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ABSTRACT
21-cm intensity mapping has emerged as a promising technique to map the large-scale structure of the Universe. However, the
presence of foregrounds with amplitudes orders of magnitude larger than the cosmological signal constitutes a critical challenge.
Here, we test the sparsity-based algorithm generalized morphological component analysis (GMCA) as a blind component
separation technique for this class of experiments. We test the GMCA performance against realistic full-sky mock temperature
maps that include, besides astrophysical foregrounds, also a fraction of the polarized part of the signal leaked into the unpolarized
one, a very troublesome foreground to subtract, usually referred to as polarization leakage. To our knowledge, this is the first time
the removal of such component is performed with no prior assumption. We assess the success of the cleaning by comparing the
true and recovered power spectra, in the angular and radial directions. In the best scenario looked at, GMCA is able to recover the
input angular (radial) power spectrum with an average bias of ∼5 per cent for � > 25 (20–30 per cent for k‖ � 0.02 h−1 Mpc),
in the presence of polarization leakage. Our results are robust also when up to 40 per cent of channels are missing, mimicking
a radio-frequency interference (RFI) flagging of the data. Having quantified the notable effect of polarization leakage on our
results, in perspective we advocate the use of more realistic simulations when testing 21-cm intensity mapping capabilities.

Key words: methods: data analysis – methods: statistical – large-scale structure of Universe – cosmology: observations – radio
lines: galaxies – radio lines: ISM.

1 IN T RO D U C T I O N

If we would ask a large-scale structure scientist about her ideal survey,
she would request big cosmological volumes and great redshift
resolution. Both things are hard to achieve at the same time. For
instance, if we consider galaxy surveys, those are either photometric
(big volumes but also big redshift errors) or spectroscopic (accurate
redshifts but small volumes). This motivates the development of 21-
cm intensity mapping experiments that can ensure both advantages.

Indeed, the 21-cm – alternatively, the frequency ν21 cm =
1420 MHz – line is emitted by the hyperfine transition of neutral
hydrogen, H I. Being spectrally isolated, we are confident we are
observing a H I cloud at redshift z when detecting a signal at
frequency ν = ν21 cm/(1 + z). Hydrogen is the most abundant baryonic
component of the Universe, however, its 21-cm line is weak and
long integration times are necessary to detect galaxies beyond z �
0.1 (e.g. Fernández et al. 2016). To overcome this, we can use the
intensity mapping technique: we drop the idea of resolving individual
galaxies and instead collect all their integrated emission, scanning the
sky fast and economically. This way, we tomographically assemble
temperature maps in 21 cm of the Universe, effectively mapping the
cosmic web in three dimensions (Battye, Davies & Weller 2004;
Chang et al. 2008; Loeb & Wyithe 2008).

However, since its first application in cross-correlation with
galaxies by Chang et al. (2010) with Green Bank Telescope (GBT)
data, 21-cm intensity mapping has proven to be hard to be performed.

� E-mail: ipcarucci@gmail.com

There have been updates with GBT data (Masui et al. 2013; Switzer
et al. 2013; Wolz et al. 2017) and more recently also with the Parkes
radio telescope, although still in cross-correlation with galaxies
(Anderson et al. 2018). We still miss a truly independent detection.

The main challenge for these experiments is constituted by
contaminants: foregrounds of astrophysical origin – that are orders
of magnitude more intense than the sought-after signal – and those
originated by instrumental issues, as systematics and calibration-
driven effects; the latter can also mix the modes (of foregrounds and
signal), making even more challenging the component separation
(Switzer et al. 2015). The discussion about more adapted and
optimized cleaning methods motivates this paper.

Many of the foreground cleaning methods tested in the literature
make use of the expected smoothness in frequency of the astro-
physical foregrounds. Some of them parametrize the foregrounds in
order to separate them (Ansari et al. 2012; Shaw et al. 2014), others
do not assume a specific model for the foregrounds and are said
to be blind – principal component analysis (Alonso et al. 2015;
Bigot-Sazy et al. 2015); independent component analysis (Wolz
et al. 2014; Zhang et al. 2016; Cunnington et al. 2019); inverse
variance (Liu & Tegmark 2011); quadratic estimators (Switzer et al.
2015); and generalized needlet internal linear combination (Olivari,
Remazeilles & Dickinson 2016). Up to now, in real data analysis,
only blind methods have been employed and proven to be suitable
for the foreground cleaning task (Masui et al. 2013; Switzer et al.
2013; Wolz et al. 2017; Anderson et al. 2018).

All the methods and works mentioned above succeed at cleaning
the maps with different levels of accuracy. However, none of them
include and search for components that are not smooth in frequency.
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In this paper, we upgrade the degree of complexity of the simulated
data we want to clean, including a non-smooth component that
we expect to manifest in these observations: polarization leakage,
a fraction of the polarized part of the signal that spills into the total
intensity one. To our knowledge, this is the first time the removal of
such kind of contaminant is attempted assuming no prior knowledge
about it. We do so using the generalized morphological component
analysis (GMCA) algorithm (Bobin et al. 2007). It is also the first
time GMCA is adapted and tested as a blind source separation method
for z < 6 H I intensity mapping data. Different versions of GMCA
have already been applied to various observational data sets, as
cosmic microwave background data (e.g. Bobin et al. 2014), 21-cm
interferometric data in the Epoch of Reionization (EoR) context (Patil
et al. 2017), and X-ray images of supernova remnants (Picquenot
et al. 2019).

A 21-cm intensity mapping survey can be performed either in
single-dish mode (one or more single-dish antennas used as a set
of autocorrelators) or in standard interferometry (Bull et al. 2015);
current and planned surveys exist for both regimes. Here we choose
to focus on a survey like MeerKAT Large Area Synoptic Survey
(MeerKLASS; Santos et al. 2017), a proposed single-dish survey
with the MeerKAT radio telescope. Nevertheless, the results of this
paper could be extended to other instrumental configurations [as
e.g. the Baryon acoustic oscillations In Neutral Gas Observations
(BINGO)1 and Five-hundred-meter Aperture Spherical radio Tele-
scope (FAST)2], also in interferometry as we will point out.

The paper is organized as follows. In Section 2, we formalize the
problem we are tackling and we present the GMCA assumptions and
method. In Section 3, we describe the simulation we use for testing
GMCA. In Section 4, we present how we apply GMCA on the
simulated data and how we evaluate the outcome of the foreground
removal. In Section 5, we describe and discuss the obtained results.
Finally, we summarize our work in Section 6.

2 SO U R C E S E PA R AT I O N FO R M A L I S M

2.1 The 21-cm intensity mapping context

An intensity mapping survey scans the sky and for each channel of
frequency ν compiles a map of the total brightness temperature T.
For each given position on the sky (each pixel p) T is the sum of the
cosmological 21-cm signal from H I, of the foregrounds and of the
instrumental noise:

T (ν, p) = TC(ν, p) + TF(ν, p) + TN(ν, p). (1)

In the source separation process, we think of the foreground contribu-
tion TF as a sum of ns sources modulated by a frequency-dependent
amplitude, i.e. for each map at ν:

TF(ν, p) =
ns∑

i=1

Ai(ν)Si(p). (2)

We compress all maps in a data cube X, i.e. a npix × nch matrix
with npix the number of pixels in each map and nch the number of
maps (channels). We merge equations (1) and (2) and we can write
in matrix form:

X = AS + C + N, (3)

1http://www.bingotelescope.org/en/
2https://fast.bao.ac.cn

where A is the mixing matrix governing the contribution of the ns

sources S in the resulting signal, up to the cosmological signal C and
the noise contribution N. It follows that A has ns × nch, while S has
npix × ns dimensions.

We recall that the cosmological 21-cm signal is (i) highly out-
weighed by the foregrounds and (ii) uncorrelated in frequency. This
implies that the cosmological signal C is inherently coupled to
the instrumental noise component N. The problem of foreground
removal reduces to estimate the foreground-driven AS so that
X − AS is as accurate as possible at predicting the cosmological
H I brightness temperature field, taking into account the instrumental
noise contribution.

2.2 Generalized morphological component analysis

GMCA is a blind source separation algorithm that relies on the
morphological features that compose the sought-after components.
To that purpose, such components are assumed to admit a sparse dis-
tribution in an adapted signal representation (e.g. Fourier, wavelets,
to only name two). A source is sparse when most of its coefficients are
zero, thus sparse sources are easier to disentangle as their signatures
are uncorrelated. A classic example is Fourier space for periodic
signals: they can be described by few coefficients. The sparsity
assumption is essential as it allows to dramatically improve the
contrast between distinct components, which ease the separation
process.

For the science case of this paper, we make use of the starlet
wavelet dictionary (Starck, Fadili & Murtagh 2007) that has proven
to be well adapted for an efficient sparse description of galactic
diffuse emissions and astrophysical images in general (e.g. Flöer,
Winkel & Kerp 2014; Joseph, Courbin & Starck 2016; Offringa &
Smirnov 2017; Irfan & Bobin 2018).

Once we wavelet transform X to Xwt, GMCA promotes sparsity in
the sources Swt in wavelet base by solving iteratively the following
optimization problem:

{Ã, S̃} = min
A,Swt

ns∑
i=1

λi

∣∣∣∣Swt
i

∣∣∣∣
1
+ ∣∣∣∣Xwt − ASwt

∣∣∣∣2

F
, (4)

where the first term is a sparsity constraint term and the second
is a data-fidelity term. Indeed, || · ||1 is the �1 norm3 defined by
||Y||1 = ∑

i,j

∣∣Yi,j

∣∣; and || · ||F the Frobenius norm defined by

||Y||2F = Trace(YYT). In particular, λi are regularization coefficients
– sparsity thresholds – essential to provide robustness with respect
to the noise of the problem, i.e. in our case the difference in intensity
between the foregrounds and the cosmological signal; we first
estimate them with the median absolute deviation (MAD) method and
progressively decrease towards a final noise-related level. We refer
the reader to Bobin et al. (2015) for details about the thresholding
strategy.

As neither for A nor for S we use a model, GMCA is said to
be a blind method, where the only input needed is the number
of components ns it searches and its assumption is constituted by
sparsity.

The algorithm we employ here is openly available at www.cosmos
tat.org and demonstration scripts for reproducing the results of this
paper are available at https://github.com/isab3lla/gmca4im.

3For a pure sparse solution, we could substitute it with the �0 norm: ||Y||0,
the number of non-zero entries in Y.
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Table 1. Schematic descriptions of the components of the simulated maps.

Component Method/template Parameters

Cosmological 21-cm
signal

Lognormal approximation (CRIME; Alonso, Ferreira & Santos 2014) bH I (z) = 0.3(1 + z) + 0.6,
�H I (z) = 4(1 + z)0.6 × 10−4

Galactic synchrotron Planck Legacy Archive – FFP10 + high-resolution padding as in
equation (8)

Spatially varying spectral index (βs ∼ −3)

Galactic free–free Planck Legacy Archive – FFP10 Constant spectral index βs = −2.13
Extragalactic point
sources

Empirical model by Battye et al. (2013), Poisson and clustering
contributions as in Olivari et al. (2018)

Source flux threshold S0 = 1 Jy, background T ∼ να (α
from a Gaussian distribution with α0 = −2.7, σ = 0.2)

Polarization leakage Galactic synchrotron polarization + rotation measurement (CRIME;
Alonso et al. 2014)

Fraction of leaked polarization ε = 0.5%, Faraday
space corr. length ξ� = 0.5 rad m−2

Telescope beam Gaussian smoothing Frequency-dependent θFWHM, see equation (9)
Instrumental noise White, frequency-dependent σN as in equation (10) See Table 2

3 SI M U L AT I O N S

In this section, we describe the simulated data we test the foreground
removal technique on. To reproduce a truthful sky at frequencies of
900–1400 MHz, we sum together different components: (i) the 21-cm
cosmological signal, for which we use the lognormal approximation
as proposed by Alonso et al. (2014); (ii) astrophysical foregrounds,
of galactic origin – synchrotron and free–free diffuse emissions –
that we estimate using the Planck Sky Model, and of extragalactic
origin, for which we adopt the model by Battye et al. (2013); (iii)
lastly, we consider polarization leakage: a systematic known to be
critical in H I intensity mapping experiments (Santos et al. 2015) that
we model as in Alonso et al. (2014). Polarization leakage is difficult
to deal with because it is expected to be non-smooth in frequency –
as we will later explicitly show – and common foreground removal
techniques are not aimed at picking components misbehaving in
frequency. Thus, very little has been done in the literature to attempt
to remove its contribution from the signal (Shaw et al. 2015) and to
our knowledge there have been no attempts to remove it blindly, i.e.
assuming no prior on its characteristics.

For each frequency and for all components, we generate HEALPIX

maps with NSIDE = 256 that correspond to npix = 12 NSIDE 2 pixels
per map (Górski et al. 2005). We make this parent simulation pub-
licly available at http://doi.org/10.5281/zenodo.3991818 (Carucci,
Irfan & Bobin 2020); all scenarios addressed in this paper can be
derived from it.

We then merge all components into sky maps and we mimic
survey-specific features: we smooth maps with a frequency-
dependent Gaussian filter to mimic the effect of the telescope beam
and we finally add white noise to each channel, following standard
thermal noise calculations. In the next paragraphs, we describe with
more detail each of the above steps. Main properties of the simulated
components are summarized in Table 1.

3.1 Cosmological signal

After reionization (z < 6), most H I in the Universe is stored inside
galaxies, where it is dense enough to self-shield against the ionizing
power of the cosmic ultraviolet background (Noterdaeme et al. 2012;
Zafar et al. 2013). Thus, we can associate H I to the densest regions
of the underlying dark matter field: we approximate the latter by a
lognormal realization (Coles & Jones 1991) and assume H I is its
linear biased tracer. We make use of the CRIME4 algorithm, described

4http://intensitymapping.physics.ox.ac.uk/CRIME.html

in Alonso et al. (2014). We minimally modify CRIME, as we choose
to set a redshift-dependent H I bias bH I (z) = 0.3(1 + z) + 0.6 in
agreement with observations at redshift z � 0.8 (Martin et al. 2012;
Switzer et al. 2013) and to set the overall H I cosmic abundance to
�H I (z) = 4(1 + z)0.6 × 10−4, as compiled by Crighton et al. (2015).

The lognormal realization has cosmological parameters {�m,
��, �b, h} = {0.3, 0.7, 0.049, 0.67}, with an initial cube of
side 3 Gpc h−1 divided in 20483 cells. Light-cone effects and
redshift-space distortions are included by construction. The original
simulation is composed of 400 channels of 1 MHz of thickness,
covering a redshift range of z ∈ [0.09–0.58], corresponding to
frequencies ν ∈ [900–1300] MHz. We later rebin the simulation
as described in Section 3.5 before performing the blind source
separation.

The lognormal approximation is appropriate for this study, espe-
cially considering that we later smooth the maps with a typical beam
of ≈1◦, losing the small-scale information of the field. The large-
scale properties displayed by the simulated H I field roughly match
those seen in local Universe H I galaxy survey (Obuljen et al. 2019),
in state-of-the-art hydrodynamical simulations (Villaescusa-Navarro
et al. 2018) and in state-of-the-art galaxy evolution models coupled
to N-body simulations (Spinelli et al. 2020).

3.2 Astrophysical foregrounds

The astrophysical foregrounds featured in these simulations can
be divided into two groups: galactic and extragalactic. For the
extragalactic radio sources we implement the empirical model of
Battye et al. (2013), who obtain their differential source counts from
an empirical fit to numerous 1.4 GHz source surveys. By integrating
these source counts a mean offset temperature, representing the
unresolved sources is calculated for 1.4 GHz. The point sources
also contribute a clustering and Poisson component to the overall
point source temperature per pixel; these are calculated in angular
power space and then converted to pixel space using the HEALPIX

SYNFAST routine. Finally, any point sources over 0.01 Jy are injected
at random into the map as fully resolved sources using the map pixel
area and the number of sources (N) per steradian with a flux of S
(Olivari et al. 2016):

Tps(1.4 GHz, p) =
(

λ2

2kB

)
�−1

pixel

N∑
i=1

Si. (5)

We assume that sources brighter than 1 Jy have been identified
and removed from the data. In order to scale this 1.4 GHz estimate
across our frequency range we use a power law where the spectral
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Figure 1. Mollweide projections of the temperature of the contaminant
components in the simulation, from top left clockwise: galactic free–free,
galactic synchrotron, polarization leakage, and point sources. Units are in
mK and the colour bar is in logarithmic (linear) scale for the top (bottom)
maps. Maps correspond to frequency ν = 1101 MHz and have been convolved
with the telescope beam as described in the text.

index varies, according to a Gaussian distribution, over the sky. For
the Gaussian distribution we choose a mean value of −2.7 and a
standard deviation of 0.2 (Bigot-Sazy et al. 2015).

The diffuse galactic foregrounds present in intensity at MHz
frequencies are synchrotron and free–free emission. These emissions
can both be modelled at each pixel p as power laws with an amplitude
Ts and spectral index βs:

T (ν, p) = Ts(p)

(
ν

ν0

)βs(ν,p)

. (6)

The Planck Legacy Archive5 FFP10 simulations provide the syn-
chrotron and free–free all-sky amplitudes and the synchrotron
spectral index. We use the FFP10 simulations at 217 GHz for the
free–free and synchrotron amplitudes, at NSIDE=2048, and degrade
and smooth these maps to our desired NSIDE and resolution using
the HEALPIX routines. The synchrotron spectral index map used (β)
is that of Miville-Deschênes et al. (2008) and is at a resolution of
around 5◦. To provide spectral index information at angular scales
smaller than 5◦ we combine the synchrotron spectral map with a map
of small-scale structure:

βsy = β + βss, (7)

where the small-scale fluctuations (βss) are taken from Santos,
Cooray & Knox (2005) and adapted to have a smaller amplitude:

C
βss
� = 7 × 10−6

(
1000

�

)2.4 (
ν2

r

ν1ν2

)2.8

exp

(−log(ν1/ν2)2

2 × 42

)
, (8)

where νr is 130 MHz, ν1 is 580 MHz, and ν2 is 1000 MHz.
The synchrotron spectral index varies across pixels; this is not the

case for the free–free spectral index. In alignment with the known
range of −2.15 to −2.10 (Dickinson, Davies & Davis 2003), we
set the value for the free–free spectral index to be −2.13 and keep
this constant across the whole sky and over our full frequency
range.

Fig. 1 shows the all-sky foreground maps that constitute the
astrophysical components of our simulation.

5http://pla.esac.esa.int/pla

Figure 2. Temperature contribution of the polarization leakage as function
of frequency, observed along different lines of sight at constant galactic
longitude but different latitudes. The leakage has a smooth behaviour at the
poles – although dependent on line of sight – and oscillates when closer to
the galactic plane.

3.3 A non-smooth contaminant: polarization leakage

While the H I radiation is unpolarized, polarized foregrounds such
as the galactic and extragalactic synchrotron emission – additionally
altered by Faraday rotation in the interstellar medium – can spill
into the unpolarized part of the received signal due to miscalibration
issues (Moore et al. 2013).

In the community, we still lack a baseline on how to model this
systematic, due to lack of knowledge of the galactic synchrotron
polarization at the frequencies relevant for 21-cm intensity mapping
and of the galactic magnetic field and ionized medium where Faraday
rotation happens. Ongoing and future surveys in polarization will
help us bridge this gap (e.g. Carretti et al. 2019).

Meanwhile, in the literature there are two polarization leakage
models available for these frequencies, described in Alonso et al.
(2014) and Shaw et al. (2015). Even if both models are built on the
same data set (the galactic Faraday depth by Oppermann et al. 2012),
their resulting polarization leakage maps are qualitatively different
(because astrophysical assumptions ought to be made even without
strong supporting observational evidence). Heuristically, the Alonso
et al. (2014) model outputs a more dramatic6 leakage contamination.
Therefore, we take it as a conservative guess of the true systematic
and use it to complement the simulated data of this work.

Although instrument dependent, the fraction ε of the spilled polar-
ized signal is expected to be below 1 per cent (Santos et al. 2015); for
instance, it has been estimated to be of the order 0.6–0.8 per cent for
the GBT at 800 MHz (Liao et al. 2016). Foreseeing improvements
in newer instruments and for updated calibration techniques, we
set ε = 0.5 per cent for this study; this ε yields to a temperature
contribution one order of magnitude higher than the cosmological
signal in 21 cm, as we will later see.

A snapshot of the polarization leakage contribution simulated with
CRIME is in the bottom right of Fig. 1 for the ν ∈ [1100–1102] channel:
it has a spotty angular dependence. To appreciate its line-of-sight
behaviour, we plot in Fig. 2 its equivalent brightness temperature
as function of frequency, with different colours corresponding to
different galactic latitudes: especially when getting closer to the

6In terms of non-smooth frequency behaviour.
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Table 2. Instrumental parameters used for computing the instrumental noise
and the beam size.

Telescope specifics

Dish diameter D 13.5 m
Instrumental temperature Tinstr 20.0 K
Observed fraction of the sky fsky 0.1
Observation time tobs 4000 h
Number of dishes Ndishes 64

galactic equator it fluctuates substantially, becoming highly pixel
dependent.

We leave for subsequent work the study of the effect of
other sources of systematics, as for instance satellites contribution
(Harper & Dickinson 2018) and the so-called 1/f noise (Harper et al.
2018). Up to now, polarization leakage is the least explored of known
systematics and has been proven to be hard to calibrate it out (Liao
et al. 2016), in contrast with – keeping the same examples as before
– satellite contamination that can be modelled and even avoided and
the 1/f noise that can be mitigated with the scanning strategy and in
the map-making process. This is why we prioritize the inclusion of
the polarization leakage in the simulated data for this first GMCA
study.

3.4 Instrumental effects: telescope beam and thermal noise

Once all the components are generated and combined, two instrumen-
tal effects are implemented to all maps: the smearing of a frequency-
dependent beam and the addition of uncorrelated thermal noise.

We approximate the telescope beam with a symmetric Gaussian
beam whose width depends on frequency as

θFWHM = c

νD
, (9)

with c the speed of light and D the telescope dish diameter.
Considering the frequency range (900–1300 MHz) and the dish
diameter chosen (see Table 2), the observed maps are smeared out to
1◦–1.◦4.

Approximating the telescope beam with a spherically symmetric
Gaussian smoothing is what is usually done in the 21-cm intensity
mapping foreground cleaning literature. However, it is a simplistic
assumption as the presence of side lobes in the beam profile is
responsible for additional mode mixing in the data. In this respect,
the spectral complexity of the leakage contribution we include in this
work can be seen as a first attempt to consider a component whose
behaviour is close to what we would expect with a realistic beam
too. Moreover, work is ongoing for adding the effect of proper beam
side lobes in the simulated data (Asad et al. 2019), hence we leave
the issue for a next study.

We assume the instrumental noise follows a uniform Gaussian
distribution over the sky, with a frequency-dependent standard
deviation of

σN(ν) = Tsys(ν)

√
4πfsky

�ν tobsNdishes�beam
, (10)

where Tsys(ν) is the system temperature, fsky the observed fraction of
the sky, �ν the channel width, tobs the total survey time, and Ndishes

the number of dishes. The beam solid angle is related to its width as
�beam = 1.133θ2

FWHM. The system temperature Tsys(ν) is the sum of
the receiver temperature and the sky temperature at a given frequency,
which results in a combination of the instrument temperature Tinstr

Figure 3. Components of the simulation. Top panel: brightness temperature
as a function of frequency, observed along a random line of sight at galactic
latitude of 95◦. Bottom panel: angular power spectra of channel ν ∈ [1100–
1102] MHz (z ≈ 0.3) of the full-sky maps (left) and of the 75 per cent
of the sky (right) when a mask has been applied. Removing the brightest
pixels at the galactic equator, where most of the galactic free–free emission
is concentrated, changes the contribution of the different contaminants. The
data have been smoothed as discussed in the text, suppressing power at small
scale.

and the observed frequency (O’Neil 2002):

Tsys(ν) = Tinstr [K] + 66

(
300

ν [MHz]

)2.55

. (11)

The instrument and survey specifications used here are based on a
MeerKLASS-like survey (Santos et al. 2017) and summarized in
Table 2. We generate full-sky noise maps using equation (10) as
variance per pixel.

3.5 Observed temperature cubes

We summarize the different simulated components in Fig. 3: in the
top panel their temperature contributions are plotted as a function
of frequency along a random line of sight; the polarization leakage
(pink dash–dotted line) clearly sticks out among the foregrounds,
as the others are indeed smooth and order of magnitudes above the
cosmological signal (solid), that looks as noisy as the instrumental
noise (dotted).

For each channel – or correspondingly frequency or redshift –
we sum the maps of the 21 cm cosmological signal C with those
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of all foregrounds F, we convolve the total temperature map with
the frequency-dependent beam, we add the white noise N. This
makes up the observed data cube. According to the mixture model
in equation (3), the temperature maps are all assumed to be at the
same resolution. For that purpose, we further reconvolve all maps
appropriately to let them all share the same resolution, i.e. that of
the lowest frequency channel where the beam θFWHM is the largest.
Schematically,

X = [(C + F) ∗ B + N] ∗ (Blow − B). (12)

Having all temperature maps at the same resolution is not essential.
We also perform the source separation without the additional decon-
volution, but we typically have to set a higher number of sources
ns for reaching a satisfactory foreground cleaning – compared to
the case where all maps share the same resolution – thus risking to
overclean and miss true signal C in the residuals. This is expected as
the mixture model of the signal becomes more complex due to the
frequency-dependent effect of the beam. So we take into account the
latter with the deconvolution (Blow − B).

Ultimately, this further deconvolution is a loss of smallest angular
information available in the observed maps. We do not discuss
this issue here, since a version of GMCA that performs the beam
deconvolution at the same time as the blind source separation has
been tested on two-dimensional data (decGMCA; Jiang, Bobin &
Starck 2017) and effort is ongoing for extending decGMCA on data
sampled on the sphere (Carloni Gertosio 2020); thus, the results of
this paper would generically hold for a decGMCA application, with
the advantage of retaining the fully available small-scale information.

The simulation spans a frequency range of ν ∈ [900–1300] MHz,
corresponding to redshift z ∈ [0.09–0.58]. We slice the data cubes
in bins of �ν = 2, 5, and 10 MHz, corresponding to numbers
of channels nch = 200, 80, and 40: in this way we can test the
dependence of GMCA performance on �ν and on nch.

4 THE PIPELINE

4.1 Recovering the input signal

As anticipated in Section 2, GMCA looks for components of
the signal that are sparse in the wavelet domain. Thus, once the
data cube X of equation (12) has been assembled and its mean
removed channel-wise, we wavelet transform it, obtaining Xwt. By
looking at the principal eigenvalues of the covariance matrix of
the data cubes X and Xwt (Fig. 4, symbols in blue and orange,
respectively), we can already appreciate the advantage of running
the blind source separation in wavelet space rather than pixel
space: the transition between highly correlated modes in frequency
(foregrounds) and uncorrelated modes (signal and noise) happens
for smaller eigenvalue number for the wavelet case; the latter
is especially true when we add a component like polarization
leakage (dots versus squares in Fig. 4) that mixes the modes
of the covariance matrix and makes the transition among them
smoother.

GMCA promotes sparsity in the decomposition process of Xwt, as
in equation (4), and estimates the mixing matrix Ã. We determine the
foreground components that GMCA identifies,XGMCA, by projecting
the input data X on Ã; the cleaned maps Xcleaned are the residuals of
the GMCA source separation:

Xcleaned = X − XGMCA = X − Ã(Ã
T
Ã)−1Ã

T
X. (13)

Figure 4. Principal eigenvalues of the frequency covariance matrix of the
nch = 200 simulation, using the standard pixel-space data cube X (blue
lines) and its wavelet transformed counterpart Xwt (orange). Empty squares
(filled circles) correspond to the scenario without (including) the polarization
leakage component. The contribution of a component like the polarization
leakage spreads the foregrounds through a larger number of eigenvalues,
making foreground cleaning more problematic, i.e. a larger number of degrees
of freedom should be eliminated. On the other hand, working in wavelet
space restricts the spreading in fewer degrees of freedom and makes the
contamination more tractable.

4.2 GMCA performance

Xcleaned of equation (13) are the maps that would be analysed for
extracting science in a real context. In next paragraphs, we show
how we evaluate the performance of the foreground cleaning by
comparing Xcleaned with the input data, i.e. the cosmological signal
and the instrumental noise C + N.

4.2.1 Power spectrum estimation

The H I intensity two-point statistics carries a great deal of the
cosmological information, as for any tracer of the underlying matter
field. Hence, the performance of a given foreground cleaning method
should be assessed at least in terms of its ability to recover the true
power spectrum at different radial and angular scales.

Angular scales. Since the observed temperature data X is sampled
on spheres of npix pixels, for a shell at fixed frequency ν, it is
convenient to expand its distribution �T(ν) =Xν − 〈X〉ν in spherical
harmonic functions Y�m(p). We estimate the harmonic coefficients as
a summation over the pixels p of the map:

a�m(ν) =
npix∑
p=1

�T (ν, p)Y ∗
�m(p). (14)

All the above holds for any temperature data cube we assess, i.e. we
can substitute X with foregrounds F or 21-cm cosmological signal C
and so on. The angular power spectrum is defined as C� ≡ 〈|a�m|2〉.
For calculating the C� of each map, we make use of the software
package NAMASTER,7 whose algorithm is described in Alonso et al.
(2019). NAMASTER is a pseudo-C� estimator that can also efficiently
take into account incomplete sky coverage, as it will be the case in
Section 5.4.

7https://github.com/LSSTDESC/NaMaster

MNRAS 499, 304–319 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/1/304/5909051 by guest on 23 M
ay 2024

https://github.com/LSSTDESC/NaMaster


310 I. P. Carucci, M. O. Irfan and J. Bobin

For instance, in the bottom panels of Fig. 3 we plot the angular
power spectra of all components of the simulation sampled at
frequency ν = 1101 MHz; in the left, the C� have been computed for
the full-sky; in the right, we have first applied a mask covering
the equatorial 25 per cent of map. The power amplitude of the
astrophysical foregrounds is up to 7–8 orders of magnitude higher
than the 21-cm signal in both panels; what change in the two cases are
the individual foregrounds components spectra and their hierarchy,
as consequence of the different spatial features of the foregrounds
– morphological differences that will help GMCA to detect them.
On the contrary, the C� of the cosmological signal and noise do not
change among panels, showing that they are spatially isotropic.

For each channel map, we compare the angular power spectrum of
Xcleaned that we dub Ccleaned

� , with that of the input C + N, i.e. C true
� .

Averaging over all channels of the simulation, we build the quantity

R� =
〈C true

� − Ccleaned
�

C true
�

〉
chs

. (15)

We will use R� to assess the performance of GMCA in different
scenarios.

Radial scales. Given the spectral nature of the 21-cm signal,
the possibility of achieving unprecedented redshift resolution while
sampling big volumes is one of the characteristics that makes
intensity mapping highly appealing for cosmology. In this sense,
it is crucial to investigate that also the radial direction information is
retrieved after the cleaning process.

To estimate the two-point statistic in the radial direction, one
could either rely on the angular cross-correlation of maps at different
redshifts to avoid dealing with light-cone effects and curved-sky
issues (Asorey et al. 2012; Montanari & Durrer 2012), or otherwise
proceed with defining a one-dimensional k� power spectrum estima-
tor (Alonso et al. 2014; Villaescusa-Navarro, Alonso & Viel 2017;
Blake 2019). Here we opt for a simpler approach: we compute the
one-dimensional power spectrum directly in frequency space, P(kν)
with kν = 2π

ν
. This choice makes difficult a direct comparison with

cosmological observables, nevertheless it supplies a straightforward
insight about the efficiency and deficiencies of foreground cleaning
in the radial direction. In practice:

(i) for each line of sight (i.e. pixel), we Fourier transform the
�T(ν) field along ν,

�̃T (kν) =
∫

dν �T (ν) e−ikνν ; (16)

(ii) we compute the power spectrum,

P (kν) = �ν 〈|�̃T (kν, p)|2〉 , (17)

by averaging over all the lines of sight p.

In Fig. 5, we show the P(kν) for each component of the simulation.
As for the C�, the amplitude of the foregrounds P(kν) is by far higher
than that of the cosmological signal, the one of the noise is negligible.
The high correlation in frequency of the foregrounds is also evident
in their P(kν) that sharply increase towards higher frequency scales,
in contrast with the 21-cm signal that – as the noise – displays a flat
P(kν), with a slow decrease for high kν due to the effect of the beam
smoothing (Villaescusa-Navarro et al. 2017).

In the same fashion of equation (15), we define the quantity Rν for
comparing the input and reconstructed radial power spectra:

Rν = P (kν)true − P (kν)cleaned

P (kν)true
. (18)

Figure 5. Radial power spectra in frequency space for all components of the
nch = 200 simulation, being smoothed by the telescope beam.

4.2.2 Residual projection

Two contributions make the cleaned maps go astray from the
input C + N: (i) foregrounds are not fully captured in XGMCA,
contaminating Xcleaned; and (ii) true cosmological signal partly leaks
into XGMCA and is lost. To quantify those effects individually, we
define the residual projections.

The foreground residual that leaks into the recovered signal and
noise is

XF
R = F − Ã(Ã

T
Ã)−1Ã

T
F, (19)

where F is the input foregrounds data cube, from which we subtract
the foreground maps projected on to the GMCA-estimated mixing
matrix Ã. Similar to equation (19), we define the signal plus noise,
C + N, that leaks in the estimated foregrounds as

XCN
F = Ã(Ã

T
Ã)−1Ã

T
(C + N). (20)

The foreground removal succeeds when the power spectra of both
XF

R and XCN
F are negligible compared to that of C + N.

5 R ESULTS

To better understand the foreground removal problem, we first run
GMCA on data cubes with foreground contributions of galactic
synchrotron and free–free diffuse emissions and extragalactic dif-
fuse emission and point sources; we later increase the degree of
complexity of the foregrounds by adding the polarization leakage.
This first assessment makes also possible a more direct comparison
of GMCA with other methods in the literature.

We study how the number and thickness of the channels affect
the performance of the foreground cleaning; we further assess its
performance when some channels are missing altogether, which is
often the case in real surveys; we check whether masking the pixels
with higher foreground contamination eases the cleaning task; we
eventually add the polarization leakage in the game and, lastly, we try
the same tasks with another source separation algorithm – FastICA
– for comparison.

We start by visually inspecting the GMCA-reconstructed maps.
We feed the 200-channel data cube (missing the polarization leakage
contribution) to GMCA setting to ns = 3 the number of morpho-
logically different sources to search. Fig. 6 shows the results for the
ν̄ = 1101 MHz channel: we show the sky Mollweide projections
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Figure 6. Foreground removal for the ν ∈ [1100–1102] MHz channel, GMCA has looked for ns = 3 components. Left-hand map: relative difference in
percentage between the input foregrounds, F, and what found by GMCA, XGMCA. Middle map: input 21-cm signal and instrumental noise, C + N. Right-hand
map: foreground removal residuals Xcleaned, to be compared with middle map. Foregrounds total temperature is recovered at sub-per cent level, especially in the
galactic plane, yet we miss some of the low-temperature features of the input signal map; the brightest 21-cm spots are recovered in the map in the right, and
they also represent the regions at most off-set in the foreground recovery (left).

Figure 7. Relative difference in angular power spectrum between the GMCA
recovered signal and the input cosmological signal and instrumental noise,
averaged among all channels. The three different simulations (panels) are
full-sky and GMCA has been run with number of sources ns = 3, 4, and 5
(solid, dashed, and dash–dotted lines, respectively). These simulations lack
the polarization leakage contribution. Overall, GMCA recovers the signal
within a few per cent bias in angular power spectrum.

(i) left-hand panel: the difference in intensity between the input
foregroundsF and what is identified by GMCA, i.e. (1 − XGMCA/F)ν̄ ;
(ii) middle panel: the input signal and instrumental noise, (C + N)ν̄ ;
(iii) right-hand panel: the cleaned map recovered with GMCA,
Xcleaned

ν̄ . Looking at the left-hand panel: GMCA has remarkably
identified the true intensity of the foregrounds with sub-per cent
level of accuracy. Is this achievement enough for the recovery of the
feeble 21-cm signal? We compare the remaining panels: the input
C + N (middle) with the output Xcleaned (right). The bright spots
where emission is greatest are clearly present in both maps, however
much of the fainter features present at all scales in theC + Nmap are
missing in Xcleaned. Next we will plot the power spectra of these maps
to assess the information that we can still safely extract from Xcleaned.
Inspecting further the maps of Fig. 6, we notice that the pixels where
foregrounds are worse caught correspond to the bright spots of the
true signal outside the galactic plane, whereas the galactic plane
pixels, where foregrounds more strongly shine, correspond to those
pixels that – counter-intuitively – experience the best recovery of the
foreground emission. The latter remark will be further corroborated
in Section 5.4 where we perform the foregrounds cleaning after
applying masks to the maps.

Figure 8. Relative difference in radial power spectrum between the GMCA
recovered signal and the input cosmological signal and instrumental noise.
The three different simulations (panels) are full-sky and GMCA has been
run with number of sources ns =3, 4, and 5 (solid, dashed, and dash–
dotted lines, respectively). These simulations lack the polarization leakage
contribution. GMCA recovers unbiased information in the radial direction for
kν � 0.05 MHz−1 when ns = 3 is set.

5.1 The dependence on the number of channels

For each simulation set-up previously described (with different
number and thickness of channels), we perform various foreground
removals with GMCA varying the number of sources ns. We compute
angular and radial power spectra of all cleaned maps, and compare
with the ground truth ones, as described in Section 4.2.1. We show the
angular power spectra relative difference R� in Fig. 7 and the radial
counterpart Rν in Fig. 8. We plot these quantities for the simulation
with nch = 200 and �ν = 2 MHz, nch = 80 and �ν = 5 MHz, and
nch = 40 and �ν = 10 MHz in panels from left to right (from top
to bottom) in Fig. 7 (Fig. 8). Different lines correspond to ns = 3, 4,
and 5 (solid, dashed, dot–dashed, respectively).

Focusing on Fig. 7, in the best scenario – 200 channels and ns =
3 – the angular power spectrum of C + N is recovered on average
with a 2 per cent bias on large scales down to 0.5 per cent for � >

150. Setting ns to higher values leads R� to increase in amplitude,
for instance doubling for the ns = 5 case. Having a lower number of
channels also impacts negatively R�, as its amplitudes in the middle
and right-hand panels are higher and go up to 12 per cent for the nch =
40, ns = 5 case. We expect this as, even if the simulations cover the
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same range in frequency, the higher number of channels/maps, the
larger the data set GMCA can rely on for extracting components and
mixing matrix.

Also assessing the information in the radial direction, results are
promising: setting ns = 3 we recover the power spectrum in frequency
space within few per cent (solid lines in all panels of Fig. 8). This
bias increases up to ≈35 per cent when increasing ns, showing some
mild scale dependence. In contrast to the angular R�, the results in
Rν happen to be quite nch independent; of course the smallest scale
we can reach in kν is dictated by the frequency resolution �ν of
the simulations (the highest wavenumber to be trusted is π nch/�ν),
none the less, Rν is under control for kν � 0.05 MHz−1 for all �ν

scenarios. Ignoring light-cone effects, we can crudely relate kν to
k� – its comoving distance counterpart: k‖ ≈ ν21 cm H (z)

c (1+z2)
kν , with H(z)

the Hubble parameter; by using the cosmological parameters of the
simulation and the middle redshift of the data cube, we can claim
to recover the true radial power spectrum for k‖ � 0.02 h Mpc−1. A
noticeable feature of the results in Fig. 8 is the oscillating behaviour
of some of the Rν displayed: it is due to ringing effects in computing
the Fourier transforms because of the presence of numerical zeros
in the �T data, originated when subtracting the map mean from
pixels whose values were close to the mean; we explicitly checked
that those effects disappear when we apply an additional and more
aggressive smoothing on the liable maps, converging to a still Rν .

Looking at Fig. 7, we confirm the expectation that the larger the
number of channels available, i.e. the more the data, the better the
GMCA performance at characterizing the foregrounds. However,
since the three different simulations cover the same frequency range,
a different number of channels lead to a different thickness �ν

of channels: could this latter parameter play a role in the way
GMCA works? The angular power spectra of C + N are higher
for thinner channels, because of the higher instrumental noise but
mainly because of purely geometrical considerations (e.g. the C� of
C + N for the �ν = 2 MHz case is roughly 40 times higher than in
the �ν = 10 MHz case).

To clarify the role of both nch and �ν in the foreground cleaning,
we perform the following exercise. We run GMCA using only a
sample of 40 consecutive channels of both the nch = 200 and nch = 80
channel simulations: the level of R� increases by five and three times,
respectively, and independently of ns, compared to the results in
Fig. 7. It is thus clear that GMCA struggles more when it has access
to less channels, independently of �ν. Moreover, remarking that (i)
with 40 consecutive channels of the �ν = 2 MHz simulation the
situation worsens more than with 40 consecutive channels of the
�ν = 5 MHz simulation, and (ii) in both cases the performance of
GMCA is worse than with the full 40-channel simulation with �ν =
10 MHz (right-hand panel of Fig. 7), points to the importance of
the span in frequency of the data cube for a successful foreground
removal. We will come again to the same conclusion when we will
try GMCA on cropped data in the radio-frequency interference (RFI;
Section 5.3): regardless of �ν, it is better to have GMCA working on
the full frequency range available even when channels are missing.
Instead, we find no strong arguments for aiming to a specific channel
width, as far as it concerns the GMCA reconstruction.

To show how compelling are the span in frequency of the data cube
and the number of channels we work with, we plot in Fig. 9 the results
of the same �ν = 2 MHz channel (middle frequency ν = 1097 MHz)
when GMCA has run on the whole 200-channel data (left-hand
column), or just on a 40-channel subset (right-hand column). All
curves are angular power spectra: solid blue is the input C + N and
with orange plus signs we plot Xcleaned; other colours and line styles
refer to the projections of the leaked signal XCN

F , of the total residual

Figure 9. GMCA results for the ν ∈ [1096–1098] MHz channel of the
full-sky simulation with no polarization leakage, using ns = 3 number of
components. In the top panels are the angular power spectra of the input
cosmological signal and noise C + N (solid line) and the GMCA recovered
signal Xcleaned (plus signs). In the bottom panels are the leakage of the
input cosmological signal and noise into the GMCA found foregrounds XCN

F
(dash–dotted line), and the residuals of the input foregrounds left over in the
GMCA recovered signal XF

R (dashed line) and for the individual foreground
component (see legend). The left-hand panel corresponds to a GMCA run
on the full 200 channels available, in the right using only 40 consecutive
channels of the simulation. With less channels, i.e. less frequency information
to characterize the foregrounds, GMCA performs worse, especially for
identifying the galactic synchrotron (featuring a spatially varying spectral
index), whose residual leaks in the recovered signal at large scales.

foregrounds XF
R and of residuals of single foreground components.

The change in amplitude of the projection of the residual galactic
synchrotron (solid violet lines in the lower panels) is evidence that,
for the very same channel, GMCA characterizes synchrotron more
poorly in the case on the right with the only difference being the
smaller number of channels used and frequency span covered.

We choose nch = 200 to be the reference simulation in the rest of
the analysis.

5.2 Selecting ns

From Figs 7 and 8 it is clear that setting the sources GMCA looks for
to ns = 3 is optimal for the foregrounds contribution, sky coverage,
and frequency range set-ups we are considering, leading to an unbi-
ased recovery of the information in the radial direction and within
few per cent in the perpendicular one. However, we will contradict
this result later in the analysis, when masking the brightest pixels of
the maps or adding a mode-mixing component as the polarization
leakage. Practically, we cannot expect a specific values of ns to hold
in general because of the variety of realistic survey scenarios, which
would be impossible to simulate perfectly, also taking into account
the addition of unknown systematics or astrophysical contributions
that could actually manifest in the observations and our ignorance
of the 21-cm signal itself; moreover, specifically concerning how
GMCA works, we cannot rely on the same level of sparsity when
considering different regions of the sky and maps with different
resolutions.

Indeed, when dealing with real data, it has been removed order
∼10 or more number of sources/independent components/principal
modes (Chang et al. 2010; Masui et al. 2013; Switzer et al. 2013;
Wolz et al. 2017; Anderson et al. 2018).
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Figure 10. GMCA results for the ν ∈ [1100–1102] MHz channel of the full-sky simulation with no polarization leakage, using ns = 2, 3, 4, and 5 number of
components (panels from left to right). In the top panels are the angular power spectra of the input cosmological signal and noise C + N (solid line) and the
GMCA recovered signal Xcleaned (plus signs). In the bottom panels are the leakage of the input cosmological signal and noise into the GMCA found foregrounds
XCN

F (dash–dotted line), the residuals of the input foregrounds left over in the GMCA recovered signal XF
R (dashed line), and for the individual foreground

components. There is a clear convergence in the foreground removal setting ns = 3 and higher.

How to set the number of sources the blind source separation
algorithm has to look for, having no ground truth to compare against?
A good starting point is to look at the eigenvalues of the covariance
matrix of the signal in the domain we work in, as we do in Fig. 4,
although, especially with the inclusion of mode-mixing components
(filled dots), it can be problematic to distinguish foregrounds modes
from cosmological ones.

Here, we have a closer look at results of the simplified scenario
(no polarization leakage) to check whether we could tell a priori ns =
3 is optimal by looking at the recovered power spectra. We will later
check if we will be able to apply what we learn in this simplified
scenario in more complex ones.

We look more closely at how the GMCA performance changes
when we vary ns. In Fig. 10, we plot GMCA results for just one
channel (of central frequency ν = 1101 MHz); columns refer to
different runs of GMCA where the number of sources has been set
to ns = 2, 3, 4, and 5 from left to right. All curves are angular power
spectra: solid blue is the input C + N and with orange plus signs
we plot Xcleaned; other colours and line styles refer to the projections
of the leaked signal XCN

F (red dash–dotted), of the total residual
foregroundsXF

R (green dashed), and of residuals of single foreground
components (these plots have same structure and colour coding of
Fig. 9). The behaviour of the Xcleaned spectrum changes abruptly
from the ns = 2–3 case (first two columns from left), whereas
it stays stationary for the remaining ns = 4 and 5 cases. In the
ns = 2 run, Xcleaned is severely contaminated by foregrounds, up to
fully overlap with the power spectrum of XF

R for � < 50. Asking
GMCA to look for ns = 2 morphologically diverse components is
not enough to pinpoint the foregrounds. The leap – in amplitude and
behaviour – the spectra of Xcleaned exhibits when passing to the ns = 3
scenario is a hint for having reached an optimal ns, further validated
by the convergence the spectrum of Xcleaned shows in the ns = 4
and 5 plots. Looking at the power spectra of projections: increasing
further number of components ns > 3 helps (marginally) to better
characterized the foregrounds (almost imperceptibly in these plots,
with the exception of the galactic free–free component: the blue
dotted line keeps decreasing in amplitude with increasing ns), but
it comes at the expense of having more leakage of the true signal
(although imperceptible by eye as well). Setting ns = 3 is optimal

in this observational set-up, as already proven by Figs 7 and 8, and,
noteworthy, we can reach this conclusion by examining the power
spectrum of Xcleaned alone, without comparing with the ground truth
one.

5.3 Mimicking RFI

When performing radio observations, whole channels are discarded
due to irreversible contamination by radio-frequency interference
(RFI) generated for instance by FM radios and television stations,
cellular network of mobile phones, satellites, and so on. Even in
radio-quiet areas designated and protected for those experiments,
RFI flagging is usually still necessary. For instance, for the on-
going MeerKLASS 21-cm intensity mapping L-band preliminary
observations, roughly 40 per cent of the data in two separated chunks
of flagged channels are typically discarded. As previously pointed
out, the performance of the foreground removal depends on the
number of channels and on the frequency range covered by the data
cube. This motivates the question: how does having missing channels
effect the foreground removal?

We mimic the RFI flagging effect by removing 40 per cent of the
channels in the simulation and run GMCA on the 60 per cent that
is left, i.e. on 120 channels in our case. We adopt three flagging
scenarios, removing channels: (i) in one chunk at the centre of the
frequency interval; (ii) in one chunk at the beginning of the frequency
interval (remaining with the first 10 per cent of channels and the last
50 per cent); and (iii) in two chunks of different lengths (in the order:
20 per cent good, 30 per cent flagged, 20 per cent good, 10 per cent
flagged, 20 per cent good). Results are shown in Fig. 11, in terms
of recovery of angular scale information R� in the top panel and of
parallel scale information Rν in the bottom panel; the different line
styles correspond to the three RFI scenarios. GMCA has been run
setting ns = 3. The overall bias level in the angular power spectra of
the cleaned maps is analogous with what we measure for a non-RFI-
contaminated data cube composed by 120 channels (i.e. a situation
between the left-hand and middle panel of Fig. 7). Also the scale
dependence of R� is not stronger than that of the continuous data
cube case. Among the three different RFI scenarios, the last one
with three frequency-discontinuous chunks of data is slightly better
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Figure 11. In the top (bottom) panel is the relative difference in angular
(radial) power spectrum between the GMCA (ns = 3) recovered signal and
the input cosmological signal. Out of the 200 channels of the simulations,
80 have been discarded: in one chunk at the centre of the frequency interval
(solid line), in one chunk in the first half of the frequency interval (dashed),
and in two separated chunks (dot–dashed). Frequency-incomplete data do not
compromise the GMCA foreground separation.

performing, probably due to the better frequency coverage of the
data. Also the radial power spectrum results Rν in the bottom panel
of Fig. 11 are consistent with those obtained with continuous data
cubes in Fig. 8, being below 5 per cent at large scales and going
down to ≈1 per cent for small scales, with essentially no difference
among the three RFI scenarios. When run on RFI-affected data cubes,
GMCA yields to mixing matrices Ã with jumps in columns, thus
recognizing the discontinuous nature of the data and being able to
benefit from the whole data available without the need to partition
and lose frequency information of the components.

Summarizing, it is reliable and still effective to use GMCA with
flagged – i.e. discontinuous – data.

5.4 Masking

It has been reported that masking the angular regions where fore-
grounds are more intense benefits the foreground cleaning process
(Wolz et al. 2014; Alonso et al. 2015; Bigot-Sazy et al. 2015; Olivari
et al. 2016). We test if this is also the case for the cleaning performed
with GMCA, masking out the pixels of the sky where the simulated
observed temperature is brightest. We consider brightness thresholds
that lead to masks covering the 10, 25, and 50 per cent of the full
sky, inevitably hiding the galactic plane, as shown in Fig. 12.

The wider the mask, the less the pixels and the information GMCA
relies on, making unfair a direct comparison of the exercise of this
section with the previous ones. Nevertheless, it can tell us whether
covering the most contaminated region helps the cleaning in the
leftover area.

Our findings are summarized in Fig. 13: in the top row the angular
power spectrum relative difference R�, in the bottom row the radial
counterpart Rν , for runs of GMCA looking for ns = 3 (left-hand
column) and 4 sources (right-hand column). In the ns = 3 scenario,
GMCA struggles more to identify the foregrounds in the masked
data. In the case of masks of 25 and 50 per cent, R� is negative, thus
the spectrum of the cleaned maps is higher than that of the ground
truth: we can push the number of sources to look for, as we do in
the right-hand panel. For ns = 4, results for the masked scenarios are

Figure 12. Total temperature map of channel ν ∈ [1100–1102] of the
simulation. We overplot with solid coloured lines the different masks we
use, covering the brightest pixels up to the 10, 25, and 50 per cent of the sky.
As expected, it is the galactic plane to be masked out, up to the synchrotron
North Polar Spur for larger masks.

Figure 13. Relative difference in power spectrum between the GMCA
recovered signal and the input cosmological signal and instrumental noise:
angular R� (radial Rν ) in the top (bottom) row. GMCA has been run on
the data cube without polarization leakage and using n = 3 (4) number of
sources in the left (right) column, and masking out the 10 per cent (dotted
line), 25 per cent (dash–dotted), 50 per cent (solid), or using the full-sky maps
(dashed). Masking out the region where galactic synchrotron and free–free
emissions are more intense, makes it harder for GMCA to reconstruct them.
Increasing the number of sources can overcome this at the angular power
spectrum level (top right), but the radial one is nevertheless compromised
(bottom panels). We note that the masking has an effect on the power spectrum
estimation, for the angular one it reduces the number of large modes available
(but this affects mainly scales � < 10) for the radial it reduces the number of
lines of sight available.

indeed closer to the full-sky reference, expect at the very large-scales
where anyway the angular power spectrum estimation is affected by
having less large modes at disposal due to the partial-sky maps. On
the other hand, looking at Rν in the lower panels, the 10 per cent
mask does not compromise the recovery of information in the radial
direction for ns = 3, and increasing to ns = 4 does not improve the
Rν level for the 25 and 50 per cent masked cases.

Masking the most contaminated pixels does not help the GMCA
reconstruction. On the contrary, we suspect that the morphological
detection part of the algorithm (sparsity in the wavelet domain)
characterizes contaminants better when their features are strongly
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Figure 14. Relative difference in power spectrum between the GMCA
recovered signal and the input cosmological signal and instrumental noise:
angular R� (radial Rν ) in the top (bottom) row. GMCA has been run on
the data cube that also contains a 0.5 per cent polarization leaked into the
unpolarized signal. On the left-hand panel, we consider the full-sky maps, on
the right 50 per cent of the maps have been masked out. Different line styles
and colours correspond to different number of components ns = 6, 10, 14,
and 18 GMCA has been run with. When excluding the galactic plane region
(right-hand panel), GMCA reconstructions improve. Anyway, also for the
full-sky scenarios in left-hand panel, results are encouraging at small scales.

present. This is at odds with other foreground removal methods and
yields to (i) the advantage of working with the full data set available
and (ii) to more flexibility with the choice of the survey target sky area
to begin with, allowing for survey designs with greater commensality
with other science scopes (e.g. galactic astrophysics).

We stress again that the masking under study in this section refers
to an a posteriori covering of bright pixels in the data available. Real
surveys do have a mask – footprint – on their own, as it is highly
improbable to observe the full sky. The study of the performance
of GMCA in different regions of the sky – with different levels of
sparsity of the foregrounds – is another issue that merits more detailed
work.

5.5 Including the polarization leakage

Up to now, we have looked at the performance of GMCA on
simulated data that do not include polarization leakage. In this
section, we finally add the distressing component in the game.

Our findings are summarized in Fig. 14, where we plot R� and
Rν (top and bottom rows) of the results for full and 50 per cent
masked sky scenarios (left- and right-hand columns, respectively)
that GMCA yields when run with ns = 6, 10, 14, and 18 number
of components. The addition of polarization leakage undoubtedly
makes source identification by GMCA more troublesome and the
number of components to look for has to increase to reach satisfactory
levels of cleaning, as it could already be expected by looking at the
principal components of the data frequency covariance matrix in
Fig. 4. Looking at the right-hand panels of Fig. 14, the situation
remarkably improves when we hide the region of the sky where the
polarization leakage has the most complex and uneven frequency
behaviour (see Fig. 2). For the left-hand panels case, we can
nevertheless make use of the GMCA reconstruction for � > 80 and
kν > 0.3 MHz−1 for the higher ns considered, as the bias introduced
in the recovered power spectrum is scale independent and, therefore,

Figure 15. GMCA results for the ν ∈ [1096–1098] MHz channel of the
simulation full sky and with polarization leakage. In the top panels are the
angular power spectra of the input cosmological signal and noise C + N
(solid line) and the GMCA recovered signal Xcleaned (plus signs). In the
bottom panels are the leakage of the input cosmological signal and noise
into the GMCA found foregrounds XCN

F (dash–dotted line), the residuals of
the input foregrounds left over in the GMCA recovered signal XF

R (dashed
line), and of the individual foreground component (see legend). The left
(right) column corresponds to a GMCA run with ns = 6 (18) number
of components. Polarization leakage (pink dashed) is the worst-identified
foreground as it dominates the total foreground residual budget XF

R. The
latter is more under control in the right-hand panel, although there is an
increase of the cosmological signal that gets lost: the increase of the XCN

F
power spectrum from the left to the right scenario is hardly visible in the
bottom panels (with logarithmic scales), but it is evident as we start seeing it
in the top right-hand panel too, less than an order of magnitude away from
the recovered Xcleaned power spectrum.

can be easily taken into account (Cunnington et al. 2020) and even
marginalized over in cross-correlation analysis.

More about the scale independence of both R� and Rν : we can
push it to hold for lower scales by increasing ns at the expense of
increasing the amplitude of R� and Rν , i.e. yielding to a Ccleaned

�

and a P(kν)cleaned that underestimate the true spectra. We have
a hint about this when looking at the principal eigenvalues of
Fig. 4: when polarization leakage is included, there is not a clear
discrepancy between foreground eigenvalues and cosmological ones
as the transition between the two is smoother, the modes are mixed.
Therefore, the risk of increasing ns is to lose progressively more
true cosmological signal that leaks in the identified foregrounds
XGMCA. We illustrate this last point in Fig. 15, where we plot
results for a single channel for two GMCA runs: with ns = 6
on the left-hand column and ns = 18 on the right-hand column.
The polarization leakage is the least identified of the foregrounds:
it dominates the whole foreground residual (in the bottom panels
its pink dashed line C� completely overlaps the green dashed of
the total foreground residual). The recovered 21-cm signal of the
ns = 6 case (crosses in top left panel) has an angular power
spectrum already off at � � 120 because of the polarization leakage
and (marginally) of the galactic synchrotron left in the residuals
maps – further confirmation of the mode mixing. Results are more
sound for the ns = 18 case (right-hand panels), although the
true 21-cm signal that leaks into the detected foregrounds starts
becoming relevant: its corresponding red dashed–dotted line enters
in the top panel too, where the input signal and GMCA residual
live.
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Clearly, in this more realistic scenario, we are not anymore
able to identify the optimal ns just by looking at the behaviour
of the recovered power spectra, as we did in Section 5.2 for the
simplified scenario with no leakage. Moreover, we are not assured
that by arbitrarily looking for higher numbers of sources ns we have
converging results.

Nevertheless, even if the information retained is more com-
promised when including a polarization leakage component, the
resulting bias both in R� and Rν is tractable and can be modelled
because of its flatness within a range of scales (Cunnington et al.
2020). Overall a compromise has to be looked for, aiming at
maximizing the foreground identification and minimizing the loss
of true signal. This choice should also depend on the scope of
the experiment: it is better to overestimates the signal for detecting
the 21-cm emission in cross-correlation with other cosmic tracers,
whereas it is important to perform a more aggressive cleaning when
aiming for an autocorrelation detection.

We have attempted improving the cleaning in the presence of
the polarization leakage, for instance by imposing one column of
the mixing matrix8 or additionally whitening the data. We do not
report any substantial improvements and therefore we choose to not
present those results here. We postpone to another study a more
in-depth and dedicated analysis aimed at identifying sources that
are non-smooth in frequency as the polarization leakage, by using
more sophisticated versions of GMCA (e.g. L-GMCA; Bobin et al.
2013, 2015) or abandoning the full-blind strategy and imposing extra
priors, either on the signal or on the contaminants.

5.6 Comparison with independent component analysis

For comparison, in this section we test another foreground cleaning
algorithm on the same simulated data. From the currently available
and tested methods, we pick the independent component analysis –
in particular the algorithm proposed by Hyvarinen (1999), FastICA –
that has recently been used on 21-cm intensity mapping real data by
Wolz et al. (2017). In contrast to the GMCA algorithm, which seeks
sparse sources in the wavelet domain, the FastICA algorithm looks
for statistically independent components by favouring the estimation
of non-Gaussian components.

We run FastICA9 on the reference nch = 200 simulation full
sky, with and without the inclusion of polarization leakage. Results
are in Fig. 16, where we plot the relative difference in angular
and radial power spectrum, R� and Rν , between the residuals of
the FastICA analysis and the true C + N. In the scenario without
polarization leakage (left-hand panels), the amplitude of the bias
achieved in R� is overall in agreement with that obtained with
GMCA (left-hand panel of Fig. 7), however, the striking difference
is the behaviour of R� as function of the angular scale �. For
instance, by setting to four the number of independent components
(orange dashed line), the resulting average bias in angular power
spectrum is of order ∼3 per cent at large scales, rapidly falls off
for increasing � and reaches −12 per cent at � ≈ 170, meaning that
FastICA underestimates the true signal at large scales and greatly
overestimates it at small scales. We can draw similar conclusions
for the scenario with polarization leakage: comparing the right-hand

8Setting it equal to the galactic free–free spectral index, for which there is
greater consensus in the community on its expected value at these frequencies
(Bennett et al. 1992).
9scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.
html

Figure 16. Relative difference in angular and radial power spectrum (top
and bottom rows, respectively) between the FastICA recovered signal and the
input cosmological signal and instrumental noise for a 200-channel full-sky
simulated data that include (do not include) polarization leakage in the left-
hand (right-hand) panels. Different lines correspond to a different number of
independent components FastICA have identified. The left-hand (right-hand)
panels correspond to its GMCA counterpart in the left-hand panels of Fig. 7
(right-hand panels of Fig. 14), same colour coding.

panel of Fig. 16 with the GMCA results in the left-hand panel of
Fig. 14: FastICA reaches similar levels of bias in C� as GMCA,
but the relative difference R� has a more complicated angular scale
dependence, which makes results harder to interpret and, eventually,
foreground cleaning effects harder to model. Concerning the radial
direction, in the scenario with no polarization leakage (bottom left-
hand panel of Fig. 16) FastICA needs five independent components
to reach a scale-independent Rν , which has amplitude of 30 per cent,
and with the inclusion of polarization leakage (bottom right), Rν

displays overall the same levels as for the GMCA reconstructed
maps (bottom left of Fig. 14).

Interestingly, we find a salient difference with respect of GMCA
in the RFI-affected scenario. We run FastICA on the same cropped
data cube as described previously in Section 5.3; results are in
Fig. 17, with the same colour coding of the GMCA counterpart
in Fig. 11. Again, the R� quantity is much more scale dependent
for the residuals obtained with FastICA. Setting the number of
independent components to four – which has been proven optimal
in the non-RFI-contaminated case – gives different R� curves for the
different RFI scenarios; setting the components to five leads to more
consistent results, however, the strong dependence on angular scale
is still present. Concerning the radial direction, FastICA yields to
Rν that are higher (≈35 per cent) than what obtained with GMCA
(few per cent); moreover, for the symmetric RFI scenario, Rν is
scale dependent even when increasing the number of independent
components to five.

6 C ONCLUSI ONS AND PERSPECTI VES

The purpose of this work is investigating the foreground cleaning of
21-cm intensity mapping data performed with the GMCA algorithm,
assessing how much information we can recover in terms of the
21-cm field power spectrum. We use a full-sky simulation of the
sky in the 900–1400 MHz frequency range composed of the 21-
cm signal, the expected astrophysical foregrounds, a polarization

MNRAS 499, 304–319 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/499/1/304/5909051 by guest on 23 M
ay 2024

file:scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html


GMCA foreground cleaning for 21-cm IM experiments 317

Figure 17. Relative difference in angular and radial power spectrum (top
and bottom rows, respectively) between the FastICA recovered signal and the
input 21-cm signal in RFI-compromised scenarios (different line styles). On
the left-hand (right-hand) panels, results refer to a FastICA run set to find four
(five) independent components. Frequency-incomplete data compromise the
FastICA foreground separation. Concerning the angular scales (top panels),
setting to five the number of independent components results in having
cleaned maps independent of the RFI scenario, although the bias in the
angular power spectrum is highly scale dependent. For the information in the
radial direction, its recovery does not improve with the increase in number of
independent components.

leakage component, the smoothing due to the telescope beam, and
the thermal noise of the instrument. We hereby summarize our main
findings.

(i) When polarization leakage is not included, we find ns = 3
components appropriate for the GMCA cleaning, leading to residuals
that underestimate the ground truth angular power spectrum by
�2 per cent (channel average) and reproduce at sub-per cent level
the radial power spectrum for k‖ � 0.02 h Mpc−1.

(ii) When we increase the complexity of the simulation, higher
number of sources ns are needed, and results convergence with
increasing ns is not assured.

(iii) Including polarization leakage and adopting ns = 14 sources,
the angular power spectrum is recovered with a scale-independent
≈7 per cent bias for scales � > 75 and the radial counterpart with a
scale-independent 20–30 per cent bias for scales k‖ � 0.1 h Mpc−1.

(iv) The latter biases improve if we mask the sky region where
the adopted polarization leakage component has the most fluctuating
behaviour in frequency.

(v) The GMCA source separation benefits from using the highest
number of channels available. That is to say, for a fix bandwidth of
the experiment, it has to be privileged the thinnest binning possible.

(vi) The GMCA cleaning benefits when it runs on the available
data for the full range in frequency, rather than partitioning the data
in smaller chunks.

(vii) The latter still holds for incomplete data cubes, i.e. GMCA
performance does not deteriorate for RFI-contaminated data.

(viii) The GMCA source separation does not benefit from masking
the sky regions where foregrounds are stronger. For instance, the
foreground removal is not less successful in the galactic plane region.

The latter point implies that no data are wasted a posteriori and
that, at the planning stage, experiments do not need to take into
account foreground avoidance for designing the survey footprint,

letting focus be rather on issues as overlaps with other samples
for cross-correlation and validation purposes, commensality, and so
on.

As said, when dealing with polarization leakage, cleaning im-
proves when knowing and masking the pixels where this component
has a fluctuating temperature contribution as function of frequency.
However, this result depends on the model we have adopted for the
leakage. Work is needed for a more physical-motivated polarization
leakage model, built upon more recent diffuse polarized emission
data and galactic magnetic field structure data (e.g. extending the
work by Spinelli, Bernardi & Santos 2018 to the frequencies of
interest).

To our knowledge, this is the first work that studies the possibility
of a blind removal for a troublesome foreground component as the
polarization leakage. More is still to be done and many are the
perspectives of this work. We plan to keep adapting GMCA for better
dealing with the leakage and also with other sources of systematics
that we did not tackle in this work, as for instance a more realistic
telescope beam that generates mode mixing in the data and satellite
contamination.

For comparison, we also run the FastICA algorithm on the same
data cubes. We can appreciate that – with respect to FastICA – GMCA
provides results overall more consistent in scale independence and
handles RFI-contaminated data better. More exhaustive comparisons
are beyond the scope of this paper. GMCA has already been compared
with a Gaussian process regression method on EoR-like data by
Mertens, Ghosh & Koopmans (2018), who applied GMCA in the
Fourier domain. The key assumption underlying the GMCA algo-
rithm is the sparsity of the components to extract in a given domain
and, whether it is for EoR or for z < 6 science, the foregrounds
are smoothly distributed in the Fourier domain and therefore not
sparse at all. This is why in this work we prefer a wavelet-based
representation to better model the sought-after foregrounds. In short,
applying GMCA in a signal representation where the components to
be extracted are not sparse is very likely to be less effective, leading
to poor separation results. More comparisons between GMCA
and other separation methods have been done in the cosmic mi-
crowave background context; Leach et al. (2008) offer an exhaustive
review.

In this work, we have proven that the number of sources needed for
the cleaning sharply increases with the complexity of the simulated
data, and this holds for any blind foreground removal method that
assumes data can be linearly decomposed in a fixed number of
components as in equation (2), e.g. also for FastICA. It is thus
important for the community to start testing cleaning algorithms
on the most realistic simulations possible. This conclusion does not
come unexpectedly as we are aware that in real data analysis, the
number of components that is removed is usually higher than what
suggested and quoted in simulation papers (e.g. in the most recent
analysis Wolz et al. 2017 use 10 and 20 independent components with
ICA on GBT data, Anderson et al. 2018 use 10 modes with the SVD
method with Parkes data; moreover, in both analysis maps are first
resmoothed to further lower resolutions to mitigate the polarization
leakage). It is timely to assess the different systematics in simulations
to understand what is at play in the data collected by radio telescopes
and to prepare for next surveys.

In this paper, we consider full-sky maps. Ongoing work is
dedicated to smaller patches and different sky regions, where we
expect different foreground contributions and different levels of
sparsity that GMCA can rely on. Also depending on the resolution
one works with, the sparsity of foregrounds may not always be an
appropriate assumption.
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Concerning the beam and the noise choices, in this work we
consider a single-dish experiment with characteristics of a radio tele-
scope like the MeerKAT. Nevertheless our analysis is meaningful for
other experimental set-ups, also including interferometry-driven 21-
cm intensity mapping experiment as CHIME,10 Tianlai,11 HIRAX12

or the proposed PUMA13: as the decGMCA version of the algorithm
performs deconvolution at the same time as the source separation
(Jiang et al. 2017; Carloni Gertosio 2020), it is possible to work
directly with the visibility data. This constitutes another interesting
line of work.

In this paper, we did not consider the effects a GMCA cleaning
would have on cosmological analysis, as we mainly focused on a
comparison at the maps/data cubes level; we leave this for future
work.

For reproducing the results of this paper, we make available
demonstration scripts and notebooks14 together with the main simu-
lated maps.15
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