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Using the disformal solution-generating method, we construct new axisymmetric solutions
in Degenerate Higher Order Scalar Tensor (DHOST) theories. The method consists in first
considering a “seed” known solution in DHOST theories and then performing a disformal
transformation of the metric to obtain a new solution. In vacuum, the two solutions are
equivalent but they become physically inequivalent when one considers coupling to matter.
In that way, we “disform” the stealth Kerr black hole solution and we obtain a first ana-
lytic rotating non-stealth solution in DHOST theories, while the associated scalar field is
time-dependent with a constant kinetic density. The new solution is characterized by three
parameters: the mass, the spin and the disformal parameter which encodes the deviation
with respect to the Kerr geometry. We explore some geometrical properties of the novel
disformed Kerr geometry which is no more Ricci flat, has the same singularity as the Kerr
metric, admits an ergoregion, and is asymptotically flat. Moreover, the hidden symmetry
of the Kerr solution is broken, providing an example of a non-circular geometry in a higher
order theory of gravity. We also discuss geodesic motions and compute its (disformed) null
directions which are interesting tools to understand the causal structure of the geometry.
In addition, to illustrate again the potentiality of the disformal solution-generating method,
we present another axisymmetric solution for DHOST theories obtained from a disformal
transformation of the generalized Kerr solution of Einstein-Scalar gravity.
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I. INTRODUCTION

Finding exact solutions for compact objects (stars, black holes or more exotic structures) in
modified theories of gravity is in general a very difficult problem. Not only there exist many
“no-go” theorems, extending the no-hair theorem of General Relativity (GR) which kill the hope
of having new solutions, but also the equations of modified theories of gravity are, most of the
time, much more complicated than the Einstein equations, even for symmetry reduced space-
times. Nevertheless, it was possible to circumvent these difficulties and new black hole (analytical
and numerical) solutions have emerged these last years, in particular, in the context of Degenerate
Higher Order Scalar Tensor (DHOST) theories [1–7] which provide the most general class of viable
scalar-tensor theories to date evading the Ostrogradsky ghosts [8–10] (see also [11] where DHOST
theories have been extended to the so-called U-DHOST theories, and [12] for further generalization).
However, most of these solutions are stealth1 spherically symmetric black holes [14–23]. (See also
[24] for an earlier stealth solution in the context of ghost condensate [25].) The first rotating stealth
solution was discussed in [15] in the context of beyond Horndeski theories, and only recently, a more
general stealth Kerr black hole solution was obtained in [26] in the class of DHOST theories where
gravitational waves propagate at the speed of light. On the other hand, the existence condition for
any GR solutions with matter component minimally coupled to gravity was derived from a covariant
analysis in [27, 28] where the Kerr-Newman-de Sitter solution in quadratic DHOST theories was
obtained. Moreover, solution-generating method such as the Kerr-Schild procedure have newly been
extended to DHOST theories opening new avenues to derive interesting solutions [29]. Finally, a
non-stealth numerical rotating black hole solution has also been constructed recently in [30]. Such

1 Stealth black hole solutions were first introduced in the context of three dimensional gravity in [13].
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rotating solutions represent an important step forward in order to investigate rotating compact
objects in modified gravity. However, up to now, analytic solutions describing a rotating compact
object in DHOST theories [15, 26, 28] correspond to a stealth Kerr geometry and deviations from
GR can only show up at the level of perturbations [31]. Therefore it would be interesting to
construct new exact solutions beyond the stealth sector in order to obtain analytic solutions which
exhibit deviations from GR already at the background level. The goal of this work is to present
such a construction using the disformal solution-generating method discussed first in the context
of DHOST theories in [22]2.

This method takes advantage of the properties of DHOST theories under disformal transforma-
tions of the metric, which were introduced in [33], to construct new exact solutions to the DHOST
field equations from a known “seed” solution. As the class of DHOST theories is stable under dis-
formal transformations, any known solution (g̃µν , φ) of a theory associated to the action S̃[g̃µν , φ]
enables us to construct a “new” solution (gµν , φ) of a “new” theory whose action S[gµν , φ] is related
to the previous one by,

S[gµν , φ] = S̃[g̃µν , φ] , g̃µν = A(φ,X)gµν +B(φ,X)φµφν , (1.1)

where we are using the standard notations φµ ≡ ∂µφ for the partial derivative of φ andX = gµνφµφν
for its kinetic density. The functions A and B are, a priori, free but we will restrict our study to
the cases where the disformal transformation is invertible and where the two metrics are non-
degenerate. Although the construction of new exact solutions appears to be straightforward using
this procedure, it is worth emphasizing that the obtained solution is not physically equivalent
to the seed one in general. Indeed, in vacuum, the two actions S and S̃ are equivalent in the
sense that they have equivalent spaces of solutions provided that the disformal transformation is
invertible. However, in the presence of matter minimally coupled to the metric (either gµν for the
action S or g̃µν for the disformed action S̃), they become inequivalent. Hence, a particle falling
into a black hole solution of the theory S will have, in general, a different trajectory from that of a
particle falling into the “disformed black hole” of the theory S̃ (see [34] for a recent investigation
on the fate of matter coupling under disformal transformations)3. Therefore, this mehtod allows
one to construct new exact solutions which encode interesting deviations from GR. Consequently,
the resulting solutions provide an interesting arena to investigate modification of the shadow of
rotating compact objects induced by modified theories of gravity. Recent investigations in this
direction have been reported in [36].

In this work, we shall extend the investigations initiated in [22] to the axisymmetric framework.
Concretely, we will apply the solution-generating method here to produce a new rotating solution
in DHOST theories. Transforming the stealth Kerr “seed” solution by a disformal transformation
(1.1) where the functions A and B are constants, we present a new non-stealth rotating analytic
solution, given by Eq. (3.15) below, which depend on three parameters: the mass M , the spin
parameter a and the disformal parameter α which encodes deviations form the Kerr metric. This
new geometry is different from Kerr (it is no more Ricci flat for instance) but has similarities: it is
asymptotically flat, it admits the two same Killing vectors as the ones in Kerr, it has ergoregions
very similar to those of Kerr, and it comes with the same time-dependent scalar field (with constant
kinetic term) as in the stealth Kerr solution. We explore geometrical properties of this family of
novel rotating solutions: we argue that there is no new singularity compared to the usual Kerr
black hole, we discuss the existence of event horizons computing the disformed null vectors, and
finally we study some properties of its geodesics.

2 See also [32] for previous use of disformal transformation to construct a rotating black hole solution in vector-tensor
theories.

3 Disformal transformations also allow one to consider black hole singularity from a different perspective, as recently
discussed in [35].
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The paper is organized as follows. In the following §II, we review basic results on stealth
solutions in DHOST theories: we give the conditions for such solutions to exist and we quickly
present the stealth Kerr solution. In §III, we construct and study solutions obtained from a
disformal transformation (1.1), where A = A0 (without loss of generality we can fix A0 = 1) and
B = B0 are constant, of this stealth Kerr solution. We start with reviewing useful results on
disformal transformations which are the main tool of our method. Then, we compute explicitly the
novel solution and discuss some of its geometrical properties. In §IV we conclude with a summary
of the results and a discussion on open issues. In addition, to illustrate again the potentiality of the
disformal solution-generating method, we present and discuss in Appendix B another axisymmetric
solution for DHOST theories obtained from a disformal transformation of the generalized Kerr
solution of Einstein-Scalar gravity.

Note added. As we were writing this article, we learned that a similar (but complementary)
article [37] was about to be posted on the arXiv. In [37], the authors study in more details the
geometry of the disformed Kerr solutions and propose candidates for the event horizons. In the
present paper, on the other hand, we clarify a class of DHOST theories in which the disformed
Kerr solutions are exact solutions. Our results and their results agree where we overlap.

II. STEALTH SOLUTIONS IN DHOST THEORIES

This section is devoted to review important results on stealth solutions in DHOST theories.
We start, in §II A, with giving the conditions that a DHOST theory must satisfy to have a stealth
solution whose metric is also a solution of GR. In §II B, we describe more specifically the stealth
Kerr solution which will be the “seed” to construct new rotating solutions in DHOST theories in
the subsequent section.

A. Conditions of existence

The most general theory of quadratic DHOST theory [1] is described by the action

S =

∫

d4x
√−g

(

P (X,φ) +Q(X,φ)✷φ + F (X,φ)R +
5
∑

i=1

Ai(X,φ)Li

)

(2.1)

where the functions Ai, F, Q and P depend on the scalar field φ and its kinetic term X ≡ φµφ
µ

with φµ ≡ ∇µφ, and R is the Ricci scalar. The five elementary Lagrangians Li quadratic in second
derivatives of φ are defined by

L1 ≡ φµνφ
µν , L2 ≡ (✷φ)2 , L3 ≡ φµφµνφ

ν
✷φ ,

L4 ≡ φµφµνφ
νρφρ , L5 ≡ (φµφµνφ

ν)2 , (2.2)

where we are using the standard notations φµ ≡ ∇µφ and φµν ≡ ∇ν∇µφ for the first and second
(covariant) derivatives of φ. For the theory to propagate only one extra scalar degree of freedom in
addition to the usual tensor modes of gravity, the functions F and Ai have to satisfy the so-called
degeneracy conditions [1, 3] while P and Q are totally free. The degeneracy conditions can be
derived for general higher-derivative theories in a systematic way [4, 38, 39].

It has been shown in [3] that these DHOST theories can be classified into three classes which
are stable under general disformal transformations, i.e. transformations of the metric of the form

gµν −→ g̃µν = A(X,φ)gµν +B(X,φ)φµ φν , (2.3)
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where A and B are arbitrary functions with the conditions that the two metrics are not degenerate.
Notice that, when the disformal transformation is not invertible, the DHOST theory after the
transformation falls in the class of mimetic theories of gravity [40–42]. See also [43–45] for further
details on mimetic gravity.

The theories belonging to the first class, named class Ia in [3], can be mapped into a Horndeski
form by applying a disformal transformation. The other two classes are not physically viable (ei-
ther gradient instabilities of cosmological perturbations develop or tensor modes have pathological
behavior) [46] and will not be considered in the present work. Theories in class Ia are labelled by
the three free functions F,A1 and A3 (in addition to P and Q) and the three remaining functions
are given by the relations [1]

A2 = −A1 , (2.4)

A4 =
1

8 (F +XA2)
2

(

A2A3

(

16X2FX − 12XF
)

+ 4A2
2 (16XFX + 3F )

+16A2 (4XFX + 3F )FX + 16XA3
2 + 8A3F (XFX − F )−X2A2

3F + 48FF 2
X

)

, (2.5)

A5 =
1

8 (F +XA2)
2

(

2A2 +XA3 − 4FX

)(

3XA2A3 − 4A2FX − 2A2
2 + 4A3

2F
)

, (2.6)

where FX denotes the derivative of F (X,φ) with respect to X. Similarly Fφ denotes the partial
derivative of F with respect to φ and the same notations will be used for all other functions as
well. The above relations (2.4-2.6) are a direct consequence of the three degenerate conditions
that guarantee only one scalar degree of freedom is present [1, 2]. In conclusion, this means that
all the DHOST theories we study here are characterized by five free functions of X and φ, which
are P , Q, F , A1 and A3. Notice that we have implicitly supposed the condition F + XA2 6= 0.
Theories where F+XA2 = 0 belong to the sub-class Ib which is not physically relevant [3]. Finally,
coupling to external fields (perfect fluids, scalar fields, vector fields, etc.) can be done by adding
to the DHOST action an action Sm where the external degrees of freedom are minimally coupled
to the metric gµν (which is assumed to be the physical one).

The Euler-Lagrange equations of DHOST theories are very complicated. Even though only
one scalar degree of freedom comes with the usual two tensorial degrees of freedom of GR, these
equations are higher order and can be up to fourth order in φ and third order in gµν . It is only in
the Horndeski frame (where the DHOST theory falls in the Horndeski class) where the equations
of motion are second order, but the external fields are no more minimally coupled to the metric
and, even in that case, the equations still have a very complex structure compared to GR. While
the reduction of the higher-order Euler-Lagrange equations to a system of second-order differential
equation for the case of static spherically symmetric space-time was performed explicitly in [20], the
process is more involved for more general space-time. Hence, finding exact solutions in DHOST
theory is far from being an easy task and one thus usually makes assumptions to simplify the
problem.

Here we consider the following assumptions. First, we impose shift-symmetry which means that
the DHOST action (2.1) is unchanged by the transformation φ→ φ+ c where c is a constant, and
thus all the functions entering in the definition of (2.1) depend on X only. Second, one assumes
the solution is such that X = X0 is a constant which drastically simplifies the modified Einstein
equations. And finally, one looks for stealth solutions where the metric gµν is also a solution of the
vacuum Einstein equations with a cosmological constant Λ,

Gµν + Λgµν = 0 , (2.7)

where Gµν ≡ Rµν − Rgµν/2 is the Einstein tensor. One can go further and requires that a given
DHOST theory admits all GR solutions, and not only some of them, as the metric part of stealth
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solutions. This is the case if the following conditions hold [28],

P + 2ΛF = 0 , PX + Λ(4FX −X0A1X) = 0 , QX = 0 , A1 = 0 A3 + 2A1X = 0 , (2.8)

where all these functions are evaluated on the solution X = X0. These conditions have been
recently generalized to non-shift symmetric theories and to the case where matter is coupled to
gravity minimally [28].

Notice that these conditions are very strong and drastically restrict the set of DHOST theories.
It was also argued that some stealth solutions lead to a problem of strong coupling [47, 48] at the
level of linear perturbations. Further, using the effective field theory framework it was shown in
[49] that perturbations about stealth solutions are strongly coupled, for de Sitter background in
the decoupling limit, and for the Minkowski background even away from the decoupling limit, so
long as we require evolution equation of perturbations to be second order. Thus, in general the
strong coupling is inevitable for asymptotically de Sitter or flat stealth solutions. Moreover, even
if spacetime is different from de Sitter or Minkowski on superhorizon scales, the strong coupling
is inevitable on subhorizon scales where the spacetime is nearly flat and hence the analysis of [49]
applies. However, we can introduce a controlled detuning of the degeneracy condition, dubbed
the scordatura mechanism in [49], to render the perturbations weakly coupled all the way up to a
sufficiently high scale, as in the ghost condensate [25]. The Ostrogradsky ghosts associated with
the scordatura is adjusted to show up only above the cutoff scale of the effective field theory. It is
also important to note that the scordatura does not change the properties of the stealth solutions
of degenerate theories at astrophysical scales (similarly to the stealth solution [24] in the ghost
condensate). Thus, below we focus on stealth solutions in degenerate theories.

B. The stealth Kerr solution in DHOST theories

The stealth Kerr solution in DHOST theories we shall use in this work as a seed was obtained in
[26]. It was derived for theories within the class Ia with no cubic galileon term where gravitational
waves propagate at the speed of light (cGW = c), i.e.

A1 = A2 = 0 , Q = 0 . (2.9)

Here, the condition cGW = c implies A1 = 0 [50], and we have used the degeneracy condition
A2 = −A1 in (2.4). Therefore, the stealth conditions (2.8) simplify and become,

P (X0) + 2ΛF (X0) = 0 , PX(X0) + 4ΛFX (X0) = 0 , A3(X0) = 0 . (2.10)

The metric is the usual Kerr solution of GR, or the de Sitter (dS)/Anti-de Sitter (AdS) Kerr
solution in the presence of a non-zero cosmological constant Λ = 3/ℓ2 (ℓ2 > 0 for dS or ℓ2 < 0 for
AdS). In Boyer-Lindquist coordinates (t, r, θ, ψ), it reads

ds2 = − ∆r

Ξ2ρ

(

dt− a sin2 θ dψ
)2

+ ρ

(

dr2

∆r
+
dθ2

∆θ

)

+
∆θ sin

2 θ

Ξ2ρ

(

adt−
(

r2 + a2
)

dψ
)2

(2.11)

where Ξ ≡ 1+a2/ℓ2 is a constant, and the different functions entering in the metric are defined by

∆r =

(

1− r2

ℓ2

)

(

r2 + a2
)

− 2Mr , ∆θ = 1 +
a2

ℓ2
cos2 θ , ρ = r2 + a2 cos2 θ , (2.12)

while M is the mass of the black hole and a the angular momentum parameter satisfying the
condition a ≤M .
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The stealth Kerr black hole comes with a scalar hair whose highly non-trivial profile [26] co-
incides with the Hamilton-Jacobi potential associated to the Kerr geodesic equation and is given
by,

φ(t, r, θ) = −Et+ Sr(r) + Sθ(θ) , Sr ≡ ±
∫

dr

√
R

∆r
, Sθ ≡ ±

∫

dθ

√
Θ

∆θ
(2.13)

where E is a constant while the two functions Sr and Sθ are defined, up to a sign ambiguity, as
integrals involving the radial and angular functions

R(r) ≡ m2
(

r2 + a2
) [

η2
(

r2 + a2
)

−∆r

]

, Θ(θ) ≡ a2m2 sin2 θ
(

∆θ − η2
)

, (2.14)

with X0 = −m2 and η ≡ ΞE/m. In fact, there are four different branches for the scalar field φ
because of the freedom to choose the signs of Sr and Sθ. It has been shown in [26] that one can
make use of these branches to construct a scalar field solution which is regular and finite in an
untrapped region as well as a trapped region (either a black hole region or a white hole region but
not both), and in particular on the the black hole horizon (as well as on the cosmological horizons
when ℓ2 > 0).

In the particular case where there is no cosmological constant ℓ → ±∞, we have η = 1, then
Θ vanishes, and finally the scalar field does not depend on the variable θ anymore. As we are
going to see in the following section, this is the case we will focus on when we consider disformal
Kerr solutions to avoid several issues. Furthermore, the radial function R(r) simplifies as well and
becomes

R(r) ≡ 2Mm2r
(

r2 + a2
)

, (2.15)

with the condition E = m which identifies the kinetic energy X0 = −m2 to E2 .

III. ROTATING SOLUTIONS BEYOND THE STEALTH SECTOR

In this section, we will construct the new rotating solution in DHOST theories obtained from
a disformal transformation of the stealth Kerr black hole we have just described above. We will
start, in §IIIA, by reviewing useful and general properties of disformal transformations (1.1) on
DHOST theories. Then, we will concentrate on such transformations that A and B are constant,
and we will show how the stealth conditions (2.8) transform under these “constant” disformal
transformations giving the conditions for any DHOST theory to have the disformed Kerr black
hole as a solution. Finally, in §IIIB we will transform the stealth Kerr black hole and in §IIIC we
study some geometrical properties of the disformed geometry, which is no more stealth.

A. Constant disformal transformations and stealth conditions

When the metric gµν comes with a scalar field φ, one can define the “disformed” metric g̃µν
by [33]

g̃µν = A(φ,X)gµν +B(φ,X)φµφν , (3.1)

where A and B are arbitrary functions. One can show that the transformation is invertible when
the condition ∂X(A/X + B) 6= 0 (and A 6= 0) is satisfied. We will always consider invertible
disformal transformations here. Furthermore, as we restrict our study to shift-invariant DHOST
theories, the functions A and B are supposed to depend on X only. Anticipating on the next
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section, we point that these two assumptions of i) invertibility and ii) shift symmetry lead to
drastic simplifications when one considers the disformal mapping of seed solutions with a constant
kinetic term X̃ = X̃0. Indeed, this automatically imposes that the disformal potentials A and B
are constant [22].

Disformal transformations on the metric induce transformations on DHOST actions. Given an
action S̃[g̃µν , φ], one defines a new action S[gµν , φ] by the identification,

S[gµν , φ] = S̃[A(X)gµν +B(X)φµφν , φ] . (3.2)

Interestingly, DHOST theories are stable under disformal transformations [3] and the transforma-
tion rules between the functions (of X̃ ≡ g̃µνφµφν) P̃ , Q̃, F̃ and ÃI entering in the definition of
the action S̃[g̃µν , φ] on one side, and the functions (of X = gµνφµφν) P , Q, F and AI defining
S[gµν , φ] on the other side are given in [3].

As it turns out, these rules, which are rather complicated, simplify drastically when one considers
constant disformal transformations where A = A0 and B = B0 do not depend on X anymore. As
pointed above, this is the case when considering invertible and shift symmetric disformal mapping
of seed solution with constant kinetic term. After a straightforward calculation, one shows that
the k-essence, the cubic galileon and the Ricci terms transform as follows,

P = P̃ , Q = A0

∫

dX NQ̃X , F =
A0

N
F̃ , (3.3)

while the functions AI entering in the quadratic part of the Lagrangian transform as,

A1 = N(B0F̃ +N2Ã1) , A2 = N(−B0F̃ +N2Ã2) ,

A3 =
N

A0

[

−4A0B0F̃X − 2B0N
4Ã2 +N6Ã3

]

,

A4 =
N

A0

[

−N2B2
0F̃ + 4A0B0F̃X − 2N4B0Ã1 +N6Ã4

]

,

A5 =
N7

A2
0

[

B2
0(Ã1 + Ã2) +N2B0(Ã3 − Ã4) +N4Ã5

]

, (3.4)

where we introduced the factor

N ≡ A0
1/2(A0 +XB0)

−1/2 . (3.5)

We recall that “tilde” functions P̃ , Q̃, F̃ , ÃI , in the right-hand side of the previous equations are
viewed as functions of X via the relation,

X̃ =
X

A0 +XB0

. (3.6)

Now, we assume that the theory S̃[g̃µν , φ] satisfies the conditions (2.8) to have a stealth solution
where X̃0 is constant and g̃µν is the Kerr metric recalled above (2.11). Then, we want to translate
these conditions in terms of the functions entering into the action S[gµν , φ]. We first remark that
under constant disformal transformation X0 is also constant when X̃0 is constant. After a direct
calculation, from (2.8) we obtain

P +
2ΛN

A0

F = 0 , ∂X

[

P +
Λ

A0

(

4 +
B0X0

N

)

F − ΛX0

N3
A1

]

= 0 , (3.7)

QX = 0 , A1 −
N2B0

A0

F = 0 , (3.8)
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together with the remaining more complicated condition

A0

2N
A3 +

(

2B0NX +
B0N

2

A0

)

F + 2B0NFX +B0NA2 +
N8

A0

∂X

(

A1

N3
− B0

A0

F

N

)

= 0 , (3.9)

which comes from the last equation of (2.8). Let us recall that these equations holds only when
they are evaluated on X0. As a consequence, any DHOST theories which satisfy all these conditions
admit disformal stealth solutions, which are in general non-stealth. Obviously, these conditions
reduce to (2.8) for a trivial disformal transformation where A0 = 1 and B0 = 0.

In the special case where the theory S̃ satisfies, in addition, the conditions (2.9) which insure
that gravitational waves propagate at the speed of light, the disformed theory S satisfies in turn,

A1 = −A2 = N2B0

A0

F , Q = 0 . (3.10)

Hence, (3.8) are automatically satisfied and the first equation in (3.7) is unchanged. The last
conditions in (3.7) and (3.9) are also simplified according to

∂X

(

P +
4Λ

A0

F

)

= 0 ,
A0

2NB0

A3 +

(

2NX +
N2

A0

(1−NB0)

)

F + 2NFX = 0 . (3.11)

In that case, the theory S admits the disformed Kerr black hole we are going to describe now as a
solution.

B. Disformal Kerr solution: construction and preliminary properties

Considering the previous stealth Kerr-(A)dS seed solution with a constant kinetic term, we turn
now to generate a new non-stealth solution whose metric takes the form

gµν = g̃µν −B0 φµφν , (3.12)

where g̃µν is the Kerr metric (2.11). Without loss of generality, we have fixed A0 = 1, otherwise
the metric would simply get a global physically irrelevant constant conformal factor. If the scalar
field φ depends on the angular variable θ, then the disformed Kerr metric (3.12) acquires new
components, among which

gtθ = ±B0E

√
Θ

∆θ
, (3.13)

where the expression of Θ(θ) and ∆θ(θ) has been recalled in (2.14). Such a term depends on the
radial variable r and then they do not vanish at infinity. As a consequence, one cannot expect
that the disformed metric is asymptotically flat, dS or AdS. To avoid this pathological behavior,
we require that the scalar field does not depend on θ which implies necessarily the vanishing of the
cosmological constant ℓ→ ±∞, then η = 1 and E = m (as a consequence of Θ = 0). Hence, from
now on, we consider only this case which, as recalled before (2.15), corresponds to scalar field of
the form

φ(t, r) = −mt+ Sr(r) , Sr = ±
∫

dr

√
R
∆

, ∆ = r2 + a2 − 2Mr , (3.14)

where, for simplicity, we have omitted the subscript r in ∆ (as there is no more possible ambiguity).
Thus, the disformal transformation (with A0 = 1) leads to the new solution

ds2 = −∆

ρ

(

dt− a sin2 θ dψ
)2

+
ρ

∆
dr2 + ρ dθ2 +

sin2 θ

ρ

(

a dt−
(

r2 + a2
)

dψ
)2

+α
(

dt±
√

2Mr(r2 + a2)/∆ dr
)2

, (3.15)



10

with α ≡ −B0m
2 while the scalar field profile remains unchanged (3.14). The inverse disformed

Kerr metric is given by

gµν = g̃µν +
α

m2(1− α)
φµφν , (3.16)

where g̃µν is the inverse Kerr metric while the only non-vanishing components of φµ = g̃µνφν are,

φt =
m

∆

(

r2 + a2 +
2Mra2 sin2 θ

ρ

)

, φr = m

√

2Mr(r2 + a2)

ρ
, φϕ = m

2aMr

∆ρ
. (3.17)

Therefore, the disformal transformation of the stealth Kerr solution provides a new non-stealth
exact solution which is parametrized, in addition to the mass and angular momentum parameters
(M,a) of the Kerr family, by one new deformation parameter α which encodes precisely the devia-
tions from GR. The apparent ± ambiguity in (3.15) can be absorbed thanks to simple redefinitions
of t and a which are replaced by ±t and ±a. Hence, we can safely fix the sign to + from now on
without loss of generality.

At infinity where r → +∞, the disformed Kerr metric becomes equivalent to,

ds2 ≃ −
(

1− 2M1

r

)

dt2 +

(

1− 2M2

r

)−1

dr2 + r2(dθ2 + sin2 θ dϕ2)

+ 2α

√

2M1

r
dr dt+O

(

1

r2

)

, (3.18)

where we introduced the notations,

M1 ≡
M

1− α
, M2 ≡ (1 + α)M , (3.19)

and we rescaled the time coordinate t by
√
1− α. Note that the coefficient α modifies the black

hole mass in the matrix elements gtt and grr in a different way in Schwarzschild coordinates as
M1 6=M2. These masses agree at the first order in the parameter α. Moreover, while the cross term
gtrdtdr induced by the disformal transformations decays in the asymptotic regime, one can show
that it cannot be removed by a coordinate change without introducing new off-diagonal terms,
such that the new solution is not circular. This property appears a the key novelty of this new
exact solution. See [37] for more details on this point. Hence, the metric is asymptotically flat
but, contrary to the Kerr metric, the disformed one is not equivalent to the Schwarzschild metric
at infinity essentially because the difference between the masses M1 and M2. Nevertheless, the
deviations introduced by the presence of the cross term proportional to drdt in the metric become
manifest only at next-to-leading order in the asymptotic expansion [37].

C. Some properties of the disformed Kerr space-time

In this section, we quickly discuss geometrical properties of the disformed Kerr space-time. First
of all, we say a few words on its singularities. Even though the metric is singular in Boyer-Lindquist
coordinates when ∆ = 0 (at the values r± = M ±

√
M2 − a2 of the radial coordinate), this is not

a physical singularity but only a coordinate singularity exactly as in the usual Kerr black hole.
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Indeed, this can be seen immediately from the expressions of the curvature invariants,

R =
α

1− α

6a2Mr

ρ3

(

cos2 θ − 1

3

)

, (3.20)

RµνR
µν = − α2

(1− α)2
18a4M2

(r2 + a2) ρ6
P1(r, θ, a) , (3.21)

RµνρσR
µνρσ =

48M2

(1− α)2 (r2 + a2) ρ6
P2 (r, θ, a) , (3.22)

where the functions P1(r, θ, a) and P1(r, θ, a) are given in the Appendix A. As for the Kerr metric,
the disformed Kerr geometry is singular at ρ = 0 only. Nonetheless, one important difference
between the disformed and the usual Kerr metric is that the disformed geometry (α 6= 0) is,
interestingly, no longer Ricci flat.

Then, we see immediately that the disformed geometry admits the two same Killing vectors
ξt ≡ ∂t and ξϕ ≡ ∂ϕ as in the Kerr black hole because none of the coefficients of the metric depend
on t and ϕ. As a consequence, we can look at the positions of the ergospheres, i.e. the hypersurfaces
where the Killing vector field ξt is null, i.e.

ξt · ξt = gtt = 0 ⇐⇒ r2 − 2M1r + a2 cos2 θ = 0 , (3.23)

where M1 = M/(1 − α) as above (3.18). As a consequence, the disformed Kerr metric admits,
as the usual Kerr metric, an outer and an inner ergospheres denoted respectively by E+ and E−

whose positions are given by the same formulae as the Kerr ones,

r = rE±(θ) =M1 ±
√

M2
1 − a2 cos2 θ , (3.24)

with the difference that the mass of the black hole has now been rescaled. The ergoregions are
defined similarly and one expects the possibility for a Penrose process (with an energy extraction
mechanism) to exist in this geometry as well.

Now, let us consider the null directions. Indeed, computing the null directions is particularly
interesting to understand the causal structure of a metric and to see whether a metric gµν describes
a black hole (or more generally possesses horizons). These vectors enable us, in particular, to
compute light rays (the principal null geodesics) in the space-time and also to characterize the
properties of horizons. The normalized (future directed) principal null vectors are denoted by ℓµ±
and satisfy the normalization conditions,

gµν ℓ
µ
± ℓ

ν
± = 0 , gµν ℓ

µ
+ ℓ

ν
− = −1 . (3.25)

These conditions do not define completely (and then uniquely) the null vectors which can be
rescaled according to ℓ± → N±1ℓ± where N is an arbitrary (non-vanishing) function.

In the case of the Kerr metric g̃µν , the null vectors are well-known and are given by,

ℓ̃µ+∂µ ≡ r2 + a2

∆
∂t + ∂r +

a

∆
∂ϕ , ℓ̃µ−∂µ ≡ r2 + a2

2ρ
∂t −

∆

2ρ
∂r +

a

2ρ
∂ϕ . (3.26)

Interestingly, we see that, at the horizons where ∆ = 0, these two null vector fields are proportional
to the Killing vector

∆

r2 + a2
ℓ̃+ =

2ρ

r2 + a2
ℓ̃− = ∂t +ΩH ∂ϕ , (3.27)
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where ΩH = a/(2Mr±) is a constant whose value depends whether we are considering the outer
(r = r+) or the inner (r = r−) horizon. In fact, requiring that a Killing vector is null character-
izes completely the horizons in the Kerr geometry where the event horizons are thus also Killing
horizons.

One can easily see that the principal directions ℓ± of the disformed metric gµν are also “dis-
formed” in the sense that they are now given by,

ℓµ± = ℓ̃µ± + β(φαℓ̃
α
±)φ

µ , β ≡ (1−B0X)−1/2 − 1

X
=

1− (1− α)−1/2

m2
, (3.28)

where φµ = g̃µνφν and X = −m2 here. Notice that these formulae generalize immediately to any
disformal transformation (when X and B0 are not necessarily constant) of an arbitrary metric gµν .
Interestingly the effect of the disformal transformation on the null directions is a shift of the usual
Kerr null vectors in the direction of the gradient of the scalar field φµ. Everything happens as if
the scalar field is somehow drifting the light rays.

The explicit expressions of the null directions of the disformed Kerr metric can be easily written
from the relations

φαℓ̃
α
+ = − m

√
r2 + a2√

r2 + a2 +
√
2Mr

, φαℓ̃
α
− = −mr2 + a2 +

√

2Mr(r2 + a2)

2ρ
, (3.29)

which enable us to obtain, after a direct calculation,

ℓ+ =

[

r2 + a2

∆
+ βm(φαℓ̃

α
+)

(

1 +
R

m2ρ∆

)]

∂t

+

[

1 + β(φα ℓ̃
α
+)

√
R
ρ

]

∂r −
a

∆

[

1 + βm(φαℓ̃
α
+)

2Mr

ρ

]

∂ϕ , (3.30)

ℓ− =

[

r2 + a2

2ρ
+ βm(φαℓ̃

α
−)

(

1 +
R

m2ρ∆

)]

∂t

+

[

−∆

2ρ
+ β(φαℓ̃

α
−)

√
R
ρ

]

∂r −
a

2ρ

[

1 + βm(φαℓ̃
α
−)

2Mr

∆

]

∂ϕ. (3.31)

If we proceed as in the Kerr case, we would look at the regions where ℓ+ or ℓ− becomes proportional
to Killing vectors. For ℓ+, we obtain the condition,

∆

[

1 + β(φαℓ̃
α
+)

√
R
ρ

]

= 0 , (3.32)

which fixes r. Interestingly, r± are solutions but there are extra non-trivial solutions which are
given by r = F (θ), i.e. r is a function of θ and whose limit α→ 0 is not defined. For ℓ−, we obtain
the condition,

−∆+ 2β(φα ℓ̃
α
−)

√
R = 0 , (3.33)

which also fixes r at some non trivial function of θ. In both cases, both null vectors reduce to a
vector field proportional to,

∂t +Ω± ∂ϕ , (3.34)

where Ω± is no more a constant and depends on θ. Therefore, none of the principal null directions
reduce to Killing vectors in some hypersurfaces, and hence the horizons (if they exist) cannot be
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Killing vectors4. This is an important difference with the Kerr geometry. Furthermore, one can
easily check that the hypersurfaces of constant r are not null because the norm of their normal
vector ∂r is given by (3.16)

grr =
∆

ρ
+

α

1− α

2Mr(r2 + a2)

ρ2
, (3.35)

and therefore depends on θ through ρ = r2 + a2 cos2 θ. As a consequence, the horizons of the
disformed Kerr metric cannot be obtained in the way we get the Kerr horizons.

The problem of finding event horizons seems complicated but it has been initiated very recently
in [37] where first candidates has been proposed and analyzed. The basic idea is rather simple
and consists in looking at null hypersurfaces defined by an equation of the form F (r, θ) = 0 with
a θ-dependency contrary to the Kerr case. We assume that we can locally solve r as a function of
θ and restrict ourselves to separable functions of the form F (r, θ) = r + F (θ). The condition that
such an hypersurface is null implies that its normal vector (0, 1, ∂θF, 0) is also null (by definition),
which leads to a non-linear differential equation for F (θ),

grr + gθθ
(

dF

dθ

)2

= 0 ⇐⇒
[

∆+
α

1− α

2Mr(r2 + a2)

ρ

]

+

(

dF

dθ

)2

= 0 , (3.36)

where we used (3.16) for the coefficients of the inverse disformed metric and r = −F (θ) everywhere
in this equation. It is the same equation as Eq.(23) in [37]. The geometry of this null hypersurface is
subtle as the detailed and very interesting analysis in [37] shows, but it is still an open issue to show
whether it is an event horizon or not. Computing its expansions may help and we hope to study
this issue in details in a future work. Nevertheless, it is worth emphasizing that the characterization
of quasi-local horizon through the expansions of the null directions is slicing dependent, and the
choice of the null directions and thus of the 2-surface foliating our geometry is therefore ambiguous
as different choices might allow to identify different quasi-local (not necessarily null) horizons. See
[51, 52] for detailed discussions on this point.

We finish with a quick discussion on the geodesic equations in the disformed Kerr background.
Following the same method as in the case of the Kerr metric, the geodesic equations can be obtained
from the Hamilton-Jacobi equation for the “action” S,

H(xµ, ∂µS) +
∂S

∂λ
= 0 , H(xµ, pµ) ≡

1

2
gµνpµpν , (3.37)

where λ is the affine parameter along the geodesic. Due to the invariance of the disformed metric
(whose components do not depend neither on t nor on ϕ), the action S takes the form

S(t, r, θ, ϕ) =
1

2
µ2λ+ ptt+ pϕϕ+Φ(r, θ) , (3.38)

where µ, pt and pϕ are the standard constants of motion. A straightforward calculation shows that
Φ(r, θ) satisfies the differential equation,

0 =

[

µ2r2 +Φ2
r∆− (r2 + a2)2

∆
− 4Mra

∆
ptpϕ − a2

∆
p2ϕ

]

+

[

µ2a2 cos2 θ +Φ2
θ + a2p2t sin

2 θ +
p2ϕ

sin2 θ

]

(3.39)

− α

(1− αm2)ρ

[m

∆
(r2 + a2)2pt +

√
RΦr −ma2pt sin

2 θ
]2

,

4 This has also been observed in another but equivalent way in [37]
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where Φr ≡ ∂Φ/∂r and Φθ ≡ ∂Φ/∂θ. In the case where α = 0, the equation is clearly separable as
the first line depends only on r while the second one depends on θ only. This makes the geodesic
equation integrable. Furthermore, the separability of the Hamilton-Jacobi equation is intimately
linked to the existence of the famous Carter constant and of a hidden symmetry of the Kerr metric
(associated to a Killing tensor) [53]. When α 6= 0, the Hamilton-Jacobi equation is no more
separable in the Boyer-Lindquist coordinates and it is very likely that the geodesic equation is no
more integrable and one cannot find a “disformed” Carter constant associated to the disformed
Kerr metric. Interestingly, there is an obvious solution of the equation (3.39) given by

Φ = z

∫

dr

√
R
∆

, (3.40)

where z is a constant when the integration constants µ, pt and pϕ coincide with those of the scalar
field according to,

pt = −zm , pθ = 0 , pϕ = 0 , µ2 =
z2m2

1− αm2
. (3.41)

In that case, the geodesic follows exactly the gradient of the scalar field.

IV. DISCUSSION AND PERSPECTIVES

The disformal-generating method that was recently introduced in [22] appears to be very useful
to construct new exact solutions in DHOST theories. It enables us, in this paper, to construct the
first non-stealth rotating solution in DHOST theories where the geometry is given by a disformed
Kerr metric while the scalar field φ(t, r) has a non-trivial profile with a constant kinetic density X.
Even though this solution is equivalent to the stealth Kerr solution of [26] in vacuum, it becomes
physically inequivalent when one considers coupling to matter (for instance, the geodesic motion
of test particles is different from the geodesic motion in the Kerr black hole as we briefly showed
in the last part of the paper).

We started with a quick review on quadratic DHOST theories and the conditions of existence of
stealth solutions where the metric is also a solution of GR. Then, we found the general conditions
for a DHOST theory to have a “disformed” stealth solution where the metric is a “disformed”
solution of GR while the scalar field has a non-trivial profile. This is an important result because
it allows one to identify DHOST theories which admit a disformed stealth metric as a solution.
Then, we performed a disformal transformation of the theories which admits a stealth Kerr solution
and we obtained a family of scalar-tensor theories which admits disformed Kerr solutions. We have
restricted ourselves to invertible and shift symmetry disformal transformation. As a consequence,
working with a seed stealth Kerr solution with constant kinetic term imposes that A = A0 and
B = B0 are constant, providing a drastic simplification. Under these assumptions, we have obtained
the first non-stealth rotating solution in DHOST theories where the metric depends on three
parameters which are the usual mass m and spin parameter a together with a new deformation
parameter α.

We analyzed some geometrical properties of the new metric. It is easy to see that, contrary
to the Kerr metric, the disformed Kerr metric is not Ricci flat but (in the case where the scalar
field does not depend on θ in the Boyer-Lindquist coordinates system) it remains asymptotically
flat, the metric still has two Killing vectors associated to the fact that the metric components are
independent of t and ϕ (still in Boyer-Lindquist coordinates), there is the same ring singularity
at ρ = 0 as in Kerr, and the space-time admits ergospheres and ergoregions very similar to those
in Kerr space-time. However, there are important differences with Kerr. First, we showed that
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the null directions are disformed, which lead to modifications of the structure of the horizons.
In particular, if horizons exist, there can no longer be Killing horizons and cannot be given by
r = const in Boyer-Lindquist coordinates. So far, we have no proof that the disformed solution is
a black hole. These issues have been analyzed in the recent paper [37] where a candidate for the
event horizons has been proposed. However, understanding the geometry and more particularly
the causal structure of the disformed Kerr metric deserve to be studied in details, what we hope to
do next. Many other questions, that we hope to address in future works, remain open: analyzing
the geodesic motion, studying the thermodynamics, etc.

Finally, to illustrate again the potentiality of the disformal solution-generating method, we
present in addition another axisymmetric solution for DHOST theories obtained from a disformal
transformation of the generalized Kerr solution of Einstein-Scalar gravity in the Appendix B.
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Appendix A: Explicit forms of P1(r, θ, a) and P2(r, θ, a)

The functions P1(r, θ, a) and P2(r, θ, a) entering in the formulas of the curvature invariants
(3.21) and (3.22) are given by,

P1(r, θ, a) =
(

z2 − 1
)

z2a4 − 4a2a2

9

(

z4 +
5

2
z2 +

5

2

)

− r4
(

z4 +
5

9
z2 +

10

9

)

, (A1)

P2(r, θ, a) =

[(

(α− 1) z4 − 3z2α2

2
+

3α2

2

)

z2a8

+

((

(α− 1) z6 −
(

α2

12
+ 13α− 15

)

z4 +

(

13

6
α− 1

)

αz2 +
19α2

12

)

r2a6
)

r2a6

+

((

α2 − 52

3
α+ 20

)

z4 +

(

16

9
α2 + 12α − 20

)

z2 +
19α2

9
+

20α

9

)

3r4a4

4

+ 10

((

α− 3

2

)

z2 +
α

6
+

1

10

)

a2r6 + r8
]

, (A2)

where we have used the notation z = cos θ for simplicity.

Appendix B: A rotating naked singularity solution in DHOST

In this appendix, we construct another exact solution of the DHOST theories starting from
a seed describing the generalization of Kerr spacetime with a scalar source in General Relativity
found in [54].
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As expected from the no hair theorem, this exact solution of the Einstein-Scalar system does
not describe a black hole but a rotating naked singularity. Nevertheless, it provides an interesting
seed as it allows to work with a generalized Kerr geometry associated to a scalar source whose
kinetic term is no longer constant. Moreover, the static limit of this solution reduces to the well
known quadrupolar metric and allows us to generate a DHOST generalization of this axisymmetric
deformation of the Schwarzschild geometry.

1. The rotating solution of Einstein-Scalar gravity

Let us first describe the seed solution of the massless Einstein-Scalar system whose action reads

S =

∫

√

|g|
(

R

16πG
− 1

2
gµνφµφν

)

. (B1)

The field equations are given by

Gαβ = 8πG

(

1

2
φµφ

µ gαβ − φαφβ

)

, ✷φ = 0 . (B2)

As usual, the equation of the scalar field is a consequence of the Bianchi identity and the Einstein
equation. Recently, an exact stationary solution of these equations was constructed in [54]. This
solution was obtained by exploiting the well known hidden symmetries of vacuum axisymmetric
solutions of GR [55–58] as well as solution-generating method based on the Einstein-Maxwell
system [59, 60]. The resulting geometry provides a generalization of the Kerr geometry with a
scalar source. Explicitly, the metric takes the form

ds2 = −f (dt− ωdψ)2 +
hij
f
dxidxj , (B3)

where the functions f, ω and ∆ entering in the metric coefficients are given by

f ≡ 1− 2Mr

ρ
, ω ≡ − 2aMr sin2 θ

∆− a2 sin2 θ
, ∆ ≡ (r −M)2 − b2 , (B4)

with b ≡
√
M2 − a2 and ρ = r2 + a2 cos2 θ. The remaining spatial part of the line element is

explicitly given by,

hijdx
idxj ≡ H

(

dr2 +∆ dθ2
)

+∆sin2 θ dψ2 (B5)

where the function H is given by

H ≡ ρ

∆
fζ , with ζ =

(

1 +
b2

∆
sin2 θ

)−Σ2/b2

. (B6)

Finally, the associated scalar field is given by

φ(r) = φ0 +
Σ

2b
log

[

r −M + b

r −M − b

]

. (B7)

This solution depends on three parameters: the mass M , the (rescaled) angular momentum a and
the scalar charge Σ. When the scalar charge vanishes, i.e Σ = 0, the metric reduces to the Kerr
geometry as expected. The effect of the massless scalar field is encoded in the function ζ(r, θ).
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The singularities of the solution can be tracked by computing the Ricci scalar which reads

R =
2Σ2

∆ζ (r2 + a2 cos2 θ)
. (B8)

At constant angle θ when ∆ → 0, we see that R ∼ Σ2r−2∆−1−Σ2/b2 . Hence the hypersurface
defined by ∆ = 0 is singular when Σ 6= 0, which signals that the Kerr outer horizon has been
turned into a curvature singularity because of the presence of the scalar field. If M > a, the
location of this singular hypersurface is at

r+ =M +M
√

1− J2 6 2M , (B9)

where J ≡ a/M . Consequently, this solution is only defined for r ∈ ]r+,+∞[ and describes the
gravitational field of rotating compact object endowed with a scalar charge.

Setting Σ = 0 and taking the non-rotating limit a → 0, the geometry reduces to a deformed
Schwarzschild metric which corresponds to a sub-class of the Zipoy-Voorhees (ZV) metric with
scalar source which was first derived in [61, 62]. See [63–65] for more recent generalizations. The
vacuum ZV metric represents the simplest static and axi-symmetric vacuum solution of GR [66].
See [67, 68] for details. We shall now investigate the disformal transformation of this Einstein-Scalar
exact solution.

2. Disformed generalized Kerr solution

Performing the same constant disformal transformation as the one used in the core of the paper,
we obtain a new exact solution in DHOST theories whose metric still takes the form

ds2 = gµνdx
µdxν = −f (dt− ωdψ)2 +

hij
f
dxidxj , (B10)

with the same scalar profile (B7). The only modification, compared to the previous undeformed
solution, shows up in the grr components. Indeed, the spatial metric hij reads now

hijdx
idxj = H

(

Gdr2 +∆ dθ2
)

+∆sin2 θ dψ2 (B11)

with

H =
ρf

∆

(

1 +
b2

∆
sin2 θ

)−Σ2/b2

, G = 1− B0f

H

(

φ′
)2
. (B12)

where a prime denotes derivative w.r.t the radial coordinate r. As expected, the new solution has
now four parameters: the mass M , the rescaled angular momentum a, the scalar charge Σ and the
disformal parameter B0. We shall again only consider sufficiently small values of this parameter
which ensures that the deformation function G does not generate any singularity. We can now
investigate the properties of this new exact DHOST solution.

First, we study the static limit of the disformed geometry. When the angular momentum
vanishes, i.e. a→ 0, the DHOST solution reduces to the following metric

ds2 = −
(

1− 2M

r

)

dt2 + r(r − 2M) sin2 θ dψ2

+

(

1− 2M

r

)−1+Σ2/M2 (

1− 2M

r
+
M2

r2
sin2 θ

)−Σ2/M2

(

Gdr2 + r(r − 2M) dθ2
)

(B13)
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while the scalar profile (B7) reduces to

φ(r) = φ0 −
Σ

2M
log

[

1− M

r

]

. (B14)

The explicit form of the function G which contains the disformal parameter is given by

G(r) = 1−B0

(

1− 2M

r

)1+Σ2/M2 (

1− 2M

r
+
M2

r2
sin2 θ

)−Σ2/M2

(

φ′
)2
. (B15)

Interestingly, this axisymmetric but static solution provides a DHOST generalization of the well
known vacuum q-metric of GR [68] and its recent extension with a scalar source presented in [64].
When the scalar charge vanishes, i.e. Σ = 0, the solution reduces to the Schwarzschild metric.
As such, this new solution provides an new static axi-symmetric deformation of the Schwarzschild
geometry with a quadrupole momentum in DHOST theories. Let us also mention that, if one
computes the gradient of the scalar field which enters in (B14), we show that G(r) ∼ 1 when
r → +∞, and there is therefore no conical defect.

We now investigate the causal structure. As the disformal parameter appears only in the grr
and gθθ components of the metric, one can easily compute principal null directions given by

ℓα+∂α =
∆

ρ

(

r2 + a2

∆
dt+

dr

G1/2ζ1/2
+
a

∆
dψ

)

, (B16)

ℓα−∂α =
r2 + a2

∆
dt− dr

G1/2ζ1/2
+
a

∆
dψ , (B17)

such that gαβℓ
α
±ℓ

α
± = 0 and gαβℓ

α
+ℓ

β
− = −2. The associated expansions are given by

Θ+ =
r (r − 2M) + a2

4
√
Gζ

(

4r

ρ
+
ζ ′

ζ

)

, (B18)

Θ− = − 1

4
√
Gζ

(

4r

ρ
+
ζ ′

ζ

)

. (B19)

Therefore, the product of the expansions reads

Θ+Θ− = −r (r − 2M) + a2

4|G||ζ|

(

4r

ρ
+
ζ ′

ζ

)2

. (B20)

The effect of the disformal transformation appears through the function G which depends explicitly
on B0. We observe that this function appears either as a square root in the individual expansion or
as an absolute value in the product Θ+Θ−. Therefore the disformal transformation cannot change
the global sign of this quantity and the causal structure remains the same as the GR one in the
DHOST frame. The new solution is horizonless geometry and it describes thus a rotating naked
singularity.
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