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Transient sliding of thin hydrogel films: the role of poroelasticity
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ESPCI Paris, PSL University, Sorbonne Université, F-75005 Paris, France.
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We report on the transient frictional response of contacts between a rigid spherical glass probe
and a micrometer-thick poly(dimethylacrylamide) hydrogel film grafted onto a glass substrate when
a lateral relative motion is applied to the contact initially at rest. From dedicated experiments
with in situ contact visualization, both the friction force and the contact size are observed to vary
well beyond the occurrence of a full sliding condition at the contact interface. Depending on the
imposed velocity and on the static contact time before the motion is initiated, either an overshoot or
an undershoot in the friction force is observed. These observations are rationalized by considering
that the transient is predominantly driven by the flow of water within the stressed hydrogel networks.
From the development of a poroelastic contact model using a thin film approximation, we provide a
theoretical description of the main features of the transient. We especially justify the experimental
observation that the relaxation of friction force Ft(t) toward steady state is uniquely dictated by
the time-dependence of the contact radius a(t), independently on the sliding velocity and on the
applied normal load.

PACS numbers: 46.50+d Tribology and Mechanical contacts; 62.20 Qp Friction, Tribology and Hardness
Keywords: Friction, gel, poroelasticity, thin films

Introduction

The lubricating properties of polymer hydrogels in
aqueous environments are of paramount importance
in many biological systems (articular cartilages, mucin
layers on the surface of cornea,...) and in biomedical
engineering (contact lenses,...) where they can provide
very low friction. One emerging issue is the ability of
such systems to maintain low friction when sliding is
initiated after prolonged static (non sliding) periods.
Indeed, some studies dealing with cartilages [1–4] or
synthetic hydrogels [5–9] showed that increasing contact
times can result in a significant increase in the static
coefficient of friction characterizing the transition from
rest to steady-state sliding with potential detrimental
effects on the wear resistance. For hydrogels, these
so-called stiction phenomena have been recognized to
involve complex interplay between physicochemical
interactions across the contact interface and fluid
transport within the stressed hydrogel network. The
latter are commonly called poroelastic flows: they result
from the balance between elastic deformation of the
polymer network and solvent flows in the permeable
structure of the network in response to a load [11, 12].
In experimental conditions where poroelastic transport
during sliding was avoided, a peak in the friction force
at onset of sliding was measured in various hydrogel
systems: polyelectrolyte hydrogels [5] or cellulose-based
hydrogels [6]. Its amplitude was found independent on
sliding velocity and related to molecular interactions
across the interface.

∗antoine.chateauminois@espci.fr

In more complex experimental situations where spherical
probes slide against various hydrogel substrates [7–9],
both interfacial effects and fluid transport are at stake
a priori. These studies evidence the development of
sharp static friction peaks whose magnitude increases
with the static contact time preceding the onset of
lateral motion. The interpretation is that poroelastic
flow during static time induces an increase in both
the contact size and in the adhesion of the gel. The
latter is not measured directly and instead, is inferred
by the authors from measurements of a pull-off force,
and attributed to the increase in polymer concentration
within the loaded region as a result of the squeeze-out
of water. Assumption is made implicitly by the authors
that friction results from pinning/depinning mechanisms
between polymer chains and the probe, an hypothesis
which forms the basis of the classical Schallamach
model [10] for rubber friction. Accordingly, the density
of pinning sites, i.e. the friction force, should increase
with polymer concentration. In these descriptions,
stiction remains therefore considered essentially as an
interfacial phenomenon where the static friction force
at the onset of slippage is defined as the product of
a time-dependent contact area by a time-dependent
adhesion term.
Along the same lines, the progressive relaxation of the
friction force after the stiction peaks [9] was analyzed
according to previously developed fracture mechanics
descriptions of the stiction of adhesive contacts with
rubbers [13–15]. Assumption is made that, upon appli-
cation of lateral motion, slip is progressively invading
the contact from its periphery according to a mechanism
which is reminiscent of the propagation of an interface
crack. In this model, the occurrence of a stiction
peak is interpreted as the consequence of a transition
from stable to unstable slip propagation. However, no
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evidence of heterogeneous slip exists due to the lack of
contact images.

In this study, we tackle the stiction problem from
a different perspective where we consider the viscous
dissipation induced by the poroelastic flows within
the bulk polymer network instead of adhesive failure
at the interface. Recent numerical simulations have
indeed demonstrated that the relaxation dynamics of the
friction force on porous hydrogel can be accounted for
by poroelastic dissipation when the interface is set to be
frictionless. [16] Here, conditions where fluid transport
effects dominate over interfacial contributions to the
friction were met experimentally by using thin hydrogel
layers and rigid substrates. As a result of contact
mechanical confinement, we have previously shown that
steady-state friction onto thin poly(dimethylacrylamide)
(PDMA) gel layers is predominantly driven by poroe-
lastic dissipation [1] with negligible contributions of
interfacial interactions.
Here, we offer to describe the contribution of poroelastic
flows to the kinetics of transient friction when rigid
spheres slide against thin hydrogel films. We show that
the transients extend well beyond the occurrence of
full sliding at the contact interface, and that it can be
accounted for by poroelastic flow in the contact zone.
In a first part, we investigate how the static contact
time affects the time-dependent friction force and
contact size during transient sliding for various values
of the Péclet number defined as the ratio of advective
to diffusive contribution to the fluid transport rate.
We define the conditions where a stiction peak exists
in terms of static contact time values and Péclet
number. We further show the existence of a unique,
power law, relationship between the friction force
and the contact radius whatever the applied contact
load and sliding velocity. These results are discussed
within the framework of a poroelastic contact model
developed in a thin film approximation, where we con-
sider that the friction force arises from dissipation due
to the advective component of pore pressure distribution.

Experimental section

All the experiments to be reported were carried out
using poly(dimethylacrylamide) (PDMA) hydrogel films
covalently grafted onto glass substrates. These films were
synthesized by simultaneously crosslinking and grafting
preformed ene-functionalized polymer chains onto glass
substrates using a thiol-ene click reaction which is fully
described elsewhere [18–20]. This procedure ensured that
the films are homogeneously crosslinked through their
thickness. In order to achieve good adhesion between
the hydrogel film and the glass substrate, we carried
out thiol-modification of the borosilicate glass surfaces.
The resulting covalent bonding between the film and the
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FIG. 1: (a) Schematics of a glass sphere (radius R) sliding
under an imposed load F on an hydrogel layer (thickness e0)
immersed in water and grafted to to a glass substrate. A lat-
eral displacement with velocity v is imposed to the substrate
after a static contact time tsta as indicated by the arrows.
The gel thickness in the contact is e(x). The contact radius
measured along the x-axis is denoted a. (b) Bottom view of
the contact. (c) Contact images under sliding (F = 200 mN)
for Pe = 1 and Pe = 6, when sliding is initiated (left) and in
steady state (right) . Sliding motion is initiated after static
contact times tsta = 1 s or tsta = 40 s. The hydrogel/glass
sphere interface appears as a black zone while rings are inter-
ference fringes of equal thickness in white light.

glass substrate (through thiol-ene reaction) prevented
any interface debonding during swelling and friction. The
thickness of the PDMA films was 800± 20 nm in the dry
state, as measured by ellipsometry. Ellipsometry mea-
surements in water provided a swelling ratio of 1.9± 0.1
for the fully hydrated films, i.e. a thickness e0 of about
1.5 µm in the fully swollen state.
Friction experiments were carried out using a spheri-
cal borosilicate glass probe (radius of curvature R =
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25.9 mm) under imposed normal load F (from 40 mN
to 600 mN) and driving velocity v (from 1 µm s−1

to 45 µm s−1) with the contact fully immersed within
deionized water (see Fig. 1a). In addition to lateral
force measurements with mN accuracy, Reflection Inter-
ference Contrast Microscopy (RICM) [21] images of the
immersed contact were continuously recorded through
the glass substrate using a CMOS camera (600x600 pix-
els with 12 bits resolution), a combination of crossed-
polarizers and quarter-wave plates, and white light il-
lumination. For a detailed description of the used
custom-built device, the reader may refer to our previous
work. [1] From the contact images, the contact shape was
measured over time. The contact was found to be circu-
lar with a radius a as shown in Fig. 1. From the RICM
images, the optical contrast measured at the gel/probe
interface showed that no lubrication water film is trapped
at this interface. This observation is further supported by
theoretical considerations on elastohydrodynamic lubri-
cation detailed elsewhere [1]. No damage to the films was
evidenced from in situ contact visualization. In addition,
the contact conditions ensured that the water content φ
of the gel network during sliding was always above the
threshold corresponding to the glass transition of PDMA
(i.e. φ ≈ 0.2 as detailed in Delavoipière et al [11]).
In a previous investigation, we have shown from rheol-
ogy measurements on swollen PDMA films that they are
of very low viscoelasticity (tan δ < 0.05 at 1 Hz). More-
over, the characteristic frequency v/a involved in our fric-
tion experiments is less than 10 Hz, which is more than
5 orders of magnitude lower than the estimated glass-
transition frequency of the hydrated PDMA network at
room temperature. As a consequence, any contribution
of viscoelasticity to friction can be neglected.

Experimental results

As mentioned above, the objective is to investigate the
contribution of poroelastic flow to friction force and con-
tact shape during transient sliding. For that purpose,
the Péclet number Pe is defined as the ratio of advec-
tive to diffusive contributions to the fluid transport rate.
Here, advection arises from the sliding motion at velocity
v of the contact of radius a. The diffusive mechanism is
the fluid flow in the hydrogel arising from pore pressure
gradients and characterized by the poroelastic time τ .
Accordingly, this Péclet number can be expressed as

Pe =
τv

a
(1)

As detailed elsewhere [11], the poroelastic time τ charac-
terizes the indentation kinetics of the sphere into the gel
film under static normal load. It involves the elastic and
permeation properties of the hydrogel film, its thickness
e0 together with the contact conditions (normal load F
and radius of curvature R of the spherical probe).

In what follows, we first focus on the time-dependence

of the friction force Ft in low Péclet regime, i.e. Pe . 1.
In order to vary the initial swelling state of the hydrogel,
we varied the static contact time tsta preceding the
onset of the imposed motion. Example images of the
contact are shown in Fig. 1c (top row) at the onset
of sliding (left) and in steady state (right). In Fig. 2,
we report data for F = 200 mN and a sliding velocity
v = 10 µm s−1 for a series of experiments with static
contact times tsta ranging from 2 to 60 s before the im-
posed lateral motion is initiated. As detailed below, the
characteristic poroelastic time for the considered normal
load F is τ = 19 s. The Péclet number is 1. After

increasing tsta

increasing tsta

FIG. 2: Contact radius a (a) and friction force Ft (b) as a
function of sliding time tsli during lateral motion at imposed
velocity v = 10µm s−1 and applied normal force F = 200 mN.
Sliding motion is initiated after various static contact time
tsta. From bottom to top: tsta = 1.4, 8.9, 19.1, 38.8 and
58.5 s. For the considered normal load, velocity and poroe-
lastic time (τ = 19 s), Pe = 1.

a sharp initial increase in lateral force from rest, both
Ft and a increase toward the same steady-state values
within a characteristic time of the order of a few tens of
seconds. Here, no peak in Ft is detected. As mentioned
in the introduction, classical description of incipient
sliding often consider the progressive development of in-
terface slip from the periphery of the contact [13, 15, 22]



4

FIG. 3: Same results as in Fig. 2 but as a function of the
total contact time ttot defined as the sum of the static contact
time tsta and the sliding time tsli. In (a), the open symbols
correspond to the measured time dependence of the contact
radius a under a static normal indentation load only.

until a full sliding condition is achieved at the contact
interface. Here, the occurrence of such a phenomenon
should be restricted to a relative lateral displacement
d of order e0, which corresponds to shear deformations
d/e0 of order 1 before full slip occurs at the interface. A
displacement of a few micrometers corresponding to a
fraction of a second for the velocity under consideration,
such a full slip condition is therefore achieved during
the initial sharp increase in Ft. In that respect, the
transient regime following the initial increase in Ft in
Fig. 2 does not pertain to the classical descriptions of
stiction. Instead, poroelastic flow within the gel layer
must be considered.
The relevance of such phenomena is evidenced from
a consideration of the frictional kinetics as a function
of the total contact time defined as the sum of the
static contact time and the sliding time. When Ft(t)
and a(t) data are reported as a function of this total
contact time (Fig. 3), master curves are obtained for all
the experiments carried out with varying static contact
times. Moreover, the master curve for the contact
radius matches the indentation curve a(t) measured in

static conditions, i.e. v = 0 (shown as open symbols in
Fig. 3a), while a fit (not shown) of these indentation data
to a poroelastic contact model developed elsewhere [11]
provides a poroelastic time τ = 19 s. This shows that,
in the low Pe regime, the transient increase in a(t) is
uniquely dictated by the normal loading, independently
of the imposed sliding. Hence, the contact relaxes to
its steady state value a0, which corresponds to the
equilibrium indentation at Pe = 0, with a kinetics
that is independent on both static contact time and
sliding velocity, or Péclet number as long as Pe ≤ 1.
These conclusions also apply to friction force relaxation
dynamics.

We now turn to transient sliding at Pe larger than
unity. Fig. 4 shows the time dependence of a and Ft for
F = 200 mN and a sliding velocity v = 45µm s−1 which,
considering the resulting contact sizes, corresponds to
a Pe of about 6. Here again, a varying static contact
time is imposed before lateral motion is initiated. As
shown in Fig. 4, Ft(t) and a(t) in this Péclet regime are
either increasing or decreasing functions towards the
steady-state value depending on whether initial contact
radius is smaller or greater than steady-state value as.
The two situations are illustrated in Fig. 1c (last two
rows) where images of the contact are shown. For tsta =
1 s, the initial contact is smaller than in steady state.
For tsta = 40 s, the opposite situation is observed. As
compared to situations with Pe . 1, the steady state
value of the contact radius as is decreased from 138 µm
to 128 µm. In this high Pe regime, we have previously
shown [1] that the poroelastic flow in the gel across the
typical length a0 is slow compared to the sliding motion,
which results in a pore pressure imbalance between the
leading and trailing edges of the contact. This pressure
imbalance due to advection generates a net lift force on
the sphere. As a consequence, the contact size as in
steady state is smaller than the equilibrium contact size
a0 as shown in Fig. 1c (second column). In addition,
the contact is no longer symmetric: whereas the leading
edge remains circular with contact radius denoted a
smaller than a0, the trailing edge recedes inward. Such
a contact asymmetry was effectively observed [1] during
steady state at Pe > 10. Here, it was not clearly evi-
denced within the experimental resolution of the optical
observations for the considered Pe range (experiments
at Pe greater than about 10 systematically resulted in
cavitation processes which fall out of the scope of the
present study). Altogether, at Péclet number larger
than unity, the transient relaxation of both a and Ft
may result in either an undershoot, or an overshoot,
that is, a friction peak.

We now examine the relationship between friction
force and contact area. In Fig. 5, the friction force
Ft has been normalized by its steady-state value Fs
and is reported as a function of the normalized contact
radius a/as, where as is the steady state value of the
contact radius. The normalization by Fs is chosen to
disregard the dispersion of friction force measurements.
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FIG. 4: Contact radius a normalized by steaty-state con-
tact radius as (a) and friction force Ft (b) as a function of
sliding time tsli during lateral motion at imposed velocity
v = 45µm s−1 and applied normal force F = 200 mN. Sliding
motion is initiated after various static contact time tsta. From
bottom to top: 0.8, 1.8, 3, 4, 4.7, 6.9, 12.1, 16.9, 29.9 and 51.9
s. Pe ≈ 6. Solid lines in (a) correspond to fits according to
Eqn (34) with a characteristic time τs = 7 s.

Experimental data correspond to normal forces ranging
from 100 to 500 mN, sliding velocities ranging from 1
to 45 µm s−1 and static contact times ranging from 2
to 60 s. In Fig. 5, the regime Pe < 1 corresponds to
a/as < 1, in that case as ≡ a0, while for Pe > 1 a/as
can be larger than unity. Although the experimentally
achievable dynamics in Ft/Fs and a/as is restricted, the
log-log plots in Fig. 5 tend to indicate that Ft(a/as) fol-
lows a power law with a velocity- and load-independent
exponent close to 9/2.

In both the high and low Péclet regimes, a striking
feature of the transient friction is therefore that the
time-dependence of the friction force Ft is entirely
dictated by the time-dependence of the contact radius
a, independently on the value of the normal force and of
the sliding velocity. Moreover, when Pe < 1, the kinetics
of a(t) is unaffected by the lateral displacement, thus
suggesting that poroelastic flows induced by the normal
loading and lateral displacement are fully decoupled. In
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FIG. 5: Normalized friction force Ft/Fs versus normalized
contact radius a/as, where Fs and as are the steady-state
friction force and contact radius, respectively. Blue: v =
45 µm s−1; purple: v = 10 µm s−1; black: v = 5 µm s−1 ;
red: v = 3 µm s−1; green: v = 1 µm s−1. �: F = 500 mN, �:
F = 300 mN, ◦: F = 200 mN, 4: F = 100 mN. Associated
Pe numbers range from 0.15 to 6. Data correspond to static
contact times ranging from 1 s to 60 s.

what follows, we rationalize these observations from the
extension of a previously developed poroelastic contact
model [1] to transient sliding situations. Within the
limits of a thin film approximation, we first derive the
expression of the pore pressure distribution during tran-
sient sliding. From this equation, the time-dependence
of the contact radius can be accounted for. Under
the assumption that frictional force arises solely from
viscous dissipation within the pore network, an estimate
of Ft is also provided.

Contact model

We consider a rigid sphere with radius R indenting a
thin layer of hydrogel with initial thickness e0 resting on
a substrate as depicted in Fig. 1a. Both the sphere and
the substrate are considered as rigid bodies. A normal
force F is imposed to the sphere, as well as a steady
velocity v in the direction x parallel to the hydrogel layer.
The moving coordinate system attached to the center of
the contact is denoted (x, y, z) (x = 0 at the apex of the
sphere) andX is the position of a material point in the gel
with respect to a fixed coordinate system. Along the lines
of its steady-state formulation [1], our poroelastic model
can account for the development of non circular contact
shapes at high Pe. Accordingly, the contact between the
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sphere and the gel layer is described by a contact line
defined by:

r = ρ(θ),with ρ(θ) = ρ(−θ) (2)

in cylindrical coordinates (r, θ, z) attached to the sphere,
corresponding to the (x, y, z) coordinate system. We will
next determine the stress field and the friction force in the
transient regime where the sphere simultaneously indents
the gel layer and slides past it.
The film thickness being much smaller than the contact
size, we neglect the shear deformation within the layer,
and the normal strain ε = (e0− e)/e0 in the film reduces
to:

ε(r, t) =

{(
a2 − r2

)
/(2Re0) |r| < ρ

0 |r| > ρ
(3)

where a is the contact radius at the intercept with the
x-axis as shown in Fig.1b. In the frame of the gel with
coordinate (X,Y ), the water flux J within the hydrogel
layer obeys the volume conservation equation: div J −
∂ε
∂t

∣∣
X,Y

= 0. The second term also writes ∂ε
∂t

∣∣
X,Y

=
∂ε
∂t

∣∣
x,y
− v ∂ε∂x so that, in the frame of the sphere, the

conservation equation writes:

div J =
∂ε

∂t

∣∣∣∣
x,y

− v ∂ε
∂x

(4)

=
∂ε

∂t

∣∣∣∣
r,θ

− v cos θ
∂ε

∂r
(5)

the strain ε within the contact being independent of θ.
The first term on the right hand side describes the in-
dentation of the sphere in the gel, and the second term
is the advective term. Following the poroelastic theory
by Biot [12, 23], the normal stress σ is assumed to be
the sum of two terms: the elastic stress in the polymer
network and the pressure p of water in the pores:

σ(r, θ, t) = Ẽε(r, θ, t) + p(r, θ, t) (6)

where Ẽ is the uniaxial compression modulus of the
drained polymer network

Ẽ =
2G (1− ν)

1− 2ν
(7)

where G is the shear modulus and ν is the Poisson’s ra-
tio of the drained network. The pore pressure field is
governed by Darcy’s law:

−→
J = −κ

−→
∇p (8)

where κ = Dp/η with Dp the permeability of the gel
network and η the viscosity of the solvent. Combining
eqns (3), (5), and (8), the equation ruling the pore pres-
sure field in transient regime writes:

∆p = − ȧa

e0Rκ
− vr cos θ

e0Rκ
(9)

with ȧ the time derivative of the contact size. With no
advection, namely v = 0, we recently showed [1] that the
contact radius a0 at equilibrium (ȧ = 0) is determined

by the normal force F , the hydrogel drained modulus Ẽ
and the geometrical parameters e0 and R:

a0 =

(
4Re0F

πẼ

)1/4

(10)

In addition, starting from an out of equilibrium contact
size a 6= a0, the contact relaxes to indentation equilib-
rium within the poroelastic time τ given by:

τ =
a20

4κẼ
(11)

From this, all variables can be recast in non dimensional
form:

r ≡ r

a
(12)

a ≡ a

a0
(13)

ȧ ≡ ȧ

a0
τ (14)

p ≡ p

2F/πa20
(15)

σ ≡ σ

2F/πa20
(16)

Pe0 =
τv

a0
(17)

so that the pore pressure eqn (9) and the contact stress
equation (6) become:

1

r

∂

∂r

(
r
∂p

∂r

)
+

1

r2
∂2p

∂θ2
+ 8a3Peor cos θ = −8ȧa3 (18)

σ = p+ (1− r2)a2 (19)

Eqn (18) is a second order differential equation in (r, θ)
with a time-dependent constant on the right hand side.
The problem is closed by two conditions : at the contact
line, the flux vanishes over a typical distance set by the
film thickness, which is small compared to the contact
radius. From this, the pore pressure is taken to be zero at
the contact edge. Second, the total normal force is equal
to the integral of the normal stress over the contact area:
F =

∫ ∫
σrdrdθ. These boundary conditions write:

p(r = ρ, t) = 0 (20)∫ ∫
A

σrdrdθ =
π

2a2
(21)

A solution of the homogeneous equation derived from
Eqn (18) verifying the first boundary condition writes:

po(r, θ, t) = a3Pe0

(
r cos θ(1− r2) +

∞∑
n=0

αnr
n cosnθ

)
(22)
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so that the general solution of the differential Eqn (18)
is:

p(r, θ, t) = a3
(
Pe0r cos θ + 2ȧ

)
(1− r2)

+a3Pe0
∞∑
n=0

αnr
ncosnθ

(23)

The pressure field is simply the superimposition of the
pore pressures due to (i) the flow advected by the sliding
of the gel with respect to the indenting sphere, and (ii)
the flow forced by the indentation of the sphere into the
gel layer (or its lifting out of it).

When v 6= 0 and ȧ = 0, eqn (23) reduces to the ex-
pression for pore pressure distribution under steady-state
sliding which was discussed in a previous publication [1].
When Pe < 1, we showed that advection is slow enough
so that the degree of indentation of the sphere into the
hydrogel film is not modified by advection. The steady-
state contact is circular, with a contact radius equal to
a0 and the sum term in eqn (23) vanishes. When Pe > 1,
the contact radius as in steady state is smaller than
the equilibrium contact radius a0 and the contact is no
longer symmetric as a result of the lift force generated
by the pressure imbalance across the contact. Note that,
as depicted in Fig. 1b, as is the contact radius along
the positive x-axis. In this regime, contact asymmetry
is accounted for by the non vanishing αn coefficients in
eqn (23).

In what follows, we derive the expression for the fric-
tion force under the assumption that frictional energy
dissipation arises solely from the viscous dissipation as-
sociated with the pressure-driven water flow within the
porous gel network. We thus neglect any dissipative
mechanisms at the glass/gel interface arising, as an exam-
ple, from adhesive forces. This assumption is supported
by the previous observation that poroelastic indentation
of the PDMA hydrogel film is perfectly described by our
poroelastic model with no need to incorporate adhesive
effects [11]. Moreover, we assume that during sliding,
energy is dissipated by the pore pressure term associ-
ated to advection, po (Eq. 22), while the pore pressure
term associated to indentation is balanced by the work
done by the normal force. As for steady state sliding,
the calculation is thus based on the determination of the
energy dissipated by the poroelastic flow forced by advec-
tion, denoted W , per unit advance ∆ of the sphere along
the sliding direction x. Dissipation arises from successive
squeezing and re-swelling of the gel network at the lead-
ing and trailing edges of the contact, respectively, so that
the absolute value of the product |po(x, y)x| is taken.

W

∆
=

1

R

∫ ∫
A

|po(x, y)x| dxdy (24)

Eqn (24) can be rewritten as

W

∆
= I

2Fa0
πR

Pe0a6 (25)

where

I =

∫ ∫
A

∣∣∣∣∣r2 cos θ
(
r cos θ(1− r2)

+

∞∑
n=0

αnr
n cosnθ

)∣∣∣∣∣drdθ
(26)

and A is the contact area normalized by A0 = πa20. The
prefactor I is a non dimensional factor that depends on
the exact shape of the contact but not on its size. For
circular contacts, all αn are zero, r varies between 0 and
1, and the prefactor I reduces to I = π/12.
Following a fracture mechanics argument,[1] we assume
that most of the poroelastic dissipation occurs close to
the trailing and leading edges of the contact which can
be viewed as advancing and receding cracks, respectively.
The energy Gporo needed to drive these cracks is supposed
to arise solely from poroelastic dissipation over the crack
length

Gporo ≡
1

πa

W

∆
(27)

Using a scaling argument, the frictional stress σf is re-
lated to Gporo by

σf ≈
√
E∗
e0
Gporo (28)

Taking E∗ ≈ Ẽ/3 and recalling that F = πẼa40/4Re0,
we compute the friction force as Ft = Aσf where A is
the area of the possibly non circular contact.

Ft
F
≈ 4√

6π

A

A0
a2
√
I
√
Pe0
√
a (29)

where A0 = πa20 is the area of the circular contact area
corresponding to Pe < 1 or indentation equilibrium
with no sliding. Both A and I can be calculated from a
knowledge of the actual contact shape.

Discussion

We now discuss the time changes in contact shape in
the transient regime for Pe < 1 and Pe > 1. Then, we
describe how the friction force during transient sliding is
dictated by the contact size for both Péclet regimes.

Time evolution of contact radius

For Pe < 1, contacts remain circular both in the tran-
sient regime when the sphere indents the gel layer and in
steady state. For circular contacts, the boundary con-
dition Eq. 20 and Eq. 23 imply that αn = 0 for all n
values. Also, the condition on the total normal contact
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stress (eqn (21)) gives the time-dependence of the con-
tact radius in the transient regime when the sliding starts
before indentation has come to a halt. The latter writes:

a4
(
1 + 2ȧa

)
= 1 (30)

Solving the differential equation for a yields, with initial
condition a(t = 0) = 0:

t = −a2 +Argth
(
a2
)

(31)

where t = t/τ and Argth(x) = 1/2 ln((x + 1)/(x − 1)).
This expression corresponds to the indentation equation
that was used to fit the experimental data with a zero
velocity v in Fig. 3a, in order to compute the poroe-
lastic time τ . The sliding movement at velocity v does
not influence the indentation dynamics in the low Péclet
regime. In Fig. 3a, contact radius data with different
static contact time collapsed on a single master curve
corresponding to the indentation curve a(t) measured in
static conditions. This observation justifies the expres-
sion of the pressure field as the superimposition of the
pore pressures respectively due to advection and to in-
dentation of the sphere into the gel. Both theory and
experiments thus suggest that the time-dependence of
the contact radius in low Péclet regime is only controlled
by the normal loading regardless of the imposed lateral
displacement.
For Pe > 1, the sum term in the expression of pore
pressure (eqn (23)) is no longer vanishing as the con-
tact shape is predicted to be non circular. As detailed
in Supporting Information (SI), eqns (19,23) still can be
solved numerically with the appropriate boundary condi-
tions (Eqns. (20-21) in order to determine the unknown
αn coefficients and the associated contact shape during
the transient regime. Consistently with the experimental
observations, these numerical simulations indicate that
contact asymmetry remains very limited for the Pe range
under consideration.
We can take therefore advantage of the observation that,
within the investigated Pe range, the contact shape is
evolving with very limited asymmetry to derive an ap-
proximate solution for a(t) and F (t). For Pe > 1, the
steady state contact size as is smaller than the static size
a0 so that, as a starting point, we consider that an ef-
fective load Feq smaller than the imposed normal load F
is applied to the contact as a result of the lift force Flift
generated by the pore pressure imbalance. In this frame-
work, the effect of the advected flow at velocity v reduces
to the lift force and is accounted for in the equivalent nor-
mal load. Here Feq will be assumed to be constant over
time and immediately reached as soon as sliding starts.

Feq = F − Flift (32)

Under the assumption that the contact remains nearly
circular, Feq can be estimated from the steady state con-
tact radius as using eqn (10) as

Feq ≈
πẼ

4Re0
a4s (33)

Further calculations detailed in the appendix show that
when normalized by its steady-state value, the contact
radius ã = a/as follows a differential equation similar to
the indentation equation eqn (30) provided that the times
are normalized by τ(as) = τa2s/a

2
0, yielding t̃ = t/τ(as).

In the transient regimes, the sphere may either further
indent the gel film, or be lifted out of it depending on
the relative values of the contact radius at initial sliding
time (aini) and at steady state (as). The initial value
of the contact radius aini is either larger or smaller than
the steady state value as depending on the static contact
time.
The associated poroelastic time τ(as) = τa2s/a

2
0 charac-

terizes the poroelastic drainage towards the new equilib-
rium contact size as. Consistently with the numerical
simulations by Qi et al [16], this characteristic time as-
sociated to the transient regime is thus shorter than that
of normal indentation when Pe > 1, as as < a0. The
equation describing the time-dependence of the contact
radius is:

t̃− t̃sta = ã2ini − ã2 +
1

2
ln

(
ã2 + 1

ã2ini + 1

ã2ini − 1

ã2 − 1

)
(34)

Eqn (34) was used to fit the experimental data of
contact radius presented in Fig. 4 with τ(as) as fitting
parameter. Remarkably, a single value of characteristic
time τfit could be used to fit all the data to eqn (34)
whatever the initial value of contact radius (see Fig. 4a).
The associated characteristic time τfit = 7 s differs
from our prediction giving τ(as) = τa2s/a

2
0 = 17 s. This

discrepancy is attributed to the simplifying assumption
of constant Feq and circular contact of the model (see
SI). Nevertheless, our approximate model captures three
attributes of transient sliding at high Péclet numbers
in good agreement with experimental data. First,
relaxation towards a steady-state is faster than in the
low Péclet regime : τ(as) < τ . Then, two behaviors
of undershoot (aini < as) or overshoot (aini > as) are
predicted and a unique characteristic time describes
both regimes. In addition, except from the value of
τ(as), the time-dependence of the contact radius is
remarkably described by the model.

Friction force

Friction force was considered to result solely from vis-
cous dissipation within the porous network, neglecting
interfacial contributions. For Pe < 1, the transient con-
tact shape is circular at all times and the friction force
can be easily derived from eqn (29) where the term I
reduces to π/12:

Ft
F
≈
√

2

3

√
Pe0a9/2 (35)

This demonstrates that for circular contacts, the friction
force is entirely determined by the transient contact ra-
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dius a = aa0.
The scaling of the friction force with the contact radius
was tested for various Péclet values in Fig. 5 where the
friction force Ft is normalized by its steady state value
Fs and reported as a function of ã = a/as. In this frame-
work, dividing eqn (29) by its steady state expression
yields :

Ft
Fs
≈ A

As

a2

a2s

√
I√
Is

√
a

√
as

(36)

All the experimental data collapsed on a mastercurve
with a slope close to 9/2 for Péclet values below and
over 1. This observation was expected for Pe < 1 where
as = a0 and eqn (36) yields:

Ft
Fs
≈
(
a

as

)9/2

(37)

More surprisingly, the scaling of friction force in ã9/2

still holds when Pe > 1. The contact asymmetry at
large Péclet, represented by the terms I and A, appear
to have little influence on the friction force expression
as a function of the contact radius whereas the same
slight asymmetry of the contact had a strong impact on
the time-dependence of the contact radius. These exper-
imental observations along with theoretical predictions
highlight a very singular feature of the transient sliding
of a sphere on a hydrogel layer : in either a low or a large
Péclet regime, the evolution of the normalized friction
force Ft(t)/Fs with time is entirely set by the evolution
of the contact radius a(t)/as for a given sliding velocity.

Conclusion

Contact experiments on thin hydrogel films in water
evidenced the dominant contribution of poroelastic flow
to the transient frictional response involved in the onset
of sliding. Starting from the contact at rest, poroelastic
dissipation within the hydrogel network was observed to
result in a transient regime which extends well beyond
the achievement of a full sliding condition at the inter-
face. During this transient regime, the dynamics of the
frictional force is strongly correlated to the progressive
adjustment of the contact radius to its steady-state
value as a result of pressure-induced water flow within
the hydrogel pores with very limited contribution from
interface dissipation. Depending on the relative values of
the initial and steady-state contact sizes and thus on the
static contact time before sliding, the transient friction
force shows either undershoots or overshoots: the latter
case only occurs at Péclet numbers larger than 1, where
friction peaks can be observed as a result of poroelastic
flow.
The development of a poroelastic contact model using
a thin film approximation allowed to capture the main
features of the transient regime, especially the occur-
rence of the so-called static friction peaks. Furthermore,

we show that the ratio of the transient to steady state
friction force, Ft(t)/Fs, uniquely depends on the time-
dependence of the normalized contact radius a(t)/as,
through a power law with exponent 9/2, whatever the
applied normal force or imposed velocity. This is a very
unique and remarkably simple result. Although qualita-
tively similar transient regimes could be anticipated, as
an example, within lubricated contact with viscoelastic
substrates as a result of the time-dependent mechanical
properties, their description would probably be much
complicated by the wide distribution of the relaxation
times. Here, a single characteristic poroelastic time can
be ascribed to the transient.
Our poroelastic description of frictional transient regime
could be straightforwardly extended to many situations
relevant to practical applications where, as an example,
fluctuations in the sliding velocity or contact load are
involved. We also believe that our work sets the basis
for studies of transient friction of hydrogels with a
higher degree of complexity, where enhanced molecular
interactions at the gel/slider interface would result
in a coupling between poroelastic flow and interface
dissipation.
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APPENDIX

A. Derivation of the approximate a(t) relationship
for Pe > 1

Depending on the magnitude of the lift force, the pore
pressure field peq associated to Feq can be either a suction
term (negative pressure at the contact center) or an over-
pressure (positive pressure) associated with an decrease
or an in increase in contact radius, respectively. It writes

peq(r, θ, t) =
2aȧ

8e0Rκ
(a2(t)− r2) (A.1)

From eqn (3) and eqn (6), the total equivalent stress
writes:

σeq(r, t) = Ẽε(r, t) + peq(r, t) (A.2)

σeq(r, t) =

(
2aȧ

8e0Rκ
+

Ẽ

2Re0

)
(a2(t)− r2) (A.3)

σeq(r, t) =
Ẽ

2Re0

(
aȧ

2κẼ
+ 1

)
(a2(t)− r2) (A.4)
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The equivalent normal load writes:

Feq =

∫ ∫
σeqrdrdθ (A.5)

Feq =
Ẽ

2Re0
2π
a4

8

(
aȧ

κẼ
+ 1

)
(A.6)

Using eqn (33), we find that the contact radius should
satisfy the following relationship during transient:

1 =
a4

a4s

(
2
a

as

ȧ

as
τ(as) + 1

)
(A.7)

where the poroelastic time τ(as) =
a2s
4κẼ

characterizes

the poroelastic drainage towards the new equilibrium
contact size as.

This differential equation is supplemented with the fol-
lowing initial conditions:

a(t = tsta) = aini (A.8)

a(t→∞) = as (A.9)

The problem can be recast in non dimensional form using
the reduced contact size ã = a

as
and reduced time t̃ = t

τs
.

It is formally identical to the indentation case, except ini-
tial contact size may be larger than steady state contact
size.

ã4
(
2˜̇aã+ 1

)
= 1 (A.10)

ã(t = tsta) = ãini (A.11)

ã(t→∞) = 1 (A.12)

Solving the differential equation for ã yields:

t̃− t̃sta = ã2ini − ã2 +
1

2
ln

(
ã2 + 1

ã2ini + 1

ã2ini − 1

ã2 − 1

)
(A.13)
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NUMERICAL RESOLUTION OF THE
POROELASTIC CONTACT MODEL FOR Pe > 1.

We describe here the numerical resolution of Eqns (19,23)
and (35) for the contact pressure σ(r, θ), the pore pres-
sure field p(r, θ), and the friction force Ft, respectively,
when Pe > 1. In this Péclet regime, the contact is no
longer circular as a result of the pore pressure imbalance
generated by advection. An additional unknown of the
poroelastic contact problem is thus the contact shape.
Here, we make the assumption that the contact line has
the general form r = ρ(θ) where ρ = ρ/a is an even
function of θ. Consistently with the experimental obser-
vation reported in Delavoipière et al [1], the contour line
ρ is assumed to be described by an ellipse for |θ| ≥ π/2
while the leading edge of the contact remains circular
(|θ| ≤ π/2).

r = a |θ| ≤ π/2

r2 cos2 θ +
r2 sin2 θ

ζ2
=a2 |θ| ≥ π/2

(A.14)

which can be recast in a non dimensional form:

r = 1 |θ| ≤ π/2

r2 cos2 θ +
r2 sin2 θ

ζ2
=1 |θ| ≥ π/2

(A.15)

where 0 < ζ < 1 is a numerical parameter describing the
contact asymmetry.
For each Péclet number Pe0, the three unknowns a, ζ
and ȧ have to be determined as a function of the reduced
time t = t/τ . The solution of the contact problem
should comply to the following boundary conditions:

1. the pore pressure p(r, θ) is vanishing at the contact
edge ( cf eqn (20)),

2. the contact stress σ(r, θ) should fulfill eqn (21), i.e∫ ∫
A

σdA =
π

2a2
(A.16)

where A is the actual contact.

3. We also enforce the condition that the contact
stress σ cannot be negative at the edge of the con-
tact, otherwise it will open: indeed, adhesion is not
expected to be significant with the contact fully
immersed within water, and adhesive forces are
not accounted for in the model. However, nega-
tive (suction) contact stresses are allowed within
the contact area provided that σ remains positive
over a prescribed reduced length w = w/a0 at the
edge of the contact (see Fig. 6). Here, we enforce
the criterion w ≥ 0.01 which corresponds to the
thickness of the hydrogel layer used in the experi-
ments (i.e. w/e0 ≈ 1 ).

Steady-state sliding

For steady-state sliding, ȧ = 0 and the problem re-
duces to the determination of a and ζ. For each of the
considered Pe number, we start from the calculation of
the pore pressure and contact stress fields for various
combinations of a and ζ within the range 0.4 < a < 1
and 0.5 < ζ < 1. For each (a, ζ) doublet, we deter-
mine the set of αn parameters ensuring p = 0 on the
considered contact line defined by Eq.A.15. Once αn are
determined, p and σ can be calculated everywhere in the
contact area using eqns (19,23). Then, we search in the
discretized (a, ζ) space the solution which obeys the sec-
ond and third boundary conditions.
The calculated a(Pe0) and ζ(Pe0) solutions are shown
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FIG. 6: Profiles of the calculated pore pressure p (blue), con-
tact stress σ (red) and elastic stress σe = (1 − r)a2 (green)
along the sliding direction x (y = 0). Inset: details of the
profiles at the leading edge of the contact where w = 0.01 is
the normalized width over which the contact stress σ remains
positive from the edge of the contact.

in Fig. 7(a) together with some experimental data taken
from Delavoipière et al [1] and from the present study.
In Fig. 7(b), the calculated Ft/F curve has been shifted
vertically to fit the experimental data as the expression
of the friction force is derived from a scaling argument
(eqn (28)) with an unknown prefactor. The maximum
in friction force occurs for a Pe0 greater than unity
(Pe0 ≈ 8) as a result of two competing effects (i) the in-
crease in viscous dissipation per unit film volume within
the contact as Pe0 is increased, (ii) the decrease in the
size of the contact, i.e. in the film volume affected by
poroelastic flow.
For the highest Pe value achieved in the transient exper-
iments of this paper (i.e. Pe = 6), the calculated contact
asymmetry (ζ = 0.966) is very close to unity, in agree-
ment with the experimental observation that the contact
remains nearly circular within optical resolution.
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FIG. 7: Numerical (solid line) and experimental (open sym-
bols) (a) contact shape (a,ζ) and (b) reduced friction force
Ft/F as a function of Pe0. Open symbols corresponds to ex-
perimental data for PDMA films taken from the present study
and Delavoipière et al [1].

Transient sliding

For transient sliding, along the same lines we calculate
the contact stresses in a discretized (ȧ,ζ) space for the
considered Pe number and a discretized set of a values
ranging from the initial (ai) to the steady-state (as) con-
tact radii. For each value of a, and in the (ȧ,ζ) space,
we determine the solution which satisfies the three above
mentioned boundary conditions. The reduced time incre-
ment ∆τ separating to successive contact radius values
is determined as

∆τ =
an+1 − an
ȧn+1

(A.17)

An example of the calculated a(t) is shown in Fig. 8 for
Pe = 6 and two different initial contact radii, together
with the corresponding experimental data, and is found
to be in fair agreement.

Equivalent force Feq

In order to provide an approximate solution for the
transient at Pe > 1, we made the assumption that
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FIG. 8: Numerical (solid lines) and experimental (open sym-
bols) a(t) kinetics for Pe = 6 and two different values of the
initial contact area (a/as = 0.89,a/as = 1.05).

an effective load Feq = F − Flift smaller than the
imposed load F is applied to the contact as a result
of the lift force Flift generated by the pore pressure
imbalance. The effective load was approximated from
the steady-state contact radius as under the assumption
that the contact remains nearly circular (eqn (33)). It is
therefore taken as constant during the transient.

Here, the numerical simulation allows to calculate the
time-dependence of this effective load while taking into
account the actual non-circular shape of the contact.
Note that, consistently with the non-dimensional vari-
ables used in the paper, all forces are normalized by
2F/π. The lift force arises from the advective compo-
nent of pore pressure (eqn (22)). Hence, the normalized
expression of the applied load F , the lift force F lift, the

effective load F eq write:

F = π/2

F lift =

∫ ∫
A

a2pordrdθ

F eq =

∫ ∫
A

a2(σ − po)rdrdθ

(A.18)

Using eqn (23), F eq simply writes:

F eq = a4
∫ ∫

A

(
1− r2

)
rdrdθ (A.19)

In the numerical model, the contact line is assumed to
be circular at the leading edge and elliptic at the trailing
edge (Eq. A.15). Under this assumption, an analytical
expression of F eq can be derived as a function of a and
ζ:

F eq =
π

2
a4

1

2

(
1 +

ζ

2
(3− ζ2)

)
(A.20)

In the limit of small contact assymetry, ζ is close to
1 and the effective load in Eq.A.20 amounts to the
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approximation made in eqn (33): F eq ∼ πa4/2.

The equivalent force F eq has been calculated for var-
ious Pe numbers, either starting from the indentation
equilibrium i.e. a = a0 and a > 1 or starting from a value
smaller than the steady state contact radius i.e. a < 1.
In Fig. 9, the results were reported as a function of the
time-dependent normalized contact radius ã = a(t)/as
achieved at the various stages of the transient, where as
is the steady-state contact radius. It can be seen that,
starting from ai smaller or larger than as, F eq is respec-
tively slowly decreasing or increasing toward the limit
corresponding to F eq ∼ πa4s/2 (eqn (33)) as a reaches its
steady state value (ã→ 1) i.e. toward the frictional equi-
librium. The amplitude of this change is enhanced when
Pe is increased. However, the hypothesis of constant ef-
fective load during the transient is acceptable for Pe ≤ 6:
this supports the assumptions made in the derivation of
an approximate analytical solution for the time variations
of the contact radius a (eqn (34)).
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FIG. 9: Calculated normalized equivalent force F eq as a func-
tion of a/as for various values of the Péclet number. Blue:
Pe = 3; Purple: Pe = 6; Red: Pe = 10; Yellow Pe = 15.
Open and filled symbols correspond respectively to initial val-
ues of a/as smaller and larger than 1. The horizontal dotted
lines correspond to F eq = πa4s/2. The dash dotted line corre-
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