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Lattice walk area combinatorics, some remarkable trigonometric sums and Apéry-like numbers

Explicit algebraic area enumeration formulae are derived for various lattice walks generalizing the canonical square lattice walks, and in particular for the triangular lattice chiral walks recently introduced by the authors. A key element in the enumeration is the derivation of some identities involving some remarkable trigonometric sums -which are also important building blocks of non trivial quantum models such as the Hofstadter model-and their explicit rewriting in terms of multiple binomial sums. An intriguing connection is also made with number theory and some classes of Apéry-like numbers, the cousins of the Apéry numbers which play a central role in irrationality considerations for ζ(2) and ζ(3).

Introduction

Random walks on lattices emerge in the study of various problems of physical interest. The dynamics of electrons (or quasiparticles) on an atomic lattice can be well approximated by their hopping to the ground state levels of different atoms in the lattice. Hopping to excited states would introduce extra effective discrete degrees of freedom but such transitions are generally energetically suppressed. Likewise, hopping to atoms beyond the few near neighbors of the atom presently binding the electron are also suppressed. As a consequence, the entire dynamical process can be described by a random lattice walk. Percolation processes and various other statistical processes can also be modeled as random walks.

The canonical example of a square lattice random walk is the one mapping to the Hofstadter model, describing a charged particle hopping on nearest neighbor sites on a square lattice pierced by a constant magnetic field. The dynamics of this process is described in terms of the length of random walks, quantified by the number of jumps, as well as their area, due to the interaction with the magnetic field. In the sum over lattice walks the magnetic term appears as a chemical potential dual to the algebraic area of the walk (defined precisely in the next paragraph) measured in unit cells, in the form e iΦ (algebraic area) , with Φ the magnetic flux per unit cell. The parameter Q = e iΦ plays the role of "fugacity" for the algebraic area. For a flux per unit cell equal to a rational multiple of the flux quantum 2π (setting the particle charge e = 1), Φ = 2πp/q, the model develops an intricate discrete spectrum, leading to the famous "Hofstadter butterfly" of the energy spectrum as a function of the magnetic field. The Hofstadter problem reduces effectively to enumerating paths of given length and algebraic area.

The exact enumeration of random walks of given algebraic area on a two-dimensional lattice is a hard and challenging problem. The algebraic area is defined as the oriented area spanned by the walk as it traces the lattice. A unit lattice cell enclosed in the counterclockwise (positive) way has an area +1, whereas when enclosed in the clockwise (negative) way it has an area -1. The total algebraic area is the area enclosed by the walk weighted by the winding number: if the walk winds around more than once, the area is counted with multiplicity. The combinatorics of such walks depend on the exact rule generating them and on the lattice geometry.

An exact formula for the number of square lattice walks of given length and algebraic area for a rational flux Φ = 2πp/q, with p and q coprime positive integers, was only recently obtained [START_REF] Ouvry | The algebraic area of closed lattice random walks[END_REF]. The analysis revealed some trigonometric sums to be key ingredients for the algebraic area enumeration. They are defined as 1 q q ∑ k=1 b p/q l 1 (k)b p/q l 2 (k + 1) . . . b p/q l j (k + j -1)

where b p/q (k) is a trigonometric function called spectral function which depends on the rational number p/q, and l 1 , l 2 , . . . , l j is a set of positive or null integers. In view of the algebraic area enumeration of square lattice walks these integers will be parts in the compositions of the integer n, i.e., n = l 1 + • • • + l j and all l i positive, with n fixing the length of the walks. But in the sequel we will consider that some of the l i 's can be null, in a way to be specified below, for more general lattice walks relevant to other physical processes.

In [START_REF] Ouvry | The algebraic area of closed lattice random walks[END_REF] the focus was on the spectral function b p/q (k) = ( 2 sin(πkp/q) ) 2 [START_REF] Hofstadter | Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields[END_REF] which encodes the Hofstadter dynamics. The algebraic area enumeration was obtained in part thanks to an explicit rewriting of the trigonometric sum [START_REF] Ouvry | The algebraic area of closed lattice random walks[END_REF], when evaluated for the Hofstadter spectral function [START_REF] Hofstadter | Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields[END_REF], in terms of the binomial multiple sums

1 q q ∑ k=1 b p/q l 1 (k)b p/q l 2 (k + 1) . . . b p/q l j (k + j -1) = ∞ ∑ A=-∞ A even e iπAp/q
(3)

l 3 ∑ k 3 =-l 3 . . . l j ∑ k j =-l j ( 2l 1 l 1 + A/2 + ∑ j i=3 (i -2)k i )( 2l 2 l 2 -A/2 - ∑ j i=3 (i -1)k i ) j ∏ i=3 ( 2l i l i + k i )
The summation variable A in the right hand side of (3) will later on play the role of the algebraic area of the square lattice walks, thus making contact with the enumeration problem of interest, exp(iπAp/q) being the magnetic flux factor. Eq. ( 3) is valid for any set of positive or null integers l i with an A-summation range finite due to the first two binomials, where A appears. In the specific case where the l i 's are all positive -as is the case for the square lattice walks algebraic area enumeration-A is restricted in the interval [-2⌊(l 1 + . . . + l j ) 2 /4⌋, 2⌊(l 1 + . . . + l j ) 2 /4⌋ ]. When some of the l i 's are null these bounds can be generalized (see, e.g., the bounds in eq. ( 11)).

We note that when we replace e iπAp/q by 1 in (3), which corresponds to vanishing magnetic field in the Hofstadter model and leads to a simple counting of random walks of all areas for given length l, we get the binomial identity

( 2(l 1 + . . . + l j ) l 1 + . . . + l j ) = ∞ ∑ A=-∞ A even (4) l 3 ∑ k 3 =-l 3 . . . l j ∑ k j =-l j ( 2l 1 l 1 + A/2 + ∑ j i=3 (i -2)k i )( 2l 2 l 2 -A/2 - ∑ j i=3 (i -1)k i ) j ∏ i=3 ( 2l i l i + k i )
where the resulting binomial products in the LHS1 will be interpreted later on as factors contributing to the counting of lattice walks. Again, formula (4) is valid for any set of positive or null integers l i ; if the l i 's are all positive the bounds on A are as specified above.

We remark here that the trigonometric sum (1) reduces to the binomial multiple sum given in (3) in the case b p/q (k) = ( 2 sin(πkp/q) ) 2 only when l 1 + . . . + l j < q, i.e., for large enough values of q (or walks of length less than q). This constraint on q eliminates from the counting open walks with endpoint coordinates coinciding modulo q, that is, closed walks on a doubly periodic lattice of periods q in each direction, which the formula counts along with closed walks on the plane 2 .

In [START_REF] Ouvry | Exclusion statistics and lattice random walks[END_REF] we revisited the algebraic area enumeration of [START_REF] Ouvry | The algebraic area of closed lattice random walks[END_REF] and noted that it admits a statistical mechanical interpretation in terms of particles obeying generalized exclusion statistics [START_REF] Haldane | Fractional statistics in arbitrary dimensions: A generalization of the Pauli principle[END_REF] with exclusion parameter g = 2 (g = 0 for bosons, g = 1 for fermions, higher g means a stronger exclusion beyond Fermi). Other lattice walks admit a similar interpretation with higher integer values of g. We also introduced the notion of g-compositions where some zeros can be inserted at will inside the set of the l i 's with the restriction that no more than g -2 zeros lay in succession. The integer n admits g n-1 such compositions. In particular, g = 1-exclusion refers to the unique composition n = n, whereas g = 2-exclusion corresponds to the standard compositions with no zeros at all. We also constructed triangular lattice chiral walks realizing g = 3-exclusion with spectral function

b p/q (k) = ( 2 sin(2πkp/q) )( 2 sin(2π(k + 1)p/q) ) (5) 
We finally hinted at other walks corresponding to statistics with higher values of the exclusion parameter g and to other spectral functions. However, for the triangular lattice chiral walks, as well as for other cases, an explicit algebraic area enumeration formula was missing due to the lack of binomial expressions analogous to (3) for the triangular spectral function [START_REF] See E.G | Bijective counting of Kreweras walks and loopless triangulations[END_REF].

In the present work we focus on filling this gap by uncovering such expressions for entire classes of trigonometric spectral functions generalizing (2) and [START_REF] See E.G | Bijective counting of Kreweras walks and loopless triangulations[END_REF]. Namely, we consider, on the one hand b p/q (k) = ( 2 sin(πkp/q) ) r (6) and on the other hand

b p/q (k) = ( 2 sin(πkp/q) )( 2 sin(π(k + 1)p/q) ) . . . ( 2 sin(π(k + r -1)p/q) ) (7) 
where in both instances r can be even or odd. The case r = 2 reproduces 3 (2) and ( 5) respectively, thus deriving the area counting and statistics of triangular chiral walks as a special case. We will see that the basic structure of the binomial multiple sum (3) naturally generalizes to these cases. In the Appendix we will also derive the relevant generalization for the spectral function

b p/q (k) = ( 2 sin(πkp/q) ) r/2 ( 2 sin(π(k + 1)p/q) ) r/2 (8)
2 Extrapolating (3) as such to any value of q ≥ 1 would amount to enforcing, for any given integer l, the identity ∑ q k=1 e 2ikπpl/q = 0 even though this is valid only when l is not a multiple of q (when l is a multiple of q the sum is actually equal to q). 3 The actual spectral function [START_REF] See E.G | Bijective counting of Kreweras walks and loopless triangulations[END_REF] for triangular lattice chiral walks has a factor 2 in front of the π's which we omit here to stay in line with (6); it anyway amounts to a trivial redefinition of p/q → 2p/q.

where r is even, yet another possible generalization of (5) that is relevant to other types of random walks.

Turning to the algebraic area combinatorics per se, these expressions, as already mentioned, will allow for explicit enumeration formulae analogous to the square lattice walks formula obtained in [START_REF] Ouvry | The algebraic area of closed lattice random walks[END_REF] for g = 2 and the Hofstadter spectral function [START_REF] Hofstadter | Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields[END_REF]. Achieving this requires the additional step of introducing an appropriate weighting coefficient depending on the composition and summing over all compositions of the integer n. We refer to [START_REF] Ouvry | The algebraic area of closed lattice random walks[END_REF] for detailed explanations of how this procedure unfolds and to [START_REF] Ouvry | Exclusion statistics and lattice random walks[END_REF] for the connection to g-exclusion statistics and the resulting generalizations. With the g-exclusion statistics weighting coefficients [START_REF] Ouvry | Exclusion statistics and lattice random walks[END_REF] 

c g (l 1 , l 2 , . . . , l j ) = (l 1 + • • • + l g-1 -1)! l 1 ! • • • l g-1 ! j-g+1 ∏ i=1 ( l i + • • • + l i+g-1 -1 l i+g-1 ) = ∏ j-g+1 i=1 (l i + • • • + l i+g-1 -1)! ∏ j-g i=1 (l i+1 + • • • + l i+g-1 -1)! j ∏ i=1 1 l i !
we can express the lattice walks algebraic area enumeration for g ≥ 2-exclusion and a general periodic spectral function b p/q (k) by means of the g-cluster coefficient

4 b(n) = gn ∑ l 1 ,l 2 ,...,l j g-composition of n c g (l 1 , l 2 , . . . , l j ) 1 q q ∑ k=1 b p/q l 1 (k)b p/q l 2 (k -1) . . . b p/q l j (k -j + 1) (9) 
As already stressed, (9) yields the algebraic area combinatorics provided that an expression analogous to (3) is known for the trigonometric sum involving the specific b p/q (k). Indeed, the summation index A in (3) will be interpreted in (9) as the algebraic area for square lattice walks, and the coefficient multiplying the exponential factor e iπAp/q will be the desired algebraic area counting number. Eq. (9) will also yield the triangular lattice chiral walk counting described by g = 3-exclusion and spectral function [START_REF] See E.G | Bijective counting of Kreweras walks and loopless triangulations[END_REF].

Finally, we will discuss the unexpected occurrence of Apéry-like numbers in the cluster coefficient (9) evaluated at particular values of p/q for certain g-exclusions and spectral functions. Apéry-like numbers are interesting per se since they are cousins of the celebrated Apéry numbers which allow for a proof of the irrationality of ζ(2) and ζ(3). One key characteristic of these numbers is that they are integer solutions of second order recursion relations. As we will see, some of the ζ(2) Apéry-like numbers fascinatingly emerge in the algebraic enumeration formula (9).

Trigonometric sums

∑ q k=1 b p/q l 1 (k) b p/q l 2 (k + 1) • • • b p/q l j (k + j -1)
We aim at uncovering explicit binomial multiple sums analogous to (3) for the spectral functions (6) and (7). In fact, the form of (3) is quite robust and suggestive, and allows deducing such generalizations by simple deformations while preserving its overall structure. We stress that, from now on, some l i 's can be null according to the g-composition structure discussed previously, i.e., no more than g -2 zeros in succession inside the set.

The A-summation bounds, when specified, will explicitly depend on the parameter g.

Square lattice walks generalization: b

p/q (k) = ( 2 sin(πkp/q) ) r
We first point out two basic facts:

• When q → ∞ the sum over k in (3) goes over to an integral and one obtains the overall counting

∫ 1 0 ( 2 sin(πs) ) rl 1 +l 2 +...+rl j ds = ( r(l 1 + l 2 + . . . + l j ) r(l 1 + l 2 + . . . + l j )/2 ) ( 10 
)
so we focus on (l 1 + l 2 + . . . + l j ) such that r(l 1 + l 2 + . . . + l j ) be even. It means that for r even any set l 1 , l 2 , . . . , l j is admissible, whereas for r odd the l i 's have to be such that their sum be even.

• It is obvious that for a given r

1 q q ∑ k=1 (( 2 sin(πkp/q) ) r ) l 1 (( 2 sin(π(k + 1)p/q) ) r ) l 2 . . . ( ( 
2 sin(π(k + j -1)p/q) ) r ) l j amounts to 1 q q ∑ k=1 (( 2 sin(πkp/q) ) 2 ) rl 1 /2 (( 2 sin(π(k+1)p/q) ) 2 ) rl 2 /2 . . . ( ( 
2 sin(π(k+j-1)p/q) ) 2 ) rl j /2
which is essentially the Hofstadter case r = 2, i.e., for the spectral function

( 2 sin(πkp/q) ) 2 , but now with l i → rl i /2.
Based on the above observations, the binomial multiple sum in (3) for the r = 2

Hofstadter case becomes, for b p/q (k) = ( 2 sin(πkp/q) ) r with r even 5 ,

1 q q ∑ k=1 b p/q l 1 (k)b p/q l 2 (k + 1) . . . b p/q l j (k + j -1) = (g-1)r⌊(l 1 +...+l j ) 2 /4⌋ ∑ A=-(g-1)r⌊(l 1 +...+l j ) 2 /4⌋
A even e iπAp/q (11)

rl 3 /2 ∑ k 3 =-rl 3 /2
. . .

rl j /2 ∑ k j =-rl j /2 ( rl 1 rl 1 /2 + A/2 + ∑ j i=3 (i -2)k i )( rl 2 rl 2 /2 -A/2 - ∑ j i=3 (i -1)k i ) j ∏ i=3 ( rl i rl i /2 + k i )
which is valid when r(l 1 + . . . + l j )/2 < q holds, and where we have specified the range [-(g -1)r⌊(l 1 + . . . + l j ) 2 /4⌋, (g -1)r⌊(l 1 + . . . + l j ) 2 /4⌋] in which A needs to be restricted.

In the r odd case we expect a binomial multiple sum analogous to (11). To see this in full generality, and to give a full proof of the original formula with even r, let us first recall the Poisson resummation formula for any q-periodic function f

(x) = f (x + q) q ∑ k=1 f (k) = ∞ ∑ n=-∞ f (nq) ( 12 
)
where f is the Fourier transform of f defined as

f (k) = ∫ q 0 f (x)e -2iπkx/q dx , f (x) = 1 q ∞ ∑ k=-∞ f (k)e 2iπkx/q
Let us consider the function f (x) = 1 q b p/q l 1 (x)b p/q l 2 (x + 1) . . . b p/q l j (x + j -1) which is 5 The overall counting, found by replacing e iπAp/q by 1 is

( r(l 1 + l 2 + . . . + l j ) r(l 1 + l 2 + . . . + l j )/2 ) = (g-1)r⌊(l1+...+lj ) 2 /4⌋ ∑ A=-(g-1)r⌊(l 1 +...+l j ) 2 /4⌋ A even rl3/2 ∑ k3=-rl3/2 . . . rlj /2 ∑ kj =-rlj /2 ( rl 1 rl 1 /2 + A/2 + ∑ j i=3 (i -2)k i )( rl 2 rl 2 /2 -A/2 - ∑ j i=3 (i -1)k i ) j ∏ i=3 ( rl i rl i /2 + k i )
indeed q-periodic due to r(l 1 + l 2 + . . . + l j ) being assumed even. We have

f (nq) = ∫ q 0 f (k)e -2iπkn dk = 1 q ∫ q 0 b p/q l 1 (k)b p/q l 2 (k + 1) . . . b p/q l j (k + j -1)e -2iπkn dk = 1 q ∫ q 0 j ∏ i=1 1 i rl i (
e iπ(k+i-1)p/q -e -iπ(k+i-1)p/q

) rl i e -2iπkn dk = 1 q ∫ q 0 j ∏ i=1 1 i rl i rl i /2 ∑ k i =-rl i /2 ( rl i rl i /2 + k i ) e 2iπ(k+i-1)k i p/q (-1) rl i /2-k i e -2iπkn dk = rl 1 /2 ∑ k 1 =-rl 1 /2
. . .

rl j /2 ∑ k j =-rl j /2 j ∏ i=1 ( rl i rl i /2 + k i ) (-1) rl i /2-k i i rl i ∫ 1 0 e 2iπ ∑ j i=1 k i sp+2iπ ∑ j i=1 (i-1)k i p/q e -2iπsqn ds = rl 1 /2 ∑ k 1 =-rl 1 /2
. . .

rl j /2 ∑ k j =-rl j /2 j ∏ i=1 ( rl i rl i /2 + k i ) (-1) rl i /2-k i i rl i e 2iπ ∑ j i=1 (i-1)k i p/q δ ( j ∑ i=1 k i p -nq ) (13) 
As stressed above, r(l 1 . . . + l j ) is even and thus the sum of the k i is an integer. Further, p and q are coprime. These facts imply that enforcing the Kronecker δ in (13) yields for some integer t. Now ∑ j i=1 k i ≤ r(l 1 + . . . + l j )/2 and thus, under the condition r(l 1 + . . . + l j )/2 < q, t is necessarily equal to 0, implying that ∑ j i=1 k i = 0 and n = 0. From the Poisson resummation formula (12) then we infer 14) is the trading of the original sum over k from 1 to q in the LHS for the integral over k from 0 to q in the RHS, which is valid provided that r(l 1 + . . . + l j )/2 < q.

∑ q k=1 f (k) = f (0) = ∫ q 0 f (x)dx; that is, for b p/q (k) = ( 2 sin(πkp/q) ) r , 1 q q ∑ k=1 b p/q l 1 (k)b p/q l 2 (k+1) . . . b p/q l j (k+j-1) = 1 q ∫ q 0 b p/q l 1 (k)b p/q l 2 (k+1) . . . b p/q l j (k+j-1)dk (14) What has been achieved in (
We can easily check that the trigonometric integral yields the binomial multiple sum (3) in the r = 2 case, or more generally (11) in the r even case. The integral is essentially evaluated in the last line of (13) for n = 0, which implies

∑ j i=1 k i = 0. We obtain 1 q ∫ q 0 b p/q l 1 (k)b p/q l 2 (k + 1) . . . b p/q l j (k + j -1)dk = ∫ 1 0 dt j ∏ i=1 ( 2 sin ( πt + π(i -1)p/q ) ) rl i = rl 1 /2 ∑ k 1 =-rl 1 /2
. . .

rl j /2 ∑ k j =-rl j /2 δ ( j ∑ i=1 k i ) j ∏ i=1 ( rl i rl i /2 + k i ) e 2iπ ∑ j i=1 (i-1)k i p/q (15)
The change of integration from (1/q) ∫ q 0 dk to ∫ 1 0 dt in the variable t = kp/q in the first line is justified since r(l 1 + . . . + l j ) is even and the integrand has period 1 in t. To reproduce the A-expansion with exponential factors e iπAp/q in the binomial multiple sums (3) and (11), we denote by A the coefficient 2 ∑ j i=1 (i -1)k i of iπp/q appearing in the exponential of the last line in (15). We also need to enforce the Kronecker δ constraint in the summation variables k i . The resulting system of two equations, ∑ j i=1 k i = 0 and A = 2 ∑ j i=1 (i -1)k i , can be readily solved for, e.g., k 1 and k 2 , to yield

k 1 = -A/2 + j ∑ i=3 (i -2)k i , k 2 = A/2 - j ∑ i=3 (i -1)k i
Finally, changing summation variables from k i to -k i and noting that each binomial is invariant under changing the sign of k i , we obtain

1 q q ∑ k=0 b p/q l 1 (k)b p/q l 2 (k + 1) . . . b p/q l j (k + j -1) = (g-1)r⌊(l 1 +...+l j ) 2 /4⌋ ∑ A=-(g-1)r⌊(l 1 +...+l j ) 2 /4⌋ in steps of 2 e iπAp/q rl 3 /2 ∑ k 3 =-rl 3 /2
. . .

rl j /2 ∑ k j =-rl j /2
(16)

( rl 1 rl 1 /2 + A/2 + ∑ j i=3 (i -2)k i )( rl 2 rl 2 /2 -A/2 - ∑ j i=3 (i -1)k i ) j ∏ i=3 ( rl i rl i /2 + k i )
i.e., precisely (11) but now valid for r even and r odd, with a specific A-summation dictated by the condition that in (16) the first two binomial entries

rl 1 /2 + A/2 + ∑ j i=3 (i -2)k i and rl 2 /2 -A/2 - ∑ j i=3 (i -1)k i take integer values for all k i ∈ [-rl i /2, rl i /2], i = 3, .
. . , j, as was the case in (15) for the first two binomial entries

rl 1 /2 + k 1 and rl 2 /2 + k 2 for all k 1 ∈ [-rl 1 /2, rl 1 /2] and k 2 ∈ [-rl 2 /2, rl 2 /2].
It follows that in the case r even, where the k i 's are all integers, A has to be even, and in the case r odd, where the k i 's are either integers or half integers, l 1 + l 2 + . . . + l j has to be even and A of the same parity as l 1 + l 3 + . . . (or l 2 + l 4 + . .

.). In both cases this boils down to

A ∈ [-(g -1)r⌊(l 1 + . . . + l j ) 2 /4⌋, (g -1)r⌊(l 1 + . . . + l j ) 2 /4⌋ ] in steps of 2.
We can express the A-binomial block in (16) in an integral form by augmenting the LHS to the double integral

1 2 ∫ 1 0 dt ∫ 2 0 dt ′ ∏ j i=1 ( 2 sin(πt + π(i -1)t ′ ) ) rl i δ(p/q -t ′ ) and using 2 ∑ ∞ n=-∞ δ(p/q -t ′ -2n) = ∑ ∞ A=-∞ e iπA(p/q-t ′ ) to get 1 2 ∫ 2 0 dt ′ ∫ 1 0 dt j ∏ i=1 ( 2 sin ( πt + π(i -1)t ′ ) ) rl i e iπAt ′ (17) = rl 3 /2 ∑ k 3 =-rl 3 /2 • • • rl j /2 ∑ k j =-rl j /2 ( rl 1 rl 1 /2 + A/2 + ∑ j i=3 (i -2)k i )( rl 2 rl 2 /2 -A/2 - ∑ j i=3 (i -1)k i ) j ∏ i=3 ( rl i rl i /2 + k i )
In the multiple sum of the RHS A is constrained as above, depending on r being even or odd. However, the integral in the LHS is valid for all integer values of A, yielding zero for the values that do not appear in the RHS.

Triangular generalization: b

p/q (k) = ( 2 sin(πkp/q) )( 2 sin(π(k + 1)p/q) ) . . . ( 2 sin(π(k + r -1)p/q) )
We can proceed in exactly the same way for triangular-like spectral functions of the type

b p/q (k) = ( 2 sin(πkp/q) )( 2 sin(π(k + 1)p/q) ) . . . ( 2 sin(π(k + r -1)p/q) ) . Again • q → ∞ recovers the overall counting ∫ 1 0 ( 2 sin(πs) ) rl 1 +rl 2 +...+rl j ds = ( r(l 1 + l 2 + . . . + l j ) r(l 1 + l 2 + . . . + l j )/2
) as in (10), so we still focus on sets of l i 's such that r(l 1 + l 2 + . . . + l j ) is even, again ensuring the q-periodicity of the functions at hand

• The rewriting of the trigonometric sum as a trigonometric integral proceeds along the same lines as in (13) under the same condition r(l 1 + . . . + l j )/2 < q since the sole input in this condition is the highest power of e iπkp/q that appears in b p/q (k) given by (7), which happens to be again r

Triangular chiral walks

r = 2: b p/q (k) = ( 2 sin(πkp/q) )( 2 sin(π(k + 1)p/q) )
Following the same steps as in 2.1, we can rewrite the trigonometric sum corresponding to b p/q (k) = ( 2 sin(πkp/q) )( 2 sin(π(k + 1)p/q) ) as the simple integral

1 q q ∑ k=1 b p/q l 1 (k)b p/q l 2 (k + 1) . . . b p/q l j (k + j -1) = ∫ 1 0 dt ( 2 sin ( πt ) ) l 1 j ∏ i=2 ( 2 sin ( πt + π(i -1)p/q ) ) l i-1 +l i ( 2 sin ( πt + πjp/q ) ) l j ( 18 
)
provided that l 1 + . . . + l j < q.

Integrating (18) leads to the appropriate deformation of the binomial multiple sum (3) for the spectral function b p/q (k) =

( 2 sin(πkp/q) )( 2 sin(π(k + 1)p/q) ) , a deformation which could also have been directly guessed by simple manipulations: in (1) the integer l 1 is associated with the index k, l 1 + l 2 with k + 1, l 2 + l 3 with k + 2, etc. This leads to6 

1 q q ∑ k=1 b p/q l 1 (k)b p/q l 2 (k + 1) . . . b p/q l j (k + j -1) = ∫ 1 0 dt ( 2 sin ( πt ) ) l 1 j ∏ i=2 ( 2 sin ( πt + π(i -1)p/q ) ) l i-1 +l i ( 2 sin ( πt + πjp/q ) ) l j = ⌈(l 1 +...+l j ) 2 /2⌉+(g-2)⌊(l 1 +...+l j ) 2 /2⌋ ∑ A=-⌈(l 1 +...+l j ) 2 /2⌉-(g-2)⌊(l 1 +...+l j ) 2 /2⌋
A same parity as l 1 +l 2 +...+l j e iπAp/q (l 2 +l 3 )/2

∑ k 3 =-(l 2 +l 3 )/2
. . .

(l j-1 +l j )/2 ∑ k j =-(l j-1 +l j )/2 l j /2 ∑ k j+1 =-l j /2 ( l 1 l 1 /2 + A/2 + ∑ j+1 i=3 (i -2)k i )( l 1 + l 2 (l 1 + l 2 )/2 -A/2 - ∑ j+1 i=3 (i -1)k i ) × j ∏ i=3 ( l i-1 + l i (l i-1 + l i )/2 + k i )( l j l j /2 + k j+1 ) (19) 
We note that A in the summation (19) spans the interval [-⌈(l 1 + . . .

+ l j ) 2 /2⌉ -(g - 2)⌊(l 1 + . . . + l j ) 2 /2⌋, ⌈(l 1 + . . . + l j ) 2 /2⌉ + (g -2)⌊(l 1 + . . . + l j ) 2 /2⌋
] increasing by steps of 2, which in particular implies that A is of the same parity as l 1 + l 2 + . . . + l j .

r = 3: b

p/q (k) =
( 2 sin(πkp/q) )( 2 sin(π(k + 1)p/q) )( 2 sin(π(k + 2)p/q) ) with l 1 + . . . + l j even

Similarly to the previous cases one can rewrite the r = 3 triangular trigonometric sum as the simple integral

1 q q ∑ k=1 b p/q l 1 (k)b p/q l 2 (k + 1) . . . b p/q l j (k + j -1) = ∫ 1 0 dt ( 2 sin ( πt ) ) l 1 ( 2 sin ( πt + πp/q ) ) l 1 +l 2 j ∏ i=3 ( 2 sin ( πt + π(i -1)p/q ) ) l i-2 +l i-1 +l i × ( 2 sin ( πt + πjp/q ) ) l j-1 +l j ( 2 sin ( πt + π(j + 1)p/q ) ) l j
provided that 3(l 1 + . . . + l j )/2 < q.

Likewise one obtains the binomial multiple sum7 

1 q q ∑ k=1 b p/q l 1 (k)b p/q l 2 (k + 1) . . . b p/q l j (k + j -1) = ∞ ∑
A=-∞ A same parity as l 1 +l 3 +... or l 2 +l 4 +...

e iπAp/q (l 1 +l 2 +l 3 )/2 ∑ k 3 =-(l 1 +l 2 +l 3 )/2 . . . (l j-2 +l j-1 +l j )/2 ∑ k j =-(l j-2 +l j-1 +l j )/2 (l j-1 +l j )/2 ∑ k j+1 =-(l j-1 +l j )/2 l j /2 ∑ k j+2 =-l j /2 ( l 1 l 1 /2 + A/2 + ∑ j+2 i=3 (i -2)k i )( l 1 + l 2 (l 1 + l 2 )/2 -A/2 - ∑ j+2 i=3 (i -1)k i ) × j ∏ i=3 ( l i-2 + l i-1 + l i (l i-2 + l i-1 + l i )/2 + k i )( l j-1 + l j (l j-1 + l j )/2 + k j+1 )( l j l j /2 + k j+2 ) ( 20 
)
where A has to be of the same parity as l 1 + l 3 + . . . (or l 2 + l 4 + . . .) and obviously a finite range. The cases r = 4 and beyond are treated in the Appendix.

Algebraic area enumeration

From the obtained trigonometric identities and the cluster coefficient (9) we can retrieve algebraic area enumeration formulae for various random lattice walks. For example, from (16) for b p/q (k) = ( 2 sin(πkp/q) ) r with r even and g-exclusion, (9) becomes b(n) = gn (g-1)r⌊n 2 /4⌋ ∑

A=-(g-1)r⌊n 2 /4⌋

A even e iπAp/q ∑ l 1 ,l 2 ,...,l j g-composition of n c g (l 1 , l 2 , . . . , l j ) (21)

rl 3 /2 ∑ k 3 =-rl 3 /2
. . .

rl j /2 ∑ k j =-rl j /2 ( rl 1 rl 1 /2 +A/2 + ∑ j i=3 (i -2)k i )( rl 2 rl 2 /2 -A/2 - ∑ j i=3 (i -1)k i ) j ∏ i=3 ( rl i rl i /2 + k i )
with overall counting, given by replacing e iπAp/q by 1 ( gn n

)( rn rn/2 ) ( 22 
)
This reproduces the area counting of various types of square walks. Note that the second binomial in (22), as initially discussed in (4) and displayed in the various overall counting cases of subsection (2.1), results from the trigonometric sums replacing e iπAp/q by 1 in the limit q → ∞, whereas the first one results from the summation of the exclusion weight coefficients c g over all g-compositions of the integer n.

Square lattice walks: b

p/q (k) = ( 2 sin(πkp/q) ) 2
As already stated, the standard square lattice walks are specifically g = 2 and r = 2 and are defined in terms of the Hamiltonian [3]

H = (1 -u)v + v -1 (1 -u -1 )
where u and v respectively stand for the right and up hopping operators on the lattice, with commutation vu = q uv, where q = e iΦ = e i2πp/q is the noncommutativity parameter encoding the presence of the magnetic field perpendicular to the lattice, with Φ the magnetic flux per plaquette. We recover the Hofstadter spectral function as

b p/q (k) = (1 -q -k )(1 -q k ) = ( 2 sin(πkp/q) ) 2
The Hamiltonian describes a random walk with elementary steps up, right followed by up, down, and down followed by left. It means that starting from the origin (0, 0) it reaches after one step the lattice points (0, 1), (1, 1), (0, -1) or (-1, -1) with equal probability. This generates deformed walks on the square lattice (see Fig. 1) which are equivalent through a modular transformation to the usual square lattice walks. (This modular transformation amounts to the transformation u → -uv, which leaves the u, v commutation relation unchanged and turns 21) then yields the desired algebraic area counting [START_REF] Ouvry | The algebraic area of closed lattice random walks[END_REF] b

H into u + v + u -1 + v -1 .) b(n) in (
(n) = 2⌊n 2 /4⌋ ∑ A=-2⌊n 2 /4⌋
A even e iπAp/q C 2n (A)

where [START_REF] Ouvry | The algebraic area of closed lattice random walks[END_REF] is via the weighting factor q algebraic area , where q = e 2iπp/q , so here, with e iπAp/q appearing in (21), the algebraic area is A/2.

C 2n (A) = 2n ∑ l 1 ,l 2 ,...,l j 2-composition of n c 2 (l 1 , l 2 , . . . , l j ) (23) l 3 ∑ k 3 =-l 3 . . . l j ∑ k j =-l j ( 2l 1 l 1 + A/2 + ∑ j i=3 (i -2)k i )( 2l 2 l 2 -A/2 - ∑ j i=3 (i -1)k i ) j ∏ i=3 ( 2l i l i + k i ) with A even in the interval [-2⌊n 2 /4⌋,

Square lattice walks: b

p/q (k) = ( 2 sin(πkp/q) ) 4
Let us now look at square lattice walks with g = 2 and r = 4 which are defined in terms of the Hamiltonian

H = (u + u -1 ) 2 v + v -1 (u + u -1 ) 2 (24) 
The corresponding spectral function

b p/q (k) = (q k + q -k ) 4 = ( 2 cos(2πkp/q) ) 4
can be put in the standard form (6) for r = 4 by redefining u → iu and q → √ q, which does not affect the counting of walks nor the area weighting.

The Hamiltonian (24) describes a random walk with elementary steps in groups of one random step up or down and two independent random steps right or left. It means that starting from the origin (0, 0) it reaches after one step the lattice points (2, 1), (-2, 1), (2, -1) or (-2, -1) with probability 1/8, or the lattice points (1, 0) or (-1, 0) with probability 1/4. The same walk can be described as a particle hopping on an even or odd square sublattice, where even points are those with x and y coordinates adding to an even integer, the remaining being odd. The walk proceeds randomly on one of the sublattices but at each step it has the option to move to the nearest up or down point of the opposite sublattice, with each such jump contributing a factor of two in the weight of the walk. The Hamiltonian (24) counts the weighted number of such closed walks of a given total area. There are

( 2n n )( 4n 2n
) such closed walks of length 2n, as in ( 22). The enumeration of such walks enclosing a given algebraic area, with the proper weight, is given by (21):

b(n) = 4⌊n 2 /4⌋ ∑ A=-4⌊n 2 /4⌋
A even

e iπAp/q C ′ 2n (A)
where

C ′ 2n (A) = 2n ∑ l 1 ,l 2 ,...,l j 2-composition of n c 2 (l 1 , l 2 , . . . , l j ) 2l 3 ∑ k 3 =-2l 3 . . . 2l j ∑ k j =-2l j ( 4l 1 2l 1 +A/2 + ∑ j i=3 (i -2)k i )( 4l 2 2l 2 -A/2 - ∑ j i=3 (i -1)k i ) j ∏ i=3 ( 4l i 2l i + k i ) with A even in the interval [-4⌊n 2 /4⌋, 4⌊n 2 /4⌋]. C ′ 2n ( 
A) counts the number of closed square lattice walks described above of length 2n and enclosing an algebraic area A/2.

Square lattice walks: b

p/q (k) = ( ( 2 sin(πkp/q) )( 2 sin(π(k+1)p/q) ) ) 2
Now consider square lattice walks with g = 2 and r = 4 defined by the Hamiltonian

H = (u + u -1 )v(u + u -1 ) + (u + u -1 )v -1 (u + u -1 ) (25) 
The spectral function can be brought to the standard form (8) for r = 4 by an appropriate redefinition of u → -iu

b p/q (k) = ( 2 sin(πkp/q) ) 2 ( 2 sin(π(k + 1)p/q) ) 2
Its treatment is given in the subsection 6.2 of the Appendix.

This walk proceeds with sets of one step left or right, one step up or down and another step left or right. With an appropriate redefinition of u and v (modular transformation) this walk can also be mapped to a walk proceeding on odd or even square sublattices, as in the last subsection, but now the weight of jumping on the opposite sublattice is not 2, as before, but rather Q + Q -1 . So in this description the weight of the walks depends explicitly on Q, unlike any other walk we encountered before.

There are again

( 2n n )( 4n 2n
) such closed walks of length 2n.The enumeration of such walks enclosing a given algebraic area, with the proper weight, is given by

b(n) = ∞ ∑ A=-∞ A even e iπAp/q C ′′ 2n (A)
where

C ′′ 2n (A) = 2n ∑ l 1 ,l 2 ,...,l j 2-composition of n c 2 (l 1 , l 2 , . . . , l j ) l 2 +l 3 ∑ k 3 =-(l 2 +l 3 ) . . . l j-1 +l j ) ∑ k j =-(l j-1 +l j ) l j ∑ k j+1 =-l j ( 2l 1 l 1 +A/2 + ∑ j+1 i=3 (i -2)k i )( 2(l 1 + l 2 ) l 1 + l 2 -A/2 - ∑ j+1 i=3 (i -1)k i ) × j ∏ i=3 ( 2(l i-1 + l i ) l i-1 + l i + k i )( 2l j l j + k j+1 ) ( 26 
)
C ′′ 2n (A) counts again the weighted number of closed square lattice walks described above of length 2n enclosing an algebraic area A/2. It differs from the corresponding number (25) only in the weighting factor when jumping sublattices.

Triangular lattice chiral walks: b

p/q (k) = ( 2 sin(πkp/q) )( 2 sin(π(k+ 1)p/q) )
From ( 19) for the triangular spectral function (7) with r = 2 and g-exclusion we obtain

b(n) = gn ⌈n 2 /2⌉+(g-2)⌊n 2 /2⌋ ∑ A=-⌈n 2 /2⌉-(g-2)⌊n 2 /2⌋ A same parity as n e iπAp/q ∑ l 1 ,l 2 ,...,l j g-composition of n c g (l 1 , l 2 , . . . , l j ) (l 2 +l 3 )/2 ∑ k 3 =-(l 2 +l 3 )/2 . . . (l j-1 +l j )/2 ∑ k j =-(l j-1 +l j )/2 l j /2 ∑ k j+1 =-l j /2 ( l 1 l 1 /2 + A/2 + ∑ j+1 i=3 (i -2)k i )( l 1 + l 2 (l 1 + l 2 )/2 -A/2 - ∑ j+1 i=3 (i -1)k i ) × j ∏ i=3 ( l i-1 + l i (l i-1 + l i )/2 + k i )( l j l j /2 + k j+1 ) (27) 
with overall counting given by replacing e iπAp/q by 1 ( gn n

)( 2n n 
)

Triangular g = 3 lattice chiral walks correspond to the quantum Hamiltonian

H = i(-u + u -1 ) v + v -2
with spectral function

b p/q (k) = ( 2 sin(2πkp/q) )( 2 sin(2π(k + 1)p/q) )
as already given in [START_REF] See E.G | Bijective counting of Kreweras walks and loopless triangulations[END_REF]. They are depicted in Figs. 234(see [START_REF] Ouvry | Exclusion statistics and lattice random walks[END_REF] for more details; these walks are the generalization to four quadrants of the Kreweras walks [START_REF] See E.G | Bijective counting of Kreweras walks and loopless triangulations[END_REF]). Since the exclusion parameter is g = 3 the counting above reduces to ( 3n n, n, n ) which is the number of closed triangular lattice chiral walks of length 3n. The cluster coefficient (27) then yields the triangular lattice chiral walks algebraic area counting

b(n) = n 2 ∑ A=-n 2 A in steps of 2 e iπAp/q C 3n (A)
where

C 3n (A) = 3n ∑ l 1 ,l 2 ,...,l j 3-compositions of n c 3 (l 1 , l 2 , . . . , l j ) (l 2 +l 3 )/2 ∑ k 3 =-(l 2 +l 3 )/2 . . . (l j-1 +l j )/2 ∑ k j =-(l j-1 +l j )/2 l j /2 ∑ k j+1 =-l j /2 ( l 1 l 1 /2 + A/2 + ∑ j+1 i=3 (i -2)k i )( l 1 + l 2 (l 1 + l 2 )/2 -A/2 - ∑ j+1 i=3 (i -1)k i ) × j ∏ i=3 ( l i-1 + l i (l i-1 + l i )/2 + k i )( l j l j /2 + k j+1 ) (28) 
with A in the interval [-n 2 , n 2 ] with same parity as n.

C 3n (A) counts the number of closed triangular lattice chiral walks of length 3n enclosing an algebraic area A. Indeed, the mapping of triangular algebraic area-quantum triangular Hamiltonian discussed in [START_REF] Ouvry | Exclusion statistics and lattice random walks[END_REF] is via q algebraic area where q = e 2iπp/q . Since in b p/q (k) of (7) the building block 2 sin(πkp/q) is used, rather than 2 sin(2πkp/q) as in ( 5), we end up with e iπAp/q in (27) in place of e 2iπAp/q , so that the algebraic area is A. One can directly check by explicit enumeration that when n is odd A is also odd (see, e.g., n = 1 with 3 walks of algebraic area 1 and 3 walks of algebraic area -1) and when n is even A is also even (as in n = 2, with algebraic areas 0, ±2 and ±4).

We conclude our discussion of algebraic area counting by remarking that it was possible to extract explicit expressions in terms of binomial sums for C 2n (A) in (23), C ′ 2n (A) in (25) and C 3n (A) in (28) from the cluster coefficients (21) or (27) because the summation constraints over A in the relevant binomial multiple sums (16) with r = 2, 4 (A even) or (19) with r = 2 (A same parity as l 1 + l 2 + . . . + l j ), as well as the summation ranges, depend only on l 1 + l 2 + . . . + l j = n and not on the individual l i 's. Similar expressions would apply for walks deriving from odd r binomial sums, like (16) or (20), provided that the binomials appearing in the expressions are understood to vanish for values of A leading to noninteger entries, as discussed after (16).

It is a curious fact that if, in the binomial multiple sums or the cluster coefficients, we sum over all integer values of A without restrictions, and analytically continue the binomials to fractional values using gamma functions, the resulting infinite sums are closely related to the finite ones over the allowed values of A. This point is detailed and explained in the subsection 6.3 of the Appendix. Considering, for example, the binomial multiple sum (16), this means in particular that for even r and any set of l i 's, the cumulative sum of the infinite sequence of coefficients of odd A, which are rational numbers times 1/π 2 , converges to the standard binomial counting ( r(l 1 +l 2 +...+l j ) r(l 1 +l 2 +...+l j )/2

) .

that happens to lead to such occurrences. The interpretation of b(n) as the generating function of algebraic area enumerations of actual lattice walks, however, leads to the emergence of these Apéry-like numbers as specific weighted sums of random walks.

4.1 Apéry-like numbers g = 2 and r = 2 : b p/q (k) = ( 2 sin(πkp/q) ) 2

Let us consider 9 b(n) in (21). For g = 2 and r = 2 it gives, for n = 1, 2, 3, . . .

p/q = 1 ⇒ b(n) = ( 2n n 
) 2 ⇔ closed square lattice walks counting 

p/q = 1/2 ⇒ b(n) = 4,
)( 2k k )( 2n -2k n -k ) = [n/2] ∑ k=0 4 n-2k ( n 2k )( 2k k ) 2
with recurrence relation

(n + 1) 2 b(n + 1) - ( 12n(n + 1) + 4 ) b(n) + 32n 2 b(n -1) = 0
The above Apéry-like numbers appear as alternating sums of square lattice random walks, weighted by the parity of their area.

4.2 Apéry-like numbers g = 2 and r = 1 : b p/q (k) = 2 sin(πkp/q)

Let us still focus on (21) but now for g = 2 and r = 1, with n necessarily even10 . We find, for n = 2, 4, 6, . . . 

p/q = 1 ⇒ b(n) = (-1) n/2 ( n n/2 ) 2 p/q = 1/2 ⇒ b(n) = 4,
)( 2k k )( n -2k n/2 -k ) 9
Or equivalently, using ( 14)

b(n) = gn ∑ l 1 ,l 2 ,...,l j g-composition of n c g (l 1 , l 2 , . . . , l j ) ∫ 1 0 dt j ∏ i=1 ( 2 sin ( πt + π(i -1)p/q ) ) rli
These are Apéry-like numbers ζ(2) sequence OEIS A006077

[n/3] ∑ k=0 (-1) k 3 n-3k ( n 3k )( 2k k )( 3k k ) = [n/3] ∑ k=0 (-1) k 3 n-3k ( n n -3k, k, k, k ) with recurrence relation (n + 1) 2 b(n + 1) + ( 9n(n + 1) + 3 ) b(n) + 27n 2 b(n -1) = 0
We see that now Apéry-like numbers emerge as sums of random walks weighted by a phase e i2πA/3 with A the area of the walk in fundamental triangles, which reflects the triangular, rather than square, nature of the walk.

Conclusions

The trigonometric identities analyzed in this work, as well as their generalizations to other spectral functions that can be derived along the lines presented here, allow us to obtain expressions for the algebraic area counting of a broad set of random walks on two-dimensional lattices. The only requirement is that these walks be described by a Hamiltonian of the general form introduced in [START_REF] Ouvry | Exclusion statistics and lattice random walks[END_REF], admitting an interpretation as systems of generalized exclusion statistics with specific spectral functions. A wide class of lattice walk models can be embedded into this framework, and we gave a few examples in the present work, most notably the triangular chiral walk introduced originally in [START_REF] Ouvry | Exclusion statistics and lattice random walks[END_REF]. Using our present results we were able to derive the algebraic area counting formula for this chiral triangular walk.

The most obvious and interesting extension of our results would be in obtaining the area counting of other, more general types of walks. From the algebraic point of view, an immediate choice presents itself: the Hamiltonian

H m = (u + u -1 ) m v + v -1 (u + u -1 ) m , m = 1, 2, . . .
describes a class of Hofstadter-like models representing generalized random walks on the square lattice, with m = 1 the standard (Hofstadter) random walk and m = 2 the walk studied in subsection 3.2. The model for general m represents a walk that proceeds in groups of one random step up or down and then m independent random steps left or right, but other representations are possible by performing modular transformations to the lattice (or redefinitions of the u, v operators in the Hamiltonian). All these walks belong to the class of g = 2 exclusion statistics and their area counting is readily given by the relevant g = 2 cluster coefficients and generalized trigonometric sums.

Clearly this is just the tip of a large iceberg as far as lattice walk models are concerned. For instance, another class of walks at g = 2 would be described by the Hamiltonian

Hm = (u m + u m-1 + • • • + u -m )v + v -1 (u m + u m-1 + • • • + u -m )
This represents walks proceeding with a random step up or down to one of the 2m + 1 neighboring points in the left-right direction of distance up to m from the original horizontal position with equal probability. Again, the combinatorics of these walks are readily obtained with our methods. Yet other walks can be constructed, with asymmetrical propagation rules and belonging to higher g statistics. The only limitation, or criterion, is the potential relevance and physical significance of these walks, and this remains an open field of investigation. In particular, an adaptation of the methods of [START_REF] Ouvry | Exclusion statistics and lattice random walks[END_REF] and of the present work for walks on a hexagonal lattice, with or without chirality, would be of considerable physical interest, as such models would provide a description of the motion of electrons on graphene in the tight-binding electron-atom regime in the presence of a magnetic field, perhaps with additional chiral dynamics. This is a line of investigation with substantial potential physical payoff.

The emergence of Apéry-like numbers within the mathematical structure of these walks is another intriguing but obscure issue. At the present level of our understanding this is something of a mystery, or curiosity. It would be satisfying to have a better understanding of the relation between random walks and Apéry numbers, with an eye to possible applications in the mathematics of ζ-functions and/or statistical models.

Finally, the Hamiltonians H m and Hm presented above are all Hermitian and thus have a real spectrum, generalizing the corresponding spectrum of the Hofstadter model that leads to the celebrated "butterfly" fractal structure. It is expected that the spectrum of all the above models will have a similarly fractal structure, and preliminary numerical investigations confirm this fact. The shape and eigenvalue statistics of the spectrum of these generalized models are nontrivial deformations of the basic Hofstadter butterfly and their properties are an intriguing topic for further research.

1 q q ∑ k=1 b p/q l 1 (k)b p/q l 2 (k + 1) . . . b p/q l j (k + j -1) = ∞ ∑ A=-∞ A same parity r(l 1 +l 2 +...+l j )/2 e iπAp/q r(l 2 +l 3 )/4 ∑ k 3 =-r(l 2 +l 3 )/4 . . . r(l j-1 +l j )/4 ∑ k j =-r(l j-1 +l j )/4 rl j /4 ∑ k j+1 =-rl j /4 ( rl 1 /2 rl 1 /4 + A/2 + ∑ j+1 i=3 (i -2)k i )( r(l 1 + l 2 )/2 r(l 1 + l 2 )/4 -A/2 - ∑ j+1 i=3 (i -1)k i ) j ∏ i=3 ( r(l i-1 + l i )/2 r(l i-1 + l i )/4 + k i )( rl j /2 rl j /4 + k j+1 )

Regarding (16): summing over A odd when r is even

So far one has considered the r(l 1 + l 2 + . . . + l j ) even cases so that the q → ∞ limit in the trigonometric sum (1) yields an overall binomial counting which is an integer and contributes as such to the overall counting of closed lattice walks. We have seen that this trigonometric sum can be rewritten as a multiple binomial sum of the type (16) or (19) with some constraints on the evenness or oddness of the A's (and additionnally of l 1 + l 2 + . . . + l j in the case r odd). In the r(l 1 + l 2 + . . . + l j ) odd cases, on the other hand, (1) would not rewrite anymore as a multiple binomial sum.

Still, and quite generally, one could take the binomial multiple sums (16) (and likewise (19)) at face value for all possible entries A even or odd and l 1 + l 2 + . . . + l j even or odd. In the r even case we already know that the A even summation in (16) has a finite range and yields the overall integer counting binomial. The A odd summation happens to yield again the same overall binomial but with each term in the sum a rational number times 1/π 2 and an infinite summation range. The 1/π 2 factor comes from the first two binomials in (16) due the relaxation of the constraint that their entries be integers (since A is now odd). Likewise in the r odd case, when l 1 + l 2 + . . . + l j is even, we already know that A even or odd summations, depending on the parity of l 1 + l 3 + . . ., have a finite range and yield the usual overall integer counting binomial; it is still true that summing over A even with l 1 + l 3 + . . . odd or on A odd with l 1 + l 3 + . . . even would yield the same overall counting binomial with again terms 1/π 2 times rational numbers and an infinite summation range. Finally when both r and l 1 + l 2 + . . . + l j are odd, A even and odd summations have finite range to yield the overall binomial which is in this case 1/π times a rational number. In all these instances the coefficients sum up to ( r(l 1 +l 2 +...+l j ) r(l 1 +l 2 +...+l j )/2

) for both A even or odd summations, with finite or infinite ranges depending on the situation.

To better understand these weird A-summations, let us first focus on the regular Asummations and consider the RHS of (17) i.e., the binomial multiple sum

rl 3 /2 ∑ k 3 =-rl 3 /2 • • • rl j /2 ∑ k j =-rl j /2 ( rl 1 rl 1 /2 + A/2 + ∑ j i=3 (i -2)k i )( rl 2 rl 2 /2 -A/2 - ∑ j i=3 (i -1)k i ) j ∏ i=3 ( rl i rl i /2 + k i )
One wishes to go backward and get the double integral in the LHS of (17), which, when summed over A, directly yields the overall counting binomial ( r(l 1 + l 2 + . . . + l j ) r(l 1 + l 2 + . . . + l j )/2

)
For simplicity let us consider the case r even: since r is even, all the k i 's i = 3, . . . , j are integers, and since we know that A has then to be even (see below ( 16)), in the first two binomials both rl 1/2 + A/2 + ∑ j i=3 (i -2)k i and rl 2 /2 -A/2 -∑ j i=3 (i -1)k i are integers. Using that for an integer n and integer k

∫ 1 0 dte 2iπ(k-n)t is the Kronecker δ(k, n) meaning 12 ∞ ∑ k=-∞ k integer δ(k, n)f (k) = f (n)
we can rewrite these binomials as

( rl 1 rl 1 /2 + A/2 + ∑ j i=3 (i -2)k i ) = rl 1 /2 ∑ k 1 =-rl 1 /2 k 1 integer ∫ 1 0 dte 2iπ ( k 1 -(A/2+ ∑ j i=3 (i-2)k i ) ) t ( rl 1 rl 1 /2 + k 1 ) ( rl 2 rl 2 /2 -A/2 - ∑ j i=3 (i -1)k i ) = rl 2 /2 ∑ k 2 =-rl 2 /2 k 2 integer ∫ 1 0 dt ′ e 2iπ ( k 2 +A/2+ ∑ j i=3 (i-1)k i ) t ′ ( rl 2 rl 2 /2 + k 2 )
where the summations are restricted to [-rl 1 /2, rl 1 /2] and [-rl 2 /2, rl 2 /2] since there is no point to sum outside these intervals where the binomials trivially vanish. So the LHS of (17) becomes

rl 1 /2 ∑ k 1 =-rl 1 /2 k 1 integer • • • rl j /2 ∑ k j =-rl j /2 k j integer ∫ 1 0 dte 2iπ ( k 1 -(A/2+ ∑ j i=3 (i-2)k i ) ) t ∫ 1 0 dt ′ e 2iπ ( k 2 +A/2+ ∑ j i=3 (i-1)k i ) t ′ j ∏ i=1 ( rl i rl i /2 + k i )
12 From now on for clarity we explicitly specify summation indices to be integers or half integers. 

• U W U W V 2 • U 2 W 2 V 2

k

  i = qn and thus j ∑ i=1 k i = tq and n = tp

Figure 1 :Figure 2 :Figure 3 :

 123 Figure 1: The lattice in (3.1).

Figure 4 :

 4 Figure 4: U W U W V 2 and U 2 W 2 V 2 walks.

  20, 112, 676, 4304, 28496, . . . 

	These are the Apéry-like numbers ζ(2) sequence OEIS A081085
	n ∑	(	n
	k=0		k

  20, 112, 676, 4304, 28496, . . . 

	These are the same Apéry-like numbers as above
	n/2 ∑	( n/2
	k=0	k

This binomial counting can be easily checked by first summing over A and subsequently over the k i 's, redefining them appropriately; see[START_REF] Ouvry | The algebraic area of closed lattice random walks[END_REF].

For statistical mechanics considerations the g-cluster coefficient introduced in[START_REF] Ouvry | Exclusion statistics and lattice random walks[END_REF] is the expression in (9) multiplied by (-1) n-1 q/(gn).

With overall counting, obtained in the q → ∞ limit by replacing e iAp/q by 1:( 2(l 1 + l 2 + . . . + l j ) l 1 + l 2 + . . . + l j )

With overall counting, obtained by replacing e iπAp/q by 1:( 3(l 1 + l 2 + . . . + l j ) 3(l 1 + l 2 + . . . + l j )/2 )

This can be easily seen geometrically for lattice walks of length 2n with n even, which have largest possible area ±(n/2) 2 : this is the walk circling a square of side n/2 anti-clockwise or clockwise.

Apéry-like numbersWe finally turn to the occurrence of Apéry-like numbers in cluster coefficients (9) when evaluated at certain values of p/q. We consider b(n) as a stand-alone mathematical entity

n is necesseraly even because l 1 + l 2 + . . . + l j (which is equal to n) has to be even.
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now occurring for even n's. Indeed, cases r = 2 and (r = 1, n even) are essentially equivalent: calling n = 2n ′ for r = 1, then ( 2 sin(πkp/q) ) n=l 1 +l 2 +...+l j with l 1 , l 2 , . . . , l j a composition of n, is in fact ( (2 sin(πkp/q)) 2 ) l ′ 1 +l ′ 2 +...+l ′ j =n ′ with l ′ 1 , l ′ 2 , . . . , l ′ j a composition of n ′ , which is the r = 2 result.

4.3 Apéry-like numbers g = 2 and r = 4: b p/q (k) =

( 2 sin(πkp/q) ) 4

Let us again focus on b(n) in ( 21) but now for g = 2 and r = 4: we find, for n = 1, 2, 3, . . .

) 

)

with recurrence relation

These are, again, related to alternating sums of square random walks of the modified type defined in section 3.2.

4.4

Apéry-like numbers g = 3 and r = 2: b p/q (k) = ( 2 sin(πkp/q) )( 2 sin(π(k+ 1)p/q) )

Finally we focus 11 on b(n) in (27). We find, for g = 3 and n = 1, 2, 3, . . .

) ⇔ triangular lattice chiral walks counting

) if n multiple of 2 and 0 otherwise 

. . .

)

One notes that as in previous cases the binomial multiple sum (29) is nothing but the trigonometric integral

under the provision that 2(l 1 + . . . + l j ) < q.

Clearly for a general r the spectral function b

sin(π(k + r -1)p/q) ) can be treated along the same lines as in subsections (2.2.1) and (2.2.2) and above.

Another triangular chiral walks generalization:

b p/q (k) = ( 2 sin(πkp/q) ) r/2 ( 2 sin(π(k + 1)p/q) ) r/2 with r even When b p/q (k) = ( 2 sin(πkp/q) ) 2 we have seen that (3), rewritten as

) r and r is even to

. . .

) r/2 and r even to which is

i.e., since obviously

) rl i and calling t ′ -t = t", we obtain 13

We have to sum over A even: since

where the overall binomial counting has been obtained as expected. Now still assuming r being even, so that all the k i 's i = 3, . . . , j are integers, let us insist that the summation over A be on A odd so that both rl 1 /2

Using that for an half-integer n/2 and half integer k

13 Or equivalently as in the RHS of (17)

) rli e iπAt ′ we rewrite the same two binomials as

Doing the same manipulations as above except for the first two binomials the LHS of (17) then becomes

Summing over all A odd i.e., over A + 2k 2 even -since k 2 is an half integer-yields again a Kronecker enforcing t" = 0 so that after summation one obtains

Comparing with (30) we see that in order to get the same overall binomial counting everything boils down to showing that in the same way that obviously

should also hold.

To show this let us focus on the trivial identity (31) which is nothing but

or equivalently, harmlessly relaxing the range of k 1 , k 2 and k summations,

Let us to rederive it in an other way :

Thanks to the Chu-Vandermonde identity

we conclude that we indeed recover (32).

It is clear that the same conclusion can be reached when k 1 and k 2 are now both half integers namely

Indeed k 1 and k 2 being both half integers then k = k 1 + k 2 is again an integer so we can write

Thanks to the generalized Chu-Vandermonde identity

we reach indeed the identity (33) for the half integers summations. From which it directly follows that in the presence of the additional ( 2 cos(πt) ) r(l 3 +...+l j ) term integrating over t from 0 to 1 one ends up getting again the same overall binomial counting, as desired.