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Duality and approximation of stochastic optimal control

problems under expectation constraints

Laurent Pfeiffer∗ Xiaolu Tan† Yulong Zhou‡

July 1, 2020

Abstract

We consider a continuous time stochastic optimal control problem under both equality
and inequality constraints on the expectation of some functionals of the controlled process.
Under a qualification condition, we show that the problem is in duality with an optimization
problem involving the Lagrange multiplier associated with the constraints. Then by convex
analysis techniques, we provide a general existence result and some a priori estimation of
the dual optimizers. We further provide a necessary and sufficient optimality condition for
the initial constrained control problem. The same results are also obtained for a discrete
time constrained control problem. Moreover, under additional regularity conditions, it is
proved that the discrete time control problem converges to the continuous time problem,
possibly with a convergence rate. This convergence result can be used to obtain numerical
algorithms to approximate the continuous time control problem, which we illustrate by two
simple numerical examples.

Keywords: Stochastic optimal control, convex duality, numerical approximation.

AMS Subject Classification(2010): 93E20; 49K45; 60H10.

1 Introduction

We study in this article a stochastic optimal control problem under expectation constraints, in a
path-dependent framework. Concretely, let the controlled diffusion process be governed by the
dynamics

dXα
t = µ(t,Xα

t∧·, αt)dt+ σ(t,Xα
t∧·, αt)dBt,

where B is a Brownian motion. Given functionals Φ, Ψ0, and Ψ1, we consider the constrained
optimization problem

inf
α

E
[
Φ(Xα

· )
]
, subject to: E[Ψ0(Xα

· )] = 0 and E[Ψ1(Xα
· )] ≤ 0. (1.1)

In the above problem, Xα
t∧· denotes the stopped process (Xα

t∧s)s∈[0,T ] and the coefficient functions
µ, σ, Φ, Ψ0 and Ψ1 may depend on the whole paths of (Xα

s )s∈[0,T ].
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To illustrate the applications of (1.1), let us first mention the case of probability constraints.
Such constraints can typically be written as follows:

P
[
h(Xα

· ) ≤ 0
]
≤ γ, (1.2)

where h is vector-valued and γ ∈ (0, 1). The constraint (1.2) can be put in the form E[Ψ1(Xα
· )] ≤

0 by setting Ψ1(Xα
· ) = 1h(Xα

· )≤0 − γ, where 1 denotes the indicator function. Note that such
a function Ψ1 is in general discontinuous. Probability constraints are typically used to take
into account undesirable events, which may however arise with nonzero probability whatever
the employed control process. We refer to Shapiro, Dentcheva and Ruszczyński [27, Chapter
4] for a general presentation. Another important application of problem (1.1) may concern the
characterization of the Pareto front in a multi-objective setting, see e.g. Yong and Zhou [31,
Chapter 3]. More examples of applications of problem (1.1), such as the control problem under
state constraints, the semi-static hedging problem in finance, will also be discussed in Section 2.

In the literature, different approaches have been proposed to study the constrained con-
trol problem (1.1). The first one consists in introducing an additional process, denoted by
(Y 0
t , Y

1
t )t∈[0,T ], with initial value Y i

0 = 0 and final value Y i
T = Ψi(X

α
· ), i = 0, 1, and having

a martingale or submartingale dynamics. Then one can either reformulate the initial problem
as a stochastic target problem which can be studied by the geometric dynamic programming
approach (see e.g. Soner and Touzi [28], Bouchard, Elie and Imbert [7], Bouchard and Nutz [8],
Chow, Yu and Zhou [10], etc.), or one can use the so-called level-set approach to reformulate it
into an optimization problem over a family of (unconstrained) singular control problems (see e.g.
Bokanowski, Picarelli and Zidani [3] and the references therein). In the second main approach,
one looks for necessary optimality conditions in the form of Pontryagin’s maximum principle,
involving a Lagrange multiplier, see e.g. Yong and Zhou [31, Chapter 3] and Bonnans and Silva
[6, Section 5]. Such optimality conditions are obtained with the variational technique, which
consists in calculating a first-order Taylor expansion of the cost with respect to small pertur-
bations of the control. The constraints are usually tackled with Ekeland’s principle or with the
Lyusternik-Graves theorem (under a qualification condition).

In the present work, we follow a duality approach by considering the following dual problem:

sup
λ0∈R, λ1≥0

inf
α

E
[
Φ(Xα

· ) + λ0Ψ0(Xα
· ) + λ1Ψ1(Xα

· )
]
. (1.3)

The above problem can be formally obtained by writing (1.1) as a saddle-point problem and
then by exchanging the inf and sup operators. Our duality result, Theorem 3.3, states that
there is no duality gap between (1.1) and (1.3), i.e. the two problems have the same value.
Such a duality result should be in line with Kantorovich’s duality for the optimal transport
(OT) problem, recalling that the marginal constraint in OT is equivalent to infinitely many
expectation constraints. Let us refer in particular to Mikami and Thieullen [20], Tan and
Touzi [30] for an optimal transport problem along controlled diffusion processes. In contrast
to the duality theory in OT, which is generally based on the compactness of the control space
satisfying the marginal constraints, together with the regularity of the reward/cost function, we
will develop and explore here the Lagrange relaxation approach which was utilized in Pfeiffer
[23] for a discrete time control problem.

In a first step, we will develop the Lagrange relaxation approach in an abstract framework,
for a problem in the form:

inf
P∈P

EP[ξ], subject to: EP[ζ0] = 0, EP[ζ1] ≤ 0,

2



where P is a family of probability measures on an abstract measurable space (Ω,F). By assuming
that P is convex, and using a qualification condition, we obtain an abstract duality result. To
reduce the constrained stochastic control problem (1.1) to the above abstract framework, we use
a weak formulation of the control problem by considering the law of controlled processes on the
canonical space. Such an approach allows to study the problem in a very general framework, in
both discrete time and continuous time setting, Markovian or path-dependent, and requires no
regularity on the reward/cost function.

In a second step, we explore properties of the initial constrained optimization problem as
well as its dual problem. First, we provide a general existence result on the optimizers of the
dual problem, together with some estimation. Next, using the dual optimizer, we obtain a
necessary and sufficient optimality condition for the initial constrained problem. To the best
of our knowledge, such an optimality condition in the non-Markovian setting should be new in
the literature. Restricting to the Markovian setting, our optimality condition reduces to the
optimality conditions in variational form in Pfeiffer [24, Section 4], and could lead naturally to
the necessary condition in the maximum principle in [31, 6] described previously.

Finally, we also consider a discrete time control problem under constraints and study its
convergence to the continuous time problem. Using the (Wasserstein) weak convergence techni-
que, together with some a priori estimation on the dual problem, we are able to provide a very
general approximation result. Moreover, with the a priori bound of the dual optimizer, and
based on the approximation results for control problem without constraints, we can obtain some
results on the convergence rate. This approximation result can be used to suggest numerical
algorithms to approximate the continuous time problem. In particular, it can be considered as
an extension of the classical weak convergence approach of Kushner and Dupuis [19] to approx-
imate control problems without constraints. Notice also that similar numerical algorithms have
been used in [30, Section 5] for a stochastic optimal transport problem. Our technique, based
on the (Wasserstein) weak convergence arguments and a priori dual optimizer estimation, leads
to a much more general convergence result, and with possible convergence rate, which is new in
the literature.

The following of the paper is organized as follows. In Section 2, we provide a detailed
weak formulation of the control problem under expectation constraints, in both continuous time
version and discrete time version. Then in Section 3, we give the technical conditions as well
as the main results, including the main duality and approximation results. In Section 4, we
provide two simple numerical examples, by considering a linear quadratic control problem under
constraints. The technical proofs of the main results are completed in Section 5.

2 Optimal control problems under expectation constraints

We provide here a weak formulation of the optimal control problem under expectation con-
straints, in both continuous time version and discrete time version, as well as the corresponding
dual formulations.

2.1 An optimal control problem under constraints in continuous time

Let n > 0 be a positive integer, T > 0 and Ω := C([0, T ],Rn) denote the canonical space of all
Rn-valued continuous paths on [0, T ], with canonical process X. Let ‖ · ‖ denote the uniform
convergence norm on Ω. Let (A, ρ) be a nonempty Polish space and (µ, σ) : [0, T ] × Ω × A →
Rn × Sn be the coefficient functions for the controlled diffusion processes, where Sn denotes the
collection of all n × n-dimensional matrices. We assume that µ and σ are non-anticipative, in
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the sense that (µ, σ)(t, ω, a) = (µ, σ)(t, ωt∧·, a) for all (t, ω, a) ∈ [0, T ] × Ω × A. Moreover, for
some fixed point a0 ∈ A, there exists a constant K > 0 such that, for all (t, ω, a) ∈ [0, T ]×Ω×A,∣∣(µ, σ)(t, ω, a)

∣∣ ≤ K(1 + ‖ωt∧·‖+ ρ(a, a0)
)
. (2.4)

We also fix x0 ∈ Rn as initial position of the controlled process.

Definition 2.1. A term γ = (Ωγ ,Fγ ,Fγ = (Fγt )t∈[0,T ],Pγ , Xγ , αγ , Bγ) is a weak control term
if (Ωγ ,Fγ ,Fγ ,Pγ) is a filtered probability space, in which Bγ is an n-dimensional standard
Brownian motion, αγ is an A-valued predictable process satisfying

EPγ
[
‖Xγ‖2 +

∫ T

0

(
ρ(αγt , a0)

)2
dt
]
<∞, (2.5)

and Xγ is an Rn–valued adapted continuous process such that

Xγ
t = x0 +

∫ t

0
µ(s,Xγ

s∧·, α
γ
s )ds+

∫ t

0
σ(s,Xγ

s∧·, α
γ
s )dBγ

s , t ∈ [0, T ], Pγ-a.s. (2.6)

Let us denote by Γ the collection of all weak control terms.

Remark 2.2. (i) The above control is called a weak control because the probability space and
the Brownian motion are not a priori fixed, and more importantly, the control process may not
be adapted to the filtration generated by the Brownian motion. Using the martingale problem,
one can interpret the weak controls as probability measures on the canonical space, and the
set of weak control (measures) is convex (but may not be closed). Such a convexity property
will be essential in the proof of the duality result. The weak control may be different from the
classical strong control, where a fixed probability space and a Brownian motion are given. See
also Section 3.4 for a detailed comparaison between the strong and weak formulation of the
constrained control problem.

(ii) The growth condition (2.4), together with the integrability condition (2.5), ensures that the
(stochastic) integrals in (2.6) are well defined. In particular, one has∫ T

0

(∣∣µ(s,Xγ
s∧·, α

γ
s )
∣∣+
∣∣σ(s,Xγ

s∧·, α
γ
s )
∣∣2)ds <∞, Pγ–a.s.

At the same time, there is a freedom to choose the metric ρ for the Polish space A. In particular,
when (µ, σ) are uniformly bounded, one can choose a uniformly bounded metric ρ so that (2.5)
holds true for any process αγ .

Let m, ` ≥ 0 and let Φ: Ω → R and Ψi : Ω → R, i = 1, · · · ,m + ` be functionals defined on
Ω, we consider the following optimization problem under expectation constraints:

V (z) := inf
γ∈Γ(z)

EPγ [Φ(Xγ
·
)]
, (2.7)

where for all z ∈ Rm × R`,

Γ(z) :=
{
γ ∈ Γ : EPγ [Ψi

(
Xγ
·
)]

= zi, i = 1, · · · ,m,
and EPγ [Ψm+j

(
Xγ
·
)]
≤ zm+j , j = 1, · · · , `

}
. (2.8)

We are actually mostly interested in the case z = 0 but directly consider a parameterized version
of the problem in (2.7), for conviniency. Integrability condtions on Φ and Ψ will be specified in
Section 3.1.

4



Remark 2.3. We can consider more general costs and constraints, such as

inf
γ∈Γ(z)

EPγ
[ ∫ T

0
L
(
s,Xγ

s∧·, α
γ
s

)
ds+ Φ

(
Xγ
·
)]
,

for some function L : [0, T ] × Ω × A → R. By introducing an n + 1 dimensional process X̃
defined by X̃i := Xi for i = 1, · · · , n and X̃n+1

t :=
∫ t

0 L(s,Xγ
s∧·, α

γ
s )ds and the corresponding

new criteria function, one can reduce the problem to the formulation (2.7). From a numerical
approximation point of view, it is always better to stay in the minimal dimension context. Here
we would like to use this formulation (à la Mayer) to study the problem for ease of presentation
and leave the dimensional reduction to the numerical implementation step.

A dual formulation By penalizing the constraints, it is clear that for z = 0,

V (0) = inf
γ∈Γ

sup
λ∈Rm×R`+

EPγ [Υ(Xγ
· , λ)

]
,

where
Υ(ω, λ) = Φ(ω) + λ ·Ψ(ω).

It follows that a dual formulation of the optimization problem V (0) can be given by

D(0) := sup
λ∈Rm×R`+

d(λ), where d(λ) := inf
γ∈Γ

EPγ [Υ(Xγ
· , λ)

]
. (2.9)

Some examples We also provide some examples of applications of the above constrained
optimization problem.

Example 2.4 (Optimal control under state constraint). The optimal control problem under state
constraint has been studied by different papers (see e.g. [3] and the references therein), it can
be formulated as follows:

inf
{
E
[
Φ(Xγ

T )
]

: γ ∈ Γ, Xγ
t ∈ E a.s. for all t ∈ [0, T ]

}
, (2.10)

where E is a closed convex subset of Rn. Let us denote by d(x,E) the distance between x and
E, and let us define

Ψ(Xγ
· ) := max

0≤t≤T
d(Xγ

t , E),

then Problem (2.10) is equivalent to the following problem under expectation constraint (in a
path-dependent version): inf

{
E
[
Φ(Xγ

T )
]

: γ ∈ Γ, E
[
Ψ(Xγ

· )
]

= 0
}
.

Example 2.5 (Semi-static super-replication problem in finance). Let us consider an uncertain
volatility financial model, where the interest rate r = 0 and a risky asset price follows the
dynamics dSγt = σγt S

γ
t dWt with an adapted process σγ = (σγt )0≤t≤T . Denote by Γ the collection

of all models γ = (Sγ , σγ) such that σγ takes value in [σ, σ], and assume that the market model
is uncertain (unknown), but the class of all possible market dynamics is given by {(Sγt )t∈[0,T ] :
γ ∈ Γ}.

A dynamic trading strategy is an adapted process H = (Ht)0≤t≤T and (H ·S)T :=
∫ T

0 HtdS
γ
t

is the Profit & Loss of the dynamic strategy. Denote by H the class of all dynamic strategies. On
the market, there are two vanilla options of payoff Ψ1(SγT ) and Ψ2(SγT ) at maturity T . Assume
that an agent is allowed to buy or to sell the first option with price z1, and is allowed to buy
the second option with price z2 (but cannot short/sell it). There is another option with payoff

5



Φ(Sγ· ), and the agent aims to super-replicate it with both dynamic trading strategy H and static
strategy on options Ψ1 and Ψ2. Then the collection of all super-replication strategies is given
by

D :=
{

(x,H, λ1, λ2) ∈ R×H× R× R+ :

x+ (H · Sγ)T + λ1(Ψ1(SγT )− z1) + λ2(Ψ2(SγT )− z2) ≥ Φ(Sγ· ), a.s. ∀γ ∈ Γ
}
,

and the minimal super-replication cost of option Φ is given by

inf
{
x : (x,H, λ1, λ2) ∈ D

}
.

Next, by the duality theory (see e.g. Denis and Martini [11]) in finance, the above problem
has a dual formulation:

inf
(λ1,λ2)∈R×R+

sup
γ∈Γ

E
[
Φ(Sγ· )− λ1(Ψ1(SγT )− z1)− λ2(Ψ2(SγT )− z2)

]
,

which is equivalent to a constrained optimal control problem:

sup
γ∈Γ

{
E[Φ(Sγ· )] : γ ∈ Γ, E[Ψ1(SγT )] = z1, E[Ψ2(SγT )] ≤ z2

}
.

Notice that the above application in finance has also motivated the so-called optimal Skorokhod
embedding problem, and the martingale optimal transport problem which has recently generated
an important literature (see e.g. [2] among many others).

2.2 A discrete time version of the constrained control problem

Let us introduce a discrete time version of the constrained control problem, with the objective
to approximate the continuous time problem (2.7).

Let N > 0 be an integer and h := T
N , denote tk := kh and Th := {t0, t1, · · · , tN}. Let

Hh : Th × Ω×A× [0, 1]→ Rn be a function satisfying

Hh(tk, ω, a, u) = Hh(tk, ωtk∧·, a, u), for all (tk, ω, a, u) ∈ Th × Ω×A× [0, 1].

Definition 2.6. We say that

γ =
(
Ωγ ,Fγ ,Fγ ,Pγ , αγ , Xγ , Uγ

)
is a weak discrete time control term if (Ωγ ,Fγ ,Fγ ,Pγ) is a filtered probability space, equipped
with an A-valued process αγ , an Rn–valued process Xγ , and a [0, 1]–valued process Uγ , which are
all adapted, and for each k = 1, · · · , N , Uγtk is of uniform distribution on [0, 1] and independent
of Fγtk−1

, and finally, Xγ
0 = x0,

Xγ
tk+1 = Xγ

tk
+ Hh

(
tk, X̂

γ
tk∧·, α

γ
tk
, Uγtk+1

)
, (2.11)

where X̂γ denotes the continuous time process on [0, T ] obtained by linear interpolation of
(Xγ

ti
)ti∈Th .

Let us denote by Γh the collection of all weak discrete time control rules, and by Γh(z) ⊂ Γh,
for z ∈ Rm+`, the subset of all controls γ such that

EPγ [Ψi

(
X̂γ
·
)]

= zi, i = 1, · · · ,m, and EPγ [Ψm+j

(
X̂γ
·
)]
≤ zm+j , j = 1, · · · , `.

Then a weak formulation of the discrete time constrained problem is given by

Vh(z) := inf
γ∈Γh(z)

EPγ [Φ(X̂γ
·
)]
. (2.12)
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A dual formulation As in (2.9), we introduce the corresponding dual problem for the discrete
time optimization problem, given by

Dh(0) := sup
λ∈Rm×R`+

dh(λ), where dh(λ) := inf
γ∈Γh

EPγ [Υ(X̂γ
· , λ

)]
. (2.13)

Remark 2.7. In the definition of the weak control term in Definition 2.6, if we fix the filtration
to be the one generated by (Uγk )k=1,··· ,N , i.e. Fγk = σ(Uγi , i ≤ k), then it can be considered as a
strong version of the control rule. For the problem dh(λ) in (2.13), it is equivalent to consider
only strong control rules by the dynamic programming principle. However, it may change the
value of control problem under constraints in (2.12).

3 Main results

We now provide the assumptions and main results of the paper, including our duality and
approximation results. We then also discuss the numerical resolution of the discrete time (dual)
constrained control problem.

3.1 Assumptions

The first assumption is on the integrability of the functionals Φ and Ψ, and a Robinson quali-
fication condition on the constraints in both continuous and discrete time setting (see also the
discussions in Section 3.4 on the validity of the qualification condition).

Assumption 3.1. (i) The random variables Φ(Xγ
· ), Ψi(X

γ
· ), Φ(X̂γh

· ) and Ψi(X̂
γh
· ) are integra-

ble, for all i = 1, · · · ,m + `, γ ∈ Γ and γh ∈ Γh. Moreover, there is a constant M > 0 such
that

sup
γ∈Γ

∣∣∣EPγ [Φ(Xγ
· )]
∣∣∣ ≤ M and sup

γh∈Γh

∣∣∣EPγh [Φ(X̂γh
· )]

∣∣∣ ≤ M.

(ii) There is a constant ε > 0 such that

Bε(0) ⊂ Conv
{
z ∈ Rm+` : ∃γ ∈ Γ, s.t. EPγ [Ψ(Xγ

· )] + z ∈ {0m} × R`−
}
, (3.14)

and

Bε(0) ⊂ Conv
{
z ∈ Rm+` : ∃γh ∈ Γh, s.t. EPγh [Ψ(X̂γh

· )] + z ∈ {0m} × R`−
}
, (3.15)

where 0m ∈ Rm denotes the original point in Rm and Bε(0) denotes the closed ball in Rm+` with
center 0 and radius ε for the supremum norm.

The next assumption ensures that the space of the laws of controlled process Xγ are rela-
tively compact, and the discrete time control problem consists of a good approximation of the
continuous time problem when the time step h = T/N is small.

Assumption 3.2. (i) The Polish space A is compact, and the associated metric ρ is uniformly
bounded. The function µ and σ are continuous in all arguments and for some constant K > 0,

‖(µ, σ)(t, ω, a)− (µ, σ)(t, ω′, a)‖ ≤ K‖ωt∧· − ω′t∧·‖, for all (t, ω, ω′, a). (3.16)

Moreover, the functions Φ(ω) and Ψi(ω), i = 1, · · · ,m + ` are continuous and bounded by
K(1 + ‖ω‖2) for some constant K > 0.
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(ii) For every (tk, ω, a) ∈ Th ×Ω×A, with a random variable U of uniform distribution U [0, 1],
one has

E[Hh(tk, ω, a, U)] = µ(tk, ω, a)h, Var[Hh(tk, ω, a, U)] = σσ>(tk, ω, a)h.

Moreover, there is some constant C > 0 such that E
[∣∣Hh(tk, ω, a, U)

∣∣3] ≤ Ch3/2 for all (tk, ω, a) ∈
Th × Ω×A and h > 0.

3.2 Duality and approximation of the constrained control problems

Our first main result is on the duality of the two constrained problems, together with the
existence of dual optimizers and some estimation. Let us denote

‖λ‖1 :=
m+∑̀
i=1

|λi|, for λ = (λ1, · · · , λm+`) ∈ Rm+`.

Theorem 3.3. Let Assumption 3.1 hold true.
(i) We have

V (0) = D(0) and Vh(0) = Dh(0).

Moreover, for the dual problem D (resp. Dh), there exist optimal solutions; and any optimal
solution λ∗ ∈ Rm × R`+ (resp. λ∗h ∈ Rm × R`+) satisfies ‖λ∗‖1 ≤ 2M

ε (resp. ‖λ∗h‖1 ≤
2M
ε ).

(ii) Let γ∗ ∈ Γ(0). Then γ∗ is a (global) solution to the constrained problem (2.7) if and only if
there exists λ∗ ∈ Rm × R`+ such that the following conditions hold true:

[Complementarity] EPγ∗
[m+∑̀
i=1

λ∗iΨi(X
γ∗
· )
]

= 0, (3.17)

[Stationarity] EPγ∗ [Υ(Xγ∗
· , λ

∗)
]

= inf
γ∈Γ

EPγ [Υ(Xγ
· , λ

∗)
]
. (3.18)

In this case, λ∗ is a solution to the dual problem (i.e. d(λ∗) = D(0)).

(ii’) Let γ∗h ∈ Γh(0). Then γ∗h is a (global) solution to the constrained problem (2.12) if and only
if there exists λ∗h ∈ Rm × R`+ such that the following conditions hold true:

[Complementarity] EPγ
∗
h
[m+∑̀
i=1

λ∗h,iΨi(X̂
γ∗h· )
]

= 0, (3.19)

[Stationarity] EPγ
∗
h
[
Υ(X̂

γ∗h· , λ
∗
h)
]

= inf
γh∈Γh

EPγh [Υ(X̂γh
· , λ

∗
h)
]
. (3.20)

In this case, λ∗h is a solution to the discrete dual problem (i.e. dh(λ∗h) = Dh(0)).

Remark 3.4. The estimation of the dual optimizer λ∗ implies that it is enough to optimize λ in
a compact set B2M/ε(0) := {λ ∈ Rm × R`+ : ‖λ‖1 ≤ 2M/ε} for the dual problem (2.9).

Remark 3.5. Let γ∗ be an optimal solution to the initial constrained control problem, then it is
also a solution to the unconstrained control problem d(λ∗) with an optimal dual optimizer λ∗.
In the Markovian context, where µ, σ, Φ and Ψi depend only on the running process Xt in place
of the path Xt∧·, and under some regularity condition, one may deduce a necessary condition on
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γ∗ from the stochastic Pontryagin maximum principle of Peng [22]. This is exactly the extended
stochastic Pontryagin maximum principle for the constrained optimal control problem, see e.g.
Yong and Zhou [31], Bonnans and Silva [6], etc. The optimality conditions provided in Theorem
3.3 are in line with those of Pfeiffer in [24] in a non-linear Markovian setting.

We next provide an approximation result under Assumption 3.2, that is,

Vh(0) = Dh(0) −→ V (0) = D(0).

As the dual problems are equivalent to the optimization of d(λ) or dh(λ) on a compact set
B2M/ε(0), one can expect to have a uniform convergence rate between dh(λ) and d(λ) on
B2M/ε(0), which implies a convergence rate between Dh(0) and D(0). We formulate the conver-
gence rate condition as follows.

Assumption 3.6. There are constants C > 0 and ρ > 0 such that

|d(λ)− dh(λ)| ≤ Chρ, for all λ ∈ B2M/ε(0) ⊂ Rm × R`+.

Remark 3.7. (i) Consider the Markovian context, where

(µ, σ)(t, ω, a) = (µ0, σ0)(t, ωt, a)

for some (µ0, σ0) : [0, T ] × Rn × A → Rn × Sd and Φ(ω) = Φ0(ωT ), Ψi(ω) = Ψ0,i(ωT ) for
some functions Φ0 : Rn → R and Ψ0,i : Rn → R. Assume that µ0, σ0,Φ0,Ψ0,i are all bounded
continuous, and (µ0, σ0)(t, x, a) is Lipschitz in x, 1

2 -Hölder in t uniformly on [0, T ] × Rn × A,
and Φ0, Ψ0,i are all Lipschitz in x, and further that for any δ > 0, there exists a finite subset
Aδ ⊂ A such that

sup
(t,x,a)∈[0,T ]×Rn×A

inf
a′∈Aδ

(∥∥(µ0, σ0)(t, x, a)− (µ0, σ0)(t, x, a′)
∥∥) ≤ δ.

Then under Assumption 3.2, the condition in Assumption 3.6 holds true for some constant
C > 0 (independent of λ ∈ B2M/ε(0)) and ρ = 1

10 . The above convergence rate result was first
proved by Krylov’s [18] based on a shaking coefficient argument, and then improved by Barles
and Jakobsen [1].

(ii) In the non-Markovian context, assume that the sets {µ(t, ω, a) : a ∈ A} and {σσ>(t, ω, a) :
a ∈ A} are uniformly bounded and independent of ω ∈ Ω, and Φ and Ψi are Lipschitz, then
under Assumption 3.2, the condition in Assumption 3.6 holds true for some constant C > 0 and
ρ = 1

8 . The above convergence rate result is obtained by Dolinsky [13] (see also Tan [29]) using
a strong invariance principle argument.

(iii) In the non-Markovian context, assume that the volatility function σ is not controlled so
that the optimal control problem in d(λ) can be reformulated as a BSDE (backward stochastic
differential equation). Convergence results for numerical schemes of BSDE lead to a rate ρ = 1

2 ,
see e.g. Bouchard and Touzi [9], Zhang [32], etc.

Theorem 3.8. Let Assumptions 3.1 and 3.2 hold true. Then

Dh(0) = Vh(0) −→ V (0) = D(0), as h −→ 0.

Suppose in addition that Assumption 3.6 holds true with some constants C > 0 and ρ > 0, then

|Vh(0)− V (0)| = |Dh(0)−D(0)| ≤ Chρ. (3.21)

9



3.3 Numerical algorithm to compute Dh(0)

It is not hard to verify that λ 7→ dh(λ) is a concave function, therefore it is natural to compute

Dh(0) = max
λ∈B2M/ε(0)

dh(λ)

by the following gradient algorithm, which is an iterative method (w.r.t. k).

• Initialize the problem with λ0 = 0.

• Given λk, solve the problem dh(λk), that is, find γ̂k such that

EPγ̂k [Φ(X̂ γ̂k
·
)

+ λ ·Ψ
(
X̂ γ̂k
·
)]

= dh(λk) = inf
γh∈Γh

EPγh [Φ(X̂γh
· ) + λ∗h ·Ψ(X̂γh

· )
]
.

• With (λk, γ̂k), compute λk+1 by

λk+1 := Π
(
λk + θk∇dh(λk)

)
with ∇dh(λk) := EPγ̂k [Ψ(X̂ γ̂k

·
)]
,

where Π denote the projection operator from Rm+` on B2M/ε(0) ∩ (Rm × R`+).

We refer to Nesterov [21, Section 3.2.3] for a discussion on appropriate choices of stepsizes
θk > 0.

Choice of Hh and resolution of the (unconstrained) control problem dh(λk) In the
purpose of approximating the initial continuous time constrained control problem, we need to
choose good kernel functions Hh such that Assumption 3.2 holds true. There exist different
choices of Hh, which correspond to different numerical schemes for the resolution of the optimal
control problem (or nonlinear parabolic equation). To illustrate the idea, let us take the example
of the finite difference scheme in the one-dimensional (d = 1) case. Following Kushner and
Dupuis [19], one can interpret the finite difference scheme for the HJB equation as a controlled
Markov chain system, where the controlled discrete time process has increments (−∆x, 0,∆x)
with different (controlled) probabilities between time tk := k∆t and tk+1 := (k + 1)∆t. In the
above definition, h = (∆t,∆x) represents time-space steps parameters in the dicretization of
[0, T ] × R. In our context, the increment of the controlled process is given by Hh(tk, x̂, a, U)
given the past states x = (x0, · · · , xk) and the control value a. Then Hh could be constructed
explicitly such that, with r.v. U ∼ U [0, 1],

Hh(tk, x̂, a, U) =


∆x, with probability p+ = µ(tk, x̂, a) ∆t

∆x + 1
2σ

2(tk, x̂, a) ∆t
∆x2

,

−∆x, with probability p− = 1
2σ

2(tk, x̂, a) ∆t
∆x2

,

0, with probability 1− p+ − p−.

In the above definition, one needs to choose parameters (∆t,∆x) such that p+, p− and 1 −
p+ − p− take value in [0, 1], ensuring that (p+, p−, 1 − p+ − p−) it is a probability function
and Hh(tk, x̂, a, U) is a random variable. Then by direct computation, one can check that Hh

satisfies Assumption 3.2(ii).
Although Kushner and Dupuis [19] mainly discussed the finite difference scheme for optimal

control problem in a Markovian framework, the same arguments still apply in the path-dependent
framework, and on other (monotone) numerical schemes for optimal control problems, or equi-
valently to HJB equations (see e.g. Tan [29], Possamäı and Tan [25], Bonnans, Gianatti and
Silva [4]). Let us also refer to Section 4 of Ren and Tan [26] for more examples on how to choose
Hh to obtain other numerical schemes, including the semi-Lagrangian scheme, the probabilistic
scheme of Fahim, Touzi and Warin [15], etc.
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3.4 Further discussions

A strong formulation of the optimal control problem under constraints By fixing
the probability space and the Brownian motion in the weak control term γ, one can obtain a
strong formulation of the control problem. This can be achieved by just fixing the filtration Fγ
as the Brownian filtration, as all other processes are assumed to be adapted to it.

Definition 3.9. (i) A weak control term

γ = (Ωγ ,Fγ ,Fγ = (Fγt )t∈[0,T ],Pγ , Xγ , αγ , Bγ)

is called a strong control term if Fγ is the (augmented) filtration generated by Bγ .

(ii) A strong control term γ is called piecewise constant if αγ is piecewise constant, i.e. αs = αti
for s ∈ [ti, ti+1) with some discret time grid 0 = t0 < · · · < tN = T .

Let us denote

ΓS :=
{

All strong control terms
}
, ΓS,0 :=

{
All piecewise strong control terms

}
,

and
ΓS(z) := ΓS ∩ Γ(z), for z ∈ Rm × R`.

We can then introduce a strong formulation of the optimal control problem under constraints:

VS(z) := inf
γ∈ΓS(z)

EPγ [Φ(Xγ
·
)]
.

As we will see in the technical proof part, one can approximate a weak control by strong
control terms. However, the equality constraints EPγ [Ψi(X

γ
· )] = zi may not be ensured in the

approximation, and for this reason, we are not able to prove that VS(z) = V (z). In other words,
with the presence of the equality constraints, VS(z) may lack some regularity in z. Nevertheless,
we are able to prove that by considering the convex envelop or lower-semicontinuous envelop
of VS , we then obtain V . Let us denote by V l.s.c.

S the biggest lower-semicontinuous function
dominated by VS , and by V conv

S the biggest convex function dominated by VS .

Proposition 3.10. Let Assumptions 3.1 and 3.2 hold true. Then,

V (z) = V conv
S (z) = V l.s.c.

S (z), for all z ∈ Bε/2(0),

where Bε/2(0) := {z ∈ Rm+` : ‖z‖1 ≤ ε/2},

The proof will be completed in Section 5.5.

On Assumption 3.1 Item (i) in Assumption 3.1 is an integrability condition, which can be
reasonably checked for concrete examples. The qualification condition in Assumption 3.1 (ii)
turns to be more abstract. We provide below a more explicit equivalent formulation, which
could be easier to check (at least numerically). Let

E := {−1, 1}m × {1}`, and Θ+
1 :=

{
(θ1, · · · , θm+`) ∈ Rm+`

+ :

m+∑̀
i=1

θi = 1
}
,

which is a convex and compact subset of Rm+`
+ . Let e ∈ E, we denote

eΨ(·) :=
(
e1Ψ1(·), · · · , em+`Ψm+`(·)

)
.

11



Proposition 3.11. Assumption 3.1 (ii) holds if and only if, for each e ∈ E,

max
θ∈Θ+

1

inf
γ∈Γ

E
[
θ · eΨ(Xγ

· )
]

= inf
γ∈Γ

max
θ∈Θ+

1

E
[
θ · eΨ(Xγ

· )
]
≤ −ε, (3.22)

and

max
θ∈Θ+

1

inf
γh∈Γh

E
[
θ · eΨ(X̂γh

· )
]

= inf
γh∈Γh

max
θ∈Θ+

1

E
[
θ · eΨ(X̂γh

· )
]
≤ −ε. (3.23)

Remark 3.12. Notice that the optimization problems (3.22) and (3.23) can be computed by the
same numerical algorithm as the one described in Section 3.3.

Proof. We will only provide the equivalence between (3.14) and (3.22). The equivalence
between (3.15) and (3.23) follows by exactly the same arguments.

First, it is easy to see that the condition (3.14) is equivalent to that for all e ∈ E, there is
some control γ ∈ Γ such that

E
[
eiΨi(X

γ
· )
]
≤ −ε, for all i = 1, · · · ,m+ `.

Next, we notice that

max
i=1,··· ,m+`

ci = max
θ∈Θ+

1

(
θ · c

)
, for all c = (c1, · · · , cm+`) ∈ Rm+`,

then (3.14) is equivalent to

inf
γ∈Γ

max
θ∈Θ+

1

E
[
θ · eΨ(Xγ

· )
]
≤ −ε, for each e ∈ E.

To conclude, it is enough to prove the duality result in (3.22). Let us denote by P := {Pγ ◦
(Xγ)−1 : γ ∈ Γ}, which is a convex set (see Lemma 5.7). Notice that Θ+

1 is a convex compact
subset of Rm+`, then it follows by the classical minimax theorem that

max
θ∈Θ+

1

inf
γ∈Γ

E
[
θ · eΨ(Xγ

· )
]

= max
θ∈Θ+

1

inf
P∈P

EP[θ · eΨ(X·)
]

= inf
P∈P

max
θ∈Θ+

1

EP[θ · eΨ(X·)
]

= inf
γ∈Γ

max
θ∈Θ+

1

E
[
θ · eΨ(Xγ

· )
]
.

4 Numerical examples

In this section we illustrate our theoretical results by two simple numerical examples with a
linear quadratic structure, so that the reference value of the problem can be computed explicitly.
Concretely, we set A = R, µ(t, x, a) = a, σ(t, x, a) ≡ 1, so that for all γ ∈ Γ, Xγ is given by

Xγ
t = x0 +

∫ t

0
αγsds+Bγ

t , where EPγ
[ ∫ T

0

(
αγs
)2
ds
]
<∞. (4.24)

Given T > 0 and (aT , bT , cT ) ∈ R3, we define the value function

V (x0;T, aT , bT , cT ) := inf
γ∈Γ

E
[ ∫ T

0

1

2
(αγt )2dt+

1

2
aT (Xγ

T )2 + bTX
γ
T + cT

]
.
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With the above linear quadratic structure, one can check that, if 1 + TaT > 0, then

V (x0;T, aT , bT , cT ) =
1

2
a0x

2
0 + b0x0 + c0,

where

a0 =
aT

1 + TaT
, b0 =

bT
1 + TaT

, c0 = cT −
Tb2T

2(1 + TaT )
+

1

2
ln(1 + TaT ). (4.25)

If 1 + TaT ≤ 0, then V (T, aT , bT , cT ) = −∞.

Example 4.1. We consider the constrained optimization problem

inf
γ∈Γ

EPγ
[ ∫ 1

0

1

2
(αγt )2dt+ (Xγ

T )2
]
, subject to: EPγ [−Xγ

T + 1
]

= 0,

where Xγ follows (4.24) with x0 = 0. The dual criterion d(λ) can be explicitly calculated with
formula (4.25), applied with a1 = 2, b1 = −λ, and c1 = λ. We obtain d(λ) = −1

6λ
2 +λ+ 1

2 ln(3).
The function d reaches its maximum 3

2 + 1
2 ln(3) at λ∗ = 3.

Example 4.2. We next consider the problem

inf
γ∈Γ

EPγ
[ ∫ 1

0

1

2
(αγt )2dt+ (Xγ

T )2
]
, subject to: EPγ [(Xγ

T − 1)2
]
− 1

2
≤ 0,

where Xγ follows (4.24) with x0 = 0. The dual criterion, obtained by applying (4.25) with
a1 = 2 + 2λ, b1 = −2λ, c1 = 1

2λ, is given by

d(λ) =

{
− 2λ2

3+2λ + 1
2λ+ 1

2 ln(3 + 2λ), if λ ≥ −3/2,

−∞, otherwise.

The function d reaches its maximum (approximately) 0.91 at λ∗ = −1 + 1
2

√
19 ≈ 1.12.

We implement the numerical procedure as described in Section 3.3, combined with the finite
difference method for the discretization of the process. For ∆t = h > 0, we set ∆x =

√
∆t/0.1.

The results are presented on Figure 1 (with a logarithmic scale), for values of h ranging from
2×10−5 to 10−2. The dual problem has been solved at a high precision, so that |∇dh(λ)| < 10−7.
A rate of convergence equal to 1/2 can be observed for |V (0)− Vh(0)|, which is consistent with
the convergence results of numerical methods for BSDEs, see Remark 3.7. Interestingly, the
approximate Lagrange multiplier λh converges at the same rate on these two examples.

5 Proofs

5.1 An abstract duality result

We consider in this subsection an abstract formulation of the optimal control problem with ex-
pectation constraints. This formulation will facilitate the presentation of the so called Lagrange
relaxation approach, which is at the core of the proof of Theorem 3.3. Let us refer the reader
to [16, Chapter XII] for a detailed presentation of this classical approach. For completeness, we
first recall some basic definitions in convex analysis. For a convex function f : Rm+` → R, the
subdifferential ∂f(x) is defined by

∂f(x) =
{
λ ∈ Rm+` : f(y) ≥ f(x) + 〈λ, y − x〉, ∀y ∈ Rm+`

}
.
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Figure 1: Approximation error for different discretization parameters for examples 1 (left) and
2 (right).

The superdifferential of a concave function is defined similarly, by changing the inequality sign
in the above inequality. The conjugate f∗ : Rm+` → R of the function f is defined by

f∗(λ) = sup
x∈Rm+`

(
〈λ, x〉 − f(x)

)
.

All along this subsection, we consider an abstract measurable space (Ω,F), equipped with a
convex subset P of P(Ω), and some random variables ξ and ζ1, ..., ζm+`. We make the following
assumptions:

(A1) For all P ∈ P and for all i = 1, ...,m+ `, we have EP[|ξ|] <∞ and EP[|ζi|] <∞;

(A2) M := supP∈P
∣∣EP[ξ]

∣∣ <∞;

(A3) There exists ε > 0 such that the following inclusion holds true:

Bε(0) ⊆
{
z ∈ Rm+` : ∃P ∈ P, EP[ζ] + z ∈ {0m} × R`−

}
,

where Bε(0) denotes the ball of radius ε and center 0 for the supremum norm.

We aim at analyzing the following problem, referred to in this subsection as primal problem:

V (0) := inf
P∈P

EP[ξ], subject to:

{
EP[ζi] = 0, ∀i = 1, ...,m,

EP[ζi] ≤ 0, ∀i = m+ 1, ...,m+ `.
(5.26)

Observe that this is a convex problem, since P is assumed to be convex and the expectation is
linear with respect to the involved probability measure. We next introduce the dual criterion
d : Rm+` → R, defined as follows:

d(λ) := inf
P∈P
L(P, λ), where L(P, λ) := EP[ξ] + 〈λ,EP[ζ]〉 is the Lagrangian.

Finally, the dual problem to (5.26) is given by

D(0) := sup
λ∈Rm+`

d(λ), subject to: λ ∈ {0m} × R`+. (5.27)

The main result of the subsection is the following proposition.
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Proposition 5.1. The primal problem (5.26) and the dual problem (5.27) have the same value.
Moreover, the set of solutions to the dual problem is non-empty, coincide with ∂V (0), and is
bounded. More precisely, any dual optimizer λ∗ satisfies

‖λ‖1 :=

m+∑̀
i=1

|λi| ≤
2M

ε
. (5.28)

Proof. The key idea of the approach consists in parametrizing Problem (5.26) by introducing
a variable z in the constraints. We introduce the function V : Rm+` → R, defined as follows:

V (z) = inf
P∈P

EP[ξ], subject to: EP[ζ] + z ∈ {0m} × R`−. (5.29)

Step 1: The function V is convex and finite in a neighborhood of 0. Take z(1), z(2) ∈ Rm+`,
and P1,P2 ∈ P such that EPi [ζ] + z(i) ∈ {0m} × R`−, i = 1, 2. Let θ ∈ [0, 1]. Let us set
z = θz(1) + (1 − θ)z(2) and P = θP1 + (1 − θ)P2. By convexity of P, we have that P ∈ P.
Moreover,

EP[ζ] + z = θ
(
EP1 [ζ] + z(1)

)
+ (1− θ)

(
EP2 [ζ] + z(2)

)
∈ {0m} × R`−.

Therefore,
V (z) ≤ EP[ξ] ≤ θEP1 [ξ] + (1− θ)EP2 [ξ].

Minimizing the right-hand side with respect to P1 and P2, we finally obtain that V (z) ≤
θV (z(1)) + (1 − θ)V (z(2)), which concludes the proof of convexity. By Assumption (A2), the
function V is bounded from below by −M . By Assumption (A3), we have that for all z ∈ Bε(0),
the optimization problem associated with V (z) is feasible, thus V (z) <∞. This proves that V
is finite in a neighbourhood of 0.

Step 2: Calculation of the conjugate function V ∗. For λ ∈ Rm+`, we have

V ∗(λ) = sup
z∈Rm+`

(
〈λ, z〉 − V (z)

)
= sup

z∈Rm+`,P∈P
〈λ, z〉 − EP[ξ], subject to: EP[ζ] + z ∈ {0m} × R`−.

We make the changes of variable z′ = EP[ζ] + z. Observing that

〈λ, z〉 − EP[ξ] = 〈λ, z′〉 − L(P, λ),

we deduce that
V ∗(λ) = sup

z′∈{0m}×R`−
〈λ, z′〉 − inf

P∈P
L(P, λ).

For all λ ∈ Rm+`, we have

sup
z′∈{0m}×R`−

〈λ, z′〉 =

{
0, if λ ∈ Rm × R`+,

+∞, otherwise.

Therefore,

V ∗(λ) =

{
− infP∈P L(P, λ) = −d(λ), if λ ∈ Rm × R`+,

+∞, otherwise.
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Step 3: Duality result. As a consequence of [5, Proposition 2.108], the mapping V is conti-
nuous at 0, since it is convex and finite in a neighborhood of 0. It follows with [5, Proposition
2.126] that ∂V (0) is non-empty. It follows further with [5, Proposition 2.118] that V (0) = V ∗∗(0).
Finally, the equivalence in [5, Relation 2.232] ensures that for all λ ∈ Rm+`,

V (0) + V ∗(λ) = 〈λ, 0〉 = 0⇐⇒ λ ∈ ∂V (0).

Therefore, we have

V (0) = V ∗∗(0) = sup
λ∈Rm+`

〈0, λ〉 − V ∗(λ) = sup
λ∈Rm×R`+

d(λ),

proving that the primal and the dual problems have the same value. For all λ ∈ ∂V (0), we have
V (0) = −V ∗(λ), thus V ∗(λ) is finite, and necessarily, we have λ ∈ Rm×R`+ and V ∗(λ) = −d(λ),
which proves that λ is a solution to the dual problem. Conversely, if λ is a solution to the dual
problem, then we have V (0) = d(λ) = −V ∗(λ) and therefore λ ∈ ∂V (0).

Step 4: Boundedness of the set of dual solutions. Let λ∗ ∈ ∂V (0). Let z be defined by
zi = sign(λ∗i )ε. By Assumptions (A2) and (A3), we have V (z) ≤M and V (0) ≥ −M . We have

M ≥ V (z) ≥ V (0) + 〈λ∗, z〉 ≥ −M + ε

m+∑̀
i=1

|λ∗i | = −M + ε‖λ∗‖1.

Then it follows that (5.28) holds true.
As consequence of Proposition 5.1, we obtain the following optimality conditions.

Corollary 5.2. For all solutions P∗ to the primal problem (5.26) and for all solutions λ∗ to the
dual problem (5.27), one has

L(P∗, λ∗) = min
P∈P
L(P, λ∗). (5.30)

Moreover, for each i = m+1, ...,m+`, one has λ∗i = 0 whenever EP∗ [ζi] < 0, i.e. 〈λ∗,EP∗ [ζ]〉 = 0.

Proof. Since EP∗ [ζ] ∈ {0m} × R`− and λ∗ ∈ Rm × R`+, we have

L(P∗, λ∗) = EP∗ [ξ] + 〈λ∗,EP∗ [ζ]〉 ≤ EP∗ [ξ].

By Proposition 5.1, λ∗ ∈ ∂V (0). Therefore,

L(P∗, λ∗) ≤ V (0) = −V ∗(λ∗) = d(λ∗) = inf
P∈P
L(P, λ∗).

Of course, since P∗ ∈ P, we also have that L(P∗, λ∗) ≥ infP∈P L(P, λ∗). As a consequence, all the
above inequalities are equalities. Equality (5.30) is proved, and we also have that 〈λ∗,EP∗ [ζ]〉 = 0,
from which the complementarity condition easily follows.

The necessary optimality conditions of Corollary 5.2 are also sufficient optimality conditions.

Lemma 5.3. Let P∗ ∈ P. Assume that there exists λ∗ ∈ Rm × R`+ such that 〈λ∗,EP∗ [ζ]〉 = 0
and such that

L(P∗, λ∗) = min
P∈P
L(P, λ∗).

Then P∗ is a solution to (5.26).
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Proof. Let P be feasible for (5.26). Then the following inequalities and equality can be
easily verified: EP[ξ] ≥ L(P, λ∗) ≥ L(P∗, λ∗) = EP∗ [ξ], which proves the lemma.

We give now a property of the superdifferential of d, which in particular can be used in a
numerical algorithm to solve the dual problem.

Lemma 5.4. The map d is concave. Moreover, for all λ ∈ Rm+`, for all P ∈ P such that
d(λ) = L(P, λ), the vector z := EP[ζ] lies in the superdifferential of d at λ.

Proof. The Lagrangian L is affine with respect to λ, therefore concave. The mapping d(λ)
is expressed as an infimum of concave functions, thus it is concave. Let λ ∈ Rm+`. Let P be
such that d(λ) = L(P, λ). For all λ′ ∈ Rm+`, we have

L(P, λ′) = L(P, λ) + 〈λ′ − λ,EP[ζ]〉 = d(λ) + 〈λ′ − λ, z〉.

Minimizing the left-hand side w.r.t. P, we obtain that d(λ′) ≤ d(λ) + 〈λ′ − λ, z〉, as was to be
proved.

We finish this subsection with a technical result concerning the Lipschitz continuity of the
function V defined in (5.29).

Lemma 5.5. The map V is Lipschitz continuous with modulus 4M
ε on Bε/2(0).

Proof. Let z1 and z2 ∈ Bε/2(0) with z1 6= z2. Take an arbitrary P1 ∈ P such that

EP1 [ζ] + z1 ∈ {0m} × R`− (whose existence is ensured by Assumption (A3)). Consider the half-
line {z1 + θ(z2 − z1) | θ ≥ 0}. It has a unique intersection point z with the boundary of Bε(0).
Let θ ≥ 0 be such that z = z1 + θ(z2 − z1). Since ‖z‖∞ = ε and ‖z1‖∞ ≤ ε/2, we have
‖z − z1‖∞ ≥ ε/2 and thus

θ =
‖z − z1‖∞
‖z2 − z1‖∞

≥ ε

2‖z2 − z1‖∞
.

We also have θ > 1, since the whole segment {z1+θ(z2−z1) : θ ∈ [0, 1]} is included inBε/2(0). By

(A3), there exists P ∈ P such that EP[ζ]+z ∈ {0m}×R`−. Let us define P2 = (1−1/θ)P1+(1/θ)P.
Since 1/θ ≤ 1 and since P is convex, P ∈ P. Moreover, we have z2 = (1− 1/θ)z1 + (1/θ)z, thus
EP2 [ζ] + z2 ∈ {0m} × R`−. It follows that

V (z2) ≤ EP2 [ξ] = EP1 [ξ] +
1

θ

(
EP[ξ]− EP1 [ξ]

)
.

Using (A2) and 1/θ ≤ 2‖z2 − z1‖∞/ε, we finally obtain that

V (z2) ≤ V (z1) +
4M

ε
‖z2 − z1‖∞,

which concludes the proof.

5.2 Reformulation of the constrained control problem on the canonical space

In order to prove the duality result in Theorem 3.3, we will reformulate the continuous time
and discrete time constrained control problems (2.7) and (2.12) in the framework of (5.26) in
Section 5.1. Concretely, we will reformulate problems (2.7) and (2.12) as optimization problems
over a space of probability measures on an appropriate canonical space. Moreover, the space
of probability measures enjoys a good closeness property, which also plays an essential role to
prove the approximation results in Theorem 3.8.
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Recall that Ω := C([0, T ],Rn) denotes the canonical space of all Rn–valued continuous
paths on [0, T ], with canonical process X = (Xt)0≤t≤T , and canonical filtration F = (Ft)0≤t≤T .
Denote by A the collection of all Borel (positive) measures m on [0, T ] × A whose marginal
distribution on [0, T ] is the Lebesgue measure ds, i.e., A := {m : m(ds, da) = m(s, da)ds} for
a measurable family of (m(s, da))s∈[0,T ] of Borel probability measures on A. We also consider
a subset A0 ⊂ A, which consists of all measures m(ds, da) such that m(ds, da) = δψs(da)ds for
some Borel measurable function ψ : [0, T ]→ A. Let us denote by Λ the canonical element on A
and denote

Λt(φ) :=

∫ t

0

∫
A
φ(s, a)Λ(ds, da)

for any bounded Borel measurable functions defined on [0, T ]×A. We then introduce a canonical
filtration FA = (FAt )0≤t≤T on A by

FAt := σ
{

Λs(φ) : s ≤ t, φ ∈ Cb([0, T ]×A)
}
.

Next, we introduce an enlarged canonical space Ω := Ω × A, which inherits the canonical
processes (X,Λ), and is equipped with the enlarged canonical filtration F = (F t)0≤t≤T , defined
by F t := σ

(
Xs,Λs(φ) : s ≤ t, φ ∈ Cb([0, T ]× U)

)
. Denote also F := FT , and by P(Ω) the set

of all probability measures on (Ω,F), equipped with the weak convergence topology.
We now introduce a Wasserstein distance on a subspace of P(Ω). Let P([0, T ]×A) denote the

space of all probability measures m on [0, T ]×A, and P2([0, T ]×A) the subspace of measures m

such that
∫ T

0

∫
A

(
ρ(a, a0)

)2
m(ds, da) <∞, define the Wasserstein distance d2 on P2([0, T ]×A)

by

d2(m,m′) :=
(

inf
π∈Π(m,m′)

∫ T

0

∫
A

∫ T

0

∫
A

(
ρ(a, a′)2 + |s− s′|2

)
π(ds, da, ds′, da′)

)1/2
,

where Π(m,m′) denotes the collection of joint distributions on ([0, T ] × A) × ([0, T ] × A) with
marginal distribution m and m′. We can then extend the Wasserstein distance d2 on A2 :=
{m ∈ A : m/T ∈ P2([0, T ]×A)} by

dA2(m,m′) := d2(m/T,m′/T ), for all m,m′ ∈ A2.

Now, let us denote P2(Ω) the set of all P ∈ P(Ω), such that

EP
[
‖X‖2 +

∫ T

0

∫
A
ρ(a0, a)2Λ(ds, da)

]
<∞. (5.31)

It is easy to check that Λ ∈ A2, P–a.s. for all P ∈ P2(Ω). We then introduce the Wasserstein
distance W2 on P2(Ω) by

W2(P,P′) :=
(

inf
π∈Π(P,P′)

∫
Ω

∫
Ω

(
‖ω − ω′‖2 + d2

A2
(m,m′)

)
π
(
d(ω,m), d(ω′,m′)

))1/2
. (5.32)

Reformulation of the continuous time control problem Following El Karoui, Huu
Nguyen and Jeanblanc [14], we can in fact reformulate the control problem on the canonical
space by the martingale problem. Recall the definition of strong and weak control terms in
Definitions 2.1 and 3.9. Given a function ϕ ∈ C2

b (Rn), let us define an F-adapted continuous
function (Ct(ϕ))t∈[0,T ] by

Ct(ϕ) := ϕ(Xt)−
∫ t

0

∫
A
Lϕ(s,Xs∧·, a,Xs)Λ(ds, da),
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with

Lϕ(s, ω, a, x) := µ(t, ωt∧·, a) ·Dϕ(x) +
1

2
Tr
[
σσT (t, ωt∧·, a)D2ϕ(x)

]
.

Definition 5.6. (i) A probability measure P on (Ω,F) is called a relaxed control rule if

P[X0 = x0] = 1, EP
[
‖X‖2 +

∫ T

0

∫
A
ρ(a0, a)2Λ(ds, da)

]
<∞, (5.33)

and the process (Ct(ϕ))t∈[0,T ] is a (F,P)-martingale for all functions ϕ ∈ C2
b (Rn).

(ii) A probability measure P is called a weak control rule if there exists a weak control term

γ ∈ Γ such that P = Pγ ◦
(
Xγ ,Λγ

)−1
with Λγ(ds, da) := δαγs (da)ds.

(iii) A weak control rule P is called a strong control rule if it is induced by a strong control term
γ ∈ ΓS , and it is called a piecewise strong control rule if γ ∈ ΓS,0.

Let us denote

PR (resp. PW , PS , PS,0)

:=
{

All relaxed (resp. weak, strong, piecewise strong) control rules
}
, (5.34)

and, for z ∈ Rm+`,

PR(z) :=
{
P ∈ PR : EP[Ψi(X·)] = zi, i = 1, · · · ,m,

EP[Ψm+j(X·)] ≤ zm+j , j = 1, · · · , `
}
,

and
PW (z) := PW ∩ PR(z).

Consequently, one can redefine V (z) in (2.7), and d(λ) in (2.9) by

V (z) = sup
P∈PW (z)

EP[Φ(X·)
]
, and d(λ) = sup

P∈PW
EP[Φ(X·) + λ ·Ψ(X·)

]
. (5.35)

Notice that the integrability condition (5.31) implies that PR ⊂ P2(Ω).

Lemma 5.7. (i) Both sets PW and PR are convex, and

PW =
{
P ∈ PR : P[Λ ∈ A0] = 1

}
, (5.36)

and PS,0 ⊂ PS ⊂ PW ⊂ PR.

(ii) Let Assumption 3.2 hold. Then PS,0 is dense in PR under the Wasserstein W2 distance.

Proof. (i) We first prove (5.36). Given a weak control term γ ∈ Γ, and let P := Pγ ◦
(Xγ ,Λγ)−1 with Λγ := δαγs (da)ds, it is straightforward to check that P ∈ PR and satisfies

P[Λ ∈ A0] = Pγ [Λγ ∈ A0] = 1. On the other hand, let P ∈ PR such that P[Λ ∈ A0] = 1, one can
construct on a possible enlarged space of Ω, a F–predictable process α and a Brownian motion
W P such that P[Λ(da, ds) = δαs(da)ds] = 1 and

Xt = x0 +

∫ t

0
µ(s,Xs, αs)ds+

∫ t

0
σ(s,Xs, αs)dW

P
s , P–a.s.
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It follows that the term (Ω,F ,F,P, X, α,W P) is a weak control term in Definition 2.6, and hence
P ∈ PW . This proves the equality in (5.36).

We next prove that PR is convex. Let P1,P2 ∈ PR, and P = θP1 + (1 − θ)P2 for some
θ ∈ [0, 1]. Then it is clear that P satisfies (5.33) as P1 and P2. Further, as (Ct(ϕ))t∈[0,T ] is a

F–martingale under both P1 and P2, one has, for all s ≤ t and Fs–measurable bounded r.v. ξ,

EP[(Ct(ϕ)− Cs(ϕ)
)
ξ
]

= θEP1
[(
Ct(ϕ)− Cs(ϕ)

)
ξ
]

+ (1− θ)EP2
[(
Ct(ϕ)− Cs(ϕ)

)
ξ
]

= 0.

Thus (Ct(ϕ))t∈[0,T ] is also a F–martingale under P, and hence P ∈ PR. Then PR is convex.

Using (5.36) and the convexity of PR, it follows that PW is also convex. Finally, the inclusion
relation PS,0 ⊂ PS ⊂ PW ⊂ PR is trivial by their definitions and (5.36).

(ii) Finally, the approximation of a relaxed control rule by weak control rules is a classical
result as illustrated by El Karoui, Huu Nguyen and Jeanblanc [14] under the weak convergence
topology. For the density of PS,0 in PR under W2, we can refer e.g. to Theorem 3.1 of Djete,
Possamäı and Tan [12] for a proof with explicit construction.

Reformulation of the discrete time control problem Notice that a discrete time process
on grid 0 = t0 < · · · < tN = T can be considered as a continuous time piecewise constant process
on [0, T ]. Concretely, let

γ =
(
Ωγ ,Fγ ,Fγ ,Pγ , αγ , Xγ , Uγk , k = 1, · · · , N

)
∈ Γh

be a weak discrete time control term, we (re-)define (X̂γ , αγ ,Λγ) as processes on [0, T ] by

X̂γ
s := (tk+1 − s)Xγ

tk
+ (s− tk)Xγ

tk+1
, αγs := αγtk , for all s ∈ [tk, tk+1),

and Λγ(ds, da) := δαγs (da)ds. Denote

PhW :=
{
Ph := Pγ ◦

(
X̂γ ,Λγ

)−1
: γ ∈ Γh

}
,

PhW (z) :=
{
Ph := Pγ ◦

(
X̂γ ,Λγ

)−1
: γ ∈ Γh(z)

}
,

so that Vh and dh in (2.12) and (2.13) can be redefined by

Vh(z) = sup
Ph∈PhW (z)

EPh[Φ(X·)
]

and dh(λ) = sup
Ph∈PhW

EPh[Φ(X·) + λ ·Ψ(X·)
]
. (5.37)

Lemma 5.8. The set PhW is convex.

Proof. Let us consider an enlarged canonical space Ω̂ := Ω × AN × [0, 1]N equipped with
canonical element (X,Λ, α, U) with α = (α0, · · · , αN−1) and U = (U1, · · · , UN ). The canonical
filtration F̂ = (F̂t)0≤t≤T is defined by

F̂t := σ
(
Xs,Λs(φ), αti , Ui : s ≤ t, φ ∈ Cb([0, T ]×A), ti ≤ t

)
.

We define

P̂hW :=
{
Pγ ◦

(
Xγ ,Λγ , αγ , Uγ

)−1
: γ ∈ Γh

}
, so that PhW =

{
P̂|Ω : P̂ ∈ P̂hW

}
.
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Then to conclude the proof, it is enough to prove that P̂hW is convex, which implies immediately

that PhW is convex.
Let us re-define the process α on [0, T ] by αs := αtk for all s ∈ [tk, tk+1) for each k =

0, · · · , N − 1. We claim that P̂ ∈ P̂hW if and only if P̂[X0 = x0] = 1, and for each k = 1, · · · , N ,
Xtk = Xtk−1

Hh(tk−1, Xtk−1∧·, αk−1, Uk),

Xs = (tk+1 − s)Xtk + (s− tk)Xtk+1
, s ∈ [tk, tk+1],

Λ(da, ds) = δαs(da)ds, and Uk ∼ U [0, 1] is independent of F̂tk−1
,

P̂–a.s. (5.38)

Indeed, for every γ ∈ Γh and P̂ = Pγ ◦
(
Xγ ,Λγ , αγ , Uγ

)−1
, it is straightforward to check that

P̂ satisfies P̂[X0 = x0] = 1 and (5.38). Next, let P̂ be a probability measure on Ω̂ satisfying
P̂[X0 = x0] = 1 and (5.38), then it is easy to check that the term (Ω̂, F̂ , F̂, P̂, (Xtk)k=0,··· ,N , α, U)

consists of a discrete time weak control term, and hence P̂ ∈ P̂hW .

We finally prove that P̂hW is convex. Let P̂1, P̂2 ∈ P̂hW , and P̂ := θP̂1 + (1 − θ)P̂2 for some

θ ∈ [0, 1]. Then P̂[X0 = x0] = θP̂1[X0 = x0] + (1 − θ)P̂2[X0 = x0] = 1. Moreover, (5.38) holds
true under P̂, as it does under P̂1 and P̂2. Thus P̂ ∈ P̂hW , which implies that P̂hW is convex, and

so is PhW .

5.3 Proof of the duality results in Theorem 3.3

Recall that PW and PhW are convex by Lemmas 5.7 and 5.8, and (V, d) and (Vh, dh) can be
reformulated in (5.35) and (5.37) as in the framework of (5.26) in Section 5.1. Then Theorem
3.3 follows directly by Proposition 5.1, Corollary 5.2, and Lemma 5.3.

5.4 Proof of the approximation results in Theorem 3.8

To prove the general convergence result in Theorem 3.8, we will adapt the classical “weak
convergence” arguments of Kushner and Dupuis [19] in our constrained context. In fact, we will
work under the WassersteinW2 distance. Note that Assumption 3.2 is in force in this subsection.
Let us provide the proof in 4 steps.

Step 1 Recall that PR(z) is defined below (5.34), we will first prove that

V (0) = VR(0), where VR(z) := inf
P∈PR(z)

EP[Φ(X·)]. (5.39)

Lemma 5.9. On Bε/2(0), the functions VR(·), V (·), and Vh(·), for all h > 0, are Lipschitz with

Lipschitz constant 4M
ε .

Proof. Notice that PR is convex, and PW is dense in PR under W2. Then it is easy to
check that the set {P|Ω : P ∈ PR} satisfies all the preliminary conditions in Section 5.1, as
{P|Ω : P ∈ PW } does. Then the Lipschitz property of VR, V and Vh follows by Lemma 5.5.

To prove the equality VR(0) = V (0) in (5.39), we first notice that PW (0) ⊂ PR(0), and
hence VR(0) ≤ V (0).

Next, let us fix δ > 0, and P ∈ PR(0) be such that EP[Φ(X)] ≥ VR(0) − δ. By the density
of PW in PR and the growth condition of Φ as well as Ψi in Assumption 3.2, there exists some
P′ ∈ PW such that∣∣EP′ [Φ(X)]− EP[Φ(X)]

∣∣ ≤ δ, and
∣∣EP′ [Ψi(X)]− EP[Ψi(X)]

∣∣ ≤ δ, i = 1, · · · ,m+ `.
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This implies that for some z ∈ Bδ(0), one has V (z) ≤ EP′ [Φ(X)] ≤ VR(0) + 2δ. As δ > 0 is
arbitrary, and VR and V are both Lipschitz on Bε/2(0), it follows that V (0) ≤ VR(0), and we
hence conclude that VR(0) = V (0).

Step 2 We next prove that lim infh→0 Vh(0) ≥ V (0). Let (hn)n≥1 be a sequence of positive

real numbers such that limn→∞ hn = 0 and (Pn)n≥1 be a sequence such that Pn ∈ P
hn
W (0) for all

n ≥ 1, and

lim inf
h→0

Vh(0) = lim
n→∞

EPn[Φ(X·)].
Lemma 5.10. The sequence (Pn)n≥1 is relatively compact under W2. Moreover, any limit point
of (Pn)n≥1 lies in PR(0).

Proof. First, as A is compact, then A is also compact under the weak convergence topo-
logy. Further, for each n ≥ 1, let us denote tnk := khn for k = 0, · · · , Nn, then for sequences
(αnk , U

n
k )0≤k≤Nn−1 (see (5.38))

Xtnk+1
= Xtnk

+Hhn(tnk , Xtnk∧·, α
n
k , U

n
k ), Pn–a.s.,

so that ∣∣Xtnk+1

∣∣2 ≤ 3x2
0 + 3

∣∣∣∑
i≤k

µ(tni , Xtni ∧·, α
n
i )hn

∣∣∣2
+ 3

∣∣∣∑
i≤k

(
Hhn(tni , Xtni ∧·, α

n
i , U

n
i )− µ(tni , Xtni ∧·, α

n
i )hn

)∣∣∣2.
Let Snk := EPn

[
sup0≤i≤k+1 |Xtni

|2
]
, using (2.4) and Assumption 3.2.(ii), it follows by direct

computation that

Snk+1 ≤
∑
i≤k

C(Sni + 1)hn, for some constant C independent of n.

Then by the discrete time Gronwall lemma, one has

sup
n≥1

EPn
[

sup
0≤k≤Nn

∣∣Xtnk

∣∣2] <∞.
Consider the processes

∑
i≤k µ(tni , Xtni ∧·, α

n
i )hn and

∑
i≤k σσ

>(tni , Xtni ∧·, α
n
i )hn. It is easy to

deduce that (Pn|Ω)n≥1 is relatively compact under the weak convergence topology, by using
Theorem 2.3 of [17]. Thus the sequence (Pn)n≥1 is relatively compact under the weak convergence
topology.

We can consider the 3rd moment to compute EPn
[∣∣∑

i≤k µ(tni , Xtni ∧·, α
n
i )hn

∣∣3] and

EPn
[

sup
k≤Nn

∣∣∣∑
i≤k

(
Hhn(tni , Xtni ∧·, α

n
i , U

n
i )− µ(tni , Xtni ∧·, α

n
i )hn

)∣∣∣3]
≤ CT 3/2EPn

[(hn
T

∑
k≤Nn

(
Hhn(tnk , Xtnk∧·, α

n
k , U

n
k )− µ(tni , Xtnk∧·, α

n
k)hn

)2)3/2]
≤ CT 3/2EPn

[hn
T

∑
k≤Nn

∣∣∣Hhn(tnk , Xtnk∧·, α
n
k , U

n
k )− µ(tni , Xtnk∧·, α

n
k)hn

∣∣∣3],
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where the above two inequality follows by BDG inequality and Jensen’s inequality. Then using
again Assumption 3.2.(ii), one deduces that

sup
n≥1

EPn[‖X‖3] <∞,
so that (Pn)n≥1 is relatively compact w.r.t. the W2 distance (recall that A is compact).

Let P be a limit of (Pn)n≥1 w.r.t. theW2 distance. To prove that P ∈ PR, it is enough to prove
that, for any ϕ ∈ C2

b (Rn), 0 < s1 < · · · sk < s < t, f ∈ Cb(R(n+p)×k) and φj ∈ Cb([0, T ] × A),
one has

EP
[
f(Xsi ,Λsi(φj); 1 ≤ j ≤ p, 1 ≤ i ≤ k)

(
Ct(ϕ)− Cs(ϕ)

)]
= lim

n→∞
EPn

[
f(Xsi ,Λsi(φj); 1 ≤ j ≤ p, 1 ≤ i ≤ k)

(
Ct(ϕ)− Cs(ϕ)

)]
= 0.

To prove the limit property, it is enough to notice that

EPn
[
f(Xsi ,Λsi(φj) ; 1 ≤ j ≤ p, 1 ≤ i ≤ k)

(
Ct(ϕ)− Cs(ϕ)

)]
= EPγhn

[
f
(
X̂
γhn
si ,

∫ si

0
φj(α

γhn
s )ds); j, i

)
(
ϕ
(
X̂
γhn
t

)
− ϕ

(
X̂
γhn
s

)
+

∫ t

s
Lϕ
(
r, X̂

γhn
r∧· , α

γhn
r , X̂

γhn
r

)
dr
)]
.

Applying Taylor formula on ϕ
(
X̂
γhn
t

)
−ϕ

(
X̂
γhn
s

)
, then using the dynamic of Xγhn in (2.11) and

Assumption 3.2.(ii), it follows by direct computation that the limit equals to 0. Then P ∈ PR.
Finally, P is the limit of (Pn)n≥1 w.r.t. the W2 distance and Ψi, i = 1, · · · ,m + ` have

all quadratic growth, thus EPn [Ψi(X·)] → EP[Ψi(X)]. As Pn ∈ P
hn
W (0), it follows that P ∈

PR(0).
Let (nk)k≥1 be a subsequence such that Pnk → P∗ ∈ PR(0), then

lim inf
h→0

Vh(0) = lim
k→∞

EPnk
[
Φ
(
X·
)]

= EP∗[Φ(X·)] ≥ V (0). (5.40)

Step 3 We prove here lim suph→0 Vh(0) ≤ V (0).

Lemma 5.11. Let P ∈ PR(0), then for any η0 > 0, η > 0 and h0 > 0, there exist h ≤ h0,
z ∈ Rm × R`+ and a weak discrete time control γh such that ‖z‖1 ≤ η, γh ∈ Γh(z) and∣∣∣EP[Φ(X·)

]
− EPγh [Φ(X̂γh

·
)]∣∣∣ ≤ η0.

Proof. Let P ∈ PR(0), η0 > 0, η > 0 and h0 > 0. By Lemma 5.7, there is a piecewise
constant strong control γ∗,1 ∈ ΓS,0 such that γ∗,1 ∈ ΓS(z1) for some z1 ∈ Rm × R`+ satisfying

‖z1‖1 ≤ η/3 and
∣∣EP[Φ(X·)

]
− EPγ∗,1 [Φ(Xγ∗,1

· )
]∣∣ ≤ η0/3.

Further, on the probability space (Ωγ∗,1 ,Fγ∗,1), one can approximate the piecewise constant
control αγ

∗,1
by piecewise constant control α∗,2 such that

γ∗,1 := (Ωγ∗,1 ,Fγ∗,1 ,Fγ∗,1 ,Pγ∗,1 , Xγ∗,1 , Bγ∗,1 , αγ
∗,2

) ∈ A(z2)

for some z2 satisfying ‖z2 − z1‖1 ≤ η/3, where each k ≥ 1, α∗,2tk is a function of (Bγ∗,1

ti
:

i ≤ k), which is almost surely continuous under the law of (Bγ∗,1

ti
: i ≤ k), and such that∣∣EPγ∗,1 [Φ(Xγ∗,1

· )
]
− EPγ∗,1 [Φ(Xγ∗,2

· )
]∣∣ ≤ η0/3.
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Next, recall that α∗,2tk are a.s. continuous functions of (Bti : i ≤ k) for all k ≥ 1. One can
consider a sequence of discrete time weak controls (γn)n≥1 such that γn ∈ Γhn for all n ≥ 1,
hn → 0, and moreover

αγntk = α∗,2tk (Bγn
ti

: i ≤ k),

where

Bγn
ti

:=
∑
j≤i−1

σ−1(tj , X̂
γn , αγntj )

(
Hhn((tj , X̂

γn , αγntj , U
γn
i )− µ(tj , X̂

γn , αγntj )hn

)
.

Denote Λγn(ds, da) := δαγns (da)ds, then by similar martingale problem arguments as in Lemma
5.10, one can check that

Pγn ◦
(
X̂γn
· , B̂

γn ,Λγn
)−1 → P∗ ◦

(
X∗, B∗, δα∗s (da)da

)−1
,

for some probability space (Ω∗,F∗,P∗), equipped with a Brownian motion B∗ and X∗ satisfies
the SDE (2.6) with Brownian motion B∗ and control process α∗, and moreover, α∗ is a piecewise
constant control process satisfying

α∗tk = α∗,2tk (B∗ti : i ≤ k).

Under the Lipschitz condition above (3.16), one has the uniqueness of the SDE (2.6), then it

follows that Pγn ◦
(
X̂γn
·
)−1 → P∗ ◦ (X∗)−1 = P0 ◦

(
Xα∗,2
·
)−1

under W2, as n→∞. Notice that
Φ and Ψi, i = 1, · · · ,m + ` are all of quadratic growth, then there is some discrete time weak
control γh such that γh ∈ Γh(z3) for h ≤ h0 and ‖z3 − z2‖1 ≤ η/3 and∣∣∣EP0

[
Φ(Xα∗,2

· )
]
− EPγh [Φ(X̂γh

·
)]∣∣∣ ≤ η0/3.

Finally, combining all the above estimates, it follows that γh is the required weak discrete time
control.

Let P∗ ∈ PW (0) be an ε–optimal solution of the problem V (0), i.e.

EP∗ [Φ(X·)]− ε ≤ V (0) = inf
P∈PW (0)

EP[Φ(X·)].

Let η0 > 0 be an arbitrary constant, we use Lemma 5.11 to obtain a sequence (γhn)n≥1 and a
sequence (zn)n≥1 such that γhn ∈ Γhn(zn) for all n ≥ 1, ‖zn‖1 → 0 and∣∣∣EP∗[Φ(X·)

]
− EPγhn [Φ(X̂γhn·

)]∣∣∣ ≤ η0.

Using the Lipschitz property of Vh(·) in Lemma 5.9, it follows that

lim sup
h→0

Vh(0) ≤ lim sup
n→∞

(
Vh(zn) +

4M

ε
‖zn‖1

)
≤ lim sup

n→∞
EPγhn [Φ(X̂γhn·

)]
≤ EP∗[Φ(X·)

]
+ η0.

Recall that P∗ is an ε–optimal solution of the problem V (0) and η0 > 0 is arbitrary, it follows
that lim suph→0 Vh(0) ≤ V (0). By (5.40), together with the duality results in Theorem 3.3, one
can then conclude that

Dh(0) = Vh(0) −→ V (0) = D(0), as h −→ 0.

24



Step 4 We finally prove the convergence rate result in (3.21). Notice that the dual optimizers
λ∗ for problem D(0) = supλ d(λ) and λ∗h for Dh(0) = supλh dh(λ) are both bounded by 2M

ε by
Theorem 3.3, then under Assumption 3.6, one has

|D(0)−Dh(0)| ≤ Chρ.

Finally, (3.21) follows from Vh(0) = D(0) and V (0) = D(0) (Theorem 3.3).

5.5 Proof of Proposition 3.10

We first notice that V ≤ VS as ΓS ⊂ Γ. Further, V is convex on Rm ×R`, and is continuous on
Bε/2(0). Then

V (z) ≤ V l.s.c.
S (z) for z ∈ Bε/2(0), and V (z) ≤ V conv

S (z) for z ∈ Rm × R`.

Let z ∈ Bε/2(0) so that V (z) ∈ R. By similar arguments as in Lemma 5.11, for any P ∈ P(z),

there is a sequence (zn,Pn)n≥1 such that Pn → P, zn → z as n→∞, and Pn ∈ PS(zn) for each
n ≥ 1. It follows that V (z) ≥ limn→∞ VS(zn) and hence

V (z) ≥ V l.s.c.
S (z), for z ∈ Bε/2(0).

Therefore, V = V l.s.c.
S on Bε/2(0). By the convexity and Lipschitz continuity of V = V l.s.c.

S on

Bε/2(0), it follows that V l.s.c.
S is the convex envelop of VS restricted on Bε/2(0), which implies

that V (z) = V l.s.c.
S (z) ≥ V conv

S (z) for z ∈ Bε/2(0). Therefore, one has

V (z) = V l.s.c.
S (z) = V conv

S (z), for all z ∈ Bε/2(0).
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