
HAL Id: hal-02886816
https://hal.science/hal-02886816

Submitted on 1 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Allocation of Real-Time Tasks onto Identical Core
Platforms under Deferred fixed Preemption-Point Model

Ikram Senoussaoui, Houssam-Eddine Zahaf, Mohammed Kamel Benhaoua,
Giuseppe Lipari, Richard Olejnik

To cite this version:
Ikram Senoussaoui, Houssam-Eddine Zahaf, Mohammed Kamel Benhaoua, Giuseppe Lipari, Richard
Olejnik. Allocation of Real-Time Tasks onto Identical Core Platforms under Deferred fixed
Preemption-Point Model. RTNS 2020: 28th International Conference on Real-Time Networks and
Systems, Jun 2020, Paris France, France. pp.34-43, �10.1145/3394810.3394821�. �hal-02886816�

https://hal.science/hal-02886816
https://hal.archives-ouvertes.fr


Allocation of Real-Time Tasks onto Identical Core Platforms
under Deferred fixed Preemption-Point Model

Ikram Senoussaoui

ikram.senoussaoui@univ-lille.fr

CRIStAL, Lille University - LAPECI,

Oran1 University

Lille, France

Houssam-Eddine Zahaf

houssam-eddine.zahaf@univ-lille.fr

Univ. Lille, CNRS, Centrale Lille, UMR

9189 - CRIStAL - Centre de Recherche

en Informatique Signal et

Automatique de Lille

F-59000 Lille, France

Mohammed Kamel Benhaoua

k.benhaoua@univ-mascara.dz

LAPECI, Mascara University

Mascara, Algeria

Giuseppe Lipari

giuseppe.lipari@univ-lille.fr

Univ. Lille, CNRS, Centrale Lille, UMR

9189 - CRIStAL - Centre de Recherche

en Informatique Signal et

Automatique de Lille

F-59000 Lille, France

Richard Olejnik

richard.olejnik@univ-lille.fr

Univ. Lille, CNRS, Centrale Lille, UMR

9189 - CRIStAL - Centre de Recherche

en Informatique Signal et

Automatique de Lille

F-59000 Lille, France

ABSTRACT
Deferred-preemption model has been proposed as a compromise

between fully preemptive and non-preemptive systems: on one

hand they reduce the cache related preemption delays; on the other

hand they introduce a small blocking time to higher priority tasks.

In this paper, we investigate the problem of allocating a set of real-

time tasks with fixed-preemption points onto an identical multi-

core platform.

We first propose enumerative and branch-and-bound optimal

algorithms, along with techniques to reduce their execution time.

Further, we propose a set of heuristics to solve the same problem.

We demonstrate the performances of the proposed approaches by

the means of a large set of synthetic experiments.
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1 INTRODUCTION
The respect of timing constraints of a real-time system requires

analyzing the worst case behavior of the real-time software onto

the target hardware architecture. It involves a deep knowledge

about the interaction between hardware and software to estimate
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the worst-case execution time (WCET) of all tasks and analyzing

their temporal behavior. Several tools have been built to estimate

safe upper bounds to the worst-case execution time, e.g. [4], [14].

These bounds are pessimistic when considering preemption as they

must include cache-related delays and other run-time costs related

to all possible schedules. Cache related delays can be classified into

intra-task delays, and inter-task delays. In the first class we account

for task cache blocks that can be evicted by the task itself, due to

its memory access pattern and to the hardware architecture; these

delays can be directly accounted in the WCET estimations. On the

other hand, inter-task delays are caused by preemptions. When a

preemption occurs, the analysis must account for the time needed

to reload cache blocks that have been evicted by preempting tasks.

These delays are known as cache-related preemption delays, CRPD.
CRPD may be large in fully preemptive systems as a given task

can be preempted by any other higher priority task. To reduce the

difference between actual and estimatedWCET, preemption may be

disallowed. However, when a low priority task starts its execution,

higher priority tasks are blocked waiting for the low priority task

to finish, causing priority inversion.

Limited preemption models have been proposed as an interme-

diate solution, to overcome the limitations of fully preemptive and

non preemptive systems. The deferred-preemption model consists

in limiting preemption to a set of predefined preemption-points in

the task code. This model allows reducing the WCET bounds while

still allowing preemption and it is in line with recent hardware

accelerators preemption capabilities, such as NVIDIA GPUs. They

allow preemption at different costs, according to the type of the

task that executes (i.e. graphical tasks and general purpose tasks). For
graphical tasks, the GPU allows preemption at Draw-Boundaries, as
well as at Pixel-Level. When a preemption request is received, the

GPU may postpone the preemption to the draw boundaries, or it

may stops rasterizing new pixels, complete all operations for the

pixels currently in the pipeline, and initiate a context switch. At

https://doi.org/10.1145/3394810.3394821
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pixel level, the cost of preemption is higher compared to the pre-

emption at draw boundaries, as it requires more state information

to save (e.g. register file, etc.). For computational tasks, NVIDIA

GPUs allow Thread-Level preemption and Instruction-Level preemp-

tion. The finer the preemption level, the more time consuming

preemption is. Therefore, the limited preemption model can offer

suitable representation for preemption in GPUs.

In the deferred preemption-point model, the programmer defines

a number of preemption points in the task code. During the com-

pilation phase, only a subset of the preemption points is selected,

where the task can/may be effectively preempted. The selection

process starts by computing the maximum possible time length

where a task can be executed without preemption and without

violating schedulability. The latter depends on the concurrent tasks

and the scheduling policy (FP – Fixed Priority, or EDF – Earliest

Deadline Scheduling). Later, independently of the scheduling policy,

an algorithm selects the effective preemption points from the list

of preemption points defined by the programmer. This technique

has been applied only to single-core platforms. In this paper, it is

extended to partitioned scheduling in multicore systems.

Contributions . This work present (i) an exact allocation algo-

rithm for a set of real-time tasks presenting fixed-preemption points

to identical core platform. We also propose (ii) techniques to reduce

the time and space complexity of computing the exact solution as

well as (iii) efficient allocation heuristics. Finally, we provide an (iv)

exhaustive evaluation of the proposed approaches using a large set

of synthetic experiments.

Organization of the paper. The rest of the paper is organized as

follows. Section 2 reports related work. Section 3 describes the archi-

tecture and the task model. We review the single core preemption-

point selection techniques as well as schedulability analysis in

Section 4. Our exact allocation algorithm and our proposed heuris-

tics are reported in Section 5 and Section 5.4. Section 6 is reserved

to present experimental setup, the results of our simulation and

their discussions. We draw conclusions in Section 8.

2 RELATEDWORK
Many authors [5, 7–10, 13, 16, 17] have focused on reducing the

cost of preemptions in the real-time systems scheduling theory and

practice from different perspectives. A good survey overviewing

limited preemption models can be found in [11].

In this paper, we are interested in the deferred preemption model

(DPM). In such model, a task is divided into a set of non-preemptive

chunks separated by preemption-points. At runtime, preemption

can only happen at the boundaries of non-preemptive chunks: if a

higher priority task arrives while a lower priority task is executing,

the preemption is delayed until the next preemption point. DPM

increases predictibility and reduces preemption overhead compared

to fully preemptive systems, and reduces blocking time compared

to non-preemptive scheduling. Two models of preemption handling

have been proposed: the floating preemption point model, and the

fixed preemption point model. In the first model, a preemption point

can be inserted at any place of the task code, whereas in the second

model the preemption points are fixed prior to analysis.

DPM has been first introduced in [10]. Baruah [5] proposed

techniques to compute the maximum length of any interval of time

where a given task can execute non-preemptively without violating

the schedulability for EDF under the floating preemption points

model. The same bounds for fixed priority scheduling has been

proposed in [25]. Response time analysis has been improved in [9]

by considering special cases where the last non-preemptive chunk

can delay the execution of higher priority tasks. Authors in [6]

proposed schedulability analysis for both fixed priority and EDF.

In [6], authors tackled the problem of finding the best possible

placement of preemption points, they assumed an identical pre-

emption cost for all preemption points. Davis and Bertogna [15]

introduced an optimal algorithm for fixed priority scheduling with

deferred preemption. Authors in [26] propose schedulability analy-

sis for the fixed preemption model under fixed priority scheduling

by considering preemption points with different costs. The latter

has been extended in [8] for EDF and using an optimal algorithm

to select preemption points while respecting all timing constraints.

Another alternative, called hybrid preemption model, has been

presented in [24], based on the Preemption Thresholds Scheduling

(PTS) approach in which a task can disable preemption up to a

specified priority level(preemption threshold). Each task is assigned

a preemption threshold and regular priority also, and it is allowed

to preempt only when its priority is higher than the threshold of

the preempted task. An exact schedulability analysis for FP with

preemption thresholds has been presented in [19].

In order to compute the Cache Related Preemption Delay (CRPD),

we need to consider different factors: (i) the preemption point PP
in the code of the preempted task where the preemption occurs,

(ii) the cache blocks used until PP and that may be reused by the

preempted task after preemption, and finally, (iii) the evicting cache

blocks of the preempting task [2]. Therefore, the CRPD is bounded

by (R×BRT ) where R is an upper bound on the number of reloaded

cache blocks and BRT is a cache block reload time.

Among the cache-aware schedulability analyses, Altmeyer et

al [3] proposed ECB/UCB-Union Multiset approaches. These ap-

proaches account for a more precise number of nested preemptions

that can occur during a resource access, comparing to the first exact

analyses: ECB/UCB-Union appraoches [2, 23] which consider that

the CRPD can be computed by intersecting the useful cache blocks
and evicting cache blocks.

Specific experimentswithCache Related Preemption Delay (CRPD)
showed that the worst case execution time WCET can increase up

to 40% in the presence of preemption when considering a fully pre-

emptive execution [21]. Minimizing cache overhead using limited

optimal preemption point placement algorithm using dynamic pro-

gramming is presented in [12]. The authors have proposed a novel

method to calculate the CRPD taking into account the selected

preemption points resulting in greater accuracy. Complementary

work by Bril et al [1] recently integrated CRPD costs into fixed

priority preemption threshold schedulability analysis for taskset

with arbitrary deadlines. Optimal priority thresholds are assigned

via a CRPD cost minimization.

Both approaches presented in [20, 22] adopt a FP scheduler using

deferred preemptions, with the common goal of reducing the pre-

emption overhead by properly placing the preemption points, these
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approaches uses heuristic strategy for the placement of preemption

points.

All previous researches which are described before consider only

single core platforms. When considering multiprocessor schedul-

ing, the allocation problem must be taken into account. According

to the moment of taking the allocation decisions and migrations,

scheduling algorithms can be classified into partitioned and global.

In partitioned scheduling, tasks are allocated to cores and are not al-

lowed to migrate at runtime. Global scheduling algorithms execute

at mostm (m is the number of available cores) highest priority tasks

at the same time. Therefore, tasks are allowed to migrate between

cores at runtime. A single job may execute onto more than one

core, if it is preempted, leading to higher CRPD.

Authors in [13] studied the schedulability of the DPM under

global EDF. In this work, a pseudo-polynomial time schedulability

test has been proposed for limited-preemption scheduling under

global multiprocessor platforms. In [17] authors propose schedula-

bility analysis for Global Fixed Priority Scheduling with Deferred

Preemption for identical cores platforms. They showed that the

algorithm introduced in [15] is not optimal in the multiprocessor

case.

When considering partitioned scheduling, the schedulability

analysis of single core described above can be used to ensure the

respect of real-time constraints as a single core level. However, the

allocation problem is NP-HARD as it is a particular case of the bin-

packing problem. Authors in [17] addressed the allocation problem

for partitioned multiprocessor systems using deferred preemption.

They used the First-Fit (FF) heuristic to allocate tasks to different

processors. Their experimental evaluation showed that partitioned

scheduling using deferred preemption provides significantly im-

proved performance over fully preemptive partitioned scheduling

and non-preemptive partitioned scheduling.

In this work, we investigate more complex (exact) algorithms

that aim at finding an optimal and approximated tasks assignment

for partitioned multiprocessor systems using deferred preemption

model in a reasonable time. Then, we compare against the classical

bin-packing heuristics: First-Fit, Best-Fit and Worst-Fit.

3 SYSTEM MODEL
3.1 Task model
Let T = {τ1,τ2, · · · ,τn } be a set of n tasks. Each task τi is a (infinite)
sequence of jobs. Each task τi is characterized by (Γi ,Λi ,Di ,Ti )
where :

• Γi = {γ
1

i , . . . ,γ
npi+1
i }: is the basic block list. A basic block

γ
j
i ∈ Γi is a sequential non-preemptive chunk of code of task

τi . That is, once a basic block starts executing, it can not be

preempted by any other higher priority task. Each block γ
j
i

is characterized by its worst case execution time denoted by

C(γ ji ). There are npi + 1 basic blocks in a task, where npi is
the number of preemption points.

• Λi = {λ1, ...,λnpi }: is the list of preemption points. Preemp-

tion point λ ∈ Λi is the boundary between blocks γ λi and

γ λ+1i . C(τi ,λ) is the cost that must be taken into account

when preempting task τi between basic blocks γ λi and γ λ+1i .

• Di : is the task’s relative deadline. Each instance of task τi
must finish its execution no later than Di time units after its

activation.

• Ti : is the task period. We consider sporadic tasks. Therefore,

Ti represents the minimum inter-arrival time between the

activation of two consecutive jobs of τi .

In this paper, we consider constrained deadlines, that is Di ≤ Ti .
Tasks are considered to be independent.

The goal of our work is to select a subset of Λi , denoted by

Λi = {λ
1

i , . . . ,λ
s
i }, for every task τi , such that preemption is allowed

only at preemption points in Λi , while meeting all deadlines and

minimizing preemption costs. Preemption points in Λi are called
effective-preemption points.

Let s = |Λi | be the number of selected preemption points. The

task is then divided into a set of s + 1 non-preemptive regions
NPR1i , . . . ,NPR

s+1
i . A non-preemptive region is the union of con-

secutive non-preemptive blocks between which no preemption

point has been selected. They can be expressed as follows:

∀k = 1, . . . ,s NPRki =
λ
k+1
i⋃

j=λ
k
i

γ
j
i and NPRs+1i =

npi+1⋃
j=λ

k
i

γ
j
i (1)

Clearly, for any λ < Λi , C(τi ,λ) = 0. We define the worst-case

execution time of a non-preemptive region to the sum of the execu-

tion times of its blocks, plus the preemption cost of a preemption

before:

C (NPRki ) =
λ
k+1
i∑

j=λ
k
i

C (γ
j
i ) + C(τi ,λ

k−1
i ) (2)

(without loss of generality we assume that the cost of C(τi ,λ
0

i ) is
equal to 0).

Therefore, the total execution time of task τi , including the cost

of preemption, can expressed as:

C(τi ,Λi ) =
npi+1∑
j=1

C(γ ii ) +
∑
λ∈Λi

C(τi ,λ) (3)

We define by NPRmax

i the non-preemptive region of τi having
the largest execution time.

We determine the task utilization as a function of the selected

preemption points as follows:

ui (Λi ) =
C(τi ,Λi )

Ti
(4)

Example 3.1. Figure 1 illustrates an example of a task with 3 basic

blocks and 2 preemption points. We assume that all preemption

points are effective. On the figure, we show the blocks, the non-

preemptive regions and the execution times.

3.2 Architecture model
In this paper, we consider a platform composed ofm identical cores

with partitioned scheduling. Each core has its own single-processor



RTNS 2020, June 9–10, 2020, Paris, France Ikram Senoussaoui, Houssam-Eddine Zahaf, Mohammed Kamel Benhaoua, Giuseppe Lipari, and Richard Olejnik

γ 1
1

γ 2
1

γ 3
1

C(γ 1
1
)
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1
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λ
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λ
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1
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2

1
, λ3

1
})

Figure 1: Example of parameters for a task with 3 basic
blocks and 2 effective-preemption points.

scheduler and a separate ready-queue. Tasks are allocated (parti-

tioned) to the available cores before execution. Compared to global

scheduling, partitioned scheduling reduces the overhead due to

task migrations. It also simplifies the analysis, because it trans-

forms the scheduling problem onm-identical core platform to an

allocation problem andm independent single-processor schedul-

ing problems, for which well-known efficient preemption-point

selection techniques exist.

In the rest of the paper, we will first briefly describe the deferred

preemption model analysis for single core platforms, and describe

further optimal algorithm and heuristics to perform allocation.

4 LIMITED PREEMPTION ANALYSIS FOR
SINGLE-PROCESSOR

In this section, we review existing techniques to select preemption

points, as well as schedulability analysis for a set of deferred preemp-

tion real-time tasks on a single core platform. The schedulability

analysis is done in two steps: (i) first, it computes the maximum fea-

sible non-preemptive execution time, (ii) then it selects preemption

points using the algorithm proposed in [8].

4.1 Maximum non-preemptive execution-time
LetQ (τi ) be the largest non-preemptive interval for task τi . It repre-
sents the maximum time that task τi may execute non-preemptively

without violating any timing constraint. Baruah et al. in [5] have

proposed techniques to calculateQ (τi ) for EDF, similarly in [25] for

fixed priority. The algorithm to compute Q (τi ) for EDF is reported
in Algorithm 1.

Algorithm 1 computing the length of the non-preemptive region

Require: T : Task set

1: deadlines = compute_and_sort_absolute_deadlines(T )
2: slack = deadlines[0] − dbf (T ,deadlines[0])
3: for ( ∀d ∈ deadlines − {deadlines[0]}) do
4: check_feasibility(d,t∗)
5: slack = min(slack,d − dbf (T ,d ))
6: if (slack < 0) then
7: return false

8: end if
9: if (d = Dj , for some task τj ∈ T ) then
10: Q (τj ) = slack
11: end if
12: end for
13: return true;

The algorithm starts by listing all deadlines in the interval [0,t∗]
(line 1), where t∗ is the task set hyper-period, i.e. the least com-

mon multiple of all task periods. Then computes the slack as the

minimum difference between each deadline and the demand bound

function, until the relative deadline of each task. If the slack is neg-

ative (Line 6) for some deadline, then the taskset is not schedulable

under EDF.

4.2 Selection of Effective Preemption points
At this level, we assume that Q (τi ) has been already computed,

and the goal of this second step is to select effective preemption-

points. Bertogna et al. [8] proposed a sufficient schedulability test

(Theorem 4.1): a task set is schedulable if the execution time of any

non-preemptive region is less than the maximum non-preemptive

interval.

Theorem 4.1 (Bertogna et al. [8]). A task set T is schedulable
if:

∀τi ∈ T , C(NPRmax

i ) ≤ Q (τi ) (5)

Several solutions may verify Condition (5). Bertogna’s algo-

rithm based on dynamic programming selects a set of effective

preemption-points with the goal of optimally reducing the overall

preemption overhead [8].

Property 1. We noticed that the optimality of preemption points

selection algorithm [8] leads to a lower preemption cost for a more

relaxed non-preemptive interval. This property is used to prove

Theorem 5.6 in Section 5.

Note that Condition (5) is necessary and sufficient under EDF

[8].

5 TASK ALLOCATION
In this section, we present how tasks can be allocated to cores to

reduce the overall preemption costs. Let T be a set of n tasks to

allocate on m identical cores. In the rest of this section, we will

first present two exact algorithms: (i) an enumerating algorithm

able to eliminate branches and solutions either for schedulability

or optimality concerns and (ii) an exact algorithm based on Branch

and Bound (B&B). Further, we present a set of heuristics to solve

the allocation problem.

Our allocation algorithms (exact and heuristic) use a list of not

yet-allocated task ordered according to a given criterion. The al-

gorithm selects a task and a core, and attempts to allocate the

selected task to the selected core. According to the state of the not

yet-allocated task list, the current solution can either be called an

allocation or a branch.

Definition 5.1. Let T be a set of n tasks to be allocated onto

m identical cores. Assignement S : T → P ∪ {na} is a mapping

function defined by:

S (τi ) =

{
p i f τi is allocated to core p ∈ P
na otherwise

(6)

S (·) is called an allocation, if: ∀τi ∈ T ,S (τi ) , na, otherwise, it is
called a branch.

We define Alloc : T → {S1 (·) . . .Sx (·)}, as the set of x possible

allocations, where x is a finite number of allocations.
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Definition 5.2. Let Sk (·) be an allocation (resp. a branch). We de-

note by cost(Sk (·)) the preemption cost of allocation (resp. branch)

Sk (·). It can be computed as follows:

cost(Sk (·)) =
m∑
j=1

∑
τi ∈Tj

∑
λ
l
i ∈Λi

C(λ
l
i )

Ti
(7)

5.1 Enumerating algorithm
The exact enumerating algorithm explores the space solution by

solution. It is able to either cut a branch or to eliminate an allocation

and preserve the optimal solution. An overview of our enumerating

procedure is disclosed in Algorithm 2.

Algorithm 2 generate_evaluate_solutions(T ,P,Scurr)

1: if (T = ∅) then
2: if (cost(Scurr ) < cost(Sbest )) then
3: Sbest = Scurr
4: return
5: end if
6: end if
7: τi = select the shortest relative deadline task from T

8: for ( p ∈ P ) do
9: allocate τi to p for the current allocation Scurr
10: if (schedulable(Scurr ,τi ,p)) then
11: Snew = Scurr
12: generate_evaluate_solutions(T \ τi,P,Snew)
13: end if
14: end for

The algorithm generates all allocations recursively, it takes as

input the set of all tasks in T sorted by relative deadlines in in-

creasing order, the set of cores P and the current branch/allocation,

and it returns the solution with the minimum preemption cost

Sbest . In the beginning, it selects a task and a processor and it

tries to allocate the selected task to the selected processor (Line

9). Therefore, it tests the schedulability (Line 10) for the concerned

core, using Algorithm 3. Further, the algorithm removes the studied

task from T , and executes the recursive call (Line 12) for the new

branch/allocationSnew . If this test fails then, the branch/allocation

is aborted. Once T is empty, the algorithm saves the best solution

and continues to evaluate the next one. The algorithms repeats the

latter operations for every task on all cores.

Algorithm schedulable (Algorithm 3), which tests the schedu-

lability of the selected core p, uses properties of algorithm 1 and

Property 1.

It takes as input the selected task, the concerned core p and the

task set already allocated top. First, it tests the schedulability using a
fast necessary utilisation based-test (Line 1). If the test is successful,

then it computes the maximum of the non-preemptive interval of
tasks already allocated to p using Algorithm 1 (Line 2). The latter

checks the schedulability until the hyper-period using dbf-based
test (lines 5-8 in Algorithm 1).When schedulability test of algorithm

1 is performed then, our algorithm selects the effective preemption

points by invoking the algorithm presented in [8] to determine

the non-preemptive regions only for the studied task τi (Line 4). If

condition (5) is respected during all the effective preemption points

selection process, then, the algorithm updates the total execution

time of the task τi , including the cost of preemption (Lines 6 and 7).

If these tests fail, then the algorithm aborts on fail.

Therefore, when adding a new task to the current branch, the al-

ready computed maximum non-preemptive region and the selected

points for the already allocated tasks do not need to be recomputed.

Algorithm 3 schedulable(Scurr,τi,p)

1: if (fast_utilization_test(p)) then
2: res_Q = compute_max_length_NPR(Scurr) using Algo 1

3: if (res_Q ) then
4: res_npr = compute_NPR(τi,Q (τi)) using Algo in [8]

5: if (res_npr) then
6: update_C(τi)
7: update_total_cost(p)
8: return true

9: end if
10: end if
11: end if
12: return false

5.1.1 Optimality of the enumeration algorithm.

To prove the optimality of the enumeration algorithm, we prove

Theorem 5.3 below.

Theorem 5.3. The enumeration algorithm explores all schedulable
allocations and selects the optimal one.

Proof. The proof derives from the recursive structure of the

algorithm. For every task, all possible cores are tried (Line 8), and

the algorithm invokes itself every time with a smaller set T (Line

12). Moreover, all schedulable solutions are explored at (Line 1),

thus the best solution is selected. □

5.2 Branch and Bound
In this section, we present a recursive algorithm based on branch

and bound (Algorithm 4), and prove its correctness.

The algorithm uses a set of non allocated tasks T in the current

branch/allocation Scurr and a list L of not-yet-finished branches.

At each iteration, it selects a branch and tries to allocate the shortest

relative deadline task in T (selected in Line 8) to every core in the

platform. Thus, it createsm new branches at each iteration.

For each new branch, we test schedulability : (i) without a com-

plete evaluation of the branch (allocation) using Theorem 5.6 and

Lemma 5.7 detailed below (Line 10); (ii) If not possible, it evalu-

ates the maximum non-preemptive region length and selects the

effective-preemption points only for the selected task (Line 11) using
dbf-based test according to Algorithm 3. If these tests fail, then the

branch is discarded. In the opposite case, the branch is added to

the list of not-yet-finished branches L (Line 12). Once, the non-yet-

allocated task list T for the current branch is empty, the algorithm

compares the allocation to the best known solution. If it improves

it, the solution is saved and the lower-bound is updated (Lines 3-5).

The latter is used to eliminate all branches having a preemption

cost greater than the new lower-bound (Line 17).
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While the not-yet-finished branches L is not empty, the algo-

rithm selects a new branch to be explored in the next iteration (Line

21) according to two alternative criteria:

• the branch having the least preemption cost is selected first

(depth-first);

• the branch having the least number of tasks in its non-yet-

allocated list, is selected first (breadth-first).

Algorithm 4 branch_and_bound(Scurr ,bound)

Require: global variables: L = ∅, Sbest
1: T = set of non allocated tasks in Scurr
2: if (T == ∅ ) then
3: if (cost(Scurr ) < bound) then
4: Sbest = Scurr
5: bound = cost(Scurr )
6: end if
7: else
8: τ = select the shortest relative deadline task from T

9: for (∀p ∈ P) do
10: if (not_dominated(Scurr ,Sbest )) then
11: if schedulable(Scurr ,τ ,p) then
12: L = L ∪ {Scurr [τ allocated on p]}
13: end if
14: end if
15: end for
16: end if
17: L = eliminate_branches(L,bound)
18: if (L == ∅) then
19: return Sbest ;
20: end if
21: S = select_the_minimum_branch(L)
22: branch_and_bound(S ,bound);

In the rest of this section, we will show how schedulability can

be tested without a complete evaluation (i.e. without invoking the

preemption-points selection process).

Definition 5.4. Let Si (·) and Sj (·) be two distinct allocations,

(resp. branches) (i , j).
We define the relation order > as follows:

Si (·) > Sj (·) =⇒ cost(Si (·)) < cost(Sj (·)) (8)

Relation > orders allocations (resp. branches) according to their

preemption costs. Note that in the case of equal costs, we can not

judge if Si (·) is better than Sj (·).

Definition 5.5. Let S1 (·) and S2 (·) be two distinct allocations.

We denote by τi a task in allocation S1 (·), and by τ ′i the same task

in allocation S2 (·).
We define the relation order≫ as follows :

S1 (·) ≫ S2 (·) =⇒ ∀i,Q (τi ) ≥ Q (τ ′i ) (9)

The relation order≫ allows to define a dominance relation be-

tween two allocations by calculating onlymaximumnon-preemptive

regions lengths Q (τi ), rather than a complete selection of preemp-

tion points.

Theorem 5.6. Let S1 (·) and S2 (·) be two distinct allocations.
S1 (·) ≫ S2 (·) =⇒ S1 (·) > S2 (·)

Proof. The proof is derived from Property 1 and Definitions 5.4,

5.5. Let consider Q (·) be the maximum non-preemptive region for

a given task on allocation S1 (·) and Q (·)′ be the maximum non-

preemptive region for the same task on allocation S2 (·). We assume

Q (·) > Q (·)′. From Property 1, it follows that the preemption cost in

allocation S1 (·) is less than the preemption cost in allocation S2 (·).
According to Definition 5.4 S1 (·) > S2 (·), proving the theorem. □

According to Theorem 5.6, it is not necessary to compute the

preemption points to test domination between two allocations.

In fact, we can avoid computing the preemption points for the

dominated solution, further reducing the execution time of the

algorithm.

Lemma 5.7. Let consider n tasks to allocate tom processors, with:
n > m

Any feasible solution S (·), having at least one free processor (with-
out any task), is dominated.

Proof. The proof is straightforward from Theorem 5.6. In fact,

having a free processor implies that for any non-empty proces-

sor, a task can be selected and reallocated to the free processor,

thus producing a higher maximum-non-preemptive region length.

Therefore, the new solution dominates the one with an empty pro-

cessor according to Theorem 5.6. □

According to this lemma, it is not necessary to evaluate the

allocations having at least an empty processor: the algorithm needs

not to compute the maximum non-preemptive region length as it

will not lead to optimal solution.

The theorems and lemmas described in this section are used to

eliminate allocations at (Lines: 10 and 17) in Algorithm 4.

5.2.1 Branch and bound optimality proof.

First, we prove that all branches generated by the branch and

bound algorithm having a preemption cost greater than the lower

bound are dominated by the best known solution. Further, we

demonstrate that our algorithm preserves the optimal solution

at each branch level.

Lemma 5.8. Let S (·) be a branch in the set of not-yet-finished
branches L, and let cost(S (·)) > bound . Then all solutions belonging
to the branch S (·) have larger cost than the currect bound.

Proof. When new branches are explored, tasks can only be

added to cores. Since tasks are sorted by deadlines in non-decreasing

order, the preemption cost can only increase. Thus, the branch S (·)
having a preemption cost greater than the lower bound, can not

lead to a better solution than the best-known. □

Let us demonstrate now that all branches discarded using our

algorithm are not optimal.

Theorem 5.9. Function eliminate_branch never eliminates the
optimal solution.
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Proof. From the previous lemma, eliminate_branch eliminates

all solutions with cost greater than the lower bound, and since we

have already found a solution Sbest whose cost is equal to the lower
bound, then it follows that eliminate_branch cannot eliminate the

optimal solution. □

To better clarify how the proposed branch and bound algorithm

works, we propose an example in the following section.

Example 5.10. Let T be the task set to be allocated onto 2 cores.

Tasks characteristics are described in Table 1. In Figure 2, we report

a sub-tree of the branches eveluated by our branch and bound

algorithm. Each node in the figure describes a branch. It contains

the branch identifier, its cost and the already allocated tasks for the

two cores.

task Di Ti Γi Λi

τ1 1413 1500 {212,171,344,66,249} { 0,46,78,14,47 }

τ2 5673 6000 {17,54,490,101,418,74} {0,14,94,21,74,13}

τ3 1498 1500 {146,347,136,37,121} {0,90,32,7,19}

τ4 1277 1500 {17,31,43,3,24,6} { 0,6,8,0,3,0 }

Table 1: Task parameters

Before starting, the algorithm sorts the tasks by increasing rela-

tive deadline. It then starts by selecting the first task τ4, because it
has the least deadline 1277. Thus two branches are created (2 and 3

in Figure 2), each of cost equal to 0. For the 2
nd

iteration, task τ1 is
selected. As branch 2 and branch 3 have the same cost (equal to 0),

we select arbitrarily branch 2. Task τ1 can be either allocated along

with τ4 onto the same core as shown in branch 5. It can also be

allocated to the other core, therefore alone on the empty processor.

In both branches, the preemption cost is equal to 0, therefore we

select branch 5 as it leaves an empty core, therefore giving us more

chances to lead to an optimal solution. The next task to allocate

is task τ3. The algorithm has the two possibilities: (i) allocate τ3
together with τ4 and τ1 on the same core or (ii) allocate τ3 alone on
the empty core. In the first solution, schedulability fails, therefore

without further exploring, the branch it is eliminated. In the second,

the schedulability cost is equal to 0 as the task is allocated on an

empty processor. Further, the algorithm selects branch 7. The next

task to evaluate is task τ2. It can be either allocated with τ4 and τ1
on the same core, having a preemption cost of 0.008 (Allocation 9)

or with τ3 onto its core, having a preemption cost of 0.0058 (Alloca-

tion 8). The not yet allocated task list is now empty, therefore the

bound is updated to 0.0058 and the allocation is saved as the best

known. All branches having preemption costs greater than 0.0058

are eliminated.

5.3 Computational Complexity
Regarding to run-time complexity, the proposed exact algorithms

evaluate the maximum non-preemptive region length and selects

the preemption points for the selected task at every tree level except

the root, yielding to a time complexity of O(n ! ×m) in the worst

case. However, the run-time of the branch-and-bound algorithm in

the average case is likely less.

∅ ∅

1(cost = 0)

τ4 ∅

2 (cost = 0)

∅ τ4

3 (cost = 0)

τ4 τ1

4 (cost = 0)

τ4,τ1 ∅

5(cost = 0)

τ4,τ1,τ3 ∅

6(cost = 0)

τ4,τ1 τ3

7(cost = 0)

τ4,τ1,τ2 τ3

9(cost = 0.008)

τ4,τ1 τ3,τ2

8(cost = 0.0058)

Figure 2: Example of branch and bound

5.4 Allocation heuristics
Task allocation problem is known to be NP-hard in the strong

sense. Thus, even with the proposed optimizations and dynamic

programming, the complexity of finding an optimal solution is high.

Therefore, we use classical bin packing heuristics as an alternative

allocation.

Algorithm 5 Heuristics(T ,p,alloc[FF,BF,WF],ORDER)

1: sort_tasks(ORDER)
2: for (∀τ ∈ T ) do
3: allocated = false
4: sort processors for BF and WF

5: for (∀p ∈ P) do
6: Scurr = select tasks on p ∪ {τ }
7: if (total_schedulable(Scurr ,τ ,p)) then
8: allocated = true
9: allocate task into core p

10: break;

11: end if
12: end for
13: if (allocated = false) then
14: No task allocation is found

15: end if
16: end for
17: Return tasks allocation

In practice, First-Fit (FF), Best-Fit (BF) and Worst-Fit (WF) oper-

ate in a similar fashion. First, tasks are sorted before the allocation

according to their deadline, density, or laxity (Line 1). Then, the

algorithm selects the tasks on the top of the order relation. Un-

like the algorithm FF, BF and WF sort the cores by capacity. For

BF the cores are sorted in a decreasing order of their utilizations,

whereas in the case of WF, they are sorted in increasing order of

utilization. The heuristic tries to allocate the selected tasks to the

first processor. If the allocation fails (for schedulability), the next
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processor is investigated. When all processors are investigated and

none of the allocations have been found feasible, the heuristics

aborts on fail. The algorithm 5 describes FF, BF and WF heuristics.

The schedulability is checked at the same time when calculating

maximum-non-preemptive region length and when selecting pre-

emption points using Algorithm "total_schedulable" .
When tasks are sorted according to their deadline, at each allo-

cation, total_schedulable algorithm is similar to Algorithm 3, as

it is not necessary to recompute the maximum-non-preemptive

region length and preemption points for already allocated tasks,

However, total_schedulable algorithm recomputes it for all other

sorting mechanisms as they do not ensure that only tasks with

shorter deadlines have been allocated before.

6 RESULTS AND DISCUSSIONS
In this section, we evaluate the performance of our schedulability

analysis and allocation strategies. We compare our optimal algo-

rithms against classical allocation heuristics: First Fit (FF), Best Fit

(BF) and Worst Fit (WF).

Due to the complexity of computing the exact solution, and for

sake of fast evaluation, we consider a hardware platform compound

of 3 identical processing units, and a large set of synthetic task sets,

each comprising 24 tasks.

6.1 Task Generation
We apply our heuristics on a large number of randomly generated

synthetic task sets.

The task set generation process takes as input n (the number of

tasks) andU (the target total utilization). First, we start by generat-

ing the utilization of the n tasks by using the UUniFast-Discard [18]

algorithm. Further, for every utilization ui , we generate randomly

the number of basic blocks k between 8 and 15. We generate block

utilization by generating randomly k utilizations using UUniFast

algorithm with total utilization equal to the task utilization.

To avoid intractable hyper-periods, the period of every task is

generated randomly according to values taken from a list where

the minimum is 120 and the maximum is 120,000 by step of 500.

Further, we inflate each block utilization by the task period to

generate the block execution time. Then, we generate the block

preemption cost by generating a random value P between 0.1 and

0.2. P is the percentage of the block utilization that represents the

block preemption cost. The first block preemption cost is equal to

0. The task deadline is generated randomly between [0.75 · Ti ,Ti ].

6.2 Simulation results and discussions
We varied the baseline utilization from 0.25 to 3.75 with a step

of 0.25. In all the graphs presented in this section, each point is

the average value of 100 executions. We reports the results of the

schedulability and the timing complexity of optimal solutions and

heuristics.

In Figure 3 we report the results of the schedulability of the opti-

mal allocation algorithms (OPT) against the best fit (BF-DD), worst

fit (WF-DD) and first fit (FF-DD) algorithms as a function of total

utilization. For all the algorithms, the input tasks are sorted accord-

ing to their relative deadlines in non-decreasing order. At low total

utilization values, all algorithms are able to schedule all tasks sets.
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Figure 3: Schedulability for optimal solutions against BF,
WF and FF

It is clear that any version of the optimal algorithm dominates the

heuristics. As utilization increases, FF-DD and BF-DD algorithms

outperform the WF-DD algorithm, the latter schedulability falls

drastically as utilization increases.

In fact, the allocation process depends on the already allocated

tasks. As in WF the tasks are allocated according to the worst case

utilization, tight deadline tasks may be allocated along with large

deadline tasks. Therefore, the latter do not have enough slack to

be executed non-preemptively, causing schedulability failure. In

contrast, when using best fit or first fit algorithms, tight deadlines

tasks are allocated together, allowing to have the same tight slacks,

but as deadlines are closer, their execution requirements are closer

(deadlines are generated as 0.75 of the task period, based on which

task execution time is generated). Although we have only three

cores, the optimal algorithm is able to achieve high schedulability

rates even greater than the maximum number of cores.

To explain this fact, we remark that the preemption cost is in-

flated from the task execution time. Therefore themaximum schedu-

lable utilization, when selecting all preemption points is equal to

the number of cores, however when not selecting all preemption

points, the actual utilization is less than the maximum theoretical

generated utilization, which is used in the plots.

We show in Figure 4 a comparison between optimal solutions and

heuristics as a function of the required time to complete the analysis.

The required time for analysis using the enumerative algorithm is

very large compared to those of the others algorithms. The optimal

branch-and-bound algorithms require more time than heuristics,

as expected. In fact, at any scenario, the enumerative algorithm

will explore all the design space, thus it is very time-consuming,

however the two branch-and-bound implementations may cut a

branch without evaluation, therefore they are faster. The heuristic

algorithms explore only a subset of the design space, and hence

are the fastest. Algorithm OPT-P1 denotes the branch and bound

algorithm where the next explored branch is the branch having

the least cost, while in OPT-P2 the branch having the least size of

the not-yet allocated tasks is selected first. Algorithm OPT-P1 has
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a lower average complexity compared to OPT-P2. In fact, OPT-P2

tries to find a low bound faster than OPT-P1, therefore has a better

capacity to cut branches.

As the enumerative algorithm has a very high average complex-

ity, the number of tasks in this setup has been limited to 8 tasks and

the number of processors to 3 to be able to achieve a large number

of simulations.
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Figure 4: The analysis time as a function of number of tasks

In Figure 5, we evaluate the impact of the task set size on the

effectiveness of the analysis to determine the task set schedulability.

In this setup, the task set utilization was fixed at UT = 3, and

the evaluated task set size ranges from 4 to 24. We notice that the

schedulability rates is higher for task set with large number of

tasks. In fact, tasks present more effective-preemption points in large

task set, therefore the total preemption cost of each task increase

allowing the execution time to be reduced, hence, schedulability

increase as shown in Figure 5.

In Figure 6 and Figure 7 we focus on the impact of the sorting

algorithms on FF, BF and WF heuristics.

Figure 6 reports schedulability as a function of total utilization

when input tasks are sorted in increasing (respectively descreasing)

order of task density. Please, notice that sorting tasks in decreasing

order of density allows to achieve higher schedulability rates com-

pared to the increasing density order. In fact, when using increasing

order, FF and BF tend to allocate the small tasks, having a small den-

sity on the same core, and the more heavy tasks to be allocated in

a small number of cores, thus reducing schedulability. WF presents

the opposite behavior, but it also leaves the heaviest tasks to be

allocated at the end, thus leading to schedulability failure. When

ordering by decreasing order, BF, WF and FF performances have

similar behavior as they start by allocating heavy tasks first, and

further smaller tasks are inserted on the cores where they can be

schedulable.

Figure 7 reports schedulability as a function of total utilization

when input tasks are sorted in increasing (respectively descreasing)

order of task laxity.
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Figure 5: Schedulability at different taskset size.
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Figure 6: Performance of BF, WF and FF using sorted tasks
by density

When ordering by increasing order, FF and BF are equal, the

same performance behavior is noticed for BF and WF when task

are sorted by decreasing order of laxity. Noticed that sorting tasks

by laxity allows to have slightly better performances compared to

density sorting.
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8 CONCLUSION AND FUTUREWORK
In this paper, we presented allocation algorithms for real-time tasks

with fixed preemption points on an identical core platform. We

have proposed two optimal algorithms and a set of heuristics to
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Figure 7: Performance of BF, WF and FF using sorted tasks
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effectively achieve allocation while meeting all deadlines, and min-

imizing the preemption costs.

We have presented the performances of the proposed approaches

using a large set of synthetic expirements. The branch and bound

implementations have shown a good compromise between compu-

tational time and the quality of produced solution.

We plan to extend the proposed approaches to consider hetero-

geneous platforms, as those found in recent NVIDIA embedded

boards, therefore considering dependent tasks on heterogeneous

platforms.
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