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This article describes the dynamics of a charged particle in an electromagnetic field in presence
of a scalar fifth force. Focusing to the fifth force that would be induced by a chameleon field, the
profile of which can be designed properly in the laboratory, it draws its physical effects on the
cyclotron motion of a particle in a static and uniform magnetic field. The fifth force induces a
drift of the trajectory that is estimated analytically and compared to numerical computations for
profiles motivated by the ones of a chameleon field within two nested cylinders. The magnitude
of the effect and the detectability of this drift are discussed to argue that this may offer a new
experimental design to test small fifth force in the laboratory. More important, at the macroscopic
level it induces a current that can in principle also be measured, and would even allow one to access
the transverse profile of the scalar field within the cavity. In both cases, aligning the magnetic field
with the local gravity field suppresses the effects of Newtonian gravity that would be several orders
larger than the ones of the fifth force otherwise and the Newtonian gravity of the cavity on the
particle is also argued to be negligible. Given this insight, this experimental set-up, with its two
effects — on a single particle and at the macroscopic level — may require attention to demonstrate

its actual feasability in the laboratory.

I. INTRODUCTION.

The search for a fifth force of nature has a long his-
tory [1-3] related to the developments of the theories of
gravitation beyond Newton and Einstein gravity. The
existence of a scalar interaction [4] has been revived by
the development of theories of gravitation beyond gen-
eral relativity since the existence of any new field may
lead to a new long range force, depending on the nature
of this new degree of freedom.

Within the framework of scalar-tensor theories of grav-
itation [5], the extra scalar degree of freedom, ¢, is char-
acterized by its potential V' (¢) and its coupling to matter
A(o), so that the action of the theory, in the Einstein
frame, is

2
5= [art v=g | PR 0r00,0 - V(o
_/d4m£m(§m,,matter)\/j§,

with Mp; the reduced Planck mass, R the Ricci scalar,
guv the Einstein frame metric, g its determinant and
L., the matter Lagrangian. The field couples non-
minimally to matter through the Jordan frame metric
Guv = A%(9) g, where A(9) is a universal coupling func-
tion.

(1)
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If this field is massless, or its Compton wavelength is
larger than the size of the Solar system, one can constrain
its effects thanks to the parameterized post-Newtonian
formalism [6, 7]. If the field is heavier, its action can
be well-described by a Yukawa deviation from Newto-
nian gravity. Such Yukawa deviations, composition in-
dependent or dependent, have been tested from the sub-
millimeter scales to the Solar system scales and cosmol-
ogy [8-12], with recent stringent constraints obtained
from the MICROSCOPE experiment [13, 14].

If the coupling is universal then the scalar-tensor the-
ory satisfies the weak equivalence principle. Besides,
among those theories of gravity, General Relativity and
Nordstrém theory which describes it by a scalar field in
flat spacetime, share the unique property to embody the
strong equivalence principle; see e.g. Ref. [15]. If the
coupling is not universal, then the weak equivalence prin-
ciple is violated and one expects a space-time variation
of the fundamental constants, that can be tested in their
own way [16-18]. Light scalar field models can survive
only if their coupling is extremely weak today, which can
be ensured in a large class of models by an attraction
mechanism toward general relativity during the cosmic
history [19, 20]. Another class of models, including the
symmetron [21] and the chameleon [22, 23] mechanisms,
enjoy a screening mechanism in which the coupling or the
mass of the field depends of the local matter density of
matter. It follows that the environment can suppress the
scalar force.

Many experimental set-ups have been proposed to
test the chameleon mechanism in the laboratory, see
Ref. [13, 24-27] for reviews. This includes atomic spec-
troscopy [28]; atom interferometry [29-34], Casimir force



measurement between plates [35, 36], that have exten-
sively been used to test the inverse square law on sub-
millimeter scales [37, 38]; the spectrum of ultra-cold neu-
trons in the Earth gravitational field [39, 40]; torsion bal-
ance experiments [41-43]; neutron interferometry [44].

Goal. The driving idea we want to investigate in this
article, is to use the environmental set-up to design the
profile of the scalar field inside the experiment, and hence
the one of the fifth force. To that end, we rely on the re-
sults we obtained recently [45, 46] to determine the prop-
agation of the chameleon field inside the MICROSCOPE
satellite experiment. Hence, we have been able to com-
pute the chameleon profiles (1) for one-dimensional sys-
tems made of parallel plates and (2) two-dimensional sys-
tems as inside a set of nested cylinders. Indeed when the
axes of the cylinders are parallel but not coincident, hence
shifted by d, the field distribution is no more cylindrically
symmetric. It follows that the fifth force will modify the
trajectory of any particle trapped between the cylinders.
It is important to stress that in the chameleon situation,
we can screen the experiment from the outside and de-
sign the profile of the fifth force inside the cavity. It will
depend on the geometry of the cavity, the density inside
the cavity and the parameters of the theory. This is a
major difference with a light dilaton. The idea is thus
to consider a charged particle in an electromagnetic field
and determine the effect of the fifth force. Then, the
system we shall consider is the trajectory of a particle
orbiting inside two cylinders, or two parallel walls. This
can be easily achieved thanks to a magnetic field. This
latter case may offer an interesting set-up to design an
experiment. The appendix give equations for the acceler-
ation of a particle by an electric field in a capacitor with
parallel walls, and adding a magnetic field, in order to
determine if the fifth force affects the Hall tension. As
we shall see, this does not offer an interesting method.

To that goal, we first derive in Section II the general
expression of the fifth force acting on a relativistic par-
ticle and its equation of motion in presence of an elec-
tromagnetic field; note that some subtleties concerning
the fifth force have to be considered. We shall then focus
in Section III on the case of a static and uniform mag-
netic field and study the effect of the fifth force on the
trajectory of the particle. As we shall explain, the fifth
force induces a drift of the cyclotron motion with an am-
plitude and direction that depends on the characteristics
of the fifth force. In Section IV we describe the macro-
scopic consequences of this drift. We will give estimates
in order to discuss whether this can be measured and we
will also compare it, in Section V, to the reaction force
arising from the radiation emitted by any charge parti-
cle. This will provide all the elements for discussion on
the possibility to use such a set-up as a new experiment
to constrain the existence of a fifth force. This analysis
provides the first elements to discuss this possibility but
also to estimate the possible effects of this scalar field on
the propagation of high energy charged particle in the

universe.

Set-up. While most of our results will not depend on
the specific choice of the coupling and the potential, let
us be more specific on the choices that will be used for
our numerics. We consider that the coupling function
and potential are of the form

An
A=efo/Mm = At <1 + ) (2)
¢n
where A is a mass scale, n a natural number and 5 a pos-
itive constant. It follows that the Klein-Gordon equation
involves an effective potential that depends on the local
the mass density p,

av.
6= 35

In our previous works, we have determined the profile of
the scalar field for two parallel walls and two nested coax-
ial cylinders [45, 46] and when their axes is shifted [46].
In the latter case, the profile is no more cylindrically sym-
metric so that a force appears between the two cylinders.
In this work, we consider the trajectory of a particle of
charge ¢ and mass m.

Let us emphasize that the electromagnetic field does
not modify the scalar field profile since external matter
enters the Klein-Gordon equation only by a coupling to
the trace of the stress-energy tensor through T'ln A(¢)
in the effective potential (3). We consider the Cartesian
basis (e, ey, €,) and cylindrical basis (e, eg, e ) aligned
with the magnetic field.

Vi =V(O)+ 0t ()

II. DYNAMICS OF A CHARGED PARTICLE

A. Fifth force.

Since the matter fields couple to the metric A%(¢)g,.
the equation of a point particle of mass m and charge ¢
derives from the action

Spp = —cQ/m(¢)\/—gWuMquT+q/Auu“dT (4)

where 7 is the proper time and u* the tangent vec-
tor to the worldline, i.e. w* = dX*/dr and satisfies
uyut = —c* and A, the potential vector. Since we are
considering particle, i.e. weakly self-gravitating bodies,
the mass function m(¢) reduces to mA(¢) with m con-
stant, the Jordan mass, such that particles with ¢ = 0
follow geodesic of the metric g,,,. The equation of motion
is

q y ,0InA
——F* 4 —mc
A(o) o

with yv* = «’V,u* = dut/dr is the 4-acceleration and
satisfies v*u, = 0, F,, = 0,4, — 0, A, the Faraday

me2yt =

L Nye  (5)



tensor, 1 ,,= g, + uuul,/c2 the projector on the 3-space

normal to u*, which indeed ensures that u*u, = —c%;
see e.g. Ref. [17]. Tt follows that the fifth force,
LG TR, (6)
Mp

remains perpendicular to the 4-velocity, u,F* = 0. In-
deed, this equation is 4-dimensional and we shall see be-
low that in the 3-dimensional langage, it is associated to
a non-vanishing work. 3, defined by

dln A
do ’

characterizes the sensitivity of the mass to a variation
of the scalar field; it is dimensionless. Clearly, in the
Galilean limit the projector plays no role. Note also that
the Lorentz force is proportional to ¢/A(¢), the factor A
arising from the fact that the Einstein mass is mA(¢).
From now on, we work in units in which ¢ = 1.

B(¢) = Mp

(7)

B. Equations of motion.

In the Newtonian limit g,, reduces to the Minkowski
metric 7,, and the geodesic is given in 3-dimensional
notations X* = (T, X). We define the 3-velocity and

J

3-acceleration as

dX dv
V= ar’ a = ar’ (8)
where we use the convention that V have coordinates V*
with ¢ = 1...3. With these notations (see Ref. [47] for
details), the scalar product is indeed a.V = d;;a'V7 and
we have

o dx° 1 . dxi Vi
Jiov2

u = = u = — =

dr vi=v?’ dr

with V2 = 5ijViVj and

o aV i1 @+ aV Vi
T a-ve T T 1oy 1-v2 )

The scalar force reduces to the Nordstrom force [4] (see
also § 10.3 of Ref. [47]) and, once the Faraday tensor is

decomposed as Fp; = —F;, Fj, = eijkBi with e;;r the
Levi-Civita symbol, the Lorentz force has components
A A
FY = ME,V, F = 4/A($) (E+V AB)

V1-V?2 V1-V?2

and the equation of motion (5) splits as

ma.V q/A(p) m V.V¢
= EV — — 10
1-v2)2 J1-V2 MP517V2, (10)
m aV  q/A() m (V.Vo)
1-V? <a+1—v2v>_\/1—V2[E+VAB]_MPB VerTwe V) -
respectively for the time and space components. Eq. (11) can be rewritten in a more compact form as
d mV q m (V.Vo)
— = E B|- —pv1-V?2 . 12
dT( ﬁ_VQ) A(¢)[ +V A B] MP/B\/ Vv (V¢>+ 1_V2V (12)

This form makes explicit the 3-momentum P = mV /v/1 — V2 so that the r.h.s. is just the sum of the 3-dimensional
form of the 2 forces, fom + f5. Note also that once multiplied by V and using Eq. (10), it takes a form closer to the

standard Newton third law,

ma _ g/A(@) ) o
RV e v [E+VAB—(EV)V] Mp BV . (13)

This provides the general relativistic equations of prop-
agation of a charged particle in an electromagnetic field
in presence of a fifth force.

C. Conservation of energy

For a static field with A* = (®g, A), it is easily
checked that Eq. (10), with use of the definition (7), im-

(

plies that

d [ mA(o) B
diT W+Q®E =0 (14)

for any static configuration of the fields, hence the con-
servation of the energy of the particle

mA(¢)

£ RN S,
Jiov2

+qPp. (15)



The point particle action is easily rewritten as [ £dT
defining the Lagrangian

L=—-mA(@p)\V1-V2+qAV —qDp (16)
from which we deduce the conjugate momenta

SRV (17)

VI—V?

Indeed, the Hamiltonian ‘H = w.V — L reduces to the
expression (29) of the energy or equivalently to

H = /m2A%(¢) + (7 — qA)2 + ¢Pg. (18)
As we shall see, the Lagrange equations

dm
d—T—Vﬁ

will provide additional conserved quantities once the
symmetries of the problem are specified.

III. PARTICLE IN A MAGNETIC FIELD

We now assume that the particle is subject to a static
and uniform magnetic field, parallel to the axis of the
cylinders, B = Be,. It follows that

1 1
A(r) = §B AT = §B’I"€9 (19)

and the cyclotron pulsation

qB
- 20
wo =T (20)

is of the order of

B m\
_ 7 -1
wo=9.5x10 Z(lT)( p) s, (21)

my, being the proton mass and Z the charge number.

A. Cyclotron motion

When the fifth force vanishes, the equations of motion
are easily integrated to give
du®3 du! 5 du? 1

dr odr wott dr wotk (22)

the solution of which is

Y = RpcoswoT,
w
T—Ty = 507. (23)

with Uz, Ty and Ry constants of integration and

X = RpsinwoT,
Z = Uva7

Q= -0 (24)

1+ R33+UZ

The charge travels on an helix of radius Ry and pitch
27Uz /wo about B with an angular velocity wq (the cy-
clotron frequency) when measured with its proper time
and  (the synchrotron frequency) when measured with
the coordinate time T' of the inertial frame. Note that
since V2 = (R3wg + U%)/(1 + R3w2 + U%) we have
Q = wov1—V2 We deduce that the Larmor radius
is given by

Ry = sin '(/}7 Uz = (25)

_Vv I A—
ooV - V2 Vi Y

1) being the pitch angle.

B. Conserved quantities

In the configuration considered here, the electric field
vanishes and the magnetic field has been chosen as B =
Be,, and the field configuration as ¢(z,y). It follows from
Eq. (13) that

ae,=0 (26)

so that V, remains constant. In the following we shall
assume V, = 0 so that the motion is reduced to a plane
perpendicular to z.

Then, Eq. (17) implies that the motion satisfies the
constraint

% =-—mA(p)V1—-V2dln A (27)

so that 7y, given by

g = mr> (Aﬁ(f)ga + ;WQ> ) (28)

can be identified with the angular momentum and con-
served if ¢ has an axial symmetry, i.e. if the fifth force is
radial. We also recall that the energy

£ = _mA(9) (29)

Jiov2

will be conserved.

C. Non-relativistic cyclotron motion.
1. Non-relativist equations
In the non-relativistic regime the equation of mo-

tion (13) reduces to

wo
a= vAe, — BV,
A(9) :
with ¢ = ¢/Mp. Even if the gradient of ¢ can be im-
portant, A remains close to unity because ¢ < 1 (see




Fig. 8 below for a concrete numerical example). So we
shall approximate the dynamics by
B
a=wyvAe, — Ve, with wy= q—, (30)
m

ie. A~ Ay = 1. We assume that the two cylinders
have axis parallel to e, so that the scalar field profile is
independent of z, i.e. ¢(x,y) or ¢(r,d) in either Cartesian
coordinates or cylindrical coordinates. Hence, we got the
system

i = woy — BctOup
{i/' — —wod — BRDyp (31)

It can trivially be checked that the conserved quantities
reduce to

1
E=(@+9°) + By =

1 )
5 5(7'“2 +720%) + Bty (32)

for the massic energy (29), that is indeed conserved and
the angular momentum per unit mass (28)

0, =12 <é + ;wo) (33)

is conserved only for cylindrically symmetric field config-
uration since

0, = Bcdye. (34)

2. Orders of magnitude.

To put some numbers, the pulsation is given by
Eq. (21) so that the radius of the trajectory in absence
of a fifth force is

E 1/2 m 1/2 B\
_ —4 0 e -1( L
po—vaxa0 () (1) (B)
(35)

8. Dynamics with no fifth force

We have already discussed the free motion in full gen-
erality. We just need to add the connection to the initial
conditions and consider a new description of the motion.

Assume that at ¢ = 0 the trajectory starts at (zo, yo)
with velocity (Vj cos a, Vy sin @), its equation is then

x = Z.+ Rosin (wot — «) (36)
Yy = Yo+ Rocos (wot — @)
with
. Tr. = 29+ Rpsina
Ry = Vp/wo, { e = yo— Rocosa (37)

Ry can be negative with our convention. This is indeed
trivial but it emphasizes that the center of the motion

is not the center of the coordinates system because the
magnetic force is not a central force. It is easily checked
that

1

1
- (1"3 — R%) wo, &= ingg

l, =
2

so that & = V?/2 gives the relation between the radius
of the orbit and the pulsation.
Since

Y |
g, T :
1 b
()7 = 212 (4 — o)
the minimum and maximum radius of the trajectory are
given by

(38)

2
_ i\/zg + Lowo + 20/E(E + Lowo)
wo

that satisfy ry —r_ = 2R as expected. Now, obviously
f is not constant so that the period of the motion cannot
be extracted directly, however, since dt = dr /7, we have
from Eq. (38) that

/\/25 r? (% - 0)2’

1
2w
so that the period of the motion is

2rdr /wo

/ \/ —r2) Tz_rgr):ozro’ (39)

Note also that Eq. (38) shows that the dynamics is the
one of a point particle with a potentiel (w3r?/4—{,w)/2,
that is nothing but the centrifugal potential. This may
sound as a complicated way of describing a simple re-
sult but this can be easily generalized to the case of a
perturbing force.

4.  Radial force

As can be trivially seen from Fig. 1, the magnetic force
is indeed not radial. It points toward the local center of
curvature. With our definition ¢/Mp = ¢(r) the force
per unit mass is F = Bc%¢/(r)e,. Since the field enjoys
a cylindrical symmetry, the angular momentum (33-34)
is conserved. We deduce that

&= 3w
: 40
(&) = 28— (5 - bwn) — 20%()

which is a simple extension of Eq. (38). This shows that
the dynamics is similar to the one of a point particle of
unit mass in the effective potential

r2 (e, 1 2
7z %)

g = Be(r) +
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FIG. 1. The geometry of the problem. The magnetic force
F,, is perpendicular to the motion and thus points locally to-
ward the center of curvature C of the trajectory. The dashed
circle represents the pure magnetic trajectory. The perturba-
tive force F', even if it is central is not parallel to F;, unless
C = 0. We call “radial” a force for which there exists a coor-
dinate system such that ¢(r), i.e. such that the force points
toward O. The magnetic force points toward the local curva-
ture center and is thus not radial but simply perpendicular to
the trajectory.

The integration of Eq. (40) by quadrature gives
/ dr
t= =
V2(E = Bep(r) — 2 (4 — dw)
07/ (0. /r* —wo/2)dr
- 2
V2(E = Bep(r)) 2 (4 — Lu)

which gives the equation of the trajectory in the para-
metric form {¢(r),6(r)}. The turning points are solution
of

(41)

(42)

Ju—

i = 0. (43)

They delimit the domain of the allowed motion. If this
domain is of the form [r_,r] then the trajectory is re-
stricted to an annulus and, thanks to Bertrand theorem
(1873), we know that the trajectory will be periodic only
if o ocr? or 1/r.

Numerically, once we set the initial conditions (xg, yo)
and Vp(cosa,sina) it is obvious that ro = \/x2 + y3,
0o = arctan(yo /o), 0y = (Vo/ro) sin(ar — 6p) so that the
energy and angular momentum are £ = ViZ/2+ Bc?p(ro)
and £, = r2(0y + wo/2), which determines the annulus
of allowed trajectories. As an example, we consider the
potential ¢ = a/r, with a a constant with units of length.
When a — 0 we recover the free trajectory which is then
drifting along the center defined by the central force, as
shown on Fig. 2 (the values of the parameters are not
meant to be realistic but chosen to illustrate the proper-
ties of the trajectory). Note also that by tuning the initial
conditions, we can either get a small trajectory drifting
in between the cylinders or a large trajectory precessing
around the inner cylinder.

B e
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FIG. 2. Example of a central force ¢ = a/r. The solid
red circle corresponds to the free motion (a = 0) while the
dashed red circles define the annulus of allowed trajectory
when there is no fifth force. We have represented the initial
conditions (initial point and initial velocity) as well as the
center of the magnetic trajectory (black dot). When a # 0
the two black circles represent the turning radii defining the
annulus of allowed trajectories. When Bac?® is small (top:
Bac* = 0.1 m*/s?) the free trajectory precesses slowly inside
this annulus. When a is larger (middle, Bac® = 1 m3/s?),
the trajectory can explore regions forbidden in absence of
the fifth force. The last example considers the case in which
the center of the free magnetic motion is O so that it will
the static circular trajectory is deformed in a precessing el-
lipse (Bac® = —0.3 m®/s?). All plots assume wp = 0.5 s~ ',
Vo =0.7m/s and 2o = 1 m.

Since the fifth force is small compared to the magnetic
force, we can estimate the period of the drift from the
fact that in the guiding center approximation [48], the
drift velocity is

FAB

q?a (44)

Vdrift =

which holds as long as the force can be considered con-



stant on the scale of the gyroradius, a condition that is
satisfied for our models. For a radial force —mpBc?¢’e,
and a magnetic field along e, this leads to an orthoradial
velocity,

Bty

Varitt = ey (45)

Wo

that is to the pulsation of the drift of the trajectory of C'
around O as

By’
TWo

Warifs = (46)

T=Tc

This is indeed an approximation which works well when
the force is small and when the gradient of the fifth force
is small on the scale of the gyroradius. Fig. 3 shows that
it gives an excellent estimation of the drift pulsation.

DT
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it Oee

6, wgint
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10 5 20
t

FIG. 3. Comparison of the variation of 0(¢t) with the drift
wadritst [left] and of the residue @ — waristt to the 0(t) for the
free motion with an arbitrary offset to compare the curves
[right]. Parameters: wo =2, a = 0.1, Vo = 0.7, zo = 1 m.

5. Radial chameleon

The previous analysis shows that a tiny central force
will modify the cyclotron motion in two ways: (1) by
extending the zone of allowed trajectories and (2) by
making the trajectory drift. For a fifth force of small
amplitude we are mostly interested by the latter effect.

The advantage of the chameleon field is that we can
“engineer” the profile of the field inside the cavity. If
the two cylinders have the same axis, then the exper-
iment enjoys a cylindrical symmetry and ¢(r) so that
the fifth force is radial. The simulations we are us-
ing [45, 46] assume that Ry, = 0.2 m, Ry = 0.6 m,
Pmat = 8.125 g.cm ™3 (typical of invar) for the cylinders
and pi, = 1073 p for the inter-cylinder region. The theory
assumes A=1eV,n=2,5=1.

The free parameters at hand are wy (fixed by the choice
of the particle and the magnetic field) and V; (fixed by
the initial kinetic energy. This defines the radius of the
free trajectory. If we start from (zg, yo) = (0.2,0) [in me-
ter] with & = 7/2 we need Ry = 0.2 m for the trajectory
to remain inside the two cylinders. Assume that

@ = (a/r) (47)

so that F' = —pBac?/r? that we normalize to have an
amplitude of Fy = Bac?/r> ~ 107" N/kg on r, = 0.4 m

so that F' = —Fy(r./r)%. Tt follows that we get

ko
Wdrift = — -
TWo

This shows that the time for the orbit to drift from a
distance R is 7 = R/rcwg. We have the constraints that
Vb < ¢ while we want to optimize the drift. To get some
insight let us consider the time for the orbit to drift from
a length R and ask whether this could be smaller to a
time scale of some hours. This sets the constraints

(R, B,m, Z) = 220 o1,
Fo

(48)
Texp being the duration of the experiment. The second
relation implies that if R ~ Ry, i.e. a drift compara-
ble to the gyroradius, then Rowy < 3.6 x 10~* m/s for
Fy ~ 1077 N/kg so that the first constraint will always
be satisfied. Using Eq. (21), this implies

B\ (m\ ' o (Texp/1 h)

) (10f§/kg> (ng m)_z49)

which gives the constraint on (B,m) that would allow
one to observe a drift of R on a time scale of Toyp,. As
can be read from Fig. 4, a typical drift of 1 ym on a
timescale smaller than 1 hr could be observed for a mag-
netic field of 1 mT and a particle of 100 m,,. These orders
of magnitude can be recovered from the distance drifted
in a time 7 as

Rowo(B,m, Z) < c,

-1
Bain _ 5, 090-3 (B )z (—T )
1 cm 10-3T 100m, 1 hr
(50)
drift of 10-°m drift of 10-°m
S / @
=] / ’ j=2 / S/
L A I 4 8
" «
; ; = ; z :
log(m/m;) log(m/m;,)
FIG. 4. Constraints on the free experimental parameters

(B,m) for a particle of charge Z = 1 and a force of typi-
cal magnitude Fy ~ 1077 N/kg for a drift of 107° m (left)
or 107® m (right) over a time scale smaller than 1 hr (white
region) or 10 hr (blue region) along the circle of radius re.
The dashed lines indicate the values of Vo /¢, showing that a
non-relativistic description is sufficient.



6. Generic chameleon

In Ref. [46], we have shown that we can generate a
field profile that depends on 6 by shifting the axis of the
inner cylinder by 0. The amplitude of the monopoles
were shown to be proportional to §/R;, and to decrease
with the multipole.

The main effect of an angular dependence is that the
angular momentum will not be conserved since

(. = Bty (51)

Since the angular momentum will vary along the trajec-
tory, it implies that the inner and outer radius of the
annulus of allowed trajectories will change over time. In-
deed, it is still given as the root of Eq. (43) with 7 given
by Eq. (40) but £, is no more constant.

£ =0,

n=0 n=1

FIG. 5. Drift patterns for the 4 first multipoles (n = 0...3)
assuming the form (52) for the field configuration with ®,, =
a/r for all n. All plots assume wp = 1 s~ 1, Vo = 0.7 m/s, and
Bca = 0.01 m?’/s2 tangent to the circle with » = 1 m initially
with initial angle 8y = 0 (black), 7/4 (blue), /2 (light blue),
57/6 (gray), 5m/3 (light gray) so that the colors represent
trajectories with same initial conditions.

Then, the drift of the trajectory will not be orthoradial
anymore as in Eq. (45). Assume for the sake of the argu-
ment that the field configuration is the sum of multipoles
of the form

QDn(T) = (Dn(r) cosnf, (52)

to which one shall add multipoles in sin n, that we omit
since it does not modify our general argument. Then the
fifth force will be the sum of the multipoles

F, = -3 |® (r)cosnbe, — n@n(r) sinnfeg (53)
r

so that the drift velocity is

v((iri)ft = wﬁo n# sinnfe, + @/ (r)cosnbeg| . (54)

If ®,, = a,/r as assumed in our previous example, then
the fifth force induced drift will make an angle a,, =
arctan[n tannd] with respect to the radial direction so
that the radial drift is boosted by a factor n compare to
the orthoradial drift. This is illustrated on Fig. 5. This
opens new ways of testing the fifth force since instead
of monitoring the drift, one can monitor the charge of
the inner or outer cylinder that will change due to the
inward or outward drifts of the particle that otherwise
would have remained inside the two cylinders.

To finish, let us also illustrate the effect of the fifth
force on trajectories that would be circles of center O in
absence of a fifth force. In that case, the guiding center
approximation will not hold and the effect of the fifth
force can only be investigated numerically. Fig 6 gives
some examples of trajectories for a monopole, compar-
ing an attractive and repulsive force. Indeed it assumes
a fifth force with an unreallistically large magnitude for
the sake of the illustration. The effect of larger multi-
poles enlarge the landscape of possible trajectories. The
question of the best experimental strategy and the design
of the field distribution remain to be discussed.

n=0 n=0

U
NS

FIG. 6. Trajectories tuned such that the gyrocenter coincides
with the center of symmetry O initially. In absence of fifth
force the trajectory shall be a circle of center O. With a fifth
force, the trajectory will deviate from this “free” trajectory in
a couple of gyro-periods. All plots assume wo = 2 s~ %, Vo =
0.7 m/s, and Bcta = 0.1 m*®/s? [left] and fc’a = —0.1 m3/s?
[right] tangent to the circle with » = 1 m, 0.8 m, 0.6 m and
0.4 m initially with initial angle 6y = /4.

IV. MACROSCOPIC CONSEQUENCES

So far we have described the microscopic effects of the
fifth force on the dynamics of charged particles. Let us
now show that it has a macroscopic side related to the
drift current associated with the fifth force.



A. One-dimensional current

Let us consider two parallel plates as depicted on Fig. 7
of size £ x L along the zz-direction and separated by a
distance 2D along the y-axis and assume we impose a
magnetic field Be,. By symmetry the scalar field will
have a profile ¢(y) so that it generates a fifth force F' =
—mBc2d,pe,.

Positives Negatives
+ -

O L

CURRENT CURRENT

i
Vol FW & ‘
—-D . :
po>0 ¢g>0

FIG. 7. Experimental design to generate macroscopic current
from a fifth force. All quantities are defined in the text and
are plotted assuming ¢o > 0 and ¢ > 0. Top pictures show
that particles of opposite charges drift in opposite directions
but generate a current in the same direction.

It follows from Eq. (44) that the particles enjoy a cy-
clotron motion of pulsation wq drifting along the x axis
at the velocity

pe?

Vdrift = *Toez- (55)
J

Now, if the density of charge is 74, this generates a cur-
rent density

J = NqqVarite (¥) (56)

flowing in opposite directions in the upper (y > 0) and
lower (y < 0) parts, because dy¢ > 0 for y < 0 and
d¢ < 0 for y > 0. It follows that it will generate a total
current

D
I= Z/_Dj(y).exdy. (57)

In order to put numbers, let us assume that the profile
of ¢ is given by

® = o (1 - f;) (58)

Blpoy
D D

so that the force is

F =2m

and we set Fy = 2Bc%¢o/D ~ 1077 N/kg. Hence, the
current density is

. Be*po y
J (y) qnq (A)OD D € ( )
so that the current profile is
dr
— =Yy 60
=t (60)
and the total current
Bt
I= {D .
:Fqnq CU()D €

in the upper/outer region respectively (if ¢ > 0 and g >
0).

In order to estimate its amplitude, we need assume a typical value of the density. Assume we have a gas in standard

conditions, its density is 1 mol/20 1, i.e.

Ng = Mo ~ 3 X 10%° m~3,

then

o () () (

ﬂnjp) (ﬁ;) (10—%/&) (61)

with S| = £D. First we note that the current is independent of the charge of the particle, simplify because quq,ist is,
and proportional to the mass. The current reaches 0.5 pA for m = m, and B = 0.01 T.

B. Effect on the field profile

Still, we need to be careful. In the microscopic analysis
performed in § ITI, we studied the effect of the fifth force

(

on a test particle and the density inside the cavity was
fixed externally. Now, we need to have a large number
of particles, with a number density 79 so that the mass

density inside the cavity p ~ 5 x 1072(m/m,) kg.m 3.



As a consequence this will affect the profile inside the
cavity since the Klein-Gordon equation is

By0(y) = nA" T |6 — gm0 (62)

in one-dimension, with

1
¢ =

Bp

MPAH+4TL

The field tends toward ¢.(pmat) in the wall on a length
scale of the order of the Compton length

A:

Prt?

n(n 4+ 1)An+4
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of the order of Ayan = 2 cm. This shows that one will
need to properly design the parameters of the experiment
since one would want to increase m and 7, to get a higher
current, but that would increase the density pi, so that
¢ o< 1/p"*1 will decrease as well as A o< 1/p'+"/2 so
that the force will scale as

P« —atain
Foc8y¢o<70<pin .

Hence one can either adopt a model-independent ap-
proach and constrain Fy for a chosen set (B, m,n,) or
one can try to constrain a given model, in which case the
scaling above and the dependence of the force on the den-
sity of matter inside could be used to optimize the choice
of (ng, m) since it sets the amplitudes of the current but
also affects Fy through the mass density.

As an example, we provide the profile of the scalar field from which one can deduce the profile of the force and of
the current density. These are depicted on Fig. 8.

1.x10724 1

8.x1072%

S 6.x10725

4.x10725

2.x10725

‘ p=0.0§kg/m3 (o, mp)

p=0.05 klg/m3 (no, M)

—

.

i), ID! hAM?]

/

0.0 0.2 0.4

y
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FIG. 8. Profile of the scalar field ¢(y) for a chameleon model withn =2, A =1 eV and 8 = 1 assuming that D = 1,0.5,0.1 m
(Black, Blue, Red) and that the density inside the cavity is po = nom, = 0.05 kg/m? (top); the changes in the profile for 10po

and 1073 pmat are not visible by eye. For the same models, we obtain the profile of the current density j(y) (solid lines) and
the total intensity per unit surface (dashed lines), both in nA/m?.
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C. Annular current inside the cylinders

Coming back to the case of the nested cylinders we studied earlier, the same reasoning shows that there shall exist

an annular current along ey given by

Jr) = an%w’(T)ee,

corresponding to a total current

Be?
I =neqL—
wo

if L is the length of the cylinders. And, as expected from
the Lenz law, it generates a magnetic field along the z-
axis, with typical magnitude on the axis

BCZ Rext
Bayify = uonqqf/ @ (r)dr. (65)
wo JRi,

With the ansatz (47) we get the typical magnitudes

I=-""YF (R — Rin)Les (66)
wWo
Bayigs = pol /L (67)

with the permeability of vacuum pg = 47 x 107 T.m/A
and, again Fy = Bac?/RextRin. The typical order of
magnitude is identical to the one of Eq. (61) with S| =
2L(Rext — Rin). It can then be checked that Bayg ~
10~'® T so that it can be completely neglected compared
to the experimental magnetic field.

D. Discussion

This shows that the effect of the fifth force on the dy-
namics of a charged particle at the microscopic level has
several macroscopic consequences: (1) in 1 dimension, it
generates a drift current between the parallel walls, (2) in
2 dimensions with cylindrical symmetry, it generates an
annular current and (3) in 2 dimensions with no cylindri-
cal symmetry, the particles drift inward and/or outward
and may charge the walls of the cylinders, leading to the
growth of a radial electric field.

Our numerical estimations (61) favor high mass par-
ticles, with no dependencies on its charge, while at the
microscopic level, the drift effect favors large mass, low
charge particles. A key issue is the density that can be
reached in laboratory experiments. Plasma densities typ-
ically ranges from 10% to 10%® m~2 in nature. Pushing
to 102 m~3 will allow one to get a current larger than
1 nA. Note also that in the one-dimensional set-up, one
can in principle access I(y). Such a measurement would
be extremely valuable since it will enable to get some
information on the profile p(y), i.e. it potentially gives
access to a way to constrain the parameters of the model
— see Eq. (60).

62

Rext
' (r)drey.

Rin

(

Note also that the temperature of the plasma is not a
key issue since the drift is insensitive to the velocity of
the particle. Nevertheless, we need it to be cold enough
so that the gyroradius is much smaller than the typi-
cal size of the experiment, i.e. we shall demand that
V2kpT/m/w? < 1 m, ie. that T < 10! K, which is
achieved easily for protons.

To finish let us remind that there is a force much larger
than the fifth force that causes the particle to drift: the
standard gravitation since its magnitude is of order g =
10 m/s? and thus would cause a drift typically 9 orders
of magnitude larger, at least, than the one induced by
the fifth force. Luckily we can suppress this effect: since
the drift (44) behaves as F' A B, aligning the magnetic
field with the local gravitational field will ensure that it
will not act on the particle. This can be done in a table-
top experiment for a chameleon field since its profile is
dictated by the geometry of the experiment and screened
from the local environment. Actually, it offers a nice
way to calibrate the experiment. Since g > F, one can
first set the walls vertical so that the magnetic field is
horizontal and measure the current I, and then rotate
the whole experiment until the magnetic field is vertical.
Hence the current shall change as

F,
= . {sme T 0] .
g

The measurement of I, and of the local gravity field
allows one to evade the individual measurement of 7,
and B. Then, any upper limit on I(0) provides a con-
straint on Fy/g. Concerning the Newton force induced
by the walls of the cavity, first let us remind that it will
strictly vanish if the walls are infinite. Then, for large
parallel walls, the residual gravity field has a component
parallel to the magnetic field; it induces no drift while
only its y-component has an effect that will modify the
total current while the z-component will modify the pro-
file of the current density. The amplitude of g, is smaller
than GpmateD/L ~ 5x1078(e/10 cm)(D/L) m/s? hence
roughly 2 orders of magnitude smaller than the fifth force
we try to measure. Hence to maximise the current, we
need to maximise the surface, i.e. £D, while minimizing
D/L in order to make the gravity of the walls completely



negligible. As can be shown from Fig. 8 it also gives a
higher mean current density.

Let us also stress that in the discussions of § III we have
not included the effect of the Newtonian gravitational
field induced by the cylinders. First, if the cylinders are
infinite the Newton force in the inter-cylinder space van-
ishes exactly. Then for finite length cylinders, for the
radial set-up, the gravitational force will be aligned with
the axis of the cylinders, and thus with the magnetic field
so that it will induce no drift. When the cylinders are
not coaxial, there will be a small residual Newton force
that will be, similarly to the case discuss in the previous
paragraph, negligible.

To finish, let us mention a possible way to increase the
sensitivity. As seen from Eq. (51) the angular profile of
the force affects the evolution of the angular momentum
which is not conserved anymore when there is no cylin-
drical symmetry. One can think of designing the shape
of the inner and outer “cylinders” so that the profile ex-
hibits sharp changes in Jp¢p, similar to electric point ef-
fect. That could generate locally large gradients, the de-
sign of which could be controlled and hence distinguished
from other forces. Such ideas need to be investigated
later.

All these arguments convince us that this can provide
a new experimental concept to detect fifth force in the
laboratory. Indeed for now we just established orders of
magnitude for such an experimental set-up, the techno-
logical feasability of which would need to be investigated
in details, a task much beyond the scope of this work.

V. RADIATION DAMPING

Besides the fifth force and the magnetic force, the par-
ticle being accelerated shall undergo a reaction force, the
Abraham-Lorentz-Dirac force, the effect of which needs
to be compared to the fifth force. The equations of motion
have to be extended to

my* = q (Fii + Fg) uv, (68)
in Gaussian units, where F; is the Faraday tensor of the
electromagnetic field of the moving charge. The compu-
tation of the reaction forces requires to evaluate the self-
retarded potential. This is detailed in chapter I1.19 of
Ref. [47]. It requires a regularization and many schemes
are used in electrodynamics, see e.g. Ref. [49]. Using
a regularization by averaging on the direction gives the
radiation reaction force

" 2 .
F;e]fuy = gq (7H - PYZU#) (69)

as proposed by Abraham, Lorentz and Dirac. In the
non-relativistic limit, the radiation reaction force takes
the form

2q2

Freac = 3 dmecd

a, (70)
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once we put the international units back.
It is easily evaluated on the free trajectory since V =
Vo(coswt — a, sinwt). It is indeed a damping force

2 ¢,

Frcac = 7§47T5063 WV -

This implies that it does not induce a drift but a shrink-
ing of the trajectory so that it cannot be confused with
the effect of the fifth force. Nevertheless, it needs to be
evaluated since it will limit the duration of the experi-
ment.

VI. CONCLUSION

This article has investigated the effect of a small fifth
force of scalar origin on the dynamics of a charged parti-
cle. It has derived the full relativistic equations of motion
and conserved quantities and gave their non-relativist
limit. Then, it investigated the dynamics of a charge
in a uniform magnetic field to show that the standard
cyclotron motion enjoys a drift, similar to the one that
can be observed if the magnetic field is not uniform.
This drift is fully dictated by the profile of the scalar
field. Focusing on profiles in between two nested cylin-
ders, as studied in our previous works [45, 46], we have
shown that the drift is orthoradial if the configuration is
cylindrically symmetric and has a more involved angular
structure for a general profile.

One can control the cyclotron pulsation wy by choosing
the particle and tuning the magnetic field. Controlling
the initial velocity of the particle determines its gyrora-
dius. Then, the typical properties of the drift (timescale
and direction) depend on the fifth force, that is on the
profile of the scalar field within the two cylinders. While
the profile of a light scalar field cannot be tuned for a
light dilaton, this is not the case for a chameleon field.
Thanks to the environmental dependence, the field inside
the cavity is screened from the outside and its profile will
mostly depend on the local density in the cavity, the na-
ture of the walls and the geometry of the cavity. This is
a crucial property of these models, allowing one to engi-
neer these fields (indeed if they exist). In particular, and
as demonstrated in Refs. [45, 46], shifting the axis of the
cylinders allows one to design angular dependencies. The
typical amplitude and profile of the force will depend on
the parameters of the microscopic model (A, n, 3) and the
design of the experiment (Rj,, Rext, 9, p) and was shown
to be typically of the order of 107 m/s2. We already
mentioned in Ref. [45] that the force affects any experi-
ment based on monitoring the trajectory of atoms inside
a cylindrical cavity of free falling particles in space.

These effects on individual particles would require to
monitor a drift, or relative drift, of single particles on the
order of the gyroradius on a time scale of the hour for a
force of 1077 m/s%. As explained, there is a macroscopic
side to these effects since the fifth force induces macro-
scopic currents that may be easier to measure. In that



case we need to have a plasma within the cavity, which
would affect the force and its profile since it modifies the
local mass density inside the cavity. In the particular case
of the one-dimensional experimental set-up proposed in
this work shows that a fifth force of 1077 m/s? can in-
duce a drift current drift larger than 5 nA. This would
require to push the density to the density of a gas in
standard conditions while the density of plasma in na-
ture can range from 103 to 1033 m~3. Hence the density
is one of the key parameters. Otherwise one would need
to operate with a magnetic field of 1 T and heavy parti-
cles. The temperature of the plasma plays no major role
since the drift velocity is independent of the energy of
the particle. Nevertheless we shall require that the gyro-
radius is much smaller than the typical size of the exper-
iment. Setting Ry ~ /2kgT/m/wy < 1073 m implies
that the temperature be smaller than 5 x 106 K, which is
easily achieved — room temperature would correspond to
Ry ~ 20 pm. It is also important to remind that the ef-
fect of gravitation, that also induces a drift several orders
of magnitude larger, can be screened by aligning the mag-
netic field with the local gravity field. As a consequence,
it is not necessary to go to space. Then, the gravity of
the walls of the cavity are roughly 2 orders of magnitude
smaller than the nominal fifth force we could measure.
Given these numbers, the feasibility or the existence of
loopholes in our arguments would require to be investi-
gated with care. Note also that the experiment may also
enable to access the transverse profile of the chameleon
field, directly related to the properties of the potential
and coupling function, a possibility which has not been
offered by any other proposed experimental set-up so far.

Indeed, it would be bold to argue that it offers so far a
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new experimental design to test fifth force in laboratory.
We have just used toy field profile to illustrate the phys-
ical effects and derive orders of magnitude. One would
need to implement, and most probably optimize, field
profiles, as shown in Ref. [46] and discuss the detectabil-
ity of the drifts and of the current and all sources of
noise that will unavoidably be present. The question of
the alignment of the magnetic field with the local gravity
field is crucial as well as a careful study of the gravity
induced by the surrounding of the experiment. To finish,
we note that we still have the freedom fo let the magnetic
field vary in time.

Nevertheless we believe that it opens a way of reflection
to eventually reach such a new experimental set-up. Let
us also mention, to finish, that the equations of motion
derived here are fully general and can also be applied to
the propagation of cosmic rays.

ACKNOWLEDGMENTS

We thank Philippe Brax, Gilles Esposito-Farese, Pierre
Fleury, Julien Larena, Roland Lehoucq, Cyril Pitrou,
and Manuel Rodrigues for their comments and insight.
M.P.B. is supported by a CNES/ONERA PhD grant.
This work is supported in part by the EU Horizon 2020
research and innovation programme under the Marie-
Sklodowska Grant No. 690575. We acknowledge the
financial support of CNES through the APR program
(?GMscope+? project). The work of J.-P. U. made in
the ILP LABEX (under Reference No. ANR-10-LABX-
63) was supported by French state funds managed by
the ANR within the Investissements d?Avenir program
under Reference No. ANR-11-IDEX-0004-02.

[1] T. Lee and C.-N. Yang, “Conservation of Heavy Par-
ticles and Generalized Gauge Transformations,” Phys.
Rev., vol. 98, p. 1501, 1955.

[2] Y. Fujii, “Dilaton and possible non-newtonian gravity,”
Nature, vol. 234, pp. 57, 1971.

[3] G. Gibbons and B. F. Whiting, “Constraints on Unifi-
cation Theories Imposed by Measurements of Newtonian
Gravity,” Nature, vol. 291, pp. 636—638, 1981.

[4] G. Nordstrom, “Relativitatsprinzip und Gravitation,”
Phys. Zeits., vol. 13, p. 1126, 1912.

[5] T. Damour and G. Esposito-Farese, “Nonperturbative
strong field effects in tensor - scalar theories of gravi-
tation,” Phys. Rev. Lett., vol. 70, pp. 2220-2223, 1993.

[6] C. M. Will, Theory and Ezperiment in Gravitational
Physics. Cambridge University Press, 9 2018.

[7] C. M. Will, “The Confrontation between General Rela-
tivity and Experiment,” Living Rev. Rel., vol. 17, p. 4,
2014.

[8] E. Adelberger, B. R. Heckel, and A. Nelson, “Tests of the
gravitational inverse square law,” Ann. Rev. Nucl. Part.
Sci., vol. 53, pp. 77-121, 2003.

[9] E. Fischbach, D. Sudarsky, A. Szafer, C. Talmadge,

and S. Aronson, “Reanalysis of the Eotvos Experi-
ment,” Phys. Rev. Lett., vol. 56, p. 3, 1986. [Erratum:
Phys.Rev.Lett. 56, 1427 (1986)].

[10] E. Fischbach and C. Talmadge, The search for nonNew-
tonian gravity. 1999.

[11] J. Bergé, P. Brax, M. Pernot-Borras, and J.-P. Uzan, “In-
terpretation of geodesy experiments in non-Newtonian
theories of gravity,” Class. Quant. Grav., vol. 35, no. 23,
p- 234001, 2018.

[12] B. Jain, A. Joyce, R. Thompson, A. Upadhye, J. Bat-
tat, P. Brax, A.-C. Davis, C. de Rham, S. Dodelson,
A. Erickcek, G. Gabadadze, W. Hu, L. Hui, D. Huterer,
M. Kamionkowski, J. Khoury, K. Koyama, B. Li,
E. Linder, F. Schmidt, R. Scoccimarro, G. Starkman,
C. Stubbs, M. Takada, A. Tolley, M. Trodden, J.-P. Uzan,
V. Vikram, A. Weltman, M. Wyman, D. Zaritsky, and
G. Zhao, “Novel Probes of Gravity and Dark Energy,”
arXiv e-prints, p. arXiv:1309.5389, Sep 2013.

[13] J. Bergé, P. Brax, G. Métris, M. Pernot-Borras,
P. Touboul, and J.-P. Uzan, “MICROSCOPE Mission:
First Constraints on the Violation of the Weak Equiv-
alence Principle by a Light Scalar Dilaton,” Phys. Rev.



Lett., vol. 120, no. 14, p. 141101, 2018.

[14] P. Touboul et al., “MICROSCOPE Mission: First Re-
sults of a Space Test of the Equivalence Principle,” Phys.
Rev. Lett., vol. 119, no. 23, p. 231101, 2017.

[15] N. Deruelle, “Nordstrom’s scalar theory of gravity and
the equivalence principle,” Gen. Rel. Grav., vol. 43,
pp. 3337-3354, 2011.

[16] J.-P. Uzan, “The Fundamental Constants and Their Vari-
ation: Observational Status and Theoretical Motiva-
tions,” Rev. Mod. Phys., vol. 75, p. 403, 2003.

[17] J.-P. Uzan, “Varying Constants, Gravitation and Cos-
mology,” Living Rev. Rel., vol. 14, p. 2, 2011.

[18] J.-P. Uzan, “Variation of the constants in the late and
early universe,” AIP Conf. Proc., vol. 736, no. 1, pp. 3—
20, 2004.

[19] T. Damour and K. Nordtvedt, “General relativity as a
cosmological attractor of tensor scalar theories,” Phys.
Rewv. Lett., vol. 70, pp. 2217-2219, 1993.

[20] T. Damour and A. Polyakov, “The string dilation and
a least coupling principle,” Nuclear Physics B, vol. 423,
no. 2, pp. 532 — 558, 1994.

[21] K. Hinterbichler and J. Khoury, “Screening long-range
forces through local symmetry restoration,” Phys. Rev.
Lett., vol. 104, p. 231301, Jun 2010.

[22] J. Khoury and A. Weltman, “Chameleon Fields: Await-
ing Surprises for Tests of Gravity in Space,” Phys. Rev.
Lett., vol. 93, p. 171104, Oct. 2004.

[23] J. Khoury and A. Weltman, “Chameleon cosmology,”
Phys. Rev. D, vol. 69, p. 044026, Feb. 2004.

[24] A. Weltman, “Testing Chameleon Models in the Lab-
oratory,” in 43rd Rencontres de Moriond: Cosmology,
pp. 329-332, 5 2008.

[25] J. H. Steffen, A. Upadhye, A. Baumbaugh, A. S. Chou,
P. O. Mazur, R. Tomlin, A. Weltman, and W. Wester,
“Laboratory Constraints on Chameleon Dark Energy and
Power-Law Fields,” Phys. Rev. Lett., vol. 105, p. 261803,
2010.

[26] C. Burrage and J. Sakstein, “Tests of chameleon gravity,”
Living Rev. Relativ., vol. 21, p. 1, Dec. 2018.

[27] P. Brax, C. Burrage, and A.-C. Davis, “Laboratory tests
of screened modified gravity,” International Journal of
Modern Physics D, 06 2018.

[28] P. Brax and C. Burrage, “Atomic Precision Tests and
Light Scalar Couplings,” Phys. Rev. D, vol. 83, p. 035020,
2011.

[29] C. Burrage and E. J. Copeland, “Using atom interfer-
ometry to detect dark energy,” Contemporary Physics,
vol. 57, no. 2, pp. 164-176, 2016.

[30] D. Sabulsky, I. Dutta, E. A. Hinds, B. Elder, C. Burrage,
and E. J. Copeland, “Experiment to detect dark energy
forces using atom interferometry,” Dec. 2018.

[31] C. Burrage, E. J. Copeland, and E. A. Hinds, “Prob-
ing dark energy with atom interferometry,” J. Cosmol.
Astropart. Phys., vol. 2015, no. 03, p. 042, 2015.

[32] B. Elder, J. Khoury, P. Haslinger, M. Jaffe, H. Miiller,
and P. Hamilton, “Chameleon dark energy and atom in-
terferometry,” Phys. Rev. D, vol. 94, p. 044051, Aug.
2016.

[33] P. Hamilton, M. Jaffe, P. Haslinger, Q. Simmons,
H. Miiller, and J. Khoury, “Atom-interferometry con-
straints on dark energy,” Science, vol. 349, pp. 849-851,
Aug. 2015. arXiv: 1502.03888.

[34] S. Schlogel, S. Clesse, and A. Fiizfa, “Probing modi-
fied gravity with atom-interferometry: A numerical ap-

14

proach,” Phys. Rev. D, vol. 93, p. 104036, May 2016.

[35] P. Brax, C. van de Bruck, A.-C. Davis, D. F. Mota, and
D. Shaw, “Detecting chameleons through Casimir force
measurements,” Phys. Rev. D, vol. 76, p. 124034, Dec.
2007.

[36] C. Burrage, E. J. Copeland, and J. A. Stevenson, “A pro-
posed experimental search for chameleons using asym-
metric parallel plates,” J. Cosmol. Astropart. Phys.,
vol. 2016, no. 08, p. 070, 2016.

[37] S. Lamoreaux and W. Buttler, “Thermal noise limita-
tions to force measurements with torsion pendulums: Ap-
plications to the measurement of the Casimir force and
its thermal correction,” Phys. Rev. E, vol. 71, p. 036109,
2005.

[38] A. Lambrecht and S. Reynaud, “Casimir and short-
range gravity tests,” in Proceedings, 46th Rencontres
de Moriond on Gravitational Waves and Ezxperimental
Gravity: La Thuile, Italy, March 20-27, 2011, pp. 199—
206, 6 2011.

[39] P. Brax and G. Pignol, “Strongly Coupled Chameleons
and the Neutronic Quantum Bouncer,” Phys. Rev. Lett.,
vol. 107, p. 111301, 2011.

[40] A. N. Ivanov, R. Hollwieser, T. Jenke, M. Wellenzohn,
and H. Abele, “Influence of the chameleon field potential
on transition frequencies of gravitationally bound quan-
tum states of ultracold neutrons,” Phys. Rev. D, vol. 87,
p. 105013, May 2013.

[41] D. F. Mota and D. J. Shaw, “Strongly coupled chameleon
fields: New horizons in scalar field theory,” Phys. Rev.
Lett., vol. 97, p. 151102, 2006.

[42] E. Adelberger, B. R. Heckel, S. A. Hoedl, C. Hoyle,
D. Kapner, and A. Upadhye, “Particle Physics Implica-
tions of a Recent Test of the Gravitational Inverse Sqaure
Law,” Phys. Rev. Lett., vol. 98, p. 131104, 2007.

[43] A. Upadhye, “Dark energy fifth forces in torsion pendu-
lum experiments,” Phys. Rev. D, vol. 86, p. 102003, Nov.
2012.

[44] P. Brax, G. Pignol, and D. Roulier, “Probing Strongly
Coupled Chameleons with Slow Neutrons,” Phys. Rev.,
vol. D88, p. 083004, 2013.

[45] M. Pernot-Borras, J. Bergé, P. Brax, and J.-P. Uzan,
“General study of chameleon fifth force in gravity space
experiments,” Phys. Rev. D, vol. 100, p. 084006, Oct
2019.

[46] M. Pernot-Borrs, J. Berg” e, P. Brax, and J.-P. Uzan,
“Fifth force induced by a chameleon field on nested cylin-
ders,” 4 2020.

[47] N. Deruelle and J.-P. Uzan, Relativity in Modern Physics.
Oxford Graduate Texts, Oxford University Press, 8 2018.

[48] G. Northrop, “The guiding center approximation to
charged particle motion,” Ann. Phys., vol. 15, p. 79,
1961.

[49] T. Damour, “A New and Consistent Method for Classical
Renormalization,” Nuovo Cim. B, vol. 26, pp. 157-164,
1975.

[50] C. Llinares and P. Brax, “Detecting Coupled Domain
Walls in Laboratory Experiments,” Phys. Rev. Lett.,
vol. 122, no. 9, p. 091102, 2019.



Appendix A: Initial conditions

The initial conditions can be fixed by either choosing
(zo, Vo, @) or (xo,&,L,). The first are more natural since
one does not know the potential ¢ but the second al-
lows one to compare motion with the same constants of
motions.

One can easily shift from one to the other since

e Starting from (@, Vp, @), we have ro = \/x3 + 2,
Veo = Vo cosa, Viyo = Vosina, € =V§E/2+ Be(ro),
0y = arctan(yg/wp) so that 0y = Vi sin(a — 6p) /7o
and then £, = r2(6y + wo/2).

e Starting from(zo, &, ¢,), we have ro = /23 + y3
so that Vo = +/2(€ — Be(rg)). Then, 6y =
arctan(yo/wo) and 6y = (£, /13 — wo/2), Voo = robo
so that a = 6y + arcsin(Vpo/Vp) and then Vo =
Vocosa, Vyo = Vpsina.

It is also interesting to rewrite the dynamical system
by using the dimensionless time 7 = wpt and rescaling
the lengths in units of the gyroradius Ry as

X
1 /
=y -y,
T

y'=—a' - 7%7 (A1)
with the dimensionless parameter v = Bc?a/wi RS if the
field configuration is given by ¢ = a/r. The initial con-
ditions are then given by vy = 1 so that (z{,yy) =
(cosa,sina) and (zg,yo). Under such a form, the di-
mensional analysis implies that the drift pulsation can
only be a function of (v,r.).

It is easily check that for v = 0 we have a circular orbit,
that is drifting when v < 1 and tend to a precessing
ellipse for large v and a standard static ellipse for v =
+00.

Appendix B: Particle in an electric field

For the sake of completeness, let us consider the case
of a one-dimensional electric field between two plates,
E = Fe, so that the only non-zero component of the
Faraday tensor is F0% = E.

1. Standard acceleration

When the fifth force vanishes, it is clear from the equa-
tion of motion (5) that the 4-acceleration has a constant

modulus
2
qF
VYt = () =g
m

This is indeed easy to understand since in the inertial
frame tangent to the charge worldline, the electric field

(B1)
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remains unchanged in a Lorentz transformation. It fol-
lows that dU*/dr = gU?, i.e. d*X/dr? = gdT/dr with
the constraints U, U* = —(dT/dr)? 4+ (dX/dr)?* = —1.
It can be integrated as

gT = sinh g, gX = cosh gt (B2)
giving the trajectory
gX =1+ ¢2T2. (B3)

2. Effect of the fifth force

We now consider that two parallel infinite plates so
that the field configuration in between them is given by
¢(x). Indeed since the force is extremely weak, typically
smaller than 10~"N/kg, see e.g. Ref. [45], it will always
be subdominant. Nevertheless, it has been argued that
such a small force may affect any experiment based on
monitoring the trajectory of atoms inside a cavity [50].
Indeed the force has to be compared to gravity and it has
been pointed out in Ref. [45] that in space, it is respon-
sible for a drift of the particle inside a cylindrical cavity
on time scales of the hour.

An idea could be constrain such a tiny force by con-
sidering a particle in an unstable inertial motion. An
easy realization is to consider a charged particle inside a
capacitor with its two parallel walls normal to e, with
positions y = £ D and assume that there is a static elec-
tromagnetic field

E =Fe,, B = Be,.
A particle launched with the velocity V) = Ue, will have
a straight trajectory if
U=E/B. (B4)
This is the standard classical Hall effect.

Now, assume there is a fifth force. The profile of the
scalar field will be of the form ¢(y) with dy¢9 = 0 by
symmetry. Hence, it implies, working with the non-
relativistic equations of motion for the sake of simplicity,
as

__4B
A 9)
. qB ) B

We rely of the computations of the profile of the scalar
field we presented in Ref. [45]. Since ¢ < Mp A will
almost not vary within the walls so that A = A[(¢(y =
0)]=1.

Then, consider a set of trajectories {X (t;h),Y (t;h)}
labeled by a parameter h, with initial conditions

(X,Y)o = (0,h), (X,Y)o = (U,0).



The trajectory h = 0 will indeed be an inertial motion
along Y = 0 but, contrary to the usual Hall effect, the
trajectories starting from h # 0 will deviate from this
standard trajectory.

Let us start by a toy profile mimicking the profile inside
two walls, which has no analytic form,

?(y) = Pwan + o (1 - %2> (B7)

so that the force is

F=2 = Dwgn%ey (BS)

with n = 2(¢o/Mp)Bc?/Dwi < 1 the relative extra-
acceleration induced by the fifth force.
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If the gradient is constant within the plates, which in-
deed not the case but allows to illustrate the phenomena,
the trajectories are simply given by

X(th) = |U+ fhuwo| t - L ponyi—eot
Y(t;h) = h {1 + 15 (1—cos \/ﬁwot)]

(B9)
for n < 1. We have the free parameters U (determined
by E and B), wy (determined by B, the charge and mass
of the particle), h = 1...D, D determined by the size of
the experiment so that then n = Fy/Dw3 is the quantity
we want to constraint. Since we expect Fy < 1077, 7 is
expected to be small compared to unity.

The main problem is that one would need an extremely
long capacitor which makes such an experiment com-
pletely unrealistic. One solution may be to consider pe-
riodic orbits and then turn to 2-dimensional configura-
tions.



