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ABSTRACT
Spider pulsars are binary systems containing an energetic millisecond pulsar that intensely irradiates a closely orbiting low-mass
companion. Modelling their companion’s optical light curves is essential to the study of the orbital properties of the binary,
including the determination of the pulsar mass, characterizing the pulsar wind, and the star itself. We aim to generalize the
traditional direct heating model of irradiation, whereby energy deposited by the pulsar wind into the stellar envelope is locally
re-emitted, by introducing heat redistribution via diffusion and convection within the outer stellar envelope. We approximate the
irradiated stellar envelope as a 2D shell. This allows us to propose an effective equation of energy conservation that can be solved
at a reduced computational cost. We then implement this model in the icarus software and use evidence sampling to determine
the most likely convection and diffusion laws for the light curve of the redback companion of PSR J2215+5135. Redistribution
effects concentrate near the terminator line of pulsar irradiation, and can create apparent hot and cold spots. Among the models
tested for PSR J2215+5135, we find that all models with heat redistribution are more likely than symmetric direct heating. The
best-fitting redistribution model involves diffusion together with a uniformly rotating envelope. However, we caution that all
models still present serious systematic effects, and that prior knowledge from pulsar timing, spectroscopy, and distance are key
to determine with certainty the most accurate redistribution law. We propose an extension of the direct heating framework that
allows for exploring a variety of heat redistribution effects. Future work is necessary to determine the relevant laws from first
principles and empirically using complementary observations.

Key words: convection – diffusion – stars: atmospheres – binaries: close – pulsars: individual: PSR J2215+5135.

1 IN T RO D U C T I O N

Spider pulsars are binary systems in which the primary component
is a millisecond pulsar and the secondary a low-mass star, which
we will call the companion in this paper. The orbital period of the
binary is typically of a few hours. The companion is generally close
to filling its Roche lobe and usually assumed to be tidally locked on
to the neutron star. Spiders are found in two subspecies: redbacks
with companion mass�0.1 M�, and black widows with a companion
mass of a few 0.01 M�. These names were coined after two arachnid
species that share the characteristic that the light male companion is
sometimes eaten by the heavier female. For their stellar counterparts,
there is indeed suspicion that the low-mass companion is being
gradually evaporated by the intense wind of high-energy particles
radiated by the pulsar (e.g. Fruchter, Stinebring & Taylor 1988).
This is evidenced by the wide radio eclipses attributed to clumps
of ablated material surrounding the companion far out of its Roche
lobe, although it is as yet unclear whether this is sufficient to lead to
the disappearance of the star (e.g. Polzin et al. 2020).

This irradiation of the companion, which often exceeds the
intrinsic luminosity of the star, results in a characteristic day–night
pattern in its light curve as it moves around its orbit with the pulsar.
Once modelled and combined with pulsar timing and potentially with

� E-mail: guillaume.voisin@obspm.fr

spectroscopy, optical light curves allow one to infer the inclination
and the mass ratio of a system, and thereby the mass of the two
components. In particular, there is evidence that the mass of spider
pulsars could be on average larger than for other pulsars (Linares
2019; Strader et al. 2019), and so they could be used to constrain
the maximum mass and equation of state of neutron stars (e.g.
Özel & Freire 2016). Modelling of optical observations of spider
companions also provides an indirect probe of the pulsar wind. In
particular, comparing the temperatures of the day and night sides
of the star provides an estimate of the amount of irradiating power
necessary to sustain such a difference. Modelling the interaction of
the wind with the stellar material, and in particular determining what
components (gamma-rays, leptons, and hadrons) can penetrate below
the photosphere and produce the observable effective temperature
difference also provides insight in the composition of the wind (Zilles
et al. 2019).

Both the determinations of the orbital and wind parameters are
highly dependent on the modelling of the temperature at the surface
of the companion star. A common approach consists in assuming
a direct heating of the surface whereby the energy deposited by
the pulsar wind is re-radiated by the companion at the exact location
where it is absorbed (e.g. Breton et al. 2012). Although this approach
permits reasonable fits of some light curves (e.g. Breton et al. 2013),
this model is unable to account for asymmetries between the leading
and trailing edge of the companion (assuming a symmetric irradiation
pattern) such as seen in, for example, the black widows PSR
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Spider heat redistribution 1759

J2051−0827 (Stappers et al. 2001) and PSR B1957+20 (Kandel &
Romani 2020) or the redback PSR J2215+5135 (Schroeder &
Halpern 2014; Romani & Sanchez 2016; Linares, Shahbaz & Casares
2018).

Various models have been proposed to explain asymmetries. Two
of them, the magnetic-field ducting of the energetic charged particles
of the pulsar wind by the magnetic field of the companion (Sanchez &
Romani 2017) and radiation from an intra-binary shock formed
between the winds of the two components (Romani & Sanchez
2016), still assume direct heating of the companion but change
the irradiation pattern from an isotropic point source through the
interaction of the pulsar wind with the companion’s own wind and/or
magnetic field. A third approach consists in empirically adding hot or
cold spots at the surface of the star (e.g. Shahbaz, Linares & Breton
2017). Thus, in all cases, heat is assumed to be neither diffused nor
convected within the star after energy reaches the surface.

In fact, the more general problem of irradiation of stellar atmo-
spheres by a companion has been known and studied since the
early twentieth century and is often referred to as the reflection
effect (see Claret 2004 for a historical summary of the treatment of
the problem). Approximated, perturbative treatments of irradiation-
driven circulation in stellar atmospheres were derived by, in par-
ticular, Kirbiyik & Smith (1976), Kippenhahn & Thomas (1979),
and Kirbiyik (1982). However, these authors considered the case
of irradiation caused by X-rays in main-sequence stars, and not by
gamma-rays or high-energy particles, which are absorbed deeper
in the atmosphere. X-ray irradiation on the other hand may not
reach below the photosphere (see e.g. Zilles et al. 2019). While
it can still produce important changes in ionization, as was shown
observationally using phase-resolved spectroscopy (e.g. Davey &
Smith 1992; Phillips, Shahbaz & Podsiadlowski 1999; Shahbaz et al.
2000), these models are unlikely to suffice to explain as dramatic
photometric changes as those seen in spider binaries due to the nature
of the irradiating particles considered. For these reasons, their results
cannot be immediately transposed to spider companions.

The aforementioned theoretical studies concluded that irradiation
results in an atmospheric circulation that transports energy over
the terminator of the irradiation pattern. It is to be noted that the
amount of energy leaking to the dark side of the star remains limited
since these models only consider perturbative irradiation, unlike
what is observed in spider binaries. Besides, another perturbative
study (Tassoul & Tassoul 1982) showed that the magnitude of the
currents found in Kirbiyik & Smith (1976), Kippenhahn & Thomas
(1979), and Kirbiyik (1982), which are supersonic, might be largely
overestimated due to the negligence of eddy viscosity in these
models.

Numerical studies have also assessed the onset of circulation
in irradiated binaries, starting with Martin & Davey (1995), using
smoothed particles hydrodynamics (Eldridge, Garaud & Tout 2003),
or using full 3D hydrodynamics in order to capture the effects of
the Roche lobe filling and Coriolis force (Beer & Podsiadlowski
2002a, b). These studies all concluded that a global circulation
current was driven by irradiation, albeit with different properties. In
particular, Martin & Davey (1995) found a supersonic flow, similarly
to the analytical work of Kippenhahn & Thomas (1979) and Kirbiyik
(1982), while Beer & Podsiadlowski (2002b) found a subsonic flow.
However, in the latter case, the slower flow velocity was not due to
eddy viscosity as in Tassoul & Tassoul (1982) but to the possibility for
the stellar surface to deform. We also note that the topic of irradiated
atmospheres has regained interest recently due to the discovery of the
so-called hot Jupiters (see e.g. Showman & Polvani 2011; Showman,
Tan & Zhang 2019).

In Section 2, we develop a simpler heat redistribution model within
the outer layers of the star that constitutes a natural extension of
direct heating models. In principle, the heat flux must be calculated
from detailed stellar and atmospheric models of the star such as those
summarized above. However, we focus in this work on demonstrating
the basic properties and the interest of this new framework by
using simple diffusion-like and convection-like laws. To the best
of our knowledge, diffusion-like laws are a novel feature of this
type of model. In Section 3, we apply this simple model to the light
curve of the companion of PSR J2215+5135 (Linares et al. 2018)
in order to empirically determine the most probable law. We then
discuss the physical interpretation of the results in Section 4. At
the time of finishing this paper, a similar model was published in
Kandel & Romani (2020) that appears to be a special case of the
framework presented here, where no diffusion effect is considered
and a particular convection law is used. For comparison purposes,
we also reproduce this model in this work.

2 SUPERFI CI AL HEAT TRANSPORT MODEL

2.1 Preliminary considerations: direct heating by high-energy
particles

Currently, state-of-the-art light-curve-modelling softwares such as
icarus (Breton et al. 2012), elc (Orosz & Hauschildt 2000),
xrbcurve (Shahbaz et al. 2003), orbinsyn (Linnell, DeStefano &
Hubeny 2012), rely on the approximation that the power impinging
on the companion star is thermalized and re-radiated at the location
on the photosphere where it was absorbed. This leads to the following
energy balance,

σT 4
dh = σsbT

4
b + Lw, (1)

where σ sb is the Stefan–Boltzmann constant, Tdh is the temperature of
the photosphere after irradiation, Tb is the base temperature without
irradiation, Lw is the energy flux of the pulsar wind at the photosphere.

Let us note that the base temperature Tb is not necessarily constant
over the star, but can be affected by, for example, gravitational
darkening or magnetic activity (star-spots). The irradiation flux
Lw includes the cross-section of the stellar surface relative to the
incoming flux. Indeed, if the irradiating flux is L0

wk, where k is a unit
vector and the normal to the stellar surface is given by the unit vector
n, then the flux crossing the surface element is Lw = L0

wk · n. The
function L0

w can take different forms depending on what the source of
irradiation is assumed to be. It is common to assume symmetric direct
heating from a point source, that is irradiation by a wind radially
expanding from the pulsar, but it has been proposed that the wind
might be reprocessed by an intra-binary shock (Romani & Sanchez
2016) or channelled by the companion’s magnetic field (Sanchez &
Romani 2017) thus making L0

w highly non-trivial in those cases.
There are several examples in the literature that show that the

direct-heating model works well when fitting some optical light
curves (e.g. van Kerkwijk, Breton & Kulkarni 2011; Breton et al.
2013). This tells us that (i) the irradiating flux is, at least partly,
deposited below the photosphere of the star as otherwise optical
light curves would not be affected, and (ii) that the deposition depth
is probably shallow as otherwise heat would not emerge at the entry
point on the photosphere. These two points have recently been backed
in Zilles et al. (2019) who showed that only high-energy particles
(�100 MeV) can deposit their energy below the photosphere, and do
so at very shallow depths, typically after crossing a column density
< 1000 g cm2.
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2.2 Basic transport equation

In the following, we propose to supplement equation (1) by adding the
possibility of energy transport within a thin shell located just below
the photosphere. The base of the shell is assumed to be unaltered
by irradiation which implies that it is much deeper than the reach of
high-energy particles bombarding the star. The thickness of the shell
must also be very small compared to the size of the star, and we will
consequently consider it negligible.

Within this shell, we consider the stationary equation of conserva-
tion of energy,

∇ · j = ė, (2)

where j is the flux of energy per unit surface and ė is an external source
of power per unit volume which, in the present case, is the irradiating
power of the pulsar wind. Since this equation is linear in j, we may
consider the base flux b corresponding to the homogeneous solution,
ė = 0, and a particular solution i corresponding to irradiation such
that

j = b + i. (3)

The homogeneous solution b is in principle part of a general solution
of the full set of stellar-structure equations. Making the simplification
that the star has a spherical photospheric surface of radius R∗, one
has

br(R∗) = σsbT
4

b , (4)

where br is the radial component of b and Tb is the base temperature,
that is the photospheric temperature in absence of irradiation. This
boundary condition is in fact all we need from the base solution for
the following derivations.

In order to compute the particular solution i, we use the condition
that the inner surface of the shell is unaffected by irradiation, which
gives the boundary condition

ir (Ri) = 0, (5)

where Ri is the radius at the base of the shell.
We now proceed to average equation (2) over the thickness of the

shell. We start with integrating (2) over the volume of an element of
shell corresponding to a surface δS at the surface of the star between
R∗ and Ri. We immediately obtain

∫
dV ė = LwδS while we can

apply Gauss’ theorem to the divergence term on the left-hand side of
equation (2) such that∫

i · dS =
∫

dS‖ · i‖ + (ir (R∗) − ir (Ri)) δS + ©
(

�R

R∗

)
, (6)

where we have used the fact that R∗ − Ri = �R � R∗ to approximate
a shell element to a cylinder of height �R and cross-section δS, dS‖ is
a surface element perpendicular to the lateral surface of this cylinder,
and we have decomposed the energy flux into its radial and angular
components i = (ir , i‖).

Defining the contour element dC such that dS‖ = dr dC , we can
rewrite the parallel term of the right-hand side of equation (6) as∫

dS‖ · i‖ =
∫ R∗

Ri

dr

∮
dC · i‖, (7)

=
∫ R∗

Ri

dr

∫
dS

1

r
∇‖ · i‖ + ©

(
�R

R∗

)
, (8)

where equation (8) derives from equation (7) by applying the 2D
Gauss’ theorem within a section at radius r. Note that we have
again neglected the curvature of the surface as being of the order of

©(�R/R∗). Indeed, r−1∇‖ is the angular part of divergence operator
in spherical coordinates,

∇‖ = 1

sin θ

(
∂ sin θ

∂θ
uθ + ∂

∂φ
uφ

)
, (9)

where (θ , φ) are respectively the colatitude and longitude at the
surface of the star, and (uθ , uφ) are the associated unit vectors.

Inserting equation (8) back into equation (6) using the boundary
condition of equation (5), and differentiating with respect to the
surface elements δS, we obtain the averaged energy conservation
equation,

∇‖ ·
∫

dr
1

r
i‖ = −ir (R∗) + Lw, (10)

where, in addition, we have used the fact that ∇‖ is independent of r
to take it out of the integral on the left-hand side.

Defining the ‘average’ parallel energy flux as

J‖ =
∫ R∗

Ri

dr
1

r
i‖(r), (11)

and introducing the irradiation temperature σsbT
4

ir = ir (R∗), we may
rewrite equation (10) as

∇‖ · J‖ = −σT 4
ir + Lw. (12)

The flux that escapes the star is given by jr (R∗) = br (R∗) + ir (R∗).
Since we have made the assumption that the irradiating power is
thermalized before being re-radiated, this means that the escaped
flux corresponds to a blackbody at temperature T∗ such that

T 4
∗ = T 4

b + T 4
ir , (13)

and that this temperature corresponds to the actual temperature of
the plasma at the photosphere.

This allows us to write our final superficial energy transport
equation,

∇‖ · J‖ = − (
σsb

(
T 4

∗ − T 4
b

) − Lw

)
. (14)

One notes that if parallel energy transport can be neglected, that
is J� = 0, one naturally recovers the common direct heating of the
companion star by the pulsar wind. In this case, Tb is directly equal
to the night-side temperature of the star. Note that here we define
the night-side temperature as the temperature at the point on the
surface opposite to the pulsar’s direction. This quantity is different
from the effective temperature inferred at the inferior conjunction of
the companion, which is an average over the visible surface at this
particular phase.

2.3 Transport laws: diffusion and convection

We now consider that parallel energy transport follows a law of the
form

J‖ = −κ∇‖T∗ − T∗f (θ ) sin θuφ, (15)

where the first term on the right-hand side accounts for diffusion-like
effects and the second term for convection-like effects. The spherical
coordinates are defined as for equation (9) with the polar axis taken to
be the spin axis of the star, and the prime meridian, φ = 0, intersects
the binary axis on the night side of the star. The parameter κ is the
diffusion coefficient with a dimension of energy per unit temperature
per unit surface per unit time.

In the convection term, we consider that the surface temperature
T∗ is convected by a velocity field that rotates around the angular-
momentum axis of the star such that if the function f is a constant then
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the convecting flow is in solid rotation with a velocity field f sin θuφ .
However, the polar convection profile f(θ ) may be prescribed to
reflect theoretical predictions such as, for instance, equatorial jets
(see e.g. Showman & Polvani 2011 and below).

Here, we have assumed that the surface temperature T∗ is a good
proxy for the transport properties of the shell. Indeed, if the energy
is deposited at a shallow depth below the surface, then parallel
temperature gradients should be maximum near the surface and so
should be diffusion. Similarly, assuming a sufficiently smooth radial
temperature profile in the shell then the photospheric temperature can
be chosen as representative of convective transport. Nevertheless, the
law of equation (15) should be considered as an effective description
of the physics taking place in the outer shell of the star and not as a
law derived from first principles.

To go further, we assume that κ is a constant. Inserting equation
(15) in the energy redistribution equation (14), we obtain

κ∇2
‖T∗ + f (θ )∂φT∗ = σsb

(
T 4

∗ − T 4
b

) − Lw, (16)

where ∇2
‖ is the angular Laplacian.

Note that equation (15) is certainly not the only one possible
solution but we favour it in this article owing to its relatively math-
ematical simplicity while retaining some of the expected qualitative
behaviour. For instance, it could easily be generalized to more
complex convection patterns and a non-constant κ .

We present in Appendix A a method to solve equation (16). It
is interesting to note that in many cases a good approximation
can be obtained by linearizing equation (16) around the direct
heating solution of equation (1) and decomposing T∗ on to spherical
harmonics. We also found that this procedure can successfully be
iterated in order to obtain the fully non-linear solution to equation
(16), thus providing a higher accuracy. We use the latter method in
the rest of this article.

3 A PPLICATION

3.1 Convection profiles

The model of equation (16) depends on the choice of convection
profile f(θ ) made by the modeller based on additional theoretical
and/or empirical evidence. We have tried the following different
forms,

f (θ ) = ν, (17)

f (θ ) = ν exp

(
− θ2

2w2

)
, (18)

f (θ ) = exp

(
− θ2

2w2

) 3∑
i=0

νiHi

(
θ

w

)
, (19)

f (θ ) = +ν if |θ | < w; −ν otherwise. (20)

In all these profiles, ν (or ν i) is the energy flux per unit temperature
transported by convection. Equation (17) corresponds to a constant
longitudinal advection, meaning that if the properties of the superfi-
cial layer are constant across the entire surface (thickness, density,
and thermal capacity) then a constant ν corresponds to the constant
angular velocity (around the spin axis of the star) of an advection
flow in solid rotation around the star. If ν > 0, then the flow is rotating
in the same direction as the star on its orbit. Equation (18) assumes
that the flow is localized within a Gaussian belt of characteristic
angular width w around the equator. Equation (19) is a generalization
of equation (18) to an expansion into Hermite polynomials Hn up
to third order. Indeed, such an expansion has been shown to be
the eigenbasis of the polar dependence of flow solutions to the

shallow-water model developed in Showman & Polvani (2011) for
superrotation in atmospheres of tidally locked exoplanets. It follows
that equation (18) is simply equation (19) with ν = ν0 and ν i > 0 =
0. Equation (20) corresponds to the particular case studied recently
in Kandel & Romani (2020) if diffusion is not included (κ = 0).
In this model, a convection belt of width 2w is rotating around the
equator while matter flows with opposite velocity at higher latitudes.
All these profiles share the property that the convection pattern is
dominated by an equatorial jet (e.g. Showman & Polvani 2011).
We note that only equations (19) and (20) include the possibility of
counter-rotating flows.

3.2 Heat redistribution maps

We show examples of the temperature difference with respect to
direct heating, that is T∗ − Tdh, obtained using the above temperature
profiles of equations (17)–(20) in Fig. 1. One sees that, in every
case, the changes in temperature are located near the terminator
of irradiation by the pulsar, as well as near the apex of the
star in direction of the pulsar when diffusion is enabled. This is
because it is where the strongest temperature gradients of the direct
heating pattern are present. The additional wavy patterns that can be
distinguished are due to the limited number of spherical harmonics
used in the expansion of the solution. We have checked that for l ≥ 30,
these patterns entirely average out and do not bias the corresponding
light curves (see next section).

As can be seen in Fig. 1, diffusion transports energy from the day
side to the night side symmetrically with respect to the binary axis
(if the star is not spherical, some small asymmetries can appear, in
particular, due to gravity darkening). On the contrary, the effect of
convection is asymmetric between the leading and the trailing edge
of the star, and localized at particular latitudes (except for the profile
of equation 17). As a result, convection effectively creates hot and
cold spots at the intersection of the characteristic latitude of a stream
and the terminator line. However, these spots are largely smoothed
when diffusion is present.

3.3 Application to PSR J2215+5135

As an example, the above model was fit to the multicolour op-
tical light curve (SDSS g

′
, r

′
, i

′
) of the redback companion of

PSR J2215+5135 taken using the Auxiliary Port Camera (ACAM)
mounted on the William Herschel Telescope in 2014. These data were
initially presented in Linares et al. (2018), and are also employed in
Kandel & Romani (2020). This is also the same object that was used
by Romani & Sanchez (2016) to demonstrate the effectiveness in
invoking an intra-binary shock in order to describe the asymmetries
present in the light curve of PSR J2215+5135.

The data were downloaded from the Isaac Newton Group of
Telescopes Archive1 along with associated flat-fields and bias frames.
The data were reduced using the ULTRACAM pipeline (Dhillon
et al. 2007). The instrumental magnitudes for PSR J2215+5135
were calculated via extraction of the source counts using an optimal
photometry algorithm (Naylor 1998). The counts for six surrounding
non-variables stars that are in Data Release 1 from the Panoramic
Survey Telescope and Rapid Response System (Pan-STARRS;
Chambers et al. 2016; Flewelling et al. 2016) were also extracted and
used to calibrate the magnitudes of PSR J2215+5135. The extracted
light curve matches both the calibration and behaviour of that shown
in Linares et al. (2018).

1https://casu.ast.cam.ac.uk/casuadc/ingarch/
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1762 G. Voisin et al.

Figure 1. Temperature maps representing direct heating corresponding to the solution of Table 1 (top-left panel) and examples of temperature differences
obtained when using the convection patterns of equations (17)–(20) without (left column) or with (right column) diffusion. The convection and diffusion
parameters are chosen to serve an illustrative purpose with κ = 3500, ν = 7000, νi = ν/5i, and w = 20◦. The blue lines show the location of the terminator line
of the corresponding direct heating. Two cycles of longitudes are shown for clarity. The point at longitude 180◦, colatitude 90◦ faces the pulsar.

We have fitted the usual symmetric direct heating model without
heat redistribution, and compared it with heat redistribution models
using the convection profiles of equations (17)–(20) both with and
without diffusion, that is with κ free or fixed to zero in equation (16).
In each case, the parameter space was explored using multinest
(Feroz & Hobson 2008; Feroz, Hobson & Bridges 2009; Feroz et al.
2013) nested sampling algorithm as implemented in PYTHON through
pymultinest (Buchner et al. 2014). This algorithm was chosen
because it allows to compare the evidence of each model, that is
the probability of the model given the data, and therefore perform a
direct comparison between them.

Apart from the heat redistribution parameters, we fit for extinction
E(g − r), the amplitude of the projected radial velocity K2, distance
d, base and irradiation temperatures Tb and Tir, Roche lobe filling
factor fRL, and system inclination i (e.g. Breton et al. 2012, 2013).
We also report in Table 1 some derived parameters of interest:
the mass ratio q, the pulsar and companion masses Mpsr and Mc,
and the irradiation efficiency ε. The latter is defined as the ratio
between the pulsar spin-down power and the irradiating power
absorbed by the star (e.g. Breton et al. 2013). To derive some of
these parameters, we made use of the orbital characteristics obtained
from pulsar timing, in particular the pulsar projected semimajor
axis ap sin i = 0.468141 ± 0.000013 lt-s and the orbital period
P = 0.172502105 ± 0.000000008 d (Abdo et al. 2013).

3.3.1 Priors

There are three parameters for which we set informed priors when
exploring the parameter space with multinest: the distance to the

source, the optical extinction in the direction towards the source, and
the radial velocity of the companion star. In addition, the inclination
had a sin (i) prior applied, reflecting a uniform prior on the orientation
of the system.

The distance prior has three components. The first is based on
the estimated space density and transverse velocity of millisecond
pulsars along the line of sight towards PSR J2215+5135, with the
underlying spacial density for MSPs coming from Levin et al. (2013).
This component has a Gaussian distribution in distance from the
Galactic centre with width σ = 4.5 kpc, a decaying exponential in
height above the Galactic plane with a scale height of 0.5 kpc, and a
decaying exponential in transverse velocity, with a mean velocity of
100 km s−1 (Manchester et al. 2005). The second component comes
from an upper limit on the system’s parallax of <1.8 mas at the 5σ

level, which was obtained from the second data release of the Gaia
spacecraft (Gaia Collaboration 2018). The third component comes
from combining the most recent Galactic electron density distribution
model (Yao, Manchester & Wang 2017) with the dispersion mea-
surement value of 69.1951 ± 0.0002 pc cm−3 obtained from radio
timing of PSR J2215+5135. The resulting prior is shown over the
relevant parameter space in the distance plot of Fig. 2, and is not very
constraining.

The prior on the optical extinction, that is E(g − r), was a Gaussian
centred on 0.13 and with width σ = 0.03, and comes from the
measured value from the Bayestar19 dust maps (Green et al. 2019).
The radial velocity of the companion star, K2, had a Gaussian prior
centred on 412 km s−1 with width σ = 5 km s−1, inline with the
estimated centre-of-mass velocity of the secondary given by Linares
et al. (2018).
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Spider heat redistribution 1763

Table 1. Evidence sampling results for the three main models applied to J2215+5135: Direct heating, uniform
convection without diffusion, and uniform convection with diffusion. log Z is the natural logarithm of the model
evidence, and models are ranked by increasing evidence. Ndof is the number of degrees of freedom of each model,
and we give the χ2 of the solution with the best likelihood (but not necessarily the best posterior probability) and of
the median solution. Model parameters are reported for the median solution with the 95 per cent confidence interval
(±47.5 per cent).

Direct Uniform Bizone Uniform + Diffusion

log Z −304 −225.9 −222.3 −216.9

Ndof 229 228 227 227

χ2
best likelihood 1101 419.7 350.5 464.2

χ2
median 1169 481.2 371.4 470.3

Fitted parameters
E(g − r) 0.122+0.060

−0.048 0.272+0.011
−0.020 0.288+0.018

−0.018 0.128+0.040
−0.047

K2 (km s−1) 413+9
−10 413+8

−7 410+10
−6 412+9

−10

d (kpc) 3.33+0.29
−0.25 3.62+0.11

−0.14 3.63+0.11
−0.15 3.10+0.11

−0.10

Tb (K) 5596+232
−157 6582+103

−184 6814+119
−245 3451+1694

−2280

Tir (K) 7698+566
−369 9851+223

−435 10318+291
−518 9714+479

−943

fRL 0.861+0.013
−0.018 0.880+0.011

−0.0086 0.881+0.009
−0.0012 0.76+0.027

−0.017

i (◦) 64.4+11.2
−8.1 73.7+8.4

−5.1 82.3+7.0
−9.9 86.4+3.5

−8.4

κ

(W K−1 m−2)
– – – 53135+8400

−24128

ν (W K−1

m−2)
– 4683+604

−592 5484+669
−972 9939+2335

−3627

w (rad) – – 2.1+0.7
−1.1 –

Derived parameters
q 6.98+0.16

−0.16 6.98+0.14
−0.12 6.94+0.17

−0.11 6.96+0.16
−0.16

Mpsr (M�) 2.24+0.64
−0.45 1.86+0.21

−0.17 1.68+0.24
−0.12 1.65+0.14

−0.11

Mc (M�) 0.321+0.090
−0.063 0.267+0.027

−0.024 0.242+0.032
−0.013 0.237+0.016

−0.010

ε 0.52+0.23
−0.13 1.23+0.13

−0.21 1.38+0.19
−0.20 1.08+0.24

−0.36

T
(spec)

N (K) 5462+227
−149 6396+97

−177 6614+115
−231 5728+179

−138

T
(spec)

D (K) 7493+477
−295 9527+219

−410 10018+291
−518 7783+336

−247

3.3.2 Results

It appears that models with the convection profiles of equations
(18)–(20) all converge to the profile of equation (17). Indeed, their
characteristic width is compatible with or larger than w ∼ π /2. As
a consequence, we report in detail only the results for the uniform
convection model of equation (17) with and without diffusion. We
make an exception for the bizone convection profile of (20) without
diffusion in order to compare with the recent work of Kandel &
Romani (2020). We also report for comparison the symmetric direct
heating model. The results of these four fits are collated in Table 1
by order of increasing evidence. The best-posterior light curves of
these models are reported in Fig. 3.

One sees that the most favoured model is the model with both
uniform convection and diffusion, while uniform and bizone convec-
tion without diffusion yield quasi-identical solutions. Although the
uniform and bizone convection models are compatible within error
bars, one can see that their χ2 and evidence are sensibly different. We
explain the latter by the additional parameter of the bizone model
that allows for a better fit in part of the parameter space, and the
former shows the sensitivity of the χ2 to the exact values of the
parameters. Indeed, we could check that the uniform model yields
the same χ2 = 375.2 as the bizone model when applied to the bizone
median parameters reported in Table 1, as expected since w > π /2.

According to their respective evidence, the uniform + diffusion
model is respectively ∼8100 times more likely than uniform convec-
tion alone and ∼220 times more likely than bizone convection alone.
However, one can see that the ranking in terms of best χ2 is quite
different, reflecting the role of the priors in the results. As can be seen
in Fig. 2, the uniform convection + diffusion model is the only one
that fits the best within the distance and extinction priors, comparably
to the direct heating model, while the two purely convective models
stand at the edge of the extinction prior and require a significantly
larger distance.

This correlates with the fact that these models require both very
high base temperature Tb � 6550 K and irradiation temperature
Tir � 9900 K implying a maximum day-side temperature over
T

(max)
D ∼ (T 4

b + T 4
ir )1/4 � 11 000 K. Spectroscopic observations re-

ported by Linares et al. (2018) provide average night and day-
side temperatures of T

(spec)
N = 5660+260

−380 and T
(spec)

D = 8080+470
−280 K,

respectively. These temperatures are derived from spectra taken at
inferior and superior conjunction of the companion, respectively.
These spectra result from the superposition of light originating
from within the visible surface of the star that is not at a uniform
temperature and therefore should be seen as average values. In
particular, they are not equal to the minimum night-side temperature
(∼Tb) and maximum day-side temperature T

(max)
D . We have estimated

T
(spec)

N and T
(spec)

D for our models by computing the position of the
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1764 G. Voisin et al.

Figure 2. Results of the MULTINEST fit of the light curve of PSR J2215+5135 using the uniform convection + diffusion model. The solid lines in the plots
along the diagonal show the prior functions used, if a prior was specified.

peak of the spectrum resulting from the sum of the local blackbody
spectra of each visible surface elements at inferior and superior
conjunction, respectively. The results, reported in Table 1 show that
only the uniform convection + diffusion model, and with slightly
more tension the symmetric direct heating model, are compatible
with the spectroscopic observations of Linares et al. (2018), while the
convection-only models require much larger temperatures for both
sides of the star. We note the very important role of diffusion here.
Indeed, diffusion simultaneously decreases the day-side temperature
and increases the night-side temperature by ∼1000 K compared
to direct heating with the same parameters, as is shown in Fig. 4. It

entails the much smoother temperature map of Fig. 5 compared to, for
instance, the direct heating model (top-left panel of Fig. 3) that allows
a moderate day–night temperature difference despite the significantly
larger irradiation temperature and cooler base temperature.

4 D ISCUSSION

4.1 Base temperature

Interestingly, the base temperature of the uniform convection +
diffusion model is significantly lower than any of the other models
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Spider heat redistribution 1765

Figure 3. The light curve of PSR J2215+5135 in SDSS g
′

(green), r
′

(red), and i
′

(orange) bands (top panel) and residuals after subtraction of the model light
curve (bottom panel). In each case, the best posterior models are shown.

with Tb = 3451+1694
−2280 K in comparison to at least 5500 K for the

symmetric direct heating model and more than 6000 K for the
convection-only models. Let us remember that the base temperature
is the effective temperature that the star would have in absence of
irradiation. Due to the lack of knowledge of the stellar structure
of redback companions, it is difficult to know what this temper-
ature should be in theory. The net result is that, especially for
cases where the heat is substantially redistributed to the back of
the star, the observed average night-side temperature may depart
significantly from the true temperature that it would have without
irradiation.

It is however interesting to compare redback companions to
companions of cataclysmic variables. Indeed, these stars have similar
masses to redback companions, and similarly underwent Roche lobe
filling and mass transfer to the benefit of their primary (a white
dwarf in this case). Nonetheless, these stars are not irradiated, letting
their base temperature being seen, and have been largely studied
both observationally and theoretically. One may therefore speculate
that their effective temperature is similar to the base temperature of
redback companions, in which case it would appear to be in the range
of 3000–4000 K depending on the mass of the star (Knigge, Baraffe &
Patterson 2011). The uniform convection + diffusion model is the
only model compatible with this range.

4.2 Interpretation of heat redistribution parameters

The framework proposed in Section 2 allows to redistribute en-
ergy at the surface of the star assuming a given transport law.
However, determining such a law from first principle requires to
determine not only the relevant microphysics but the hydrodynamical
properties of stellar matter as well. This is out of the scope of
this paper and should be addressed in future work. Here, we
have focused on the study of the simplest possible convection-
like and diffusion-like redistribution laws, by assuming only a
latitudinal dependence for the convection profile (see Section 3.1)
and a constant diffusion coefficient. In the following, we derive
orders of magnitude to show that the values we obtain for the
convection and diffusion parameters of the uniform convection
+ diffusion model applied to PSR J2215+5135’s companion, ν

and κ , respectively, can be compatible with some simple physical
processes.

4.2.1 Convection

The fact that all convection profiles converged to a solution similar
to the uniform rotation profile may simply mean that the finer
details cannot be resolved with the available data. In particular,
any latitudinal structure is bound to be largely if not completely
averaged out since photometric information only provides the total
flux contribution as a function of rotational phase with very little
handle on the other axis. One may tentatively interpret the value of
the convection parameter in terms of a wind velocity similar to the 1D
model of Cowan & Agol (2011). Thus, assuming uniform rotation of
a shell of uniform column density � at angular velocity ω, one can
write

ν = �cpω, (21)

where cp = 5kb/3μ � 35 000 J K−1 kg−1 is the specific heat capacity
of a perfect gas at constant pressure, kb is Boltzmann constant,
and we have approximated the mean molecular mass μ to the
mass of a proton. We may adopt the median value of the depth
of maximum heat deposition, 500 g cm2 (see Zilles et al. 2019 and
Section 2), as a fiducial value for �. This assumes that deeper
layers are not affected by latitudinal convection. The characteristic
hydrodynamical velocity is the speed of sound cs ∼ √

kbT∗/μ giving
a fiducial ω = cs/R∗. It follows that

ν = 5600 W K−1 m−2

(
�

500 g cm2

)(
T∗

8000 K

)1/2 (0.37 R�
R∗

)
,

(22)

where we have derived the stellar radius R∗ from the result of the
fit. Remarkably, the above fiducial value for ν agrees in order of
magnitude with the results of Table 1.

Interestingly, the bizone model does not reproduce the fit reported
recently in Kandel & Romani (2020) who uses the same model
and the same photometric data. In particular, in Kandel & Romani
(2020), it is found that w � 35◦ (θ c in their notations) while we
find w > 90◦, rendering the model virtually equivalent to uniform
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convection. It is unclear why this happens, however, we note that the
other major difference in the results of Kandel & Romani (2020) is
the relatively mild base temperature Tb (TN in their notations) as well
as irradiation temperature. These quantities correlate with the level
of extinction, and indeed one can see that the fitted values of E(g
− r) for our bizone and uniform models (Table 1) are substantially
into the tail of our prior on this parameter (see Section 3.3.1). On
the other hand, the fit of Kandel & Romani (2020) assumes a fixed
value of extinction (corresponding to the centre of our prior). Other
reasons for the discrepancy might include their addition of a veiling
flux (which we cannot assess with only photometric data) although
they report that the inclusion of this extra component improves the
fit without affecting the fitted parameters.

4.2.2 Diffusion

In the outer stellar envelope, the main diffusion mechanism is
radiative diffusion whose flux is jrad = −(16/3)σsbT

3lp∇T (e.g.
Kippenhahn, Weigert & Weiss 2012), where lp is the photon mean
free path in the material and σ sb is Stefan–Boltzmann constant.
Taking the average defined in equation (11) of the radiative diffusion
flux over a slab of stellar matter of height H � R∗, we can
estimate

J‖rad ∼ −κrad∇‖T∗, (23)

where

κrad ∼ 16

3
σsbT

3
∗ lp

H

R2∗
. (24)

The photon mean free path depends on the complex interplay of
density, temperature, and molecular composition (e.g. Kippenhahn
et al. 2012). Consequently, it is not possible to have a precise estimate
of lp without a full modelling of at least the outer layer of the
star.

We note that lp = (kρ−1), where ρ is the local density and k the
opacity of the material. In addition, H ∼ �/ρ where, as before, �

is the corresponding column density of the slab. Inserting a typical
value for the opacity in equation (23), that is k ∼ 1 cm2 g, we can
estimate the density near the photosphere necessary to obtain a given
value of the diffusion coefficient κ rad,

ρ ∼ 2 × 10−8 g cm3

(
κrad

5 × 104 W K−1 m−2

)−1/2 (
k

1 cm2 g

)1/2

×
(

�

500 g cm2

)1/2 (
R∗

0.37 R�

)−1 (
T∗

8000 K

)3/2

. (25)

This value is an order of magnitude smaller than the photospheric
density of solar-type stars (e.g. VandenBerg et al. 2008) that have a
similar surface gravity log g � 4.4 and temperature. However, this
estimate of surface gravity does not take into account the effect of the
star being close to filling its Roche lobe, which is bound to diminish
the effective gravity near the surface of the star and in the atmosphere
compared to the isolated case, thus diminishing the pressure and the
density at the photosphere. We also note the higher temperature
(compared to the Sun) on the day side of the companion, which
would also tend to decrease the density at equal pressure. Thus, it
seems possible that the value of the diffusion coefficient resulting
from our fit can be explained with radiative diffusion in the outer
layers of the star, although a complete modelling of its atmospheric
and sub-photospheric structure is necessary to answer this question
with certainty.

Figure 4. Maps of temperature difference with respect to direct heating
for the best posterior parameters of the bizone convection model (top), the
uniform convection model without diffusion (middle), and with diffusion
(bottom) from the results of the light-curve fits of PSR J2215+5135’s
companion presented in Table 1. The blue lines show the location of the
terminator line of the corresponding direct heating pattern. Two cycles of
longitudes are shown for clarity. The point at longitude 180◦, colatitude 90◦
faces the pulsar.

4.3 Orbital inclination and masses

Pulsar timing of PSR J2215+5135 measures the projected semimajor
axis of the pulsar as well as its orbital period. Using Kepler’s third
law, one combines these two parameters to compute the value of
the so-called mass function (e.g. Lyne & Graham-Smith 2012) that
relates the two masses of the system to the orbital inclination. In
order to lift the degeneracy between masses and inclination, one
needs two additional measurements. In the case of PSR J2215+5135,
the mass ratio can be inferred from spectroscopic measurements
of the companion’s projected radial velocity amplitude K2, though
with extra complications due to the irradiation effects (Linares et al.
2018). On the other hand, fitting the optical light curve allows one
to measure the inclination.

Our results in Table 1 show that this quantity is highly model
dependent, ranging from 64.4+11.4

−8.1
◦

for the direct heating model to
86.4+3.5

−8.4
◦

for the diffusion + uniform convection model through
somewhat intermediate values for the two convection-only models.
Accordingly, the pulsar mass ranges from 2.24+0.64

−0.45 to 1.65+0.14
−0.11 M�

for the direct heating and diffusion + uniform convection, respec-
tively. The direct heating values confirm those found in Linares et al.
(2018) using the same data set, while being hardly compatible at the
95 per cent level with the diffusion + uniform convection values.
Interestingly, the latter gives a similarly high inclination to what
was found in Romani et al. (2015) (see Linares et al. 2018 for a
review of previous measurements). In Kandel & Romani (2020), it
is however argued that this previous result might have been biased
by an extra blue veiling flux at the epoch of the observations of
Schroeder & Halpern (2014) (whose optical light curve they use),
as suggested by a corresponding excessive night-side temperature of
that fit compared to the spectroscopic constraints of Linares et al.
(2018).

In this work, we see that inclination is substantially changing
from one model to another, everything else being equal. Although
we cannot here assess with certainty the presence of a veiling flux
for lack of spectroscopic observations, the night-side temperature
of the diffusion + uniform convection fit is not excessively large

MNRAS 499, 1758–1768 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/2/1758/5909608 by guest on 28 M
ay 2024



Spider heat redistribution 1767

Figure 5. Temperature map of the best-posterior solution using with the
uniform convection + diffusion model from the results of the light-curve fits
of PSR J2215+5135 companion presented in Table 1. The blue line shows
the location of the terminator line of the corresponding direct heating pattern.
Two cycles of longitudes are shown for clarity. The point at longitude 180◦,
colatitude 90◦ faces the pulsar.

as discussed in Section 3. Another possible caveat is the lack of
a significant portion of the orbital light curve (see Fig. 3), which
might bias the fit especially considering the asymmetry of the light
curve. We therefore conclude that a thorough investigation involving
simultaneous spectroscopy and photometry across an entire orbit is
desirable in order to be able to reduce the risk of bias.

5 C O N C L U S I O N S

In this paper, we have considered the effects of heat redistribution
at the surface of companion stars of spider pulsars. In effect, we
have supplemented the usual direct heating model of irradiation,
equation (1), with a single extra term accounting for the divergence
of the heat flux within the stellar surface, equation (14). This may be
seen as the simplest addition possible to direct heating models. On
the other hand, the heat flux itself requires a complex modelling of
the outer layer and atmosphere of the star combining microphysics,
hydrodynamics, and thermodynamics that is outside of the scope of
this work.

In the spirit of studying the simplest possible extensions to direct
heating models, we have evaluated the effect of simple convection-
like and diffusion-like laws, equations (15) and (16). The solution
of the redistribution equation can be represented under the form
of heat redistribution temperature maps, Fig. 1, which show that
both convection and diffusion effects are most intense near the
irradiation terminator or near the apex of the star towards the
pulsar. Interestingly, convection is naturally able to produce patterns
akin to hot or cold spots at the terminator. We also note that heat
redistribution models are compatible with other models that modify
the irradiation pattern such as intra-binary shock models (Romani &
Sanchez 2016) or magnetic-field ducting models (Sanchez & Romani
2017), and with models that modify the base temperature such as hot
and cold spots (e.g. Shahbaz et al. 2017).

We have applied our models to the light curve of the already
well-studied companion of the redback pulsar PSR J2215+5135
in order to determine empirically the most likely form of the heat
flux. Various convective flows with and without diffusion were
tried. We found that, although every redistribution model provides a
substantially better fit than the symmetric direct heating model, the
model associating diffusion to convective flows in uniform rotation
is most likely (see Table 1).

However, since with every model substantial fit residuals re-
main, these results should be taken with caution and we consider
that the main value of the different fits lies in the comparison
with each other. Indeed, as it appears in Table 1, the various
models lead to sometimes very discrepant fitted parameters, in
particular concerning the base and irradiation temperatures, the
inclination, the filling factor, or the irradiation efficiency. This

suggests that, on top of detailed modelling, the determination
of the ‘true’ model of heat redistribution will certainly require
complementary observations such as spectroscopic measurements
of the effective temperature, or accurate and independent distance
measurements.
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A P P E N D I X A : SO L U T I O N O F TH E H E AT
RE DISTRIBU TION EQUATION

In this section, we use the lighter notation T ≡ T∗.

A1 Solution of the linearized transport equation

Equation (14) is strongly non-linear in T due to the T4 term. However,
given the relative success of direct heating models, we may assume
that energy redistribution is only a perturbation of the temperature
distribution at the surface of the star. Thus, we may write T = Tdh +
t and, assuming t � Tdh, expand equation (14) to first order in t,

at − κ∇2
‖ t − f (θ )∂φt = s, (A1)

where

a = 4σsbT
3

dh, (A2)

s = κ∇2
‖Tdh + f (θ )∂φTdh. (A3)

The linearized equation (A1) can be solved algebraically after
decomposing the function on to the orthogonal basis of spherical
harmonics {Ylm}l ≥ 0; −l ≤ m ≤ l ( e.g. Olver et al. 2010). In this basis,
the functions t, a, and s are represented by the vectors t, a, and s,
respectively, such that

t =
∑

tlmYlm, (A4)

where tlm are the coefficients of t, and similarly for s, a, and f. It
follows that equation (A1) can be expanded into∑
lml′m′

tlmal′m′YlmYl′m′ + κ
∑
lm

l(l + 1)tlmYlm −
∑
lml′m′

imttmfl′m′YlmYl′m′

= κ
∑
lm

slmYlm. (A5)

By projecting equation (A5) on to each spherical harmonic, we obtain
a set of linear algebraic equations the solution of which is formally
given by

t = M−1s, (A6)

where we have introduced the matrix M = {Mij}. Its coefficients are
defined by

Mαβ =
∑

γ

μαβγ (aγ − imβfγ ) + κlα(lα + 1)δαβ, (A7)

where δαβ = 1 if α = β and 0 otherwise, and each index α, β, γ

maps on to a different pair of spherical-harmonic indices (l, m) (for
example α = {0, 1, 2, 3...} → (lα , mα) = {(0, 0), (1, −1), (1, 0),
(1, 1)...}). We have introduced the spherical-harmonic multiplication
coefficients {μαβγ } such that

YβYγ =
∑

α

Yαμαβγ . (A8)

These coefficients can, for example, be obtained from the Clebsch–
Gordan coefficients (e.g. Olver et al. 2010). Alternatively, one can
compute them numerically using publicly available tools such as
shtools (Wieczorek & Meschede 2018).5

A2 Solution of the full non-linear transport equation

Some irradiated stars show very large temperature differences be-
tween their day and night sides, to the point that the temperature
difference might exceed the temperature of the night side. In this
case, the assumption that heat redistribution is only a perturbation
of direct heating may fail. Here, we propose a fixed-point scheme
to solve the full non-linear equation (16) by iterating the linearized
solution of Section A1.

At each iteration, the temperature distribution Tn + 1 is calculated
according to

Tn+1 = Tn + tn+1, (A9)

where tn + 1 is the solution of equation (16) linearized with respect to
Tn,

Antn+1 − κ∇2
‖ tn+1 − f (θ )∂φtn+1 = Sn, (A10)

where

An = 4σT 3
n , (A11)

Sn = κ∇2
‖Tn + f (θ )∂φTn − σ

(
T 4

n − T 4
b

) + Lw. (A12)

Equations (A9) and (A10) form a sequence that can be initialized
with T0 = Tdh, t0 = 0 such that t1 is equal to t of the previous section.
The solution of equation (A10) is given by equations (A6) and (A7)
only replacing the vectors a, s, t by the corresponding an, sn, tn+1.

In practice, this scheme converges after a few iterations with the
stopping criterion ‖tn+1‖ < 1 K.

5https://shtools.github.io/SHTOOLS/
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