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ABSTRACT
Provided a random realization of the cosmological model, observations of our cosmic
neighbourhood now allow us to build simulations of the latter down to the non-linear
threshold. The resulting local Universe models are thus accurate up to a given residual cosmic
variance. Namely some regions and scales are apparently not constrained by the data and seem
purely random. Drawing conclusions together with their uncertainties involves then statistics
implying a considerable amount of computing time. By applying the constraining algorithm
to paired fixed fields, this paper diverts the original techniques from their first use to efficiently
disentangle and estimate uncertainties on local Universe simulations obtained with random
fields. Paired fixed fields differ from random realizations in the sense that their Fourier mode
amplitudes are fixed and they are exactly out of phase. Constrained paired fixed fields show
that only 20 per cent of the power spectrum on large scales (> tens of megaparsecs) is purely
random. Namely 80 per cent of it is partly constrained by the large-scale/ small-scale data
correlations. Additionally, two realizations of our local environment obtained with paired fixed
fields of the same pair constitute an excellent non-biased average or quasi-linear realization of
the latter, namely the equivalent of hundreds of constrained simulations. The variance between
these two realizations gives the uncertainty on the achievable local Universe simulations. These
two simulations will permit enhancing faster our local cosmic web understanding thanks
to a drastically reduced required computational time to appreciate its modelling limits and
uncertainties.

Key words: methods: numerical – methods: statistical – galaxies: clusters: general – large-
scale structure of Universe.

1 IN T RO D U C T I O N

Within the past few years, reaching precision cosmology has been
the driving force behind the tremendous efforts put in developing
observational missions to acquire larger and larger cosmological
large-scale surveys (e.g. Burke 2006; Peacock 2008; de Jong 2019),
but also deeper local surveys (e.g. Cole et al. 2001; Lewis et al.
2002; Balogh et al. 2004), and in producing higher and higher
resolution cosmological simulations with hydrodynamical physics
(e.g. Vogelsberger et al. 2014a; Schaye et al. 2015a; Schaye et al.
2015b; Dubois et al. 2016). However, if the standard or �CDM
cosmological model reproduces very efficiently observations over-
all, tensions start to appear on various scales when pushing the
comparisons down to the details (e.g. Schwarz et al. 2016; Bullock
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& Boylan-Kolchin 2017; Freedman 2017), hence the redoubled
efforts to confirm or infirm these apparent conflicts.

Clearly any systematic effect has to be dealt with (see Francis
& Peacock 2010; Wojtak et al. 2014; Wojtak, Davis & Wiis 2015;
Hoscheit & Barger 2018, for example of such systematics due to
our local environment). Measuring and understanding the impact
of our local environment on our measurements and observations
is one of the top priority. Knowing precisely our environment is,
thus, an absolute prerequisite. That thirst for knowledge regarding
our environment combined with recent increasing capabilities of
numerical and observational technologies boosted considerably the
studies of the local Universe. This renewed interest extended the
definition of the local Volume to even greater distances so as to
cover the full range of galaxy environments, from voids to massive
groups and clusters. Nowadays, local is more and more commonly
used for regions as large as about 300–400 Mpc (e.g. Kitaura et al.
2012; Keenan, Barger & Cowie 2013; Sorce et al. 2016b; Tempel
et al. 2016; Hackstein et al. 2018, for a very few examples).
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In this quest for the local Universe, cosmological simulations
are combined with local observations in an attempt to achieve a
fully complete picture of the local distribution of matter. This effort
gave rise to the development of initial conditions constrained to
result in simulations that resemble the local Universe at redshift
zero.

Based on the concept introduced by Bertschinger in 1987
(Bertschinger 1987), these initial conditions, in addition to abiding
by a prior cosmological model like typical simulations (Efstathiou
& Eastwood 1981) of large volumes (e.g. Alimi et al. 2012;Angulo
et al. 2012; Vogelsberger et al. 2014b; Schaye et al. 2015c; Dolag,
Komatsu & Sunyaev 2016; Dubois et al. 2016; Euclid’s flagship, for
a non-exhaustive list), also comply with a set of local observations,
either densities obtained with redshift surveys (e.g. Skrutskie et al.
2006; Aihara et al. 2011; Lavaux & Hudson 2011; Huchra et al.
2012) or peculiar velocities (e.g. Mathewson, Ford & Buchhorn
1992; Willick et al. 1997; Zaroubi et al. 2001; Springob et al. 2007;
Tully et al. 2008, 2013; Tully, Courtois & Sorce 2016) or both.
These constrained initial conditions are built either forwardly (e.g
Kitaura & Enßlin 2008; Jasche & Wandelt 2013; Wang et al. 2013) or
backwardly (e.g. Bertschinger & Dekel 1989; Dekel, Bertschinger
& Faber 1990; Ganon & Hoffman 1993; Zaroubi, Hoffman &
Dekel 1999; Lavaux et al. 2008). Namely, the initial density field
is either sampled from a probability distribution function (prior
and likelihood given the observational data) or directly obtained
from a realization of the density field today. These techniques
resulted in multiple studies since then (e.g. Bertschinger 2001;
Lavaux 2010; Kitaura 2013; Lavaux 2016; Ocvirk et al. 2016;
Sorce et al. 2016b; Wang et al. 2016; Carlesi et al. 2017; Sorce
et al. 2017a; Hackstein et al. 2018; Olchanski & Sorce 2018;
Ocvirk et al. 2018; Sorce, Blaizot & Dubois 2019, for a very few
examples).

However, these local Universe simulations present a common
pitfall which is a residual cosmic variance, i.e. part of their
properties is not constrained by the observational data but stays
random. Any study requires then hundreds of runs before reaching
sensible conclusions and their uncertainties. The latter are strongly
linked to the residual cosmic variance or uncertainty on the local
Universe simulations. Even in an era of expanding supercomputing
facilities, decreasing the required computational time for a study
is an appreciable advantage. Ideally, one would want to get the
local Universe model, but limitations due to the non-linearities
of the problem, the limited size, and resolution of the simulation
box as well as the imperfect observational data makes it extremely
challenging.

Recent techniques diverted from their original use provide an
interesting alternative to running hundreds of simulations to eval-
uate efficiently uncertainties and to understand up to which level
large-scale local Universe simulations are constrained thanks to
small-scale/ large-scale correlations. Indeed, while previous studies
focused on showing that the local Universe simulations either
reproduce globally the large scales of the local Universe (e.g Kitaura
et al. 2009; Jasche & Wandelt 2013; Wang et al. 2014; Sorce et al.
2016b; Wang et al. 2016) or the small scales down to the cluster scale
in terms of mass and history (e.g. Sorce et al. 2016a; Olchanski &
Sorce 2018; Sorce 2018; Sorce et al. 2019), inducing vaguely group
scales (e.g. Carlesi et al. 2016), the fraction of large scales that can
actually be constrained – or reversely that cannot be constrained –
by a given data set has never been evaluated.

On the one hand, Angulo & Pontzen (2016) proposed indeed
cosmological simulations that dramatically decrease the sparse
sampling of the largest wavemodes by fixing the initial Fourier

mode amplitudes of the initial conditions (e.g. Viel, Haehnelt &
Springel 2010). Additionally, they paired them with a second set of
initial conditions with initial modes exactly out of phase (Pontzen
et al. 2016). They demonstrate that this technique drastically reduces
the variance, namely their initial fields are not as random as
typical initial fields anymore and their use in pairs permits deriving
unbiased mean properties.

On the other hand, by definition constrained simulations reduce
the cosmic variance with respect to typical simulations (e.g. Sorce
et al. 2016b) but without suppressing it entirely, in particular in
regions and on scales poorly constrained by the observational data.
Our particular constraining algorithm relies on random realizations,
in the sense that constraints from observational local data are applied
to random fields to get plausible models of the local Universe. The
residual cosmic variance, and thus the uncertainty, depends then
on the random realizations used in the process. Consequently, it
is difficult to estimate the uncertainty on a constrained simulation
but for the runs of hundreds of other constrained simulations. It is
also impossible to disentangle the randomness contribution from
that of the small-scale/ large-scale correlations to this uncertainty.
It is thus challenging to gauge whether our current local data
constrain anything at all on some scales and regions, and further
whether improvements are possible with upgraded local data sets.
In the following, we include in the local data set upgrades, an
improvement of the technique used to constrain initial conditions.
Thus, any reference to an enhance local data set refers to both
a better catalogue of constraints and a refine methodology to
constrain.

Instead of running hundreds of initial conditions obtained with
random fields constrained with local observational data, this paper
proposes to constrain ultimately two paired fixed fields of the same
pair to understand and estimate uncertainties on local Universe
simulations. The combination of the ‘fixed-paired’ method with
the constraining algorithm allows us to (1) better understand the
residual variance by splitting the contribution due to the large-scale/
small-scale interactions from that induced by the randomization of
the ‘unknown’ (fixing), and (2) obtain rapidly and efficiently an
estimate of this residual variance and a mean realization of the local
Universe by eliminating the influence of the random realization that
is used (pairing).

This paper opens on the definitions of the different types of
fields and on a description of the methodology of the different
combinations of Gaussian (random), constrained, fixed, and paired
fields possible, and thus of the simulations developed in this
work. A second section focuses on the resulting simulations of
interests for this paper goal. It compares them and highlights their
properties before concluding. An appendix gathers all the possible
combinations, including those out of focus for this paper, which
could be used for further and other studies and goals.

2 C ONSTRAI NED G AU SSI AN (RANDOM),
F I X E D , A N D PA I R E D IN I T I A L C O N D I T I O N S

2.1 Gaussian (random), fixed, and paired fields

We start with a short description of Gaussian (random), fixed,
and paired fields following the notations given by Villaescusa-
Navarro et al. (2018), who gave a more exhaustive explanation.
For a given density field, the overdensity (deviation of the density
from the average at a given point) can be written δ(�k) = Aeiθ

with A and θ the amplitude and the phase of the mode �k.

MNRAS 495, 4463–4474 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/495/4/4463/5849016 by guest on 28 M
ay 2024



Fixed and paired 4465

Subsequently,

(i) for a Gaussian field, θ is a random variable uniformly
distributed between 0 and 2π and A follows a Rayleigh distribution:

p(A)dA = A

(V P (k)/16π3)2
e−A2/2(V P (k)/16π3)2

dA, (1)

where P is the power spectrum and V, the volume of the simulation
box.

(ii) for paired Gaussian fields, the second Gaussian field of the
pair is out-of-phase by a factor π namely θ becomes θ + π or it is
simply the opposite of the first one: δ(�k) = Aeiθ+π = −Aeiθ .

(iii) for a fixed field, while θ is unchanged, A follows a
distribution with identical values as in the Gaussian fields, i.e.
〈δ(�k)δ∗(�k)〉 = V P (k)/(2π )3, but without intrinsic scatter:

p(A)dA = δD

(
A −

√
V P (k)

(2π )3

)
dA, (2)

(iv) for paired fixed fields, the second fixed field is out-of-phase
by a factor π .

2.2 Constrained Gaussian (random) fields

A detailed description of the technique to build constrained initial
conditions from Gaussian (random) fields is outside the scope of
this paper and we refer the reader to Sorce et al. (2016b) and Sorce
(2018) for more explanations. A brief description using galaxy
radial peculiar velocities as constraints is as follows:

(i) Grouping of the radial peculiar velocity catalogue to remove
non-linear virial motions that would affect the linear reconstruction
obtained with a linear method (e.g. Sorce, Hoffman & Gottlöber
2017b; Sorce & Tempel 2018). More precisely, when distance
estimates are available for several galaxies in a given cluster, these
estimates are replaced by the distance of the cluster. The cluster
peculiar velocity is then derived. This one constraint is used for the
cluster.

(ii) Minimizing the biases (Sorce 2015) in the grouped radial
peculiar velocity catalogue and attributing the residual uncertainties
(Sorce 2018). Biases are indeed inherent to any observational
catalogue. An iterative technique, based on the sole prior that the
distribution of radial peculiar velocity should be a Gaussian with a
variance determined by the cosmological model, can drastically re-
duce biases. Residual uncertainties can then be estimated depending
on the distance to the observer and the amount of data as a function
of this distance.

(iii) Reconstructing the 3D cosmic displacement field with a
linear minimum variance estimator or Wiener Filter, (in abridged
form WF; Zaroubi et al. 1995, 1999) applied to the radial peculiar
velocity constraints.

(iv) Relocating constraints (galaxies and their velocities) at
the positions of their progenitors using the Reverse Zel’dovich
Approximation and the reconstructed cosmic displacement field
(Doumler et al. 2013) and replacing noisy radial peculiar velocities
by their 3D WF reconstruction (Sorce et al. 2014). Subsequently,
one can expect structures to be at the proper position, i.e. at positions
similar to those observed at the end of the simulation run.

(v) Producing density fields constrained by the modified obser-
vational peculiar velocities combined with a Gaussian (hereafter
random) realization to restore statistically the ‘missing’ structures
(the WF goes to the null field in absence of data or in presence of very
noisy data). It means obtaining an estimate of the residual between

Figure 1. This figure summarizes the different types of fields that can be
constrained (top), the different types of constrained fields (middle), and the
additional steps that can be applied to constrained fields (bottom). i stands
for the seed used to obtain the field. n is the number of different seeds or
fields, n = 50 at maximum in this paper.

the model and the data. The Constrained Realization technique
(Hoffman & Ribak 1991, 1992), which differs schematically from
the WF by a random realization added to the constraints, is used for
that step.

2.3 Constrained, fixed, and paired fields

Given the algorithms to build the different fields (fixed, paired,
constrained), several types of initial conditions can be produced by
(1) changing the realization in step (v) described above and possibly
(2) adding one further step (vi) when building the initial conditions.

The first panel of Fig. 1 gives the different types of fields that can
be constrained in step (v) with local observational data as well as
their connection to each other:

(i) Gaussian or Random Realization (RR)
(ii) Fixed Realization (FR)
(iii) Paired Random Realization (-RR)
(iv) Paired Fixed Realization (-FR)

#1 consists then in selecting any of these fields for step (v) of
the initial conditions building process to get initial conditions
as enumerated in the second panel of Fig. 1. #2 proposes after
producing the initial conditions to additionally fix and/or pair them
[step (vi)] as listed in the last panel of Fig. 1.

Our ultimate goal would be to reproduce the local Universe as
precisely as possible. Ideally, the residual variance between the
different constrained fields should approach zero so as to get the
local Universe initial conditions and with its numerical evolution,
the local Universe at z = 0. Given the challenge and current
limitations, our second approach is to understand and fully estimate
the uncertainty on local Universe simulations. Given this goal,
the combinations of interests for this paper are those giving the
constrained (paired) random and fixed fields obtained with #1.
Fields that are fixed and/or paired after constraining (#2) will not
retain the intermediate scale structure of the local Universe, namely
clusters, especially the ‘Centaurus – Virgo pair’, with proper masses,
have less probabilities of forming in a posteriori fixed fields since
the probability of this ‘cluster pair’ is not high. A fixed field gives
the most common structures. As for paired constrained fields, they
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Table 1. Symbol and given short names to the different simulations as well
as sets of simulations. In the second block, bold letters stand for simulations
studied in details, others are summarized in the appendix. While i represents
the seed used to obtain the field, n (=50 at maximum, here) is the number
of different seeds.

Constrained Random Fixed Paired Seed
Realization Realization

Symbol C RR FR – ‘Number’

Combinations in this paper, abbreviations
Type of fields Random Paired Fixed Paired

Type of Random Fixed
constrained fields
Constrained CRRi C-(RRi) CFRi C-(FRi)
Paired Constrained −CRRi −CFRi
Fixed Constrained F(CRRi) F(CFRi)
Paired Fixed Constrained −F(CRRi) −F(CFRi)

Other notations
Hereafter unpaired sets:
Set of n CRRi CRR+

Set of n C(−RRi) CRR−

Set of n CFRi CFR+

Set of n C(−FRi) CFR−

Hereafter paired sets:
Set of n CRRi and n C(−RRi) CRR+

Set of n CFRi and n C(−FRi) CFR+

produce voids at local cluster positions and vice versa. These fields
are, thus, not of immediate interests for this paper goal.

Consequently, although Table 1 enumerates the short names
given to all these simulations, the next section focuses on the
constrained (paired) random and fixed fields, while paired and/or
fixed constrained fields are relegated to the sole appendix. This
appendix summarizes the different types of simulations and gives
their features to emphasize the difference between modifying step
(v) or adding step (vi).

The next section shows the benefits of constraining fixed re-
alizations as well as constraining a pair of paired realizations.
These simulations differ from typical constrained simulations in
the sense that the constraints are applied to specific paired and fixed
realizations rather than random realizations to obtain their initial
conditions. They do not pretend to result in the best local Universe
initial conditions, but rather will permit #1 disentangling a purely
random component from a partly constrained component to the
residual cosmic variance on large scales and #2 fully estimating
this residual cosmic variance or uncertainty on local Universe
simulations, thus on conclusions drawn from them.

3 C O N S T R A I N E D PA I R E D FI X E D A N D
R A N D O M FI E L D S

3.1 Power spectrum and density field

50 constrained initial conditions (100 in total after pairing) were
prepared with n = 50 different random realizations (n × RRi)
and n = 50 others (100 in total after pairing) were obtained
with 50 different fixed realizations (n × FRi). All the initial
conditions were built at redshift 60 using 2563 dark matter particles
(particle mass 6.4×1011 h−1 M�) in 500 h−1 Mpc boxes within
the Planck cosmology framework (�m = 0.307, �� = 0.693,
H0 = 67.77 km s−1 Mpc−1, σ 8 = 0.829, Planck Collaboration XVI
2014),

Fig. 2 presents the power spectrum of the sets of constrained
initial conditions obtained with 50 random realizations (CRR+), 50

Figure 2. Top: Power spectrum of constrained initial conditions. Their
standard deviations are shown as red and orange (dark and light blue)
transparent areas delimited by thin solid (dashed) lines of the same colour
for unpaired sets of fixed (random) fields. Their means are given by thick
solid and dashed lines of the same colour for CFR± and CRR±, respectively.
Additionally, the mean power spectrum of the entire sample or paired set of
constrained fixed fields, CFR (constrained random fields, CRR), is shown
as a thick yellow (cyan) solid (dashed) line. Middle: Power spectra divided
by their respective mean, same colour code. Bottom: Variance of the power
spectra divided by their respective mean, same colour code.

fixed realizations (CFR+), 50 paired random realizations (CRR−),
and 50 paired fixed realizations (CFR−). For the largest modes
present in the box, the variance with respect to the mean (thick
dashed and solid lines) is overall smaller by 20 per cent for the
constrained initial conditions obtained with the FRi (orange and red
areas) than with the RRi (light and dark blue areas). This is half
expected since the fixed field without constraints have the exact
same power spectrum values. Adding the local constraints does not
re-introduce the full residual cosmic variance.

However, it confirms that almost 80 per cent of the scatter is due
to correlations between the local constraints (a few megaparsecs)
and the large scales (tens of megaparsecs). Namely, the residual
cosmic variance, far from being due to the sole random realization,
is mostly due to the correlations between the constraints and the
realization. Thus these scales are partly constrained. It means that,
for a given constrained random realization of the local Universe,
80 per cent of the scatter could be further reduced by enhancing the
local data set used as constraints within the 500 h−1 Mpc boxsize.
20 per cent of the power spectrum on larges scales, though, is
not constrained. Larger boxsizes would thus later be required to
continue diminishing the power spectrum residual cosmic variance
to get the local Universe model even at the 50 h−1 Mpc scales.

Additionally, it is interesting to notice that the entire or paired
sets of initial conditions [i.e. obtained either with n × RRi and
n × −(RRi), or n × FRi and n × −(FRi)] are better representative of
the mean and variance with respect to the mean for the largest modes
than the unpaired sets [i.e. obtained alternatively with n × RRi,
n × −(RRi), n × FRi, or n × −(FRi)]. It should also be pointed that
means obtained with either the constrained paired fixed fields or the
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Figure 3. Variance of the power spectra divided by their mean for the largest
scale mode valid in the box as a function of the number of constrained
realizations in the set of initial conditions used to derive the variance.
Constrained fixed realizations (CFR±) are shown as red and orange filled
circles. Constrained random realizations (CRR±) are represented by light
and dark blue filled circles. The yellow and cyan larger filled circles are
obtained using the same number of realizations as in the unpaired sets but
for the paired sets (CRR and CFR).

constrained paired random fields are remarkably similar. Namely,
no bias is introduced by using fixed rather than random fields as a
basis to produce constrained initial conditions.

However, it is clear that the paired sets are required to get unbiased
results and means in both cases. For instance, in the bottom panel
of the figure, only the yellow and cyan filled squares, which stand
for the ratio of the power spectrum variance to the power spectrum
mean, clearly show that the scatter is smaller for the constrained
initial conditions obtained with both the FRi and −FRi than for
those obtained with both the RRi and −RRi. On the opposite, half
sets, obtained with only the −RRi and −FRi, show a reversed
result for the largest scale mode valid in the box or more precisely
no clear difference. Tests with a smaller number of realizations
per unpaired set reveal that this is even truer the smaller this
number is.

Actually, Fig. 3 shows the ratio of the power spectrum variance to
the mean for the largest scale mode valid in the box as a function of
the number of realizations included in the unpaired and paired sets
of constrained initial conditions. As shown with the yellow and cyan
filled circles compared to the smaller blue and orange or red filled
circles, clearly the mean variance is reached faster when pairing.
Again fixing permits understanding that about 80 per cent of the
residual cosmic variance is due to correlations between the small-
scale observational constraints and the large scales. It is also clear
that pairing is absolutely necessary to reach the proper conclusion
when using a small set of simulations to derive the variance: blue
and red or orange filled circles show biased values.

Both profits of applying the constraints to fixed and paired
fields to understand and estimate uncertainties on local Universe
simulations appear already and can be summarized as follows:

(i) by reducing the residual cosmic variance of the power spec-
trum of local Universe initial conditions by 20 per cent for the
largest modes in the box, fixing shows that about 80 per cent of the
power spectrum on large scales is partly constrained. It is thus not
completely random. It implies that enhanced data sets are already

useful to decrease some more of the residual cosmic variance on
scales as large as 50 h−1 Mpc before thinking about enlarging the
boxsize of the simulations.

(ii) pairing permits recovering the residual variance of the power
spectrum between the different realizations more efficiently, namely
quicker, and results in unbiased values – a smaller set of initial
conditions is required. We will also show later that a combination
of constrained paired fields of the same pair permits recovering
efficiently the mean of several constrained fields. It thus gives
instantaneously the residual variance or uncertainty on the simulated
local Universe in an unbiased way.

All the prepared initial conditions (50 per set, 100 in total after
pairing) are run from redshift 60 to redshift 0 using gadget (Springel
2005).

Power spectra are derived with the density fields obtained from a
cloud-in-cell scheme applied to the simulation snapshots at redshift
zero. Results for the power spectrum of the evolved initial conditions
are similar to those obtained for the power spectrum of the initial
conditions shown in Fig. 2. The exact same conclusions can thus be
reached.

From left to right, Fig. 4 shows the XY supergalactic 2 h−1 Mpc
thick slice of the smoothed at 5 h−1 Mpc density field of (1) and
(2): a pair of constrained paired fixed fields, (3) their geometric
mean as well as, (4) that of all the different constrained paired fixed
fields, and 5) the Wiener filter reconstruction. Black contours stand
for the overdensities in the slice and the blue colour delimits the
overdensities from the underdensities. In the first two panels, the
constrained paired fixed density fields show that the local large-scale
structure is recovered: Virgo, Centaurus (both are close to the centre
of the slice), and Coma (at about Y = 70−80 h−1 Mpc) regions
are visible. The Shapley region is also overdense (XY∼[−100, 50]
h−1 Mpc).

Because the density properties of paired fields are expected to be
almost the opposite, namely where there are peaks in the field,
voids are expected in the paired field although not necessarily
of the same magnitude (see Pontzen et al. 2016, for a detailed
explanation), it is interesting to combine constrained paired fields of
the same pair to estimate the ‘constraining power’ of the constraints.
In other words, combining constrained paired fields of the same
pair allows determining the features of the local Universe that are
robustly simulated and at which level. A part of the field that is
not constrained should thus be annihilated when combined with its
counterpart in the paired field. Reversely, a structure that is solidly
constrained should persist after taking the geometric mean of the
constrained paired fields of the same pair. A persistence gradient
should exist for structures partly constrained. This gradient gives
the uncertainty on the simulated structure: there is no uncertainty on
a structure 100 per cent persistent, it exists in the local Universe and
it is robustly simulated. On the opposite, a structure that disappears
is uncertain, perhaps does not exist in the local Universe, and in any
case, is poorly constrained.

From our previous studies, we expect Virgo (Sorce et al. 2016a,
2019) to be very well constrained, then comes Centaurus, then
Coma, etc. with a decreasing ‘constraining power’ with the distance
from us (Sorce et al. 2016b). The fourth panel of Fig. 4 shows
the geometric mean of all the constrained paired fixed fields. As
expected, Centaurus, Virgo, and Coma regions appear very well
constrained, then comes the Shapley region and to a lesser extent
the Perseus Pisces region. This region is known not to be well
constrained yet because of the weak amount of data in this region
in the catalogue of constraints used so far (Tully et al. 2013).
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Figure 4. XY supergalactic 2 h−1 Mpc thick slice of the density fields, smoothed at 5 h−1 Mpc of the simulations or reconstruction at redshift zero of the
local Universe. Black contours show the overdensities, while the solid blue lines represent the mean density. From left to right: Simulation obtained with a
constrained fixed field, simulation based on the constrained paired fixed field, geometric mean of the two constrained paired fixed fields of the same pair,
geometric mean of all the simulations obtained with fixed paired fields, reconstruction obtained with the Wiener filter technique.

Interestingly, the geometric mean of only two constrained paired
fixed fields of the same pair in the third panel is very similar
to the geometric mean of all the constrained simulations. Two
constrained simulations obtained with paired fixed fields of the
same pair are thus qualitatively capable of reproducing the mean of
an ensemble of constrained simulations. The last panel shows the
linear reconstruction of the local Universe as a sanity check of the
non-linear simulations of the local Universe.

Note that the figure obtained when constraining paired random
realizations rather than paired fixed realizations is similar to Fig. 4.
The same conclusions can thus be reached.

Eventually, while fixing gives us a better understanding of
the fraction of the residual cosmic variance that can be better
constrained by local enhanced data, pairing allows us to estimate
the residual cosmic variance very efficiently. It is given by the
standard deviation between the two constrained fields of the same
pair. It corresponds to the uncertainties on the simulated structures,
in other words its gives the confidence in the simulation to reproduce
the local Universe.

Additionally, pairing gives a fast estimate of what the mean of
hundreds of local Universe simulations would be. In order to check
that the value of the mean is unbiased when using the fixing process
with respect to not using it, we compare the geometric mean of
the two constrained paired fixed fields of the same pair to that of
the two constrained paired random fields of the same pair. The
geometric means share the same mean (−0.1), standard deviation
(0.3), maximum (8), and minimum (−0.8) density values. Their
mean difference is of the order 10−4 with a standard of 0.16 (Fig. 5
right, below, shows that this value is smaller than the difference
between the geometric mean of two constrained paired fields and
that of all the constrained fields). Numbers are given in units of
density. There is thus no bias.

It is interesting to quantitatively derive :

(i) #1 an estimate of the residual cosmic variance or mean
variance between different constrained simulations as well as the
standard deviation or uncertainty of this residual cosmic variance.

(ii) #2 the ability of two constrained paired (fixed) fields of the
same pair to reproduce the mean of several constrained simulations.
Typically, it gives the existence certainty of structures, in other
words the ‘constraining power’ of the constraints used.

To that end, cell-to-cell comparisons between pairs of simulations
are conducted. First, cells are compared within the full box. The
scatter around the 1:1 relation is derived. Once all the scatters

are obtained for a given type of simulation pairs, their mean and
variance are computed. Secondly, because simulations are known
to be more constrained in the centre of the box where most of
the constraints are, cells are compared only in sub-boxes. All the
resulting mean scatters (as defined above when comparing the full
boxes and different size sub-boxes) and their variances are reported
in Fig. 5 left as a function of the size of the sub-boxes within which
cells are compared between simulations.

#1 The trend is perfectly similar whatever set of constrained
simulations is considered. As expected, the residual cosmic variance
between the different density fields is the smallest in the inner part
of the box where most of the constraints are (Sorce et al. 2016b). At
this level there is no difference between residual cosmic variances
obtained constraining the fixed fields rather than the random ones.
Every inch of the density field is somewhat constrained. It confirms
our previous findings that cosmic variance is reduced even when
considering the entirety of the 500 h−1 Mpc box although constraints
are restricted to the inner ∼300 h−1 Mpc (Sorce et al. 2016b).

Considering the variance of this residual cosmic variance or in
other words, the uncertainty on the residual cosmic variance, we
expect to find the largest variance for pairs involving paired fields.
Indeed, the bottom panels of Fig. 5 left show that the largest values
are obtained for the set of simulations including both constrained
paired fields (yellow and cyan filled circles against red, orange, light
and dark blue-filled circles). The values are almost doubled when
considering the full boxes. This reinforces our claim that pairing
allows determining the full residual cosmic variance in an unbiased
way.

In addition, there is a slight hint that simulations obtained with the
fixed fields present a slightly smaller variance of the residual cosmic
variance to the latter ratio than those obtained with the random fields.
The decrease is less than a few percent though. It is thus legitimate
to consider that at the density level, an unbiased residual cosmic
variance can be independently derived with constrained fixed fields
or constrained random fields as long as they are properly paired.

# 2 Fig. 5 right gives a quantitative measurement of the ability of
the geometric mean of the same pair constrained paired fixed fields
to reproduce efficiently the geometric mean of several constrained
fixed fields. The plot is similar for non-fixed fields. As before, cell-
to-cell comparisons between pairs of density fields are conducted
in different sub-boxes. Density fields that are used for comparisons
are (1) the geometric mean of an ensemble of paired and unpaired
constrained fixed fields and (2) the single or combined constrained
paired fixed fields of the same pair. The variance is significantly
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Fixed and paired 4469

Figure 5. Top left and right: Average residual cosmic variance (filled symbol) and its standard deviation (error bar) between density fields of simulations (left)
or between density fields of simulations and their geometric means (right) as a function of the size of the compared sub-box. See Table 1 for an explanation
regarding the abbreviations. Bottom left: Standard deviation of the residual cosmic variance to the residual cosmic variance ratios as a function of the size of
the compared sub-box, same colour code. The geometric mean of two constrained paired fixed simulations of the same pair is as good a proxy of the geometric
mean of an (independent) set of constrained fixed simulations (right-hand panel) as, if not a better one than, an ensemble of independent constrained fixed
simulations (filled triangles with size proportional to the number of simulations in the set).

smaller between the geometric mean of the same pair constrained
paired fixed fields, and that of all the constrained fixed fields than
between a single fixed field and the geometric mean of all the fields.
Whatever sub-box size and geometric mean (that of CFR+, CFR−,
CFR) are used for comparisons, it is only about 20 per cent (yellow-
filled squares) in the former case against about 3 times more (about
60 per cent, filled circles) in the latter case.

Comparing the variance between the geometric mean of all
the constrained fields to (1) that of the same pair constrained
paired fixed fields (yellow-filled squares) and (2) to that of several
independent constrained fixed fields (filled triangles) shows that
overall the same pair constrained paired fixed fields are better
representative of the mean of all the fields than 50 independent
constrained fixed fields (large violet filled triangles). Moreover,
25 independent constrained fixed fields (small dark violet filled
triangles) are required to reach a variance as low as that obtained
when comparing the geometric mean of the same pair constrained
paired fixed fields to the geometric mean of all the independent
(i.e. not paired) constrained fields. This observation is in favour of
our claim that the geometric mean of two constrained paired fixed
fields of the same pair is a good proxy for the geometric mean of
an ensemble of constrained fixed fields be they independent or not.

In other words, in a first approximation two simulations are
completely sufficient to determine the structures of the local
Universe that are actually constrained (exist) and up to which level of
confidence in an unbiased way. This second part is linked to the fact
that the largest variance is obtained when comparing constrained
paired fields of the same pair as shown on the left part of Fig. 5.
Namely, the full residual cosmic variance or the full uncertainty
estimate on the simulated structures is given by the variance between
the constrained paired fields of the same pair. This variance is a good
non-biased proxy for the uncertainty on the simulated structures.

It is to be noted that this conclusion seems untrue for small sub-
box sizes since a reversed trend is visible: the geometric mean of
the same pair constrained paired fields does not reproduce the mean
as well as a set of independent and randomly selected constrained
fields. This is not unexpected. The larger the number of fields used
to derive the mean, the more the small-scale details are erased. Small
shifts of structures start then to have higher effects on cell-to-cell
comparisons when one tries to maintain a sufficient number of cells
for statistical comparisons. This observation is thus a clear limit
of the method used to quantify the difference between the density
fields rather than a flaw in our conclusion.

Fig. 6 pursues further the investigation with the example of the
monopole (left) and the dipole (right) of the velocity fields. First,
it confirms that using fixed rather than random realizations does
not bias our results. Means (solid and dashed lines) and scatter
(transparent areas) of monopoles and dipoles are identical when
comparing sets of constrained fixed and random fields of the same
nature (CFR / CRR, CFR± / CRR±). Additionally, the dotted
lines highlight again that combining a pair of constrained paired
fixed realizations (the mean of the red and orange dotted lines
gives the yellow dotted line) permits retrieving immediately the
mean of several constrained realizations, since the yellow solid and
dotted lines are similar. Although this is not shown to preserve the
readability of the figure, the same conclusions are valid for a pair
of constrained paired random realizations.

3.2 Mass functions and haloes

Although the fixing process is not expected to impact the simulations
at the dark matter halo level (Villaescusa-Navarro et al. 2018), list of
haloes are extracted from the different simulations for comparisons.
Fig. 7 shows the mass functions within a 160 h−1 Mpc radius sphere
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4470 J. G. Sorce

Figure 6. Monopole (left) and dipole (right) of the velocity fields of the constrained simulations. Same colour code as Fig. 2. The dotted lines give an example
of the values for two constrained realizations of the same pair (red and orange) as well as their mean (yellow).

Figure 7. Top: Mass functions of a 160 h−1 Mpc radius sphere centred
on the box middle of constrained simulations. Their standard deviations are
shown as red and orange (dark and light blue) transparent areas delimited by
thin solid (dashed) lines of the same colour for paired fixed (random) fields.
Their means are given by thick solid and dashed lines of the same colour for
CFR± and CRR±, respectively. Additionally, the mean mass function of the
entire sample of constrained fixed fields, CFR (constrained random fields
CRR), is shown as a thick yellow (cyan) solid (dashed) line. Middle: Ratio
of the mass functions to their mean, same colour code. Bottom: Ratio of the
standard deviation of the mass function to their mean, same colour code.

centred on the middle of the box for constrained paired (fixed) fields.
As expected, there is no difference between the residual cosmic
variances obtained with the constrained paired fixed and random
fields. Note that again the mean mass function is not affected by the
fixing process and that pairing is again important to obtain unbiased
mean and residual cosmic variance.

On the halo per halo basis, Virgo, Centaurus, and Coma counter-
parts are identified in the different simulations as the unique haloes,
within a given region, massive enough to be considered as clusters.
At this level, comparing the positions (x, y, and z coordinates) and
masses of the haloes, the profits of constrained paired (fixed) fields
over constrained non-paired fields are less obvious. The intrinsic
scatter of the masses and positions of the total ensemble of Virgo,
Centaurus, and Coma haloes from the constrained paired (fixed)
fields is very similar to that of the haloes in the constrained non-
paired fields. Table 2 reports the mean mass values, their minimum,
maximum, and scatter as well as the mean X, Y, and Z supergalactic
positions in the six sets of constrained Virgo haloes. The scatters are
comparable, displaying no evidence of a clear decrease or increase
in scatter when using paired (fixed) fields, and no clear relations
between the mean mass and position values. Results are similar for
Centaurus and Coma.

4 C O N C L U S I O N

To discriminate real tensions between observations and the standard
cosmological model revealed by recently reached precision cos-
mology from a lack of accuracy, all possible kinds of systematics
affecting our measurements must be considered. Among these
potential actors of biases, our local environment produces effects of
the order of the precision we expect to reach with future surveys,
like those we will obtain for instance with the Euclid mission but
also with the Large Survey Synoptic and 4-meter Multi-Object
Spectroscopic Telescopes. Mapping completely and precisely the
local Universe is thus back on the front stage. With this renewed
interest for ‘near field cosmology’ or the study of the local Universe
as a whole, the region called local became as large as ∼300–400
h−1 Mpc.

Cosmological simulations are now combined with detailed local
observations in an attempt to achieve a fully complete picture of the
local distribution of matter in order to understand it and its biasing
effects. This effort gave rise to the development of initial conditions
constrained by local observations. These initial conditions result in
simulations that resemble the local Universe at redshift zero for a
one-to-one comparison exercise almost free of cosmic variance.
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Table 2. Mean masses in h−1 M�, as well as their minimum, maximum, and scatter of the Virgo haloes in different sets of constrained simulations. Mean X,
Y, and Z supergalactic coordinates and their standard deviations are given in h−1 Mpc.

CRR+ CRR− CRR

Virgo: 〈M〉 5.62e+14 ± (6.40e+13) 5.64e+14 ± (5.95e+13) 5.61e+14 ± (6.88e+13)
Mmin 4.06e+14 4.51e+14 4.06e+14
Mmax 7.09e+14 7.07e+14 7.09e+14

〈SGX〉 − 5.72 ± (0.61) − 5.57 ± (0.57) − 5.87 ± (0.61)
〈SGY〉 6.37 ± (0.60) 6.28 ± (0.58) 6.45 ± (0.61)
〈SGZ〉 3.52 ± (0.74) 3.66 ± (0.73) 3.38 ± (0.73)

CFR+ CFR− CFR
Virgo: 〈M〉 5.57e+14 ± (6.58e+13) 5.65e+14 ± (4.66e+13) 5.50e+14 ± (8.04e+13)
Mmin 4.06e+14 4.23e+14 4.06e+14
Mmax 7.70e+14 6.38e+14 7.70e+14

〈SGX〉 − 5.73 ± (0.58) − 5.63 ± (0.55) − 5.84 ± (0.59)
〈SGY〉 6.38 ± (0.58) 6.32 ± (0.57) 6.43 ± (0.59)
〈SGZ〉 3.52 ± (0.69) 3.64 ± (0.68) 3.40 ± (0.69)

However, these simulations present a common pitfall, that is,
they represent plausible models of the local Universe but not the
local Universe model. The residual cosmic variance between the
different realizations of the local Universe implies the need for
hundreds of runs before drawing sensible conclusions and their
associated uncertainties.

This paper diverts the ‘fixed–paired’ technique from its original
use in an attempt to propose an alternative to the ultimate solution
that would imply overcoming both the non-linearities of the problem
and the noisy observational data available only today in a limited
volume as well as the limited size and resolution of the box
to get the local Universe simulation. The constraining algorithm
applied to paired fixed fields rather than random fields permits
obtaining simulations to efficiently (1) disentangle the different
responsibilities leading to this residual cosmic variance, namely
evaluate the large-scale fraction that is completely unaffected by the
constraints, (2) estimate the uncertainty or residual cosmic variance
on a local Universe simulation, and (3) provide a mean estimate of
an ensemble of local Universe simulations:

(i) By construction, constrained simulations all resemble the
local Universe. They differ solely by the random realization to
which the constraints are combined to build initial conditions. Their
cosmic variance is thus reduced by a factor of 2–3 in the inner part
of the box where most of the constraints are with respect to random
simulations (Sorce 2018). Estimating the residual cosmic variance
requires hundreds of these constrained simulations.

(ii) Constrained fixed simulations differ from the typical con-
strained simulations by being built from fixed realizations rather
than random realization, namely the amplitudes of the modes are
fixed. Their intrinsic scatter is found to be smaller in terms of
the power spectrum but only by up to 20 per cent for the large-
scale modes. These simulations show that most of the residual
cosmic variance is due to correlations between large scales and
local observational constraints. Thus these scales are constrainted
up to 80 per cent by the local data.. Only 20 per cent is purely
random.

(iii) Constrained paired simulations that differ from one another
only by the realization, where one is the exact opposite of the other,
are excellent proxy of the mean of several constrained simulations.
They give access to an optimal measurement of the residual cosmic
variance in the sense that it is not biased like with a random

sub-set of constrained simulations. The uncertainty on simulated
structures is directly given by the variance between constrained
simulations obtained with two paired fields of the same pair without
the requirement for hundreds of runs.

(iv) Constrained paired fixed simulations gather both profits
without adding a systematic. The fixing process biases neither the
mean density fields nor properties of velocity fields (monopole and
dipole).

The utility of the constrained paired fixed simulations relies on the
growing interest in the geometric mean of constrained fields and on
evaluating the large-scale validity of local Universe simulations.
Both points require hundreds of constrained simulation runs to
derive unbiased variance and mean values and thus draw sensible
conclusions. The geometric mean of constrained fields has already
been used in Hoffman et al. (2018) to determine the luminosity bias
in the quasi-linear regime. In this paper, the geometric mean is that
of a small number of constrained fields without using paired fields.
We thus claim that the geometric mean of two constrained paired
fields of the same pair is at least equally closer, if not more, to the true
geometric mean than that of a small number of constrained fields
obtained with completely independent seeds (random realizations).
It is thus completely appropriate to determine the quasi-linear local
density field at a considerably smaller computational cost. Another
example is that of Sorce et al. (2017a), who used a large number of
constrained realizations to derive the probabilities of structures in
the zone of avoidance. The two constrained paired fixed fields of the
same pair provide now a faster and efficient way of obtaining these
probabilities at a much smaller computational cost. Additionally,
their standard deviation provides the residual cosmic variance or
uncertainty on any local Universe simulation disentangling the
uncertainty part due to completely unconstrained large scales to
those partly constrained.

More broadly, the constrained paired fixed simulations will be
extremely useful in determining the accuracy of the simulations in
reproducing the local large-scale structure, source of foreground
effects on background large-scale surveys, and on the cosmic
microwave background. However, when it comes to precisely study
the local cluster-sized haloes, statistical studies are still of use to
determine their average properties. Still, for the most constrained
haloes, the scatter is already small and studying at high resolutions
with the zoom-in technique a constrained halo in one of the
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constrained simulation should already be a good proxy for the
observed cluster.
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Sorce J. G., Gottlöber S., Hoffman Y., Yepes G., 2016a, MNRAS, 460, 2015
Sorce J. G. et al., 2016b, MNRAS, 455, 2078
Sorce J. G., Colless M., Kraan-Korteweg R. C., Gottlöber S., 2017a,
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APPENDI X A :

Additional initial conditions as described in Table 1 are of interest
for other studies. They were prepared and run from redshift 60
to redshift 0 using gadget (Springel 2005) with 2563 dark matter
particles (particle mass 6.4×1011 h−1 M�) in 500 h−1 Mpc boxes
within the Planck cosmology framework (�m = 0.307, �� = 0.693,
H0 = 67.77 km s−1 Mpc−1, σ 8 = 0.829; Planck Collaboration XVI
2014).

Fig. A1 shows the XY supergalactic slices of the density fields of
different constrained simulations with short names given at the top-
right corner of each small panel. Their power spectrum and mass
function are visible in Fig. A2. Explanations for the short names
are given in Table 1.
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Figure A1. XY supergalactic slices of the density fields of different simulations. See Table 1 for an explanation of the abbreviations. Solid black contours
show overdensities. Dashed contours stand for the underdensities. Blue and yellow colours represent the mean field of two paired fields, respectively.

Interestingly, fixing the fields of the initial conditions after con-
straining [F(CRR) or F(CFR)] reveals that the pair Virgo–Centaurus
clusters disappear from the resulting simulations, leaving room for
only one density peak. This suggests that the pair Virgo–Centaurus
is not representative of a common environment. It indicates that
our close environment is not an average environment but really
suffers from the cosmic variance. Additionally, it is also clearly
visible that while Virgo–Centaurus are really well constrained,

Coma, Shapley, and Perseus are less constrained since the resulting
density field varies between simulations based on two paired fields
of the same pair. Note that there is no obvious visual difference
between fields smoothed at 5 h−1 Mpc obtained with a random
realization and its fixed counterpart. Finally, density peaks in
paired constrained simulations, i.e. initial conditions are paired after
constraining, could help us understand and study local voids as their
counterparts.
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Figure A2. Top: Power spectra (left) and mass functions (right) of different constrained simulations. See Table 1 for an explanation of the abbreviations.
Bottom: Power spectra (left) and mass functions (right) divided by Planck power spectrum (right) or Tinker mass function (left), same colour code.
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