.x is the initial values of the trajectories. That is, we decide to recenter all the trajectories by

2In Python, list[:n] is the sublist of list containing its first n terms. So trajectories[:n time step] consists in the values of
the trajectories up to n time step, that is, the past of the trajectory

6

substracting their initial value. In practice, this helps the algorithm converge better. Finally, for each
layer, we multiply H by the weights of the layer weights[l], add the bias terms of the layer biases[l], and
apply the tensorflow ReLu function. Finally, for the last layer, we only multiply H by the weights of the
final layer weights[-1], but do not add any bias term. We do not put a bias term here because in practice,
it hinders the convergence of the algorithm.

We haven’t described in the above code how the self.weights list and self.biases list list of variables
are instansiated. In practice, these are lists of tensorflow trainable variables, with both weights and biases
using a xavier initialization. These are the θ parameters that are trained in the algorithm.

3 Numerical Implementation

3.1 Structure of the Neural Networks

The neural networks that we use have (i+ 1) inputs, 2 intermediate layers with 16 neurons each, and one
ouput layer. The intermediate layers have both a weight and a bias term, whereas the output layer only
contains a weight term. The activation function that we use is ReLu.

Figure 1: Neural Network Architecture for aθ3

7

3.2 Discretization of the Processes

For numerical implementation, one needs to consider discretized versions of Xx0
t , Zθt , a

θ, h(θ), θ∗. The
underlying process Xx0

t will be discretized in its numerical version X
x0

t according to two possible Euler
schemes in section 4.1.1. Assuming X

x0

t already defined, we now define:

aθ(t,X
x

0≤s≤t) := a
θ
b tNT
T
c

((
X
x0

ti

)b tNTT c
i=0

)
(14)

This allows us to define:

dW
θ

t := dWt − aθ(t,X
x0

0≤s≤t)dt (15)

We now define the martingale:

Z
θ

t := exp

(∫ t

s=0

aθ
(
s,X

x0

0≤r≤s

)
dW

θ

s +
1

2

∫ t

s=0

aθ
(
s,
(
X
x0

0≤r≤s

))2

ds

)
(16)

Which allows us to define Qθ as a measure such that ∀t ∈ [0, T]:

dQθ

dQ

∣∣∣∣∣
Ft

:= Z
θ

t (17)

We can then define:

h (θ) := ÊQθ
(g (Xx

0≤t≤T

) 1

Z
θ

T

)2
+ λ ln

1 + ÊQθ
(1

Z
θ

T

− C

)+
 (18)

where the operator ÊA is defined as the empirical average obtained when simulating NBatchSize
random variables under the probability A.

We define h(θ) as the function to be minimized, and then train our neural networks by doing
NBatchChangeProportion learning steps for a given batch of random variables, and fetching NumberOf-
BatchesForTraining batches of random variables. We thus do in total NBatchChangeProportion x Num-
berOfBatchesForTraining learning steps.

We then define θ̂∗ as the value obtained for θ after these NBatchChangeProportion x NumberOf-
BatchesForTraining learning steps.

The C used for the differente experiments are those of tables 8-17.

For the figures 12, 13, 20 21, 22 23, 30, 31, 32, 33, 36, 37, 38, 39, 42, 43, 46, 47, 50, 51, 54, 55, 56,
57, 60, 61, 64, 67, 66 and 67 showing the surfaces aθ and ãθ, we use the learning rates given by tables 8,
9, 10, 11, 12, 13, 14, 15, 16 and 17. For the graphs 6, 7, 14, 15, 24, 25, 34, 35, 40, 41, 44, 45, 48, 49, 48,
49, 52, 53, 58, 59, 62 and 63, we use the learning rates given by tables 18-27.

For the values of λ, we do two things. For the figures 12, 13, 20 21, 22 23, 30, 31, 32, 33, 36, 37, 38,
39, 42, 43, 46, 47, 50, 51, 54, 55, 56, 57, 60, 61, 64, 67, 66 and 67 showing the surfaces aθ and ãθ, we use
the values of tables 8-17. However, manually choosing each λ for the graphs 6, 7, 14, 15, 24, 25, 34, 35, 40,
41, 44, 45, 48, 49, 48, 49, 52, 53, 58, 59, 62 and 63 would be very cumbersome, as we might need a different
λ for each point in the graph. Therefore, for these graphs, we instead use a first batch to evaluate the

standard deviation σ̂ of g
(
X
x0

0≤t≤T

)
under Q, and choose λ = BaseForAutomaticLambdaConstraint ×

10−blog10(σ̂)c, where BaseForAutomaticLambdaConstraint is given by table 28.

8

4 Numerical Experiment

4.1 Experiment Settings

For the numerical experiments, we will consider two diffusion processes (Bachelier and Local Volatility
Diffusion), and 3 types of payoffs (Calls, Calls & Puts and Autocall). The parameters used for these
diffusions and payoffs are those of tables 1, 2, 3, 4, 5, 6 and 7.

4.1.1 Diffusion Processes

Bachelier The Bachelier diffusion process is defined by:{
dXx0

t = σdWt for t ∈ [0, T]

X0 = x0

(19)

In practice, we diffuse the Euler scheme given by:

{
X
x0
i+1
Nt

T = X
x0
i
Nt
T + σ

(
W i+1

Nt
T −W i

Nt
T

)
for i ∈ [[0, Nt − 1]]

X0 = x0

(20)

x0, σ, T and Nt are defined in table (Tab 1).

Local Volatility The Local Volatility diffusion process is defined by:{
dXx0

t = Xx0
t σ (t, ln (Xx0

t)) dWt

Xx0
0 = x0

(21)

In practice, we diffuse the Euler scheme of the log diffusion given by:

Y
x0
i+1
Nt

T = Y i
Nt
T + σ

(
t, Y x0

i
Nt
T

)(
W i+1

Nt
T −W i

Nt
T

)
for i ∈ [[0, Nt − 1]]

Y
x0

0 = ln(x0)
(22)

and define the discrete process as:

X
x0
i
Nt
T = exp

(
Y
x0
i
Nt
T

)
, for i ∈ [[0, Nt]] (23)

To obtain the local volatility σ (t, x), we start from an implied volatility surface given by a raw SVI
parametric, and obtain the corresponding local volatility by using the Dupire formula.

Taking the definition of [8], for a given parameter set χ = {a, b, ρ,m, σ}, the raw SVI parameterization
of total implied variance up to time t reads:

w̃ (t, χ) =

(
a+ b

{
ρ (k −m) +

√
(k −m)

2
+ σ2

})
(24)

where a ∈ R, b ≥ 0, |ρ| < 1,m ∈ R, σ > 0 and χ respects the condition a + bσ
√

1− ρ2 ≥ 0.

k := ln
(

K
F (t,100%)

)
= ln

(
K
X0

)
is the log-Forward-Strike (we will only consider diffusions with no interest

rates, so the forward of the underlying is its spot)

However, as we do not only want one time strand of the volatility surface, but a whole volatility
surface, we will very näıvely use the following parameters for the whole volatility surface:

9

w (t, k, χ) = t

(
a+ b

{
ρ (k −m) +

√
(k −m)

2
+ σ2

})
(25)

As w (t, k, χ) = tσ2
imp (t, k, χ), this gives the following parameterization for the implied volatility

σimp (t, k, χ):

σimp(t, k, χ) =

√(
a+ b

{
ρ (k −m) +

√
(k −m)

2
+ σ2

})
(26)

By doing so, we consider an implied volatility surface which has the same smile for all maturities.
This is not what is observed in practice: the smile tends to smooth out as maturity increases. However,
as the main focus of this paper is not the volatility surface, we will still use this simple parameterization
in order to have a simple implementation.

Using the Dupire formula, we can obtain according to the computations in [9] the following local
volatility:

σ2 (t, k) =
∂tw

1− k
w∂kw + 1

4

(
− 1

4 −
1
w + k2

w2

)
(∂kw)

2
+ 1

2∂
2
kkw

(27)

For t ∈ (0, T], using the definition for w, we obtain:

∂tw = a+ b

{
ρ (k −m) +

√
(k −m)

2
+ σ2

}
∂kw = tb

{
ρ+ k−m√

(k−m)2+σ2

}
∂2
kkw = tbσ2

((k−m)2+σ2)
1
3

(28)

For the special case t = 0, we define the local volatility as the limit for t→ 0 of σ(t, k) as previously
defined, which gives:

σ2(0, k) = ∂tω

1−k ∂kωω + 1
4

(
− 1

4 +k2
(
∂kω

ω

)2
)

∂kω
ω =

b

{
ρ+ k−m√

(k−m)2+σ2

}
a+b

{
ρ(k−m)+

√
(k−m)2+σ2

}
(29)

For a given χ, we can therefore compute both the corresponding implied volatility σimp (t, k) and
local volatility surfaces σ (t, k) numerically.

4.1.2 Payoffs

Call Option The Call option payoff of strike K is given by:

g(x) = (x−K)
+

(30)

10

x

g(x)

K

Call & Put Options The Call & Put Options payoff with N1 calls, N2 puts, of strikes K1 and K2 is
given by:

g(x) = N1 (x−K1)
+

+N2 (K2 − x)
+

(31)

x

g(x)

K1K2

AutoCall The AutoCall payoff is a function of the whole trajectory. In practice, we use a smoothed
AutoCall payoff, as is used in the finance industry. In our case, the smoothing of the Payoff is necessary
for the training of the neural networks, more specifically for the computation of the derivative of our loss
function with respect to the neural network parameters, to work properly. For practitioners, we do not see
this as a major problem, as it is industry standard to smooth their Payoffs, so as to get reasonable Greeks
for the trader’s hedge of the product. The smoothing presented here is not the one that practitioners
should use in practice. Indeed, as the AutoCall is a non convex payoff, our smoothing can lead to under
hedging the product. As the smoothing of the AutoCall payoff is not the topic of this paper, we will do
with this very crude smoothing method.

g((Xx0
t)Tt=0) = CPDI +

NP−1∑
i=0

CPi (32)

with:

CPi = 1S
(
i,Xx0

TAi
≥ BTAi

) i−1∏
ĩ=0

(
1− 1S

(
ĩ, Xx0

TA
ĩ

, BTA
ĩ

))
(33)

where

1S(i, x, b) =
(x− b)+ − (x− b− Si)+

Si
(34)

and

11

CPDI =−
((

1 +
1−K
SPDI

)(
K + SPDI −Xx0

T

)+ − 1−K
SPDI

(K −Xx0

T)
+

)
NP−1∏
ĩ=0

(
1− 1S

(
ĩ, Xx0

TA
ĩ

, BTA
ĩ

)) (35)

Under the condition that the product is sill alive at TAi , the corresponding Phoenix Coupon CPi

payoff is illustrated in figure (Fig. 3). Similarly, under the condition that the product is still alive at final
maturity T , we illustrate in figure (Fig. 2) the Put Down and In CPDI payoff.

x

CPDI

K

SPDI

1−K
SPDI

Figure 2: CPDI when product reaches maturity
TANP−1

x

CPi

BTAi

Si

Figure 3: CPi when product is alive at time TAi

We illustrate in figure (Fig. 4) how the product is autocalled or not for different trajectories. For
trajectory 1, the product is autocalled at the first phoenix barrier date for which the underlying is higher
than the barrier value, that is, at time TA1 . The owner of the AutoCall then recieves the corresponding
phoenix coupon CP1 . For trajectory 2, the product is autocalled slightly later, at time TA3 , and the owner
of the AutoCall recieves CP3 . Trajectories 3 and 4 never cross a barrier Bi, for 0 ≤ i ≤ 4. Therefore, for
these trajectories, the product reaches maturity. For trajectory 3, at maturity, the underlying is above
the put down and in barrier BPDI and below the final phoenix coupon barier B4. Therefore, the owner
of the AutoCall doesn’t pay or recieve anything. For trajectory 4, at maturity, the underlying is below
the put down and in barrier BPDI . The owner therefore “recieves” CPDI (which is a negative value, so
the owner actually pays |CPDI |). The above explaination stands for the non-smoothed product. In order
to smooth the payoff, we replace the indicator functions by their smoothed versions from equation (Eq.
34).

12

t

Xt

TA0 TA1 TA2 TA3 TA4

KPDI

3

1

2

2

2

1
2

2

2

2

2

2

4

B0 B1 B2 B3 B4

Figure 4: AutoCall Barrier Activations for Different Underlying Trajectories

4.2 A Visual Representation of aθ

As aθ is a function of the pathspace, we cannot represent it visually in a graph. However, we can
restrict ourselves to showing its values for some simple trajectories. Let us therefore introduce ãθ(t, x) =

aθ
(
t, (Xx0

s)
t
s=0 (ω(t, x))

)
, where ω(t, x) is the set of events such that ∀s ∈ [0, t], Xx0

s (ω(t, x)) = x0 +
s
t (x− x0). In other words, ãθ(t, x) is the evaluation of aθ on trajectories that start at (0, x0) and go in
a straight line up to to the point (t, x). Figure (Fig. 5) shows the construction of these trajectories.

13

t

Xx0
t

x0

T
Nt

2
Nt
T 3

Nt
T 4

Nt
T T

x min

x max

(
Xx0
s

(
ω
(
T
NT

, x max
))) T

NT

s=0

(
Xx0
s

(
ω
(

3T
NT

, x max
))) 3T

NT

s=0

Figure 5: Construction of Trajectories (Xx0
s (ω(t, x)))

t
s=0

4.3 A Simplified Version of the Algorithm with a Local a

In the preceding sections, we have considered a very general change of measure aθ taking the whole

trajectory of
(
Xx0

0≤s≤t

)
as an input. This function being of high dimension, it is difficult to represent it

visually. Therefore, one might wonder if a local version of aθ, taking only the last value of the underlying
process at time t, Xt, as an input, might be sufficient in practice.

Let us therefore consider a function aL,θ : [0, T] × R → R. The theory of section (Sect 1.3) still
applies. We can then do as in section (Sect. 2), and use a list of neural networks to represent aL,θ(., .)
on {t0, ..., tNT−1} × R. Let us introduce the list of neural networks: aL,θi : R → R for i ∈ [[0, NT − 1]].
We will see in sections (Sect. 4.4) and (Sect. 4.5) that this local version often works nearly as well as
the previous full version. Therefore, a practitioner wanting a better interpretability of the method might
prefer to restrict himself to this version. We expect this local version to work as well as the full version
for European payoffs, but not for fully path-dependent payoffs.

We define Z
L,θ

, θL,∗ and (W θ,L
t)0≤t≤T as their counterparts Z

θ
, θ∗ and WL

t except for the fact that
we now use the local version aθ,L instead of aθ for the drift in the Girsanov change of measure.

From now on, we will refer to the algorithm using the full function of the path space aθ à the “full”
method, and the one using the local aL,θ as the “local” method.

4.4 Results for a Bachelier Diffusion

In all the following graphs, the full lines and dotted lines represent on the left axis the standard deviations
obtained when pricing with a plain Monte Carlo and a Deep Importance Sampling Monte Carlo for
different values of the spot price x0

3. The dashed lines (right axis) show the ratios of these standard
deviations. The graphs on the left use the ”full” version of the Deep Importance Sampling algorithm,
whereas graphs on the right use the ”local” version of the Deep Importance Sampling algorithm.

3For each value of the spot price x0, we train a separate set of neural networks. This will not be the case in the section
5, where the neural networks will be trained only with x0 = 1, and we will see the results obtained via a plain and a Deep
Importance Sampling Monte Carlo when changing the different parameters, without retraining the neural networks

14

4.4.1 Call

We see in figures (Fig. 6) and (Fig. 7) that the Monte Carlo obtained via our adaptative importance
sampling has a lower standard deviation than a plain Monte Carlo.

Figure 6: Standard Deviation vs x0 for Full
Method

Figure 7: Standard Deviation vs x0 for Local
Method

To get an idea of how the trajectories are modified, we show in figures (Fig. 8) and (Fig. 10)

the distributions of the weights Z
θ̂∗

T and Z
L,θ̂L,∗

T in log scale. Figures (Fig. 9) and (Fig. 11) show the

distributions of XT under Qθ̂∗ and Qθ̂L,∗ as histograms, and their theoretical distributions under Q as a
solid line. We can see that the trajectories are modified so as to get closer to the call’s strike at K = 1.4.

15

Figure 8: Z
θ̂∗

T Distribution Under Qθ̂
∗

Figure 9: XT Distribution Under Qθ̂
∗

for Full
Method

Figure 10: Z
θ̂∗

T Distribution Under QL,θ̂
L,∗

Figure 11: XT Distribution Under Qθ̂∗ for Local
Method

In figures (Fig. 12) and (Fig. 13), we show the surfaces ãθ̂
∗
(t, x) and aL,θ̂

L,∗
(t, x). For the call

option, ãθ and aL,θ are always positive. This agrees with the intuition that we need to apply a positive
drift in order to have more trajectories reach the strike region of the product.

Figure 12: ãθ̂
∗
(t, x) Figure 13: aL,θ̂

L,∗
(t, x)

16

4.4.2 Asymmetric Calls and Puts

For this experiment, we price N1 calls of strike K and N2 puts of strike K2. The parameters used are
those of table (Tab. 4), where N1, N2,K and K2 have been chosen so that the N1 calls and N2 puts have
roughly the same price.

Again, we see in figures (Fig. 14) and (Fig. 15) that the Monte Carlo obtained using our adaptative
importance sampling has a lower standard deviation than a plain Monte Carlo.

Figure 14: Standard Deviation vs x0 for Full
Method

Figure 15: Standard Deviation vs x0 for Local
Method

To get an idea of how the trajectories are modified, we again show in figures (Fig. 16) and (Fig.

18) the distributions of the weights Z
θ̂∗

T and Z
L,θ̂L,∗

T under Qθ̂
∗

and QL,θ̂
L,∗

. Figures (Fig. 17) and (Fig.

19) show the distributions of XT under Qθ̂
∗

and QL,θ̂
L,∗

. In figures (Fig. 17) and (Fig. 17), we can see
that the mode of the distributions are lower than 1, which shows that many trajectories are now sent
downwards.

17

Figure 16: Z
θ̂∗

T Distribution Under Qθ̂
∗

Figure 17: XT Distribution Under Qθ̂
∗

Figure 18: Z
L,θ̂L,∗

T Distribution Under QL,θ̂
L,∗

Figure 19: XT Distribution Under QL,θ̂
L,∗

We also show in figures (Fig. 20), (Fig. 22) and (Fig. 21), (Fig. 23) the surfaces ãθ̂
∗
(t, x) and

aL,θ̂
L,∗

from different viewpoints. Notice that now, ãθ
∗

and aL,θ
L,∗

are now positive roughly speaking
when x > 1. , and negative when x < 1. This is expected, as the payoff now has two strikes, one for
the call options, and one for the put options, so it needs to separate the trajectories in two groups. One
group goes up to get closer to the call strike K = 1.2. Another group goes down to join the more extreme
put strike K2 = 0.6. Our option consists of 1 call of strike K = 1.2, and 10 puts of strike 0.6. The ratio
of 10 has been chosen such that the price of the call is roughly the same as the price of the 10 puts.
However, we can notice that the surface is asymmetric: the part of the surface that goes down roughly
reaches the values around 2, whereas the positive part of the surface reaches around 1. This is because
the trajectories that go down need to reach a more extreme strike of 0.6, whereas trajectories that go up
only need to reach a strike of 1.2.

18

Figure 20: ãθ̂
∗
(t, x) Figure 21: aL,θ̂

L,∗
(t, x)

Figure 22: ãθ̂
∗
(t, x) Figure 23: aL,θ̂

L,∗
(t, x)

4.4.3 Symmetric Calls and Puts

For this experiment, we again price N1 calls of strike K and N2 puts of strike K2. However, the parameters
used are now those of table (Tab. 5), and have been chosen so that the situation is perfectly symmetric:
K = 0.6, K1 = 1.4, N1 = 10 and N2 = 10. As the diffusion is of Bachelier type, its distribution is also
symmetric with respect to x = 1. We therefore expect aθ to have a symmetry with respect to x = 1.

Again, we see in figures (Fig. 24) and (Fig. 25) that the Monte Carlo obtained using our adaptative
importance sampling has a lower standard deviation than a plain Monte Carlo.

19

Figure 24: Standard Deviation vs x0 for Full
Method

Figure 25: Standard Deviation vs x0 for Local
Method

As previously, we show in figures (Fig. 26) and (Fig. 28) the distribution of the weights Z
θ̂∗

T and

Z
L,θ̂L,∗

T in log scales and in figures (Fig. 27) and (Fig. 29) the distribution of XT under Qθ̂∗ and QL,θ̂L,∗ .
The mode of the distributions are now at 1, which is expected from the symmetries of both the product
and the Bachelier process law with respect to x = 1.

Figure 26: Z
θ̂∗

T Distribution Under Qθ̂
∗

Figure 27: XT Distribution Under Qθ̂
∗

Figure 28: Z
L,θ̂L,∗

T Distribution Under QL,θ̂
L,∗

Figure 29: XT Distribution Under QL,θ̂
L,∗

20

As previously, we show in figures (Fig. 30), (Fig. 31) and (Fig. 32) (Fig. 33) the surfaces ãθ̂
∗
(t, x)

and aL,θ̂
L,∗

from different viewpoints. Results are similar to those obtained with the asymmetric calls

and puts, except that we can now notice in figures (Fig. 32) and (Fig. 33), that ãθ̂
∗

and aL,θ̂
L,∗

present a
symmetry with respect to x = 1, which is expected from the symmetries of the product and the Bachelier
process law.

Figure 30: ãθ̂
∗
(t, x) Figure 31: aL,θ̂

L,∗
(t, x)

Figure 32: ãθ̂
∗
(t, x) Figure 33: aL,θ̂

L,∗
(t, x)

4.4.4 Multi Coupons AutoCall

For this experiment, we price an AutoCall that has multiple coupons. The precise characteristics are
those of table (Tab. 6). Again, we see in figures (Fig. 34) and (Fig. 35) that the Monte Carlo obtained
using our adaptative importance sampling has a lower standard deviation than a plain Monte Carlo.

21

Figure 34: Standard Deviation vs x0 for Full
Method

Figure 35: Standard Deviation vs x0 for Local
Method

In figures (Fig. 36), (Fig. 38) and (Fig. 37), (Fig. 39), we show the surfaces ãθ̂
∗
(t, x) and aL,θ̂

L,∗

from different viewpoints. We can see that that the values are rougly speaking positive when x > 1, and
negative for x < 1. This is again expected from the fact that some trajectories need to get closer to
the barrier strikes region BA. = 1.5, while others need to get close to the put down and in strike region
KPDI = 0.5.

Figure 36: ãθ(t, x) Figure 37: ãθ(t, x)

Figure 38: ãθ(t, x) Figure 39: ãθ(t, x)

22

4.4.5 Single Coupon AutoCall

For this experiment, we price an AutoCall that has a single coupon (but still multiple AutoCall barriers).
The precise characteristics are those of table (Tab. 7). Again, we see in figures (Fig. 40) and (Fig. 41)
that the Monte Carlo obtained using our adaptative importance sampling has a lower standard deviation
than a plain Monte Carlo.

Figure 40: Standard Deviation vs x0 for Full
Method

Figure 41: Standard Deviation vs x0 for Local
Method

In figures (Fig. 42) and (Fig. 43), we again show the surfaces ãθ̂
∗
(t, x) and aL,θ̂

L,∗
from different

viewpoints. Compared to the multiple coupons AutoCall, we can see one striking difference: for x > 1,
the surface increases from time t = 0 up to the coupon date t = TA3 , then suddenly drop to values close
to 0, and slightly negative. This is expected, as once the coupon date has passed, there is no reason to
deviate trajectories towards the x > 1. Indeed, once the coupon date has passed, the only thing left to
price is the put down and in, so trajectories now need to get to values closer to the put down and in
strike KPDI = 0.5.

Figure 42: ãθ̂
∗
(t, x) Figure 43: aL,θ̂

L,∗
(t, x)

4.5 Results for a Local Volatility Diffusion

Results for the local volatility diffusion, which is the most used diffusion by practitioners, are very similar
to those obtained with the Bachelier diffusion. We will therefore be more brief in our comments.

23

4.5.1 Call

As in the previous section, we see in figures (Fig. 44) and (Fig. 45) that the Monte Carlo obtained via
our adaptative importance sampling has a lower standard deviation than a plain Monte Carlo.

Figure 44: Standard Deviation vs x0 for Full
Method

Figure 45: Standard Deviation vs x0 for Local
Method

In figures (Fig. 46) and (Fig. 47), we show the surfaces ãθ̂
∗
(t, x) and aL,θ̂

L,∗
. As in the Bachelier

diffusion case, for the call option, ãθ̂
∗

and aL,θ̂
L,∗

are always positive, as expected.

Figure 46: ãθ(t, x) Figure 47: ãθ(t, x)

4.5.2 Asymmetric Calls & Puts

For this experiment, we again price N1 calls of strike K and N2 puts of strike K2 with the parameters
of table (Tab. 4). As for the Bachelier diffusion case, we see in figures (Fig. 48) and (Fig. 49) that the
Monte Carlo obtained using our adaptative importance sampling has a lower standard deviation than a
plain Monte Carlo.

24

Figure 48: Standard Deviation vs x0 for Full
Method

Figure 49: Standard Deviation vs x0 for Local
Method

As previously, we show in figures (Fig. 50) and (Fig. 51) the surfaces ãθ̂
∗
(t, x) and aL,θ̂

L,∗
(t, x).

Figure 50: ãθ̂
∗
(t, x) Figure 51: aL,θ̂

L,∗
(t, x)

4.5.3 Symmetric Calls & Puts

For this experiment, we again price N1 calls of strike K and N2 puts of strike K2 with the parameters of
table (Tab. 5).

Again, we see in figures (Fig. 52) and (Fig. 53) that the Monte Carlo obtained using our adaptative
importance sampling has a lower standard deviation than that of a plain Monte Carlo.

25

Figure 52: Standard Deviation vs x0 for Full
Method

Figure 53: Standard Deviation vs x0 for Local
Method

As previously, we show in figures (Fig. 54), (Fig. 56) and (Fig. 55), (Fig. 57) the surfaces ãθ̂
∗
(t, x)

and aL,θ̂
L,∗

from different viewpoints. We see in figures (Fig. 56) and (Fig. 57), that contrary to the

Bachelier diffusion case, ãθ̂
∗

and aL,θ̂
L,∗

do not present a symmetry with respect to x = 1. This is
expected, as the local volatility diffusion process does not present the same symmetry with respect to
x = 1 that the Bachelier diffusion process presents.

Figure 54: ãθ̂
∗
(t, x) Figure 55: aL,θ̂

L,∗
(t, x)

Figure 56: ãθ(t, x) Figure 57: aL,θ̂
L,∗

(t, x)

26

4.5.4 Multi Coupons AutoCall

For this experiment, we again price an AutoCall that has multiple coupons with the characteristics of
table (Tab. 6). Again, we see in figures (Fig. 58) and (Fig. 59) that the Monte Carlo obtained using our
adaptative importance sampling has a lower standard deviation than a plain Monte Carlo.

Figure 58: Standard Deviation vs x0 for Full
Method

Figure 59: Standard Deviation vs x0 for Local
Method

In figures (Fig. 60) and (Fig. 61), we again show the surfaces ãθ̂
∗
(t, x) and aL,θ̂

L,∗
(t, x). As with

the Bachelier diffusion case, we can see that that the values are rougly speaking positive when x > 1,
and negative for x < 1. This is again expected from the fact that some trajectories need to get closer to
the barrier strikes region BA. = 1.5, while others need to get close to the put down and in strike region
KPDI = 0.5.

Figure 60: ãθ̂
∗
(t, x) Figure 61: aL,θ̂

L,∗
(t, x)

4.5.5 Single Coupon AutoCall

For this experiment, we again price an AutoCall that has a single coupon (but still multiple AutoCall
barriers) with the characteristics of table (Tab. 7). Again, we see in figures (Fig. 62) and (Fig. 63) that
the Monte Carlo obtained using our adaptative importance sampling has a lower standard deviation than
a plain Monte Carlo.

27

Figure 62: Standard Deviation vs x0 for Full
Method

Figure 63: Standard Deviation vs x0 for Local
Method

In figures (Fig. 64), (Fig. 66) and (Fig. 65), (Fig. 67), we show the surfaces ãθ̂
∗
(t, x) and aL,θ̂

L,∗
from

different viewpoints. As with the Bachelier diffusion case, compared to the multiple coupons AutoCall,
we can see one striking difference: for x > 1, the surface increases from time t = 0 up to the coupon
date t = TA3 , then suddenly drop to values close to 0 and slightly negative. This is expected, as once
the coupon date has passed, there is no reason to deviate trajectories towards the x > 1. As with the
Bachelier diffusion case, once the coupon date has passed, the only thing left to price is the put down
and in, so trajectories now need to get to values closer to the put down and in strike KPDI = 0.5.

Figure 64: ãθ(t, x) Figure 65: ãθ(t, x)

28

Figure 66: ãθ(t, x) Figure 67: ãθ(t, x)

5 Robustness of the Algorithm

In the previous sections, we have considered a user that trains the neural network prior to each pricing.
In most cases, such a training can take only a small percentage of the time taken for the pricing and
thus only add a small overhead. Indeed, our experience is that training the neural networks applying
a number of training steps of only 10% of the number of trajectories used in the final pricing is often
enough to obtain good results. Furthermore, our algorithm could easily be improved upon by keeping the
values obtained during the training step and use them in the the final Monte Carlo estimator, instead of
throwing them away.

However, an alternative approach is to only train the neural network once for many pricings. For
example, a bank might want to train the neural networks only once per week and use the same neural
network to price its book for the whole week. To test the feasibility of such a methodology, we study
here how well the algorithm performs when we change each of the model parameters: x0 and σ for the
Bachelier diffusion, x, σ, a, b, m and ρ for the local volatility diffusion.

In order to do this, for each payoff and each diffusion type, we train the neural network with
the parameters of tables (Tab. 8 - Tab. 17). Once the neural networks are trained, we then vary
each parameter from −50% to +50% of its original value, and plot the algorithm’s and a plain Monte
Carlo’s standard deviations. We see that in practice, the algorithm is very robust for each tested payoff
and diffusion type. Indeed, for all parameters except the spot price x0, the algorithm systematically
outperforms the plain Monte Carlo, even though it was trained with the different parameters than those
used for the pricing. For the spot price, it usually outperforms the plain Monte Carlo in the range −90%
to 110%. For most assets, especially indices, variation of 10% in the underlying is quite rare in a week,
so we conclude that a bank could definitely only train the neural networks on a regular basis of around
a week.

In order to limit the number of graphs, We only show the results obtained when using the full version
of aθ. Results for the local version aL,θ are similar.

29

5.1 Bachelier Diffusion

5.1.1 Call

Figure 68: Standard Deviation against x0, Adap-
tative vs MC - Bachelier Diffusion - Call

Figure 69: Standard Deviation vs σ, Adaptative
vs MC - Bachelier Diffusion - Call

5.1.2 Asymmetric Calls and Puts

Figure 70: Standard Deviation against x0, Adap-
tative vs MC - Bachelier Diffusion - Asymmetric
Calls and Puts

Figure 71: Standard Deviation vs σ, Adaptative vs
MC - Bachelier Diffusion - Asymmetric Calls and
Puts

30

5.1.3 Symmetric Calls and Puts

Figure 72: Standard Deviation against x0, Adap-
tative vs MC - Bachelier Diffusion - Symmetric
Calls and Puts

Figure 73: Standard Deviation vs σ, Adaptative
vs MC - Bachelier Diffusion - Symmetric Calls and
Puts

5.1.4 Multi Coupons AutoCall

Figure 74: Standard Deviation against x0, Adap-
tative vs MC - Bachelier Diffusion - Multi Coupons
AutoCall

Figure 75: Standard Deviation vs σ, Adaptative
vs MC - Bachelier Diffusion - Multi Coupons Au-
toCall

31

5.1.5 Single Coupon AutoCall

Figure 76: Standard Deviation against x0, Adap-
tative vs MC - Bachelier Diffusion - Single Coupon
AutoCall

Figure 77: Standard Deviation vs σ, Adaptative vs
MC - Bachelier Diffusion - Single Coupon AutoCall

5.2 LV Diffusion

5.2.1 Call

Figure 78: Standard Deviation against x0, Adap-
tative vs MC - LV Diffusion - Call

Figure 79: Standard Deviation against σ, Adapta-
tive vs MC - LV Diffusion - Call

32

Figure 80: Standard Deviation against a, Adapta-
tive vs MC - LV Diffusion - Call

Figure 81: Standard Deviation against b, Adapta-
tive vs MC - LV Diffusion - Call

Figure 82: Standard Deviation against m, Adap-
tative vs MC - LV Diffusion - Call

Figure 83: Standard Deviation against ρ, Adapta-
tive vs MC - LV Diffusion - Call

5.2.2 Asymmetric Calls and Puts

Figure 84: Standard Deviation against x0, Adap-
tative vs MC - LV Diffusion - Asymmetric Calls
and Puts

Figure 85: Standard Deviation vs σ, Adaptative vs
MC - LV Diffusion - Asymmetric Calls and Puts

33

Figure 86: Standard Deviation against a, Adapta-
tive vs MC - LV Diffusion - Asymmetric Calls and
Puts

Figure 87: Standard Deviation against b, Adapta-
tive vs MC - LV Diffusion - Asymmetric Calls and
Puts

Figure 88: Standard Deviation against m, Adap-
tative vs MC - LV Diffusion - Asymmetric Calls
and Puts

Figure 89: Standard Deviation against ρ, Adapta-
tive vs MC - LV Diffusion - Asymmetric Calls and
Puts

34

5.2.3 Symmetric Calls and Puts

Figure 90: Standard Deviation against x0, Adap-
tative vs MC - LV Diffusion - Symmetric Calls and
Puts

Figure 91: Standard Deviation against σ, Adapta-
tive vs MC - LV Diffusion - Symmetric Calls and
Puts

Figure 92: Standard Deviation against a, Adapta-
tive vs MC - LV Diffusion - Symmetric Calls and
Puts

Figure 93: Standard Deviation against b, Adapta-
tive vs MC - LV Diffusion - Symmetric Calls and
Puts

35

Figure 94: Standard Deviation against m, Adap-
tative vs MC - LV Diffusion - Symmetric Calls and
Puts

Figure 95: Standard Deviation against ρ, Adapta-
tive vs MC - LV Diffusion - Symmetric Calls and
Puts

5.2.4 Multi Coupons AutoCall

Figure 96: Standard Deviation against x0, Adap-
tative vs MC - LV Diffusion - Multi Coupons Au-
toCall

Figure 97: Standard Deviation vs σ, Adaptative
vs MC - LV Diffusion - Multi Coupons AutoCall

36

Figure 98: Standard Deviation against a, Adapta-
tive vs MC - LV Diffusion - Multi Coupons Auto-
Call

Figure 99: Standard Deviation against b, Adapta-
tive vs MC - LV Diffusion - Multi Coupons Auto-
Call

Figure 100: Standard Deviation against m, Adap-
tative vs MC - LV Diffusion - Multi Coupons Au-
toCall

Figure 101: Standard Deviation against ρ, Adap-
tative vs MC - LV Diffusion - Multi Coupons Au-
toCall

37

5.2.5 Single Coupon AutoCall

Figure 102: Standard Deviation against x0, Adap-
tative vs MC - LV Diffusion - Single Coupon Au-
toCall

Figure 103: Standard Deviation vs σ, Adaptative
vs MC - LV Diffusion - Single Coupon AutoCall

Figure 104: Standard Deviation against a, Adap-
tative vs MC - LV Diffusion - Single Coupon Au-
toCall

Figure 105: Standard Deviation against b, Adap-
tative vs MC - LV Diffusion - Single Coupon Au-
toCall

38

Figure 106: Standard Deviation against m, Adap-
tative vs MC - LV Diffusion - Single Coupon Au-
toCall

Figure 107: Standard Deviation against ρ, Adap-
tative vs MC - LV Diffusion - Single Coupon Au-
toCall

6 Code on Github Repository

The code used to generate the above graphs is available on the github repository [10]. The code runs with
Python 3.6.5, matplotlib 3.1.1, pandas 0.25.2, scikit-learn 0.21.3, numpy 1.16.4 and tensorflow 1.13.1.

7 Conclusion

We have presented here a generic algorithm that finds the path-dependent change of measure one needs
to apply to any particular payoff to reduce the variance of the corresponding Monte Carlo estimator. We
have shown in our numerical results of section 4 that this enables for a wide range of payoffs a reduction
of variance of a factor between 2 and 9. In section 5, we show that even if one uses the Deep Importance
Sampling algorithm with parameters with different values than those used during the training, these
values can vary by large amounts (10% for the spot price, 40% for the volatility parameters) and the
algorithm still performs better than a plain Monte Carlo.

However, if one were to implement this algorithm, one could still improve it in multiple ways. For an
on-the-fly version of the Deep Importance Sampling algorithm, contrary to what we did in the paper, one
might want to keep the values obtained during the training, so as to use them in the final Monte Carlo
estimator, and thus not throw them away. Furthermore, if one is worried about the Deep Importance
Sampling algorithm performing less well than a plain Monte Carlo, one can estimate on the fly the
standard deviations obtained both via the Deep Importance Sampling algorithm and a plain Monte
Carlo, and automatically switch back to the plain Monte Carlo if results are unsatisfactory. For a user
wishing to only train the neural networks on a regular basis (such as once per week), training the neural
networks on multiple initial spot prices x0 should make the Deep Importance Sampling algorithm more
robust to changes in the spot price.

Although we have not explored these applications, this method can also naturally be extended
to payoffs with multiple underlyings as well as diffusion models with more than one driving brownian
motion. One might then want to add all relevant factors in the input of aθ. The Deep Importance
Sampling algorithm should also be useful for rare event simulation, where one might expect even larger
gains in variance reduction than in the examples presented in this paper.

39

References

[1] Jun S Liu. Monte Carlo strategies in scientific computing. Springer Science & Business Media, 2008.

[2] Phelim Boyle, Mark Broadie, and Paul Glasserman. Monte carlo methods for security pricing.
Journal of economic dynamics and control, 21(8-9):1267–1321, 1997.

[3] Paul Glasserman. Monte Carlo methods in financial engineering, volume 53. Springer Science &
Business Media, 2013.

[4] Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák. Neural im-
portance sampling. arXiv preprint arXiv:1808.03856, 2018.

[5] Shixiang Shane Gu, Zoubin Ghahramani, and Richard E Turner. Neural adaptive sequential monte
carlo. In Advances in neural information processing systems, pages 2629–2637, 2015.

[6] Bouhari AROUNA. Variance reduction and robbins-monro algorithms. Technical report, Technical
report, Cermics, 2002.

[7] Vincent Lemaire, Gilles Pagès, et al. Unconstrained recursive importance sampling. The Annals of
Applied Probability, 20(3):1029–1067, 2010.

[8] Jim Gatheral and Antoine Jacquier. Arbitrage-free svi volatility surfaces. Quantitative Finance,
14(1):59–71, 2014.

[9] Rafael Balestro Dias da Silva. Backtesting svi parameterization of implied volatilities. Master’s
thesis, Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, 2016.

[10] Benjamin Virrion. Deep importance sampling code repository. https://github.com/bvirrion/

deep-importance-sampling, 2020.

40

A Parameter Tables

Parameter Value

x0 1.0

σ 0.2

T 1.

NT 6

Table 1: Bachelier Diffusion

Parameter Value

x0 1.0

T 1.0

NT 6

a 0.05

b 0.15

ρ 0.40

m 0.30

σ 0.45

Table 2: Local Volatility Diffusion

Parameter Value

K 1.4

Table 3: Call Option

Parameter Value

N1 1

K1 1.2

N2 10

K2 0.6

Table 4: Asymmetric Call &
Put Options

Parameter Value

N1 10

K1 1.4

N2 10

K2 0.6

Table 5: Symmetric Call & Put
Options

i = 1 i = 2 i = 3 i = 4 i = 5

TAi 0.2 0.4 0.6 0.8 1.0

BAi 1.5 1.5 1.5 1.5 1.5

SAi 0.1 0.1 0.1 0.1 0.1

CPi 1.8 1.8 1.8 1.8 1.8

NP 5

KPDI 0.5

SPDI 0.1

Table 6: Multi Coupons AutoCall

i = 1 i = 2 i = 3 i = 4 i = 5

TAi 0.2 0.4 0.6 0.8 1.0

BAi 1.5 1.5 1.5 1.5 1.5

SAi 0.1 0.1 0.1 0.1 0.1

CPi 0.0 0.0 12.5 0.0 0.0

NP 5

KPDI 0.5

SPDI 0.1

Table 7: Single Coupon AutoCall

41

Parameter Value

NumberOfBatchesForTraining 100

NBatchChangeProportion 100

NumberOfBatchesForEval 10000

NBatchSize 1000

LambdaConstrant 0.001

Contraint 10.0

LearningRate 10.0

Table 8: Bachelier Call Option Run Parameters

Parameter Value

NumberOfBatchesForTraining 100

NBatchChangeProportion 100

NumberOfBatchesForEval 10000

NBatchSize 1000

LambdaConstrant 0.01

Contraint 10.0

LearningRate 0.1

Table 9: Bachelier Asymmetric Call & Put Op-
tions Run Parameters

Parameter Value

NumberOfBatchesForTraining 100

NBatchChangeProportion 100

NumberOfBatchesForEval 10000

NBatchSize 1000

LambdaConstrant 0.1

Contraint 10.0

LearningRate 0.03

Table 10: Bachelier Symmetric Call & Put Op-
tions Run Parameters

Parameter Value

NumberOfBatchesForTraining 100

NBatchChangeProportion 100

NumberOfBatchesForEval 10000

NBatchSize 1000

LambdaConstrant 0.01

Contraint 10.0

LearningRate 0.3

Table 11: Bachelier Multi Coupons AutoCall
Run Parameters

Parameter Value

NumberOfBatchesForTraining 100

NBatchChangeProportion 100

NumberOfBatchesForEval 10000

NBatchSize 1000

LambdaConstrant 0.01

Contraint 10.0

LearningRate 0.03

Table 12: Bachelier Single Coupon AutoCall
Run Parameters

42

Parameter Value

NumberOfBatchesForTraining 100

NBatchChangeProportion 100

NumberOfBatchesForEval 10000

NBatchSize 1000

LambdaConstrant 0.001

Contraint 10.0

LearningRate 0.3

Table 13: LV Call Option Run Parameters

Parameter Value

NumberOfBatchesForTraining 100

NBatchChangeProportion 100

NumberOfBatchesForEval 10000

NBatchSize 1000

LambdaConstrant 0.01

Contraint 10.0

LearningRate 0.01

Table 14: LV Asymmetric Call & Put Options
Run Parameters

Parameter Value

NumberOfBatchesForTraining 100

NBatchChangeProportion 100

NumberOfBatchesForEval 10000

NBatchSize 1000

LambdaConstrant 0.1

Contraint 10.0

LearningRate 0.001

Table 15: LV Symmetric Call & Put Options
Run Parameters

Parameter Value

NumberOfBatchesForTraining 100

NBatchChangeProportion 100

NumberOfBatchesForEval 10000

NBatchSize 1000

LambdaConstrant 0.01

Contraint 10.0

LearningRate 0.1

Table 16: LV Multi Coupons AutoCall Run Pa-
rameters

Parameter Value

NumberOfBatchesForTraining 100

NBatchChangeProportion 100

NumberOfBatchesForEval 10000

NBatchSize 1000

LambdaConstrant 0.01

Contraint 10.0

LearningRate 0.03

Table 17: LV Single Coupon AutoCall Run Pa-
rameters

43

x0 1 1.025 1.05 1.075 1.1 1.125 1.15 1.175 1.2 1.225

LearningRate 10 10 10 10 10 3 3 3 3 3

x0 1.25 1.275 1.3 1.325 1.35 1.375 1.4 1.425 1.45 1.475

LearningRate 1 1 1 1 1 1 1 1 1 1

x0 1.5

LearningRate 1

Table 18: Bachelier Call Learning Rates for Graph

x0 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

LearningRate 0.003 0.001 0.001 0.001 0.003 0.003 0.003 0.003 0.003 0.01

x0 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35

LearningRate 0.01 0.03 0.1 0.1 0.1 0.1 0.03 0.03 0.03 0.03

x0 1.4

LearningRate 0.03

Table 19: Bachelier Asymmetric Calls and Puts Learning Rates for Graph

x0 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

LearningRate 0.003 0.003 0.003 0.01 0.01 0.01 0.01 0.01 0.03 0.03

x0 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45

LearningRate 0.03 0.03 0.03 0.01 0.01 0.01 0.003 0.003 0.003 0.003

x0 1.5

LearningRate 0.003

Table 20: Bachelier Symmetric Calls and Puts Learning Rates for Graph

x0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

LearningRate 0.3 0.3 0.3 0.3 0.3 0.1 0.1 0.03 0.03 0.03

x0 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

LearningRate 0.03 0.01 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

x0 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55

LearningRate 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

x0 1.6

LearningRate 0.03

Table 21: Bachelier Multi Coupons AutoCall Learning Rates for Graph

44

x0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

LearningRate 1 1 0.3 0.3 0.3 0.1 0.1 0.1 0.1 0.1

x0 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

LearningRate 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

x0 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55

LearningRate 0.03 0.01 0.003 0.003 0.003 0.01 0.01 0.01 0.01 0.01

x0 1.6

LearningRate 0.01

Table 22: Bachelier Single Coupon AutoCall Learning Rates for Graph

x0 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

LearningRate 10 10 10 10 10 3 3 3 3 3

x0 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45

LearningRate 1 1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

x0 1.5

LearningRate 0.3

Table 23: LV Call Learning Rates for Graph

x0 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85

LearningRate 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

x0 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35

LearningRate 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

x0 1.4

LearningRate 0.001

Table 24: LV Asymmetric Calls and Puts Learning Rates for Graph

x0 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

LearningRate 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003

x0 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45

LearningRate 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003

x0 1.5

LearningRate 0.0003

Table 25: LV Symmetric Calls and Puts Learning Rates for Graph

45

x0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

LearningRate 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.01 0.01

x0 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

LearningRate 0.01 0.01 0.003 0.003 0.003 0.01 0.03 0.03 0.03 0.03

x0 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55

LearningRate 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

x0 1.6

LearningRate 0.01

Table 26: LV Multi Coupons AutoCall Learning Rates for Graph

x0 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

LearningRate 0.1 0.1 0.03 0.03 0.03 0.01 0.01 0.01 0.01 0.01

x0 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

LearningRate 0.01 0.01 0.01 0.003 0.003 0.003 0.01 0.01 0.01 0.01

x0 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55

LearningRate 0.01 0.003 0.003 0.003 0.003 0.01 0.01 0.01 0.01 0.003

x0 1.6

LearningRate 0.003

Table 27: LV Single Coupon AutoCall Learning Rates for Graph

Diffusion and Payoff BaseForAutomaticLambdaConstraint

Bachelier Call 1

Bachelier Asymmetric Calls and Puts 0.3

Bachelier Symmetric Calls and Puts 0.3

Bachelier Multi Coupons AutoCall 0.3

Bachelier Single Coupon Autocall 0.3

LV Call 1

LV Asymmetric Calls and Puts 0.3

LV Symmetric Calls and Puts 0.3

LV Multi Coupons Autocall 0.3

LV Single Coupon Autocall 0.3

Table 28: Values of BaseForAutomaticLambdaConstraint

46

B Volatility Surfaces

Figure 108: Implied Volatility Surface for Local
Volatility Diffusion

Figure 109: Local Volatility Surface for Local
Volatility Diffusion

47

