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 Analytical Modeling of an Axial Field Magnetic Coupler with 

Cylindrical Magnets 
 

L. Belguerras, S. Mezani, T. Lubin 
Université de Lorraine, GREEN, F-54000 Nancy, France 

 

 
A 2D analytical model is proposed to calculate the magnetic field distribution in axial magnetic coupler with disc magnets. The 2D 

simplification is possible by assuming an infinite radius of the ferromagnetic yokes. Then, an analytical solution is obtained for a single 

magnet. This solution allows the determination of the magnetic field due to all the magnets so the total magnetic field is obtained by 

superposition. To demonstrate the validity of the model, the analytical results are compared with those obtained from 3-D FE 

simulations and from experimental tests carried out on a magnetic coupler equipped with disc magnets and HTS pancake coils. 

 

Index Terms—Analytical model, Disc magnet, Finite Elements, HTS pancake coil, Magnetic coupler 

 

I. INTRODUCTION 

AGNETIC Couplings (or couplers) (MCs) are used to 

transmit a torque from a prime mover to its load without 

contact [1]. Compared to their mechanical counterparts, MCs 

have several advantages such as low mechanical vibrations, 

less wear, natural protection against overloads and permit 

misalignment. Furthermore, they are widely used in industrial 

applications which need a hermetic isolation between the drive 

and the load sides by means of a separation wall which can be 

air, vacuum, fluid or other media. They are used in magnetic 

drive pumps and magnetic mixers for seal-less applications 

(i.e. nuclear, chemical, pharmaceutical and food industries).  

Radial and axial field MCs topologies exist; they both 

consist of two rare earth PM rotors owing to their high torque 

transmission capabilities. The design of the axial field 

topology requires 3D computations.  

The finite-element (FE) method is accurate as it considers 

the nonlinearity of magnetic materials and the actual coupler 

geometry [2]. However, FE methods require long computation 

time which make them unsuitable for optimization purposes 

which require many repetitive computations.  

Reluctance network can also be used to compute magnetic 

couplings and present less computational effort compared to 

FE analyses [3]. 

Biot–Savart like formulas are used to determine the 

magnetic field distribution in ironless structures (magnets in 

free space). Combined to the method of images, iron walls can 

be accounted for although the cpu time increases [4]-[5]. 

Closed form solution of the magnetic field can be derived 

for sector PMs coupler. This requires a resolution in Cartesian 

coordinates so a linearized geometry is considered [6]. The 

magnetic field is then calculated in 3D by solving the PDE 

using separation of variables. A torque formula is also derived. 

This linearization is no more possible for disc PMs couplers so 

a 3D analytical solution cannot be obtained. We propose in 

this paper a 2D analytical model for the determination of the 

magnetic field distribution in disc magnets MCs.  

II. STUDIED MAGNETIC COUPLER 

The magnetic coupler considered in this study is an axial 

field one which consists of two cylindrical rotors facing each 

other and separated by an airgap, Fig. 1.  

The first rotor is composed of axially magnetized 

cylindrical PMs mounted on the surface of a ferromagnetic 

yoke. Each magnet has an opposite polarity compared to its 

neighbouring ones to create a spatially variable magnetic field 

in the airgap.  

The second rotor is composed of pancake coils mounted on 

a ferromagnetic yoke. These coils are made from High 

Temperature Superconducting (HTS) wires.  

The main parameters of the coupler [7] are given in Table I. 

The HTS coils can be supplied by dc current values up to 25 A 

which result in a high current density in excess of 30 A/mm² at 

a cooling temperature of 77 K (liquid nitrogen). This coupler 

has been constructed and successfully tested in [7]. Airgap 

magnetic fields and torque measurements will serve to 

validate the analytical model developed here for this coupler. 
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Fig. 1. Geometry of the studied axial field magnetic coupler (p = 2) 
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TABLE I 

MAIN PARAMETERS OF THE STUDIED HTS MAGNETIC COUPLER 

Symbol Description Value 

R PM radius 50 mm 

Z1 PM thickness  10 mm 

Rci HTS coil inner radius 25 mm 

Rco HTS coil outer radius 50 mm 

Zc HTS coil thickness 3.5 mm 

Ze Air-gap Variable (9-20 mm) 

Rm Coupler mean radius 85 mm 

p Number of pole pairs 2 

Brem PM remanence (NdFeB) 1.25 T 

N Number of turns/coil 63 

Icoil HTS coil current  Variable (0-25 A) 

III. METHOD OF ANALYSIS 

We aim in this paper to compute the torque produced by the 

device. This torque can be computed using the Laplace force 

exerted on the pancake coils. We need then to determine the 

magnetic field due to the magnets only.  

The geometry and the nature of the magnetic field 

distribution in the studied coupler requires 3D computations. 

However, under some reasonable assumptions, it is possible to 

simplify the analysis and use a 2D model to obtain closed-

form expressions for the magnetic field distribution due to the 

PMs. Assuming the linearity of the ferromagnetic materials, 

the magnetic field created by the 2p magnets is the sum of the 

fields due to each magnet. If the yokes are assumed to have an 

infinite radius, it is then possible to calculate the magnetic 

field distribution of a single magnet in 2D. 

 

A. Magnetic field due to a single PM 

We propose to compute analytically the magnetic field 

generated by a single disc PM. For simplicity, we assume that 

the iron yokes have an infinite magnetic permeability and the 

magnet has a unity relative permeability.  

An axisymmetric 2D model in a cylindrical coordinate 

system (r,z) is considered. As shown in Fig.2, the whole 

domain is divided into two regions: the PM region (I) and the 

air region (II). The magnetization distribution in region I is 

also provided. 
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Fig. 2. Definition of sub-domains and magnetization distribution 

 

A magnetic scalar potential formulation is used to solve the 

problem. The equations to solve in regions I and II are given 

by (1) and (2), respectively.  

 

² /I zM z =    (1)              (1) 

² 0II =  (2) 

 

As we can see in Fig. 2, the source term on the rhs of (1) can 

be written as 

 

0 1/ ( )zM z M z z  = − −  (3) 

 

In (3), 
1( )z z −  is the Kronecker delta function and 

0 0/remM B =  where Brem represents the remanent flux 

density of the PM. 

   

The method of separation of variables is used to solve (1) 

and (2). We use the boundary conditions on z=0 and z=Z2 to 

determine the eigenvalues and eigenfunctions of the 

homogeneous problem (Laplace equation). These boundary 

conditions correspond to a nil tangential magnetic field, viz. 

2
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The obtained eigenvalues are noted 
2

n n =  such as 

 

2/        1,2,3...n n Z n = =   (4) 

 

The corresponding eigenfunctions are ( )( ) sinn nf z z=  

The differential equation with respect to r is a modified 

Bessel equation whose solution is the superposition of the 0 

order modified Bessel functions of the first kind 0I and the 

second kind 0K . 

In order to get a finite solution on the boundary r=0, the 

general solution of Poison’s equation in region I is 

( ) ( ) ( )0

1

, sinI In n n n

n

r z A I r z   


=

 = +   (5) 

with ( )0
12

2

2
sinn n

n

M
z

z
 


=  

 

The term ( )sinn n z  represents the particular solution of 

(1) obtained by the projection of (3) on the eigenfunctions 

basis ( )nf z . 

In order to get a finite solution on the boundary r→, the 

general solution of Laplace’s equation in region II is 

( ) ( ) ( )0

1

, sinII IIn n n

n

r z A K r z  


=

=  (6) 

 

In (5) and (6), the constants InA and IInA are determined 

using the continuity of the tangential magnetic field and the 

normal flux density at r=R 
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where 1I and 1K are the modified Bessel functions, of order 1, 

of the first and second kind, respectively. 

 

From the magnetic scalar potential, it is easy to derive 

closed form solutions of the magnetic field strength 

, ,I II I IIH = − and the flux density using the constitutive law of 

the different media. For example, the axial flux density 

expression in air regions is given by 

 

( ) ( ) ( )

( ) ( ) ( )

0 1 2

1

0 1 2

1

, cos    r R,  Z Z

, cos  r R,  Z Z

zI n In n n

n
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

=



=


= −   





= −   






(9) 

 

To check the validity of the proposed model, Fig. 3 

compares flux density distributions computed analytically and 

numerically using 2D finite elements [8]. The geometrical and 

physical parameters of the magnet are these given in Table I 

while the airgap is set to Ze=20 mm. The studied domain axial 

length as defined in Fig. 1. is then Z2= Z1+Ze+ Zc=33.5 mm. 

The curves are plotted along a line in the z direction (from 

z=0 to z= Z2) located at a radius r=25 mm. A very good 

agreement is noticed between the FE predictions and the 

analytical results for both radial and axial flux density 

distributions. 

 

B. Magnetic field due to the PM rotor 

The PM rotor consists of 2p disc magnets disposed on the 

ferromagnetic yoke as shown in Fig. 1. 

To each magnet k (k=1,2,…,2p), let us define a local 

coordinate system (xk,yk,z) such as 2 2

k k kr x y= +  (same z 

coordinate for all these coordinate systems). We also define a 

global coordinate system (x,y,z) such as 

 

 0

0

k k

k k

x x x

y y y

= +


= +
 (10) 

 

If the global coordinate system is attached to the center of the 

coupler and the first magnet is centered on the x axis at a 

distance Rm, it is easy to show that 

 

0

0

cos(( 1) / )

sin(( 1) / )
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


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

= −
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Fig. 3. Radial (a) and axial (b) flux densities vs. z at r=25mm (Ze=20 mm) 

 

For example, the axial flux density created by the 2p magnets 

on the point P(x,y,z) with 1 2Z Zz  is 
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(12) 

 

In Fig. 4, the analytical results are compared with those 

obtained using 3D FE computations. The computed 

waveforms of the axial flux density distribution at z=20 mm 

along a circle of radius Rm (Fig.4.a) and along a radial line 

shifted by 30° with respect to the x axis (Fig.4.b) are in close 

agreement. 

 

The analytical computations of the axial flux density have 

been also compared to measured ones carried out on a 

rectangular surface Sg shown in Fig. 5. The measured values. 

and the analytical results are given in Fig. 6. The agreement is 

pretty good as the relative difference does not exceed 10%.  
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(a) 

 
(b) 

Fig. 4. Axial flux density distribution in the airgap at z=20 mm 

(a) along a circle of radius Rm (b) along a radial line  

 
Fig. 5. Definition of the surface Sg in the air gap (z=20 mm) 
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(b) 

Fig. 6. Distribution of the axial flux density Bz over the surface Sg  

(a) measured  (b) analytical 

 

C. Electromagnetic torque 

The torque is computed via the Laplace force exerted on the 

HTS coils. The force density f , in N/m3, and the torque 

density c , in Nm/m3, are deduced from the following cross 

products 

 

f J B

c r f

 = 


= 

 (13) 

 

Where B is the flux density due to the PM rotor, J the 

current density in the HTS coil and r  the lever arm vector. 

According to the notations of Table I, the amplitude of J is 

calculated by / ( ( ))coil c co ciJ NI Z R R= − . 

To compute the torque value, we need to integrate (13) over 

the 2p coils volume. However, because of the geometric and 

magnetic field distribution periodicities, we just need to 

integrate over one coil and multiply the result by 2p to get the 

total torque. 

To perform the integration, let us define a coordinate system 

(xc,yc,z) attached to the center of one coil. These coordinates 

are related to the global coordinates system by 

 

0

0

c c

c c

x x x

y y y

= +


= +
 (14) 

 

The angle between (x,y,z) and (xc,yc,z) frames is noted  , so 

 

0

0

cos( )

sin( )

c m

c m

x R

y R





=


=
 (15) 

 

Hence, the coil’s coordinates (xc,yc,z) and the magnet 

coordinates (xk,yk,z) are linked by 

 



 

 

5 

 0 0

0 0

k c c k

k c c k

x x x x

y y y y

= + −


= + −
 (16) 

 

We can now express all the vector quantities in (13) with 

respect to the coordinate system (xc,yc,z).  The torque is 

computed by integration over the coil’s volume c c cV S Z=  

where 
2 2( )c co ciS R R= − is the cross section area of the coil. 

Since the integration with respect to z is easy, we only need to 

perform a double integral over the cross section area of the 

coil. Unfortunately, this integration is not feasible in an 

analytical way so a numerical integration is necessary to get 

the torque value. 

 

Figure 7 presents the measured and the computed static 

torque vs. load angle curves for a current Icoil=25 A and for 2 

airgap values (Ze = 9 mm and Ze = 20 mm). It can be seen that 

the analytical and the 3D FE predictions are very close. The 

computed pull-out torque for Ze = 9 mm is about 28 Nm while 

the measurements give 33 Nm (a relative difference of about 

9.7%). For the airgap of 20 mm, the measured and calculated 

pull-out torques are 19.6 Nm and 16.3 Nm, respectively (16% 

difference). These discrepancies between the computed and 

the measured torques may result from the difficulties to 

perform the tests in a cryogenic environment [7]: 

- Uncertainties in the measured airgap thickness 

- Static friction torque due to the “pulley-rope” system and 

to the angular-contact ball bearing used in the PM rotor. 

Of course, this friction torque increases with the very low 

temperature of the PMs rotor which is very close to the 

HTS rotor immerged in liquid nitrogen (weak thermal 

insulation through the airgap). 

 

The computation time for a single position is about 10 s with 

the 3D FE method in which one pole with antiperiodic 

boundary conditions is considered. The proposed model 

requires 0.8 s. It is then a useful tool for the design and 

optimization of the studied coupler. 

 

 
(a) 

 
(b) 

Fig. 7. Static torque vs. load angle (Icoil=25 A) (a) Ze = 9 mm (b) Ze = 20 mm. 

 

IV. CONCLUSION 

An analytical model is proposed to calculate the magnetic 

field distribution in a magnetic coupler equipped with disc 

magnets and HTS pancake coils. The model is validated 

through experimental results as well as 2-D and 3-D FE 

computations of the magnetic field distribution and the torque. 

We have shown that the proposed model is very accurate and 

computationally very efficient. In the future, the model will be 

adapted to calculate the magnetic field due to the pancake coil. 

This will allow a more realistic design of the coupler by 

including a calculation of the operating current of the HTS 

coils.  
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