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Abstract. To make their decisions, autonomous vehicles need to build a reliable representa-
tion of their environment. In the presence of sensors that are redundant, but not necessarily
equivalent, that may get unreliable, unavailable or faulty, or that may get attacked, it is of
fundamental importance to assess the plausibility of each information at hand. To this end,
we propose a model that combines four criteria (relevance, trust, freshness and consistency)
in order to assess the confidence in the value of a feature, and to select the values that are
most plausible. We show that it enables to handle various difficult situations (attacks, failures,
etc.), by maintaining a coherent scene at any time despite possibly major defects.
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1 Introduction

Driving autonomy promises many benefits such as facilitating travel by reducing traffic jams and
the number of accidents for which man is mainly responsible, or improving the comfort of the users
during their travels. The control of autonomous vehicles is carried out in three stages: perception,
decision, action. The perception stage corresponds to the acquisition of data by sensors, coupled
to the analysis of these data to build the scene (integrated view of the environment). The decision
stage corresponds to the selection of actions to be performed by the vehicle based on the scene, the
state of the vehicle and its "intentions" (current maneuver, mission to perform). The action stage
corresponds to the realization of the actions chosen based on the various actuators of the vehicle.

In a man-controlled vehicle, none of the sensors and features that they measure (speed, engine
rpm, position, etc.) are crucial to the driving activity, they are only an assistance to help the driver
in smoothly conducting his vehicle. In that case, the perception is mainly achieved by the senses
of the driver. In an autonomous vehicle however, the relevance and reliability of environmental
information are crucial to the decision-making process: a noisy perception or a rough reconstruction
of the scene can lead to a bad decision and therefore a higher risk of accident. To tackle this issue,
manufacturers use various and multiple sensors to obtain some redundancy in order to have more
certainty about the environment. A problem arises when one has to choose between various values,
measured by different sensors or combinations of sensors, for the same physical measure (position,
speed, etc.). Sensors may have different margins of errors, or may be weather sensitive, and they may
be subject to malfunctions, faults, or even attacks, that may lead to the production of erroneous
values. Filtering the values in order to identify the most plausible one in the present context is thus
a major stake in building (iteratively and in real-time) a reliable scene and therefore to increase the
robustness of the system. This task is very similar to what happens in avionics where integrating
data from different sources is necessary in order to build a view of the environment and create
so-called situational awareness [9].
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In this paper, we first specify the context and related works in section 2. We then define some
terminology, explain the criteria used to evaluate the plausibility, and present our algorithm in
section 3. We finally explain in section 4 how it was implemented and comment about a selection
of results that we obtained.

2 Context and related work

An autonomous vehicle is a vehicle that has the capability to perceive the surrounding environment,
and to make decisions that are transmitted to actuators, so as to drive without human intervention
[12]. To this end, it is equipped, among other things, with a set of sensors allowing to analyze the
current situation with sufficient accuracy to make a good decision. Sensors may be divided into
categories relative to their ranges [21]: proximity sensors (e.g. ultrasounds), short-range sensors
(e.g. cameras, short-range radars), medium range sensors (e.g. LiDARs, medium range radars),
long Range Sensors (e.g. long-range radars) and location sensors (e.g. GPS). Autonomous vehicle
manufacturers offer a wide range of sensors in order to respect a cost/accuracy/range compromise.

Communicating vehicles are vehicles that use communication technologies to exchange data (e.g.
position, speed, intent) with each other [2]. Transmissions travel either directly between vehicles
(Vehicle to Vehicle or V2V communication), or through an infrastructure (Vehicle to Infrastruc-
ture or V2I communication). Since vehicles may exchange information about their position, speed,
steering wheel angle, etc., we may consider the reception of messages from other vehicles as an
additional sensor, whose information can be shared with other sensors.

2.1 Data fusion

Since the same information can be inferred from various sensors, we do have redundancy of in-
formation, hence the need to merge the data to increase the robustness of the system, which is
called data fusion [5]. There are a lot of different approaches in data fusion, and a lot of different
classifications altogether, depending in particular on the type of data that are processed (raw data,
features, decisions), and the type of data that are produced.

In our case, we are interested in both redundant and complementary data, that we fuse in a fea-
ture in-feature out (FEI-FEO) approach (also known as feature fusion, symbolic fusion, information
fusion or intermediate level fusion), according to Dasarathy’s classification [6]. In this approach, a
set of features is processed so as to "improve, refine or obtain new features" [5]. We thus assume
that we work with features, i.e., values that have already passed through the data analysis process
at the lower level. The vehicle has to make a single decision, and the process is thus centralized.

The main constraints that we have to face are the following: the fusion has to occur in real-time
since the vehicle does not have the possibility to stop so as to make its next decision; the result of
the fusion has to be as precise and reliable as possible since the safety issues, for the passengers and
the other users of the road are high; the fusion process has to be fault-tolerant since sensors may
be subject to failures and/or attacks. In addition, we wish the fusion process to be verifiable[1] and
explainable[8].

2.2 Related work

We briefly mention the most popular approaches to data fusion, and how they relate to our case.
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Probabilistic models need a priori knowledge (Bayesian inference [15,19]), and are vulnerable to
attacks (Dempster-Shafer [7,11]). Artificial intelligence approaches based on neural networks [13]
need a large amount of learning data and also lack explainability. This is also the case for other
approaches based on genetic programming that tackle the issue of fault tolerance [3]. Similarly,
approaches based on fuzzy logic [17,14] are not suitable because the system depends on an inference
engine designed by human experts, and thus stability is not guaranteed.

Since part of the information available to the vehicle comes from other vehicles, we may also
have to take into account the trust that we have in this data. Trust-based approaches [4,10,22]
provide tools primarily applied to multi-agent systems, based on reputation.

3 Proposed approach

In this section, we propose a model allowing to build a coherent scene for the Ego vehicle in real-
time, enabling it to make well-informed decisions. This vehicle receives features from a set of sensors,
and also from other vehicles surrounding it. The model has to take into account the uncertainty of
the information related to the environment and the agents, and to withstand possible attacks.

3.1 Terminology and outline of the study

At this point, it is useful to define the terminology that we will use in the remaining of the paper.

– A feature is a measure that describes some aspect of an entity in the environment. In the case
of autonomous vehicles, features may be the position or speed of the vehicle.

– The scene of a vehicle is a set of features that represents both its state and the environment.
– The Ego vehicle is the reference vehicle, which tries to build its own scene.
– The features are produced by information sources, which may include a variety of elements:

it may be a sensor whose raw data are processed to produce the corresponding feature, a
collection of complementary features that are combined to produce the target feature, or a
prediction about the probable value of a given feature computed from a past scene.

In order to understand the method and algorithm more easily, we will first specify the outline
of the study in terms of sensors, features and sources of information.

The reference vehicle, Ego, has the following sensors (gathered in Table 1 with their character-
istics, as provided by the manufacturers): three ultrasonic sensors: two on the sides and one behind;
four cameras: one behind, three forward (one in the middle and two on the mirrors); a LiDAR; a
GPS; and a V2V communication sensor. The features that are taken into account are the Position
(longitudinal and lateral with respect to the road) and Speed (longitudinal and lateral with respect
to the road). The sources of information can be:

– an individual sensor: each sensor of the Ego vehicle (GPS, LiDAR, Camera, Ultrasonic sensors)
is considered as a source of information that computes one or several features;

– the V2V communication module: the surrounding vehicles may communicate their features
(position, speed) to the Ego vehicle;

– complementary features: a feature can be computed from the values of two or more comple-
mentary features. For example, in order to have the absolute position of a vehicle Vi, we can
combine the relative position of the vehicle Vi, given by a camera of Ego, with the absolute
position of Ego given by the GPS.
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Sensor Feature Sampling Angle Range δ

GPS Posabs, Speedabs 25 Hz - - 1m

LiDAR Posrel, Speedrel 20 Hz 360◦ 150 m 1%

Camera Posrel , Speedrel 20 Hz 120◦ 200 m 0.5%

Ultrasound Posrel 20 Hz 120◦ 4 m 0.05%

V2V Posabs, Speedabs 1 Hz 360◦ 1 km 1m

Table 1. Ego’s sensors with their respective tolerances δ.

Source of information PosabsEgo Posabs Vi Posrel Vi δ

GPS X 1m

V2V Communications X 1m

LiDAR X 1%

Camera X 0.5%
Ultrasound X 0.05%

(GPS, V2V communications) X 1m + 1m

(GPS, LiDAR) X 1m + 1%

(GPS, Camera) X 1m + 0.5%

(GPS, Ultrasound) X 1m + 0.05%

(V2V Communications, LiDAR) X 1m + 1%

(V2V Communications, Camera) X 1m + 0.5%

(V2V Communications, Ultrasound) X 1m + 0.05%

Prediction X X X 0

Table 2. Sources of information to calculate the Position features of Ego and vehicles Vi.

– the prediction module: the value of the features may be estimated thanks to the information in
the previous scene(s).

Table 2 presents the sources of information to be taken into consideration when calculating the
Position features. The checked boxes indicate that the corresponding source of information is to be
considered for the calculation of this feature, while δ represents the margin of error of the source.

3.2 Criteria for selecting sources

Since we have, potentially, lots of different ways to compute the same feature, the problem consists
in selecting, at any time, the most reliable and plausible source of information. To this end, we
define criteria that characterize both the quality of the source in general (relevance and trust), and
the quality of a given information in particular (freshness and consistency). These criteria are used
to compute a global Confidence for each information:

– Relevance: Is a given source of information well suited to measure a given feature?
– Trust: Did the source provide information that was considered as correct in a recent past?
– Freshness: Is the information considered as recent or out of date?
– Consistency: Is the information consistent with the previous values of the same source?
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Relevance of the source Each sensor has been designed for a given purpose. But one sensor,
which is very relevant to measure a given feature and used mainly in this way, may also be used,
although in a less relevant manner, to measure another feature. This relevance is represented by a
static percentage defined beforehand for each information source and each feature.

For example, to define the position of Ego, we can use either the GPS or the combination of
values coming from a LiDAR (which provides the relative position of a vehicle A with respect to
vehicle Ego) with the absolute position communicated by A, or make a prediction based on the
last known position and speed of Ego. We can consider that the GPS is perfectly suited to the
measurement of this feature, since it has been designed to this end. It can also be assumed that
the combination of the relative and absolute positions of A is less suitable because of the potential
errors during communication, and also because information received from A may be considered as
less trustworthy. Finally, the prediction is a default choice when other sources of information are
considered as faulty and should be rated as the least relevant source of information.

Relevance thus defines a partial order between the sources of information for each feature (100%
being the most relevant) to favor specific sources of information with respect to others.

Trust in the source Trust in the source is a percentage that reflects the quality of the measure-
ments provided by the source during a limited time window corresponding to a near past. When
a source provides a measure that is considered as correct, the trust increases, and conversely it
diminishes if the measure is considered incorrect, according to equation (1).

Trust in the source at iteration t, expressed as a percentage, depends on its value at iteration
t− 1 and on the distance between the tolerance interval of the value coming from the source (ITs)
and the tolerance interval of the value that has been selected (ITr) from all possible sources for
this feature (a tolerance is fixed for each feature). It is assumed that a penalty must be greater
than a reward, in order to quickly detect a malfunction of a source or misleading information sent
by a malicious vehicle. It is thus not necessary to rely on any reputation system: a new vehicle will
be given at first a medium trust; if the information sent by the vehicle is coherent, the trust will
quickly increase, but if it is not, the source will be strongly penalised and quickly discarded.

Trust0 = 100

Trust t =

min(100,Trust t−1 + σ++) if R ∈ ITs
min(100,Trust t−1 + σ+) if R 6∈ ITs and ITr ∩ ITs 6= ∅
max(0,Trust t−1 + σ−) otherwise

(1)

with σ− < 0 < σ+ < σ++ and |σ−| > |σ++|.

Freshness of information The sources of information are not synchronous. Each source produces
features at its own pace, and each value is given a measure of freshness: a value that has just been
received at the time of calculation has a freshness of 100%, a value that has an age that exceeds
a threshold is considered out of date (see equation 2). We consider a fixed freshness for a time d,
before a linear decay, according to a gradient a that may be variable depending on the feature.

Freshness(age) =

{
100 if age ≤ d
100− a(age− d) otherwise (2)

To prevent the system from relying solely on its predictions, especially in the case where no
reliable source is available, the prediction value is given a freshness, which is the age of the scene
from which the prediction has been computed.
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Consistency of information To ensure consistency between the various scenes selected at each
moment t, we add a percentage that takes into account the predicted value valp, the measured
value valm, and the margin of error toleranceErrorm associated with valm. The predicted value is
calculated from a bounded time window, using a linear regression over the values measured by a
sensor. The distance between valp and valm is then calculated. If this distance is less than a certain
threshold, a percentage associated with this distance is assigned, otherwise it is considered that this
new measured value valm is not consistent with the predicted value valp:

Consistency = 200− |valp−valm|
toleranceErrorm+1 · 100 with 0 ≤ Consistency ≤ 100 (3)

Confidence Based on the four aforementioned criteria, we calculate a global measure of Confidence
for each source of information according to the following formula:

Confidence =
Relevance · Trust · Freshness · Consistency

1004
· 100 (4)

3.3 The algorithm

At each iteration and for each feature, given the set of values provided for this feature by all the
sources of information, the algorithm selects the unique value R in the following steps:

1. calculate, for each source, the value of the feature and a measure of Confidence in the value.
2. select, among all the sources, the one for which the Confidence in the value is the best and store

the (plausible) value R of the selected source. In case of equality, we choose the source whose
value is higher in the following order: Relevance > Trust > Freshness. In case no source of
information has a Confidence above a predefined threshold ζ, the emergency stop is launched.

3. update the trust in all the sources, by attributing rewards or penalties, according to equation
(1). This enables to quickly disregard faulty or malicious sources, but also to allow a source to
have temporary failures (e.g. the GPS in a tunnel), without definitely blacklisting it. Trust in
Prediction is a special case: it is given the trust value of the source selected at this iteration.

One may argue that some sources of information rely, for the calculation of a given feature, on
the values of other features, which may create mutual dependencies between the different sources
of information. To overcome this problem, if some required feature is not available yet, we can use
instead the predicted value for this feature.

4 Implementation and experimentation

We did a large number of simulations using GAMA [18], a free and open-source agent-based simu-
lation environment, with its "vehicleBehaviorExtension" [16], which we have enriched with a set of
sensors. Using this framework, we implemented the plausibility algorithm described in this paper,
as well as the decision algorithm proposed in [1]. We have also implemented a simplified version of
the action module, which makes it possible to obtain flexible longitudinal and lateral trajectories.

The aim of the experimentation was to validate that the Ego vehicle could always maintain a
coherent scene at any time, whatever the perturbations or attacks arising on the sensors. As a first
step, we assumed that internal sensors could not be hacked, and that the only attacks could come
from communications. We consider in our scenario the following anomalies:
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– Noise: a random value in the range of the error margin [-δ,+δ] of the information source is
added to the actual value;

– Breakdown: a source of information does not provide information at time t;
– Fault: the actual value is replaced by a random one.

Our test scene contains two vehicles (Ego and A). Ego has an initial speed of 35 m/s and is
controlled by our decision algorithm. Vehicle A has only a V2V sensor, has an initial speed of 28
m/s, and is controlled by IDM (intelligent driving model) [20]. The road consists of two lanes with
a length of 1 km. Both vehicles are on the same road lane, Ego behind A at some distance, so that
Ego has to overtake A before the end of the lane.

Our algorithm uses a set of parameters, which have a direct impact on the performance of the
system. For now, we did not achieved any parametric study but selected these values empirically, in
order to obtain desired properties (e.g. the time after which a source is disregarded, or considered
again after recovering). In the following, we quote the most important ones, with the corresponding
values:

– the rewards and penalties σ++, σ+, σ−, are set respectively to 25, 10 and -30. They have an
impact on the time the system takes to eliminate a faulty source of information and to reconsider
a previously eliminated source;

– the source filter threshold ζ =30%;
– the delay d and the gradient a a in the calculation of freshness: d is equal to the period of the

sensor; we assume that this delay remains at 100% as long as the information is available in the
period, while beyond this period, it decreases rapidly with gradient a = 8.

4.1 Results of experiments and discussion

We first studied the nominal case, i.e., the case with no faults except the noise associated with the
sensors. Figure 1 represents the evolution of the selected values of the relative position of vehicle
A with respect to Ego. It is very similar to that of actual values, confirming the choices that were
made by the algorithm. The change of sources of information around 12k cycles corresponds to the
loss of perception of the vehicle A during an overtaking. At first, A is seen by the front camera,
then by the right camera, and finally by the rear camera.

We then inject targeted and random faults. Targeted injection aims at analyzing the ability
of the solution to withstand potentially critical cases, while random injection tests the solution
empirically.

Targeted fault injection Figure 2 shows the impact of fault injection to camera (1) (primary
source) and camera (2) (secondary sensor). We injected two faults in each sensor, which consist in
random values being provided by the sensors, in the intervals [500ms, 900ms] and [2100ms, 2800ms]
for camera (1) and [750ms, 1050ms] and [1900ms, 2400ms] for camera (2). One may observe that
the system rejects the faulty source as soon as the error is injected (camera (1) is rejected at time
500ms and camera (2) is rejected at time 750ms). The system selects a third source while waiting
for the faulty sources to resume, which is the case for camera (1) at time 1900ms, 1s after the end
of the first fault. At time 2100ms, camera (1) is rejected again as a second fault occurs, and since
camera (2) is also faulty at that time, camera (3) resumes. Camera (2) resumes at time 3400ms and
camera (1) resumes at time 3800ms, 1s after the end of their respective fault interval.
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Fig. 1. Selected value R of relative position of vehicle A with respect to Ego: nominal case
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Fig. 2. Relative position of vehicle A wrt Ego: fault injection into camera (1) and camera (2)

Random fault injection In this configuration, we inject faults and failures at random times.

– For failures, which may occur at any time, we observe that if occurrence probability is under
50%, the system always manages to find a reliable source of information and that the number
of switches increases proportionally to the probability of failure.

– For faults, which consist in random values appearing at random moments, if probability of
occurrence is under 5% for each information source, we observe that the system always finds a
reliable source and a value to select. Indeed, the frequency of injection is very low (on average
two injections per second), which allows the system to penalize and then reward the source on
average in two cycles. Similarly, since injections do not last long, trust is restored very quickly,
and the system thus remains operating.

Limitations Although our proposal gives promising results in most situations, its operation is quite
sensitive to the choice of parameters. It may happen for example that the system becomes unstable:
when an incorrect value has once been selected, the system penalizes all sources of information that
are giving correct values; therefore, once the fault injection phase is over, it cannot find a reliable
source to select, either because of a low trust, or because of a low consistency.
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This issue may be overcome by implementing several improvements to the method: the first one
would be to compute the consistency of a feature with more elaborated methods than a simple linear
regression. Kalman filters are good candidates since they would allow to take noise and errors into
account; a second possible improvement is to also assess the consistency of the value of a feature
with respect to the values provided by the other sources of information for the same feature; A third
improvement would be, instead of selecting a single value as the most plausible one, to average the
values of all the sources of information that appear to be consistent in the measure of the feature,
which is common in the field and would limit the impact of incorrect values.

Finally, a parametric study is necessary in order to fine-tune the algorithm. By understanding
precisely the role of each parameter, this will enable on the one hand to improve and stabilize the
results, and on the other hand to give the user the choice between different driving options, all of
which guaranteeing a safe behavior.

5 Conclusion and perspectives

The objective of this project was to design an algorithm to increase the robustness of the decision
of an autonomous vehicle, taking into account the redundancy of the information collected by the
sensors. To this end, we proposed a mechanism to select in real time, among the values coming from
the various sensors, the most plausible ones to be used in the construction of the scene, in order to
have the best possible decision making.

The approach is partially inspired by trust-based approaches, and is adapted to the particular
context of our project and its constraints. This resulted in a hybrid model that analyzes the opera-
tion of sensors (or more generally sources of information), as well as the variation of the measured
or computed values. This model takes into account the relevance of a source for a feature, the trust
in the source, the freshness of the information and the consistency of the information in time.

In order to assess the validity of the proposal, we conducted an intensive campaign of experi-
ments. Only a few results are presented in this article, but the model has demonstrated a highly
satisfying behaviour and has met the expectations in a large range of conditions, either in the
nominal case or in the presence of various forms of failures.

Some limitations have clearly been identified, but one of the main strength of the algorithm
lies in its modular design, which enables a lot of adaptations and tuning for the computation of
each of the four criteria. In the process of developing the algorithm, some parts of the model have
deliberately been kept simple (and even naive) in a first step and the parameterization has been
done very quickly and empirically. This was to validate the general principle of the computation of
a global measure of confidence in the values provided by the various sources of information, and
the selection of the most plausible one, without focusing on details of implementation or specific
optimizations. Now that the approach has proved to be valid, we will concentrate on these details,
notably to improve the computation of the consistency of the values.
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