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YETTER-DRINFEL’D ALGEBRAS AND COIDEALS OF WEAK
HOPF C∗-ALGEBRAS

LEONID VAINERMAN, JEAN-MICHEL VALLIN

Abstract. We characterize braided commutative Yetter-Drinfel’d C∗-algebras over
weak Hopf C∗-algebras in categorical terms. Using this, we then study quotient type
coideal subalgebras of a given weak Hopf C∗-algebra G and coideal subalgebras in-
variant with respect to the adjoint action of G. Finally, as an example, we explicitly
describe quotient type coideal subalgebras of the weak Hopf C∗-algebras associated with
Tambara-Yamagami categories.

1. Introduction

This paper continues the study of coactions of weak Hopf C*-algebras on C*-algebras
and their applications which was initiated in two articles [Vainerman-Vallin,2017] and
[Vainerman-Vallin,2020]. Let us first recall our motivation.

It is known that any finite tensor category equipped with a fiber functor to the category
of finite dimensional vector spaces is equivalent to the representation category of some
Hopf algebra - see, for example, [Etingof et all.,2015], Theorem 5.3.12. But many tensor
categories do not admit a fiber functor, so they cannot be presented as representation cat-
egories of Hopf algebras. On the other hand, T. Hayashi [Hayashi,1999] showed that any
fusion category admits a tensor functor to the category of bimodules over some semisim-
ple (even commutative) algebra. Then it was proved in [Hayashi,1999], [Szlachanyi,2001],
[Ostrik,2003] that any fusion category is equivalent to the representation category of
some algebraic structure generalizing Hopf algebras called a weak Hopf algebra [Bohm-
Nill-Szlachanyi,1999] or a finite quantum groupoid [Nikshych-Vainerman,2002].

The main difference between weak and usual Hopf algebra is that in the former the
coproduct ∆ is not necessarily unital. In addition, a representation category of a weak
Hopf algebra is, in general, multitensor, i.e., its unit object is not necessarily simple (see,
for example, [Etingof et all.,2015], 4.1). By this reason, in the present paper we work
mainly in the context of multitensor categories.

Apart from (multi)tensor categories, weak Hopf algebras have interesting applications
to the subfactor theory. In particular, for any finite index and finite depth II1-subfactor
N ⊂M , there exists a weak Hopf C∗-algebra G such that the corresponding Jones tower
can be expressed in terms of crossed products of N and M with G and its dual. Moreover,
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there is a Galois correspondence between intermediate subfactors in this Jones tower and
coideal C∗-subalgebras of G - see [Nikshych-Vainerman 2,2000]. This motivates the study
of coideal C∗-subalgebras of weak Hopf C∗-algebras (in what follows - WHAs).

A unital C∗-algebra A equipped with a coaction a of a WHA G = (B,∆, S, ε) is called
a G-C∗-algebra. When A is a unital C∗-subalgebra of B and a = ∆, we call it a coideal
C∗-subalgebra or briefly a coideal of B.

The structure of the paper is as follows. Sections 2 to 4 contain basic definitions
and facts needed for the comprehension of the main results of the paper. In particular,
in Section 2 we describe three C∗-multitensor categories associated with any weak Hopf
C∗-algebra and in Section 3 we explain how to reconstruct a weak Hopf C∗-algebra if
one of these categories is given. Various results of this kind are known, for example
[Szlachanyi,2001], [Hayashi,1999], [Calaque-Etingof,2008], [Pfeiffer,2009], [Ostrik,2003],
and we present them in the form convenient for our goals.

It was shown in [Vainerman-Vallin,2017] that any G-C∗-algebra (A, a) corresponds to
a pair (M,M), whereM is a module C∗-category with a generator M over the category of
unitary corepresentations of G. Here, in section 5, we study an important special class of
G-C∗-algebras - braided-commutative Yetter-Drinfel’d C∗-algebras and characterize the
corresponding C∗-module categories:

1.1. Theorem. Given a WHA G, the following two categories are equivalent:
(i) Category Y Dbrc(G) of unital braded-commutative Yetter-Drinfel’d G-C∗-algebras

with unital G- and Ĝ-equivariant ∗-homomorphisms as morphisms.
(ii) Category Tens(UCorep(G)) of pairs (C, E), where C is a C∗-multitensor category

whose associativities reduce to the changing of brackets and E : UCorep(G) //C is a uni-
tary tensor functor such that C is generated by the image of E. Morphisms (C, E) //(C ′, E ′)
of this category are equivalence classes of pairs (F , η), where F : C // C ′ is a unitary
tensor functor and η : FE // E ′ is a natural unitary monoidal functor isomorphism.

Moreover, given a morphism [(F , η)] : (C, E) // (C ′, E ′), the corresponding homomor-
phism of YD G-C∗-algebras is injective if and only if F is faithful, and it is surjective if
and only if F is full.

A similar result for compact quantum group coactions on C*-algebras was obtained
earlier in [Neshveyev-Yamashita,2014]. When it is possible, we follow the same strategy.
However, instead of tensor products over C we have to deal with tensor products over, in
general, non commutative algebras which makes many reasonings and calculations much
more complicated.

In Section 6, we study, as an application of Theorem 1.1, coideals C∗-subalgebras
which belong to the category Y Dbrc(G): quotient type and invariant with respect to the
adjoint action of a WHA and the relationship between them. We prove

1.2. Theorem. Any quotient type coideal C∗-subalgebra is invariant. Conversely, for any
invariant coideal C∗-subalgebra I of G there exists a unique, up to isomorphism, quantum
subgroupoid (i.e., a WHA H equipped with an epimorphism π : G // H) such that I is
isomorphic as a G-C∗-algebra to the quotient type coideal C∗-subalgebra I(H\G).
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In the Hopf algebraic setting, similar result was obtained in [Takeuchi,1994]
Let us note that the coideal C∗-subalgebra (B,∆) is invariant (quotient type) if and

only if G is a usual Hopf algebra and that invariant (quotient type) coideal C∗-subalgebras
form a sublattice of the lattice of all coideal C∗-subalgebras of a WHA introduced in
[Nikshych-Vainerman 2,2000].

A concrete example illustrating the results of the paper is considered in Section 7.
Namely, we describe invariant and quotient type coideal C∗-subalgebras of WHAs con-
structed using the Tambara-Yamagami categories [Tambara-Yamagami,1998] whose sim-
ple objects are elements of a finite abelian group G and one separate element m. In
particular, it is shown that a coideal C∗-subalgebra is invariant if and only if it is of
quotient type and that the lattice of invariant (quotient type) coideal C∗-subalgebras
is isomorphic to the lattice of subgroups of G completed by the new maximal element
G t {m}.

Notation: for any category C we denote by Ω = Irr(C) an exhaustive set of represen-
tatives of the equivalence classes of its simple objects.

Our references are: [Etingof et all.,2015] for the multitensor categories, [Neshveyev-
Tuset,2013] for C∗-tensor categories, [Nikshych-Vainerman,2002] for WHAs.

2. Weak Hopf C∗-algebras

2.1. Weak Hopf C∗-algebras. A weak bialgebra G = (B,∆, ε) is a finite dimensional
algebra B with the comultiplication ∆ : B // B ⊗ B and counit ε : B // C such that
(B,∆, ε) is a coalgebra and the following axioms hold for all b, c, d ∈ B :

(1) ∆ is a (not necessarily unital) homomorphism : ∆(bc) = ∆(b)∆(c).

(2) The unit and counit satisfy the identities (we use the Sweedler leg notation ∆(c) =
c(1) ⊗ c(2), (∆⊗ idB)∆(c) = c(1) ⊗ c(2) ⊗ c(3) etc.):

ε(bc(1))ε(c(2)d) = ε(bcd),

(∆(1)⊗ 1)(1⊗∆(1)) = (∆⊗ idB)∆(1).

A weak Hopf algebra is a weak bialgebra equipped with an antipode S : B //B which
is an anti-algebra and anti-coalgebra homomorphism such that

m(idB ⊗ S)∆(b) = (ε⊗ idB)(∆(1)(b⊗ 1)),

m(S ⊗ idB)∆(b) = (idB ⊗ ε)((1⊗ b)∆(1)),

where m denotes the multiplication.
The right hand sides of two last formulas are called target and source counital maps

εt and εs, respectively. Their images are unital subalgebras of B called target and source
counital subalgebras Bt and Bs, respectively. They commute elementwise, we have S◦εs =
εt ◦ S and S(Bt) = Bs. We say that B is connected if Bt ∩ Z(B) = C (where Z(B) is the
center of B), coconnected if Bt ∩Bs = C, and biconnected if both conditions are satisfied.
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Finally, if B is a C∗-algebra and ∆(b∗) = ∆(b)∗, the collection G = (B,∆, S, ε) is
called a weak Hopf C∗-algebra (WHA). Then Bt and Bs are also C∗-subalgebras.

The dual vector space B̂ has a natural structure of a WHA, namely Ĝ = (B̂, ∆̂, Ŝ, ε̂)
given by dualizing the structure operations of B:

< ϕψ, b > = < ϕ⊗ ψ, ∆(b) >,

< ∆̂(ϕ), b⊗ c > = < ϕ, bc >,

< Ŝ(ϕ), b > = < ϕ, S(b) >,

< φ∗, b > = < ϕ, S(b)∗ >,

for all b, c ∈ B and ϕ, ψ ∈ B̂. The unit of B̂ is ε and the counit is 1.
The antipode S is unique, invertible, and satisfies (S ◦ ∗)2 = idB. Since it was men-

tioned in [Nikshych,2003], Remark 3.7 that problems regarding general WHAs can be
translated to problems regarding those with the property S2|Bt = id which are called
regular, we will only consider such WHAs (see also [Vallin,2003]). In this case, there
exists a canonical positive element H in the center of Bt such that S2 is an inner
automorphism implemented by G = HS(H)−1, i.e., S2(b) = GbG−1 for all b ∈ B.
The element G is called the canonical group-like element of B, it satisfies the relation
∆(G) = (G⊗G)∆(1) = ∆(1)(G⊗G).

An element l̂ ∈ B̂ is called a left integral (or a left invariant measure on B) if (idB ⊗
l̂)∆ = (εt⊗ l̂)∆. Similarly one gives the definition of a right integral (or a right invariant
measure on B). In any WHA there is a unique positive left and right integral h on B
such that (idB ⊗ h)∆(1) = 1, called a normalized Haar measure.

We will dehote byHh the GNS Hilbert space generated byB and h and by Λh : B //Hh

the corresponding GNS map.

2.2. Three categories associated with a WHA.

. 1. Unitary representations. Let G = (B,∆, S, ε) be a weak bialgebra. Objects
of the category Rep(G) of representations of G are finite rank left B-modules, simple
objects are irreducible B-modules and morphisms are B-linear maps. The tensor product
of two objects H1, H2 ∈ Rep(G) is the subspace ∆(1B) · (H1 ⊗ H2) of the usual tensor
product together with the action of B given by ∆. Tensor product of morphisms is the
restriction of the usual tensor product of B-module morphisms. Any H ∈ Rep(G) is
automatically a Bt-bimodule via z · v · t := zS(t) · v, ∀z, t ∈ Bt, v ∈ E, and the above
tensor product is in fact ⊗Bt , moreover the Bt-bimodule structure on H1 ⊗Bt H2 is given
by z · ξ · t = (z ⊗ S(t)) · ξ, ∀z, t ∈ Bt, ξ ∈ H1 ⊗Bt H2. This tensor product is associative,
so the associativity isomorphisms are trivial. The unit object of URep(G) is Bt with the
action of B given by b · z := εt(bz), ∀b ∈ B, z ∈ Bt. When G is a WHA, it is natural
to consider the category URep(G) of its unitary representations formed by finite rank
left B-modules whose underlying vector spaces are Hilbert spaces H with scalar product
< ·, · > satisfying < b · v, w >=< v, b∗ · w >, for all v, w ∈ H, b ∈ B. Then the above
tensor product is also a Hilbert space because ∆(1B) is an orthogonal projection. The
scalar product on Bt is defined by < z, t >= h(t∗z).
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For any morphism f : H1
// H2, let f ∗ : H2

// H1 be the adjoint linear map:
< f(v), w >=< v, f ∗(w) >, ∀v ∈ H1, w ∈ H2. Clearly, f ∗ is B-linear, f ∗∗ = f , (f ⊗Bt
g)∗ = f ∗ ⊗Bt g∗, and End(H) is a C∗-algebra, for any object H. So URep(G) is a finite
C∗-multitensor category (1 can be decomposable).

The conjugate object for any H ∈ URep(G) is the dual vector space Ĥ naturally
identified (v 7→ v) with the conjugate Hilbert space H with the action of B defined by

b · v = G1/2S(b)∗G−1/2 · v, where G is the canonical group-like element of G. Then the
rigidity morphisms defined by

RH(1B) = Σi(G
1/2 · ei ⊗Bt ·ei), RH(1B) = Σi(ei ⊗Bt G−1/2 · ei), (1)

where {ei}i is any orthogonal basis in H, satisfy all the needed properties - see [Bohm-
Nill-Szlachanyi,2000], 3.6. Also, it is known that the B-module Bt is irreducible if and
only if Bt ∩ Z(B) = C1B, i.e., if G is connected. So that, we have

2.3. Proposition. URep(G) is a rigid finite C∗-multitensor category with trivial asso-
ciativity constraints. It is C∗-tensor if and only if G is connected.

2.4. Remark. If {zα}α∈Γ is the set of minimal orthoprojectors of Bt ∩ Z(B), then the
trivial representation denoted by 1 admits a decomposition 1 = ⊕

α∈Γ
1α with 1α irreducibles

and according to [Etingof et all.,2015], Remark 4.3.4 we have:

URep(G) = ⊕
α,β∈Γ
Cαβ, (2)

where Cαβ are called the component subcategories of C. Moreover:
(1) Every irreducible of C belongs to one of Cαβ.
(ii) The tensor product maps Cαβ × Cγδ to Cαδ and equals to 0 unless β = γ.
(ii) Every Cαα is a rigid finite C∗-tensor category with unit object 1α.
(iv) The conjugate of any X ∈ Cαβ belongs to Cβα.

. 2. Unitary comodules

2.5. Definition. A right unitary G-comodule is a pair (H, a), where H is a Hilbert space
with scalar product < ·, · >, a : H // H ⊗ B is a bounded linear map between Hilbert
spaces H and H ⊗Hh = H ⊗ Λh(B), and such that:

(i) (a⊗ idB)a = (idH ⊗∆)a;
(ii) (idH ⊗ ε)a = idH ;
(iii) < v(1), w > v(2) =< v,w(1) > S(w(2))∗, ∀v, w ∈ H, where we used the leg notation

a(v) = v(1) ⊗ v(1).
A morphism of unitary G-comodules H1 and H2 is a linear map T : H1

// H2 such
that aH2 ◦ T = (T ⊗ idB)aH1 (i.e., a B-colinear map).

Right unitary G-comodules with finite dimensional underlying Hilbert spaces and
their morphisms form a category which we denote by UComod(G).

We say that two unitary G-comodules are equivalent (resp., unitarily equivalent) if the
space of morphisms between them contains an invertible (resp., unitary) operator.
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2.6. Example. Let us equip a right coideal C∗-subalgebra I ⊂ B with the scalar product
< v,w >:= h(w∗v). Then the strong invariance of h gives:

< v(1), w > v(2) = (h⊗ idB)((w∗ ⊗ 1B)∆(v)) =

= (h⊗ S−1)(∆(w∗)(v ⊗ 1B)) =< v,w(1) > S(w(2))∗.

If (H, a) is a right unitary G-comodule, then H is naturally a unitary left Ĝ-module
via

b̂ · v := v(1) < b̂, v(2) >, ∀b̂ ∈ B̂, v ∈ H. (3)

Due to the canonical identifications Bt
∼= B̂s and Bs

∼= B̂t given by the maps z 7→
ẑ = ε(·z) and t 7→ t̂ = ε(t·), H is also a Bs-bimodule via z · v · t = v(1)ε(zv(2)t), for all
z, t ∈ Bs, v ∈ V . The maps α, β : Bs

//B(H) defined by α(z)v := z ·v and β(z)v := v ·z,
for all z ∈ Bs, v ∈ H are a ∗-algebra homomorphism and antihomomorphism, respectively,
with commuting images. Indeed, for instance, for all v, w ∈ H, z ∈ Bs, one has:

< α(z)v, w >:=< v(1)ε(zv(2)), w >= ε(< v(1), w > zv(2)) =

= ε(< v,w(1) > zS(w(2))∗) =< v,w(1) > ε(S(w(2))z∗) =

=< v,w(1)ε(S(z∗)w(2)) >=< v, α(z∗)w(1)ε(w(2)) >=< v, α(z∗)w > .

So that, α(z)∗ = α(z∗), and similarly for the map β.
The correspondence (3) is bijective since one has the inverse formula: if (bi)i is a basis

for B and (b̂i) is its dual basis in B̂, then set:

a(v) =
∑
i

(b̂i · v)⊗ bi ∀v ∈ H. (4)

Moreover, formulas (3) and (4) also lead to a bijection of morphisms, and we have two
functors, F1 : UComod(G) // URep(Ĝ) and G1 : URep(Ĝ) // UComod(G), which
are mutually inverse to each other. Hence, these categories are isomorphic and we can
transport various additional structures from URep(Ĝ) to UComod(G) and vice versa.

For instance, let us define tensor product of two unitary G-comodules, (H1, aH1) and
(H2, aH2). As a vector space, it is

H1 ⊗B̂t H2 := ∆̂(1̂)(H1 ⊗H2) = 1̂(1) ·H1 ⊗ 1̂(2) ·H2

and can be identified with H1⊗Bs H2 (see [Pfeiffer 2,2009], 2.2 or [Nill,1998], Chapter 4).
The unitary comodule structure on H1 ⊗Bs H2 is given by

v ⊗Bs w 7→ v(1) ⊗Bs w(1) ⊗ v(2)w(2), ∀v ∈ H1, w ∈ H2.

Thus, UComod(G) is a multitensor category with trivial associativity isomorphisms
whose unit object (Bs,∆|Bs) is simple if and only if G is coconnected. The conjugate
object for (H, a) ∈ UComod(G) is (H, ã) with

ã(v) = v(1) ⊗ [Ĝ−1/2 ⇀ (v(2))∗ ↼ Ĝ1/2], (5)
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where b̂ ⇀ b :=< b̂, b(2)b(1) >, b ↼ b̂ :=< b̂, b(1) > b(2) (∀b ∈ B, b̂ ∈ B̂) are the Sweedler

arrows and Ĝ is the canonical group-like element of Ĝ.
The rigidity morphisms are given by (1) with Bt replaced by Bs. For any morphism

f , f ∗ is the conjugate linear map of the corresponding Hilbert spaces, the colinearity of
f implies that f ∗ is colinear. So that, we have

2.7. Proposition. UComod(G) is a strict rigid finite C∗-multitensor category isomor-
phic to URep(Ĝ). It is C∗-tensor if and only if G is coconnected (i.e., Bt ∩Bs = C1B).

. 3. Unitary corepresentations.

2.8. Definition. A right unitary corepresentation U of G on a Hilbert space HU is
a partial isometry U ∈ B(HU)⊗B such that:

(i) (id⊗∆)(U) = U12U13.
(ii) (id⊗ ε)(U) = id.
A morphism between two right corepresentations U and V is a bounded linear map

T ∈ B(HU , HV ) such that (T ⊗ 1B)U = V (T ⊗ 1B). We denote by UCorep(G) the
category whose objects are unitary corepresentations on finite dimensional Hilbert spaces
and above mentioned morphisms.

Any HU is a unitary right B-comodule via v 7→ U(v⊗ 1B). Conversely, given (H, a) ∈
UComod(G), one can construct V ∈ UCorep(G) as follows:

V (x⊗ Λhy) := x(1) ⊗ Λh(x
(2)y)), for all x ∈ H, y ∈ B.

Hence, the categories UComod(G) and UCorep(G) are isomorphic. The tensor product
U ⊗ V equals U13V23 and acts on HU ⊗Bs HV , the conjugate object U is the unitary
corepresentation acting onHU via U(x⊗Λh(y)) = x[1)⊗Λh((x

[2))∗y), where ã(x) is given by
(5), the unit object Uε ∈ B(Bs)⊗B is defined by z⊗b 7→ ∆(1B)(1B⊗zb), ∀z ∈ Bs, b ∈ B,
and the rigidity morphisms are given by (1) with Bt replaced by Bs. For any morphism
T , T ∗ is the conjugate linear map of the corresponding Hilbert spaces. Thus, we have

2.9. Proposition. UCorep(G) is a strict rigid finite C∗-multitensor category isomorphic
to UComod(G) and to URep(Ĝ). It is C∗-tensor if and only if G is coconnected.

2.10. Remark. 1. Using the leg notation U = U (1)⊗U (2), we define, for any η, ζ ∈ HU ,
the matrix coefficient Uη,ζ :=< U (1)ζ, η > U (2) ∈ B of U . If {ζi} is an orthonormal basis
in HU , denote Ui,j := Uζi,ζj . Then the formula

U = ⊕i,jmi,j ⊗ Ui,j, where mi,j are the matrix units of B(HU) in basis {ζi},

defines a corepresentation of G if and only if for all i, j = 1, ..., dim(HU):

∆(Ui,j) = Σ
dim(HU )
k=1 Ui,k ⊗ Uk,j, ε(Ui,j) = δi,j, Ui,j = S(Uj,i)

∗. (6)

2. We also have (U ⊗V )i,j,k,l = Ui,jVk,l for all i, j = 1, ., dim(HU), k, l = 1, ., dim(HV )
and for all U, V ∈ UCorep(G).
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3. For U ∈ UCorep(G), denote BU := Span{Ui,j|i, j = 1, ..., dim(HU)}. Then (6)
implies: ∆(BU) ⊂ ∆(1B)(BU ⊗BU), BU = S(BU)∗, BU = (BU)∗.

4. a) B⊕pk=1Uk
= span{BU1 , ..., BUp} for any finite direct sum of unitary corepresenta-

tions. In particular, B = ⊕x∈ΩBUx.
b) Decomposition U ⊗ V = ⊕zdzU z with multiplicities dz implies BUBV ⊂ ⊕zBUz ,

where z parameterizes the irreducibles of the above decomposition.

3. Reconstruction theorems.

1. Let C be a rigid finite C∗-multitensor category with unit object 1 and let J be a unitary
tensor functor (see [Neshveyev-Tuset,2013], Definition 2.1.3) from C to the C∗-multitensor
category Corrf (R) of finite dimensional Hilbert R-bimodules (R-correspondences), where
R = J (1) is a finite dimensional C∗-algebra. A discussion of the category Corrf (R) can
be found in [Vainerman-Vallin,2017], pp. 86,87.

Put HU := J (U), for all U ∈ C, in particular, Hx := J (x), for all x ∈ Ω = Irr(C).
Let JU,V : HU ⊗

R
HV

//HU⊗V be the natural isomorphisms defining the tensor structure

of J and choose an orthonormal basis {vxy |y ∈ Ωx := {1, ..., dim(Hx)}} in each Hx.

Let U∗ be the conjugate of U ∈ C, RU : 1 // U∗ ⊗ U and RU : 1 // U ⊗ U∗ be the
corresponding rigidity morphisms.

Then the conjugate of HU is HU∗ with the rigidity morphisms J−1
U∗,U ◦ J (RU) and

J−1
U,U∗◦J (RU). The properties of the rigidity morphisms imply that the duality < v,w >:=

trR ◦J (R∗x)(J
−1
x∗,x)

∗(v⊗
R
w), where v ∈ Hx∗ , w ∈ Hx and trR is the trace of the left regular

representation of R, is non degenerate. Hence, there exist isomorphisms Ψx : H
x ∼=

(Hx)∗ //Hx∗ and Φx : Hx //H
x∗ ∼= (Hx∗)∗.

Next is a combined C∗-version of several reconstruction theorems scattered in vari-
ous papers - see [Szlachanyi,2001], [Hayashi,1999], [Calaque-Etingof,2008], [Pfeiffer,2009],
[Ostrik,2003].

3.1. Theorem. A couple (C,J ) defines on the vector spaces

B =
⊕
x∈Ω

Hx ⊗Hx
and B̂ =

⊕
x∈Ω

B(Hx) (7)

two WHA structures, G and Ĝ, respectively, dual to each other with respect to the bracket

< A,w ⊗ v >=< Av,w >x where x ∈ Ω, A ∈ B(Hx), v, w ∈ Hx,

such that C ∼= UComod(G) ∼= UCorep(G) ∼= URep(Ĝ).

A sketch of the proof. Clearly, B̂ is a C∗-algebra with usual matrix multiplication,
conjugation and unit. Since all of Hx are Hilbert R-bimodules, there are homomorphisms
t : R // B̂ and s : Rop // B̂ defined by t(r)v = r · v and s(r)v = v · r, respectively (here
r ∈ R, v ∈ ⊕

x∈Ω
Hx).
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The coalgebra structure in B dual to the algebra structure in B̂, is:

∆(w ⊗ v) =
⊕
y∈Ωx

(w ⊗ vxy)x ⊗ (vxy ⊗ v)x, (8)

ε(w ⊗ v) =< w, v >x, where v, w ∈ Hx. (9)

Then, as in [Calaque-Etingof,2008], 2.3.2, define the coproduct ∆̂ : B̂ // B̂ ⊗ B̂:

∆̂(b) := η ◦ (J−1 · b · J) (b ∈ B̂, x, y ∈ Ω), (10)

where J := ⊕
x,y∈Ω

Jx,y, η : B(Hx)⊗
R
B(Hy) //B(Hx)⊗B(Hy) is the canonical map defined

by η(ax ⊗
R
cy) = Σ

i∈I
(s(ei)ax ⊗ t(ei)cy) (here a, c ∈ B̂, {ei} and {ei} are dual bases of R

with respect to the duality < a, b >= trR(L(a)L(b)), where a, b ∈ R,L(a), L(b) are the
corresponding left multiplication operators.

The multiplication in B dual to ∆̂, is as follows:

(w ⊗ v)x · (g ⊗ h)z = (Jx,z(w ⊗
R
g)⊗ Jx,z(v ⊗

R
h))x⊗z ∈ H(x⊗z) ⊗H(x⊗z), (11)

where v, w ∈ Hx, g, h ∈ Hz, for all x, z ∈ Ω. For any b = ⊕
x∈Ω

bx, the component b1 ∈

B(H1) ∼= B(R), so b1(1R) can be viewed as an element of R. Then the triple (B̂, ∆̂, ε̂)
with ε̂(b) = trR(L(b1(1R))) is a weak bialgebra.

The antipode in B̂ is defined by Ŝ(b)x := (Ψx∗ ◦ ix∗)(bx∗)∗(i−1
x∗ ◦Φx), where b ∈ B̂, x ∈

Ω, ix : Hx //H
x

is a canonical antilinear isomorphism. Dually:

S(w ⊗ v) = v\ ⊗ w[, (w ⊗ v)∗ = w\ ⊗ v[ (∀v, w ∈ Hx), (12)

where w\ = Ψx(w), v[ = Φx(v). Any Hx is a unitary right B-comodule via

ax(v) = Σ
y∈Ωx

v ⊗ vxy ⊗ vxy , where v ∈ Hx.

2. Let (C,J ) be as in Theorem 3.1, let C ′ be a rigid finite C∗-multitensor category
and let P : C ′ // C be a unitary tensor functor. Then Theorem 3.1 shows the exis-
tence of two WHAs, G = (B,∆, ε, S) and G′ = (B′,∆′, ε′, S ′), generated by the couples
(C,J ) and (C ′,J ′ = J ◦ P), respectively, such that UCorep(G) ∼= UComod(G) ∼= C and
UCorep(G′) ∼= UComod(G′) ∼= C ′. The following theorem reveals the structure of the
functor P .

3.2. Theorem. In the above conditions, there is a WHA morphism p : G′ //G such that
P viewed as a functor UComod(G′) // UComod(G) is of the form (V, ρ′V ) 7→ (V, (id ⊗
p)ρ′V ), where (V, ρ′V ) ∈ UComod(G′). P is faithful (resp., full) if and only if p is is
injective (resp., surjective).
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Let us comment on the proof. For any (V, ρ′V ) ∈ UComod(G′) the condition J ′ =
J ◦P) implies that P(V, ρ′V ) = (V, ρV ) ∈ UComod(G), where ρV : V // V ⊗B is a right
coaction. In particular, (B′,∆′) ∈ UComod(G′), so P(B′,∆′) = (B′, ρB′) ∈ UComod(G),
where ρB′ : B′ //B′⊗B is a right coaction. Then the composition p := (ε′⊗ idB) ◦ ρB′ :
B′ //B is a linear map. Theorem 3.5 of [Wakui,2020] proves that p is a weak bialgebra
morphism and that P(V, ρ′V ) = (V, (id⊗ p)ρ′V ) for any (V, ρ′V ) ∈ UComod(G′). Corollary
3.6 of [Wakui,2020] shows that P is an equivalence if and only if p is an isomorphism.

In our context the comodules (B′,∆′) and P(B′,∆′) = (B′, (idB′ ⊗ p)∆′) are unitary
which gives for all b, c ∈ B′:

< b(1), c > (b(2)) =< b, c(1) > S ′(c(2))
∗,

< b(1), c > p(b(2)) ==< b, c(1) > p(S(c(2))
∗).

For b = 1B′ this implies S(p(c))∗ = p(S ′(c)∗), for all c ∈ B′.
Then, the conjugate object for (B′,∆′) in UComod(G′) is (B

′
, ∆̃′), where

∆̃′(b) = b(1) ⊗ [Ĝ−1/2 ⇀ (b(2))
∗ ↼ Ĝ1/2],

and Ĝ is the canonical group-like element of the dual WHA Ĝ′. Let us note that G and
Ĝ belong to BtBs, so p just sends them respectively to the canonical group-like elements
of G and its dual. The conjugate object for P(B′,∆) = (B′, (idB′ ⊗ p)∆′) in UComod(G)
is described by a similar formula. As P respects the rigidity of the categories in question,
we have:

b(1) ⊗ p[Ĝ−1/2 ⇀ (b(2))
∗ ↼ Ĝ1/2] = b(1) ⊗ [( ˆp(G)

−1/2
) ⇀ (p(b(2)))

∗ ↼ ˆp(G)
1/2

]

which gives by the invertibility of Ĝ: b(1) ⊗ p(b∗(2)) = b(1) ⊗ (p(b(2)))
∗. Applying ε′ to the

first leg, we get p(b)∗ = p(b∗), then also S(p(b)) = p(S ′(b))(∀b ∈ B′).
For the WHA p(G′) we have UComod(p(G′)) = P(UComod(G′)). The functor P

splits into the composition of the full functor UComod(G′) //

P(UComod(G′)) and the inclusion P(UComod(G′) //UComod(G). Respectively, p splits
into the composition of the surjective WHA homomorphism G′ //p(G′) and the inclusion
p(G′) //G. Then P is full if and only if UComod(p(G′)) = UComod(G) or if and only
if p(G′) = G.

Also, P is faithful if and only if the first functor in the above decomposition is an
equivalence which happens if and only if p : G′ // p(G′) is an isomorphism of WHAs or
if only if the map p : G′ //G is injective.

4. Coactions.

4.1. Definition. A right coaction of a WHA G on a unital ∗-algebra A, is any ∗-
homomorphism a : A // A⊗B such that:

1) (a⊗ i)a = (idA ⊗∆)a.
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2) (idA ⊗ ε)a = idA.
3) a(1A) ∈ A⊗Bt.
One also says that (A, a) is a G-∗-algebra.

If A is a C∗-algebra, then a is automatically continuous, even an isometry.
There are ∗-homomorphism α : Bs

// A and ∗-antihomomorphism β : Bs
// A

with commuting images defined by α(x)β(y) := (idA ⊗ ε)[(1A ⊗ x)a(1A)(1A ⊗ y)], for all
x, y ∈ Bs. We also have a(1A) = (α⊗ idB)∆(1B),

a(α(x)aβ(y)) = (1A ⊗ x)a(a)(1A ⊗ y), (13)

and
(α(x)⊗ 1B)a(a)(β(y)⊗ 1B) = (1A ⊗ S(x))a(a)(1A ⊗ S(y)). (14)

The set Aa = {a ∈ A|a(a) = a(1A)(a ⊗ 1B)} is a unital ∗-subalgebra of A (it is a unital
C∗-subalgebra of A when A is a C∗-algebra) commuting pointwise with α(Bs). A coaction
a is called ergodic if Aa = C1A.

4.2. Definition. A G − C∗-algebra (A, a) is said to be indecomposable if it cannot be
presented as a direct sum of two G− C∗-algebras.

It is easy to see that (A, a) is indecomposable if and only if Z(A)∩Aa = C1A. Clearly,
any ergodic G− C∗-algebra is indecomposable.

For any (U,HU) ∈ UCorep(G), we define the spectral subspace of A corresponding to
(U,HU) by

AU := {a ∈ A|a(a) ∈ a(1A)(A⊗BU)}.

Let us recall the properties of the spectral subspaces:
(i) All AU are closed.
(ii) A = ⊕x∈ΩAUx .
(iii) AUxAUy ⊂ ⊕zAUz , where z runs over the set of all irreducible direct summands

of Ux ⊗ Uy.
(iv) a(AU) ⊂ a(1A)(AU ⊗BU) and AU = (AU)∗.
(v) Aε is a unital C∗-algebra.

4.2.1. Let us note that the usage of C∗-multitensor categories allows to get without much
effort the following slight generalization of the main result of [Vainerman-Vallin,2017]:

4.3. Theorem. Given a WHA G, the following categories are equivalent:
(i) The category of unital G-C∗-algebras with unital G-equivariant ∗-homomorphisms

as morphisms.
(ii) The category of pairs (M,M), where M is a left module C∗-category with trivial

module associativities over UCorep(G) and M is a generator in M, with equivalence
classes of unitary module functors respecting the prescribed generators as morphisms.

In particular, given a unital G-C∗-algebra A, one constructs the C∗-categoryM = DA
of finitely generated right Hilbert A-modules which are equivariant, that is, equipped
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with a compatible right coaction [Baaj-Skandalis,1989]. Any its object is automatically a
(Bs, A)-bimodule, and the bifunctor U �X := HU ⊗Bs X ∈ DA, for all U ∈ UCorep(G)
and X ∈ DA, turns DA into a left module C∗-category over UCorep(G) with generator A
and trivial associativities.

Vice versa, if a pair (M,M) is given, the construction of a G-C∗-algebra (A, a) contains
the following steps. First, denote by R the unital C∗-algebra EndM(M) and consider the
functor F : C //Corr(R) defined on the objects by F (U) = HomM(M,U �M) ∀U ∈ C.
Here X = F (U) is a right R-module via the composition of morphisms, a left R-module
via rX = (id ⊗ r)X, the R-valued inner product is given by < X, Y >= X∗Y , the
action of F on morphisms is defined by F (T )X = (T ⊗ id)X. The weak tensor structure
of F (in the sense of [Neshveyev,2014]) is given by JX,Y (X ⊗ Y ) = (id ⊗ Y )X, for all
X ∈ F (U), Y ∈ F (V ), U, V ∈ UCorep(G).

Then consider two vector spaces:

A =
⊕
x∈Ω

AUx :=
⊕
x∈Ω

(F (Ux)⊗Hx) (15)

and
Ã =

⊕
U∈‖UCorep(G)‖

AU :=
⊕

U∈‖UCorep(G)‖

(F (U)⊗HU), (16)

where F (U) =
⊕
i

F (Ui) corresponds to the decomposition U =
⊕

Ui into irreducibles,

and ‖UCorep(G)‖ is an exhaustive set of representatives of the equivalence classes of
objects in UCorep(G) (these classes constitute a countable set). Ã is a unital associative
algebra with the product

(X ⊗ ξ)(Y ⊗ η) = (id⊗ Y )X ⊗ (ξ ⊗Bs η), ∀(X ⊗ ξ) ∈ AU , (Y ⊗ η) ∈ AV ,

and the unit
1Ã = idM ⊗ 1B.

Note that (id⊗Y )X = JX,Y (X⊗Y ) ∈ F (U ⊗V ). Then, for any U ∈ UCorep(G), choose
isometries wi : Hi

//HU defining the decomposition of U into irreducibles, and construct
the projection pA : Ã // A by

pA(X ⊗ ξ) = Σ
i
(F (w∗i )X ⊗ w∗i ξ), ∀(X ⊗ ξ) ∈ AU , (17)

which does not depend on the choice of wi. Then A is a unital ∗-algebra with the product
x · y := p(xy), for all x, y ∈ A and the involution x∗ := p(x•), where (X ⊗ ξ)• :=

(id ⊗ X∗)F (RU) ⊗ Ĝ1/2ξ, for all ξ ∈ HU , X ∈ F (U), U ∈ UCorep(G). Here RU is the
rigidity morphism from (1). Finally, the map

a(X ⊗ ξi) = Σ
j
(X ⊗ ξj)⊗ Ux

j,i, (18)

where {ξi} is an orthogonal basis in Hx and (Ux
i,j) are the matrix elements of Ux in this

basis, is a right coaction of G on A. Moreover, A admits a unique C∗-completion A such
that a extends to a continuous coaction of G on it.
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4.4. Remark. We say that a UCorep(G)-module category is indecomposable if it is not
equivalent to a direct sum of two nontrivial UCorep(G)-module subcategories. Theorem
4.3 implies that a G−C∗-algebra (A, a) is indecomposable if and only if the UCorep(G)-
module category M is indecomposable.

4.5. Remark. Equivalence between M and DA maps all morphism f : HomM(U ⊗Bs
M,V ⊗BsM) to a morphism f̃ : HU ⊗Bs A //HV ⊗Bs A (U, V ∈ UCorep(G)), f̃ is an A-
linear map on the right intertwining δHU⊗BsA = U13(id⊗Bsα) and δHV ⊗BsA = V13(id⊗Bsα),
so it can be written as

f̃ = Σ
i
si ⊗Bs ai ∈ B(HU , HV )⊗Bs A

acting by f̃(ξ⊗Bs a) = Σsi(ξ)⊗Bs aia, where ξ ∈ HU , a ∈ A, and such that V13(id⊗α)f̃ =
(f̃ ⊗ id)U13(id⊗ α).

5. Yetter-Drinfel’d C∗-algebras over WHA

5.1. Basic definitions and results. Let G be a WHA, Ĝ be its dual and (A, a) be
a right unital G-C∗-algebra which is also a left unital Ĝ-C∗-algebra via a left coaction
b : A //B̂⊗A. The coaction b defines a right B-module algebra structure / : A⊗B //A
by

a / b := (b⊗ idA)b(a), for all a ∈ A, b ∈ B.

One can check that the following relations hold:

a / 1B = a, (ac) / b = (a / b(1))(c / b(2)) ∀a, c ∈ A, b ∈ B,

a∗ / b = (a / S(b)∗)∗ and 1A / b = 1A / εs(b). (19)

Below we will use the leg notations for coactions and write 1 instead of 1B.

5.2. Lemma. The following two conditions are equivalent:
(i) the identity

a(a / b) = (a(1) / b(2))⊗ S(b(1))a
(2)b(3), (20)

holds for all a ∈ A, b ∈ B.
(ii) the identity

(idB̂ ⊗ a)b(a) = W ∗
13(b⊗ idB)a(a)W13, (21)

holds for all a ∈ A, where the operator W ∈ L(λh⊗h(B ⊗B)) is defined by

W (λh⊗h(b⊗ c)) := λh⊗h(∆(c)(b⊗ 1)),

for all b, c ∈ B (it is the adjoint of the regular multiplicative partial isometrty I of B -
see [Vallin,2001]), and W13 is the usual leg notation.
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Proof. As A = ⊕x∈ΩAUx , where AUx is the spectral subspace of A corresponding to an
irreducible corepresentation Ux of A, it suffices to prove the statement for a ∈ AUx only.
The matrix units {mx

i,j} of B(Hx) with respect to some orthogonal basis {ei} in Hx and
the corresponding matrix coefficients Ux

i,j of Ux with all possible i, j, x form dual bases in

B̂ and B, respectively, so that b can be restored from . by

b(a) = Σi,j m
x
i,j ⊗ (a / Ux

i,j), for all a ∈ AUx . (22)

Since W = ⊕x∈Ωdim(Hx)Ux implements ∆ and ∆(Ux
i,j) = ΣkU

x
i,k ⊗ Ux

k,j, the right hand
side of (21) can be written for any a ∈ AUx as

(Ux
13)∗(b⊗ idB))a(a)Ux

13 =

= Σi,j,p,q(m
x
i,j ⊗ 1A ⊗ (Ux

j,i)
∗)(b(a(1) ⊗ a(2)))(mx

q,p ⊗ 1A ⊗ Ux
q,p) =

= Σi,j,p,q,r,s(m
x
i,jm

x
r,sm

x
q,p ⊗ (a(1) / Ux

r,s)⊗ (Ux
j,i)
∗a(2)Ux

q,p) =

= Σi,j,p,q(m
x
i,p ⊗ (a(1) / Ux

j,q)⊗ (Ux
j,i)
∗a(2)Ux

q,p).

On the other hand, if (20) holds, the left hand side of (21) can be written as

(idB̂ ⊗ a)b(a) = Σi,p(m
x
i,p ⊗ a(a / Ux

i,p)) =

= Σi,p(m
x
i,p ⊗ (a(1) / (Ux

i,p)(2))⊗ S((Ux
i,p)(1))a

(2)(Ux
i,p)(3)) =

Σi,p,j,q(m
x
i,p ⊗ (a(1) / Ux

j,q)⊗ S(Ux
i,j)a

(2)Ux
q,p) =

Σi,p,j,q(m
x
i,p ⊗ (a(1) / Ux

j,q)⊗ (Ux
j,i)
∗a(2)Ux

q,p).

So (20) implies (21). Conversely, writing in (21) b as above, we get (20) for any b =
Ux
i,j (x ∈ Ω, i, j = 1, ..., dimHx), a ∈ AUx which gives the result.

5.3. Definition. (cf. [Neshveyev-Yamashita,2014]) A is a right-right Yetter-Drinfel’d
(YD) G-C∗-algebra if one of the above equivalent conditions is satisfied.

We say that a Yetter-Drinfel’d Ĝ-C∗-algebra A is braided-commutative if

ab = b(1)(a / b(2)), for all a, b ∈ A. (23)

In particular, if b ∈ Aa, then b(1) ⊗ b(2) = 1(1)b ⊗ 1(2), and since b commutes with
1(1) ∈ α(Bs), the right hand side of (23) can be written as b1(1)(a / 1(2)). But (23) implies
that 1(1)(a / 1(2)) = a, so ab = ba. Hence, Aa ∈ Z(A).

Given a WHA G, let us construct a new WHA D(G) called the Drinfel’d double of
G as follows. The C∗-algebra of D(G) is B ⊗ B̂, where Ĝ = (B̂, ∆̂, Ŝ, ε̂) is the dual of G.
The coproduct ∆D on B ⊗ B̂ is defined by

∆D = Ad(1⊗ σ ◦W ⊗ 1B̂)(∆⊗ ∆̂),

where W ∈ Hh ⊗Hĥ is the multiplicative partial isometry canonically associated with G

- see [Vallin 1,2003], and σ is the flip. The antipode SD and the counit εD on B ⊗ B̂ are
defined, respectively, by

SD = Ad(W ∗)(S ⊗ Ŝ) and εD = m(ε⊗ ε̂).
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5.4. Lemma. The collection D(G) = (B ⊗ B̂,∆D, SD, εD) is a WHA.

Proof. It suffices to note that the WHA called there the Drinfel’d double, given in
[Nikshych-Turaev-Vainerman,2003], is dual to D(G).

Theorem. A YD G-C∗-algebra is the same as a D(G)-C∗-algebra.
The proof is similar to the one of [Nenciu,2002], Theorem 3.4.

5.5. Categorical duality for Yetter-Drinfel’d algebras over WHAs. Let
us give the proof of Theorem 1.1. The condition that C is generated by E(C) means that
any object of C is isomorphic to a subobject of E(U) for some U ∈ UCorep(G). Assume
without loss of generality that C is closed with respect to subobjects, but its unit object
is not necessarily simple.

Let us precise the equivalence relation on the set of pairs (F , η) in (ii). Given such a
pair, we can consider, for all U, V ∈ UCorep(G), linear maps

C(E(U), E(V )) // C ′(E ′(U), E ′(V )) : T 7→ ηVF(T )η−1
U .

We say that two pairs, (F , η) and (F ′, η′), are equivalent if the above maps are equal for
all U, V ∈ UCorep(G).

The proof of Theorem 1.1 will be done in several steps.
a) From YD G-C∗-algebras to C∗-multitensor categories.
Given a braided commutative YD G-C∗-algebra A, let us show that the C∗-category

DA is in fact a C∗-multitensor category. We start with

5.6. Remark. Recall the following relations:
1) δHU (ζ) := ζ(1) ⊗ ζ(2) := U(ζ ⊗ 1), where ζ ∈ HU , U ∈ UCorep(G).
2) δHU⊗V (ζ ⊗Bs η) := U13V23(ζ ⊗Bs η⊗ 1) or (ζ ⊗Bs η)(1) = ζ(1)⊗Bs η(1), (ζ ⊗Bs η)(2) =

ζ(2)η(2), where ζ ∈ HU , η ∈ HV , U, V ∈ UCorep(G).
3) δHU⊗BsA(ζ ⊗Bs a) := U13(ζ ⊗Bs a(a)) or (ζ ⊗Bs a)(1) = ζ(1) ⊗Bs a(1), (ζ ⊗Bs a)(2) =

ζ(2)a(2). Then δHU⊗V ⊗BsA(ζ ⊗Bs η ⊗Bs a) = ζ(1) ⊗Bs η(1) ⊗Bs a(1) ⊗ ζ(2)η(2)a(2), where
ζ ∈ HU , η ∈ HV U, V ∈ UCorep(G), a ∈ A.

4) It follows from the equality a(1A) = (α⊗ id)∆(1) that (idA⊗ εt)a(b) = a(1A)(b⊗ 1)
(see [Vainerman-Vallin,2017]) . One can deduce from here, using 3) and the relations
(id⊗ εt)U = (id⊗ εs)U = 1 that (id⊗ εt)δHU⊗AA(ζ ⊗A a) = ζ ⊗A a(1) ⊗ εt(a(2)).

5.7. Lemma. For any X ∈ DA, there exists a unique unital ∗-homomorphism πX :
A // LA(X) such that πX(a)(ζ) = ζ(1)(a / ζ(2)) and δX(πX(a)ζ) = (πX ⊗ id)a(a)δX(ζ),
for all a ∈ A and ζ ∈ X.

Proof. It suffices to consider X = Hx ⊗Bs A because A is a generator of DA. If {vxi } is
an orthonormal basis in Hx, Remark 5.6, 2) is equivalent to

δX(vxi ⊗Bs b) = Σ
j
[vxj ⊗Bs b(1) ⊗ Ux

j,ib
(2)], (24)
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here Ux
i,j are the matrix coefficients of Ux. The braided commutativity gives:

(vxi ⊗Bs b)(1)(a / (vxi ⊗Bs b)(2)) = Σ
j
(vxj ⊗Bs b(1))(a / (Ux

j,ib
(2))) =

= Σ
j
(vxj ⊗Bs b(1)(a / Ux

j,i) / b
(2)) = Σ

j
(vxj ⊗Bs (a / Ux

j,i))b.

Now it is clear how to define πX explicitly:

πX(a) = Σi,jm
x
i,j ⊗ (a / Ux

j,i),

where mx
i,j are the corresponding matrix units of B(Hx), a ∈ A. This gives the first

statement of the lemma. In order to prove the second statement, take an arbitrary
X ∈ DA, then for any a ∈ A and ζ ∈ X we have:

δX(πX(a)ζ) = δX(ζ(1)(a / ζ(2))) = (ζ(1)(a / ζ(2)))(1) ⊗ (ζ(1)(a / ζ(2)))(2).

The Yetter-Drinfel’d condition (20) shows that the last expression equals to

ζ(1)(a / ζ(3))(1) ⊗ ζ(2)(a / ζ(3))(2) = ζ(1)(a(1) / ζ(4))⊗ ζ(2)S(ζ(3))a(2)ζ(5) =

= ζ(1)(a(1) / ζ(3))⊗ εt(ζ2)a(2)ζ(4).

If again X = Hx⊗BsA and ζ = vxi ⊗Bs b, Remark 5.6, 4) shows that (id⊗εt)δX(ζ) = ζ⊗1
for the above ζ ∈ X. This gives δX(πX(a)ζ) = ζ(1)(a(1) / ζ(2)) ⊗ a(2)ζ(3). On the other
hand,

(πX ⊗ id)a(a)δX(ζ) = πX(a(1))ζ(1) ⊗ a(2)ζ(2) = ζ(1)(a(1) / ζ(2))⊗ a(2)ζ(3),

and we are done.

This lemma implies that any X ∈ DA is a G-equivariant (A,A)-correspondence and
any G-equivariant endomorphism of the right Hilbert A-module X is automatically an
(A,A)-bimodule map. Therefore, DA is a full subcategory of the C∗-multitensor category
of G-equivariant (A,A)-correspondences. In order to show that DA is invariant with
respect to ⊗A, take X, Y ∈ DA and prove two statements:

(i) (X ⊗A Y ) ∈ DA;
(ii) the left A-module structure on X⊗AY induced by that of X is the same as the left

A-module structure given by Lemma 5.7 using the coaction of G and the right A-module
structure on X ⊗A Y .

The statement (ii) is proved by direct computations similar to those in the proof of
Lemma 5.7. In order to prove (i), it suffices to prove

5.8. Lemma. The map TU,V : X ⊗A Y // HU⊗V ⊗Bs A, where X = HU ⊗Bs A, Y =
(HV ⊗Bs A) defined for all ζ ∈ HU , η ∈ HV , a, b ∈ A by

TU,V : (ζ ⊗Bs a)⊗A (η ⊗Bs b) 7→ ζ ⊗Bs πY (a)(η ⊗Bs b), (25)

is a G-equivariant unitary isomorphism of right Hilbert A-modules and

TU⊗V,W (TU,V ⊗A id) = TU,V⊗W (id⊗A TV,W ) (∀ U, V,W ∈ UCorep(G)) (26)
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Proof. Clearly, (25) defines TU,V as a right A-module isomorphism. Let us note that the
vectors of the form (ζ ⊗Bs 1A)⊗A (η ⊗Bs 1A) generate X ⊗A Y as a right A-module and
that TU,V is isometric on these vectors. This implies that TU,V is a unitary isomorphism
of right Hilbert A-modules.

Let us check the G-equivariance of TU,V , i.e., we must have the equality (TU,V ⊗
idB)δX⊗AY = δHU⊗V ⊗BsA ◦ TU,V . Since πY (a)(η ⊗Bs b) = η(1) ⊗Bs (a / η(2))b, we have:

δX⊗AY ((ζ ⊗Bs a)⊗A (η ⊗Bs b)) = (ζ ⊗Bs a)(1) ⊗A (η ⊗Bs b)(1)⊗

⊗(ζ ⊗Bs a)(2)(η ⊗Bs b)(2) = (ζ(1) ⊗Bs b(1))⊗A (η(1) ⊗Bs a(1))⊗ ζ(2)a(2)η(2)b(2)

Applying TU,V ⊗ idB, we get ζ(1) ⊗Bs η(1) ⊗Bs (a(1) / η(2))b(1) ⊗Bs ζ(2)a(1)η(3)b(2).
On the other hand,

δHU⊗V ⊗BsA ◦ TU,V [(ζ ⊗Bs a)⊗A (η ⊗Bs b)] = δHU⊗V ⊗BsA(ζ ⊗Bs η(1) ⊗Bs (a / η(2))b) =

= ζ(1) ⊗Bs η(1) ⊗Bs (a / η(3))(1)b(1) ⊗ ζ(2)η(2)(a / η(3))(2)b(2)

Applying (20), we see that the last expression equals to

ζ(1) ⊗Bs η(1) ⊗Bs (a / η(4))b(1) ⊗ ζ(2)η(2)S(η(3))a(2)η(5)b(2)

As η(2)S(η(3)) = εt(η
(2)) and η(1)⊗εt(η(2)) = 1(1)η(1))⊗1(2), the last expression also equals

to ζ(1) ⊗Bs η(1) ⊗Bs (a(1) / η(2))b(1) ⊗Bs ζ(2)a(1)η(3)b(2).
Finally, the relation (26) can be justified by direct computations.

5.9. Corollary. If V = Σ
i,j
mi,j ⊗ Vi,j, then for all ζ ∈ HU , η ∈ HV , a, b ∈ A

TU,V (ζ ⊗Bs a)⊗A (η ⊗Bs b) = ζ ⊗Bs Σ
i,j
mi,jη ⊗Bs (a / Vj,i)b.

Let us summarize the above mentioned results.

5.10. Theorem. Let A be a unital braided commutative YD G−C∗-algebra. Then DA is
a C∗-multitensor category with tensor product ⊗A and trivial associativities equipped with
a unitary tensor functor EA : UCorep(G) //DA sending U to HU ⊗Bs A whose structural
unitary isomorphisms TU,V : EA(U) ⊗A EA(V ) // EA(U ⊗ V ) are given by (25). Clearly,
EA(Uε) = A = 1DA.

b) From C∗-multitensor categories to YD- G-C∗-algebras.
Consider a pair (C, E) ∈ Tens(UCorep(G)). The category C is a left UCorep(G)-

module category: U � X := E(U) ⊗ X, ∀X ∈ C, with generator E(Uε) = 1C. So R =
EndC(1C) and weak tensor functor F sends any U to HomC(1C, E(U)). By Theorem 4.3
we can construct a G− C∗-algebra A with right coaction a : A // A⊗B. Now our goal
is to prove
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5.11. Theorem. The above G−C∗-algebra A has a natural structure of a unital braided
commutative YD G− C∗-algebra.

First, define a right B-module algebra structure on A given by (15). Let Ã be an
algebra (16) with the projection pA : Ã //A (17) and B̃ =

⊕
U∈‖UCorep(G)‖

(HU ⊗HU), B =⊕
x∈Ĝ

(Hx ⊗Hx) be the algebras with the similar projection pB : B̃ // B (see [Vainerman-

Vallin,2017], Example 6.7).s Then define a linear map /̃ : Ã⊗B // Ã for all X⊗ η ∈ AU ,
ζ ⊗ ξ ∈ HV ⊗HV and U, V ∈ UCorep(G):

(X ⊗ η)/̃(ζ ⊗ ξ) = (id⊗X ⊗ id)F (RV )⊗ (Ĝ−1/2 · ζ ⊗Bs η ⊗Bs ξ), (27)

where RV comes from (1). Both sides of (27) are in AV⊗U⊗V . Identifying B with the

subspace of B̃, define a linear map / : A ⊗ B // A putting a / b := pA(a/̃b), for all
a ∈ A, b ∈ B.

5.12. Lemma. The map / defines a right B-module algebra structure on A such that
pA(a/̃b) = pA(a) / pB(b), for all a ∈ Ã, b ∈ B̃.

Proof. Put a = X ⊗ η ∈ F (U)⊗HU , b = ζ ⊗Bs ξ ∈ HV ⊗Bs HV and choose isometries
ui : Hxi

// HU and vj : Hxj
// HV defining the decompositions of U and V into

irreducibles. Then:

pA(a) / pB(b) = pA(Σ
i,j

(F (u∗i )X ⊗ u∗i η)/̃(v∗j ζ ⊗Bs v∗j ξ)) =

= pA(Σ
i,j

(id⊗ F (u∗i )X ⊗ id)F (RVxj
)⊗ (Ĝ−1/2 · v∗j ζ ⊗Bs u∗i η ⊗Bs v∗j ξ)).

On the other hand,

pA(a/̃b) = pA((id⊗X ⊗ id)F (RV )⊗ (Ĝ−1/2 · ζ ⊗Bs η ⊗Bs ξ)) =

= pA( Σ
i,j,k

(F (v∗j)⊗ F (u∗i )X ⊗ F (v∗k))F (RV )⊗ (v∗j Ĝ
−1/2 · ζ ⊗Bs u∗i η ⊗Bs v∗kξ)),

where the morphism vj : HV xj
= HVxj

// HV = HV is defined by vjζ = vjζ. Since

v∗j (Ĝ
−1/2 · ξ) = Ĝ−1/2 · (v∗j ξ), ∀j, RV = Σ

j
(vj ⊗ vj)RVj and the partial isometries vj have

mutually orthogonal images, the two expressions are equal.
In order to show that / defines a right B-module algebra on A, take a, b as above and

c = µ⊗Bs ν ∈ HW ⊗Bs HW , where W ∈ UCorep(G). Then:

(a/̃b)/̃c = (id⊗X ⊗ id)F (RV )⊗ (Ĝ−1/2 · ζ ⊗Bs η ⊗Bs ξ)/̃(µ⊗Bs ν) =

(id⊗ id⊗X ⊗ id⊗ id)(id⊗ F (RV )⊗ id)F (RW )⊗

⊗(Ĝ−1/2 · µ⊗Bs Ĝ−1/2 · ζ ⊗Bs η ⊗Bs ξ ⊗Bs ν).
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The result belongs to ÃW⊗(V⊗U⊗V )⊗W . On the other hand,

a/̃(bc) = (X ⊗ η)/̃(ζ ⊗Bs µ⊗Bs ξ ⊗Bs ν) =

= (id⊗X ⊗ id)F (RV⊗W )⊗ Ĝ−1/2 · (ζ ⊗Bs µ)⊗Bs η ⊗Bs (ξ ⊗Bs ν).

This result belongs to ÃV⊗W⊗U⊗V⊗W and is different from the previous one because W ⊗
V 6= V ⊗W . But the map σ : HW⊗BsHV

//HV ⊗Bs HW defined by σ(µ⊗Bsζ) = ζ ⊗Bs µ
gives the equivalence of these corepresentations, so RV⊗W = (σ ⊗ id ⊗ id)(id ⊗ RV ⊗
id)RW . Then, applying pA to the above elements, we have an exact equality pA((a/̃b)/̃c) =
pA(a/̃(bc)).

In order to check the relation (ad) / b = (a / b(1))(d / b(2)), take a = X ⊗ η ∈ ÃU , d =

Y ⊗ µ ∈ ÃV , b = ζi ⊗Bs ξj, where {ζi ⊗Bs ξj}i,j is an orthonormal basis in HW ⊗Bs HW

and U, V,W ∈ UCorep(G). Since pB(ζi ⊗Bs ξj) = Wi,j and ∆(Wi,j) = Σ
k

(Wi,k ⊗Wk,j), we

have to show that

pA((ad)/̃(ζi ⊗Bs ξj)) = Σ
k
pA((a/̃(ζi ⊗Bs ξk))(d/̃(ζi ⊗Bs ξj))).

The formula for the product in Ã and (27) give:

pA((ad)/̃(ζi ⊗Bs ξj)) =

= pA((id⊗X ⊗ Y ⊗ id)F (RW )⊗ Ĝ−1/2 · ζ i ⊗Bs η ⊗Bs µ⊗Bs ξj).

On the other hand,
Σ
k

(a/̃(ζi ⊗Bs ξk))(d/̃(ζk ⊗Bs ξj))) =

= Σ
k

((id⊗X ⊗ id)F (RW )⊗ Ĝ−1/2 · ζi ⊗Bs η ⊗Bs ξk)

((id⊗ Y ⊗ id)F (RW )⊗ Ĝ−1/2 · ζk ⊗Bs µ⊗Bs ξj) = Σ
k

(id⊗X ⊗ id⊗ id⊗ Y ⊗ id)

F (RW ⊗RW )⊗ (Ĝ−1/2 · ζi ⊗Bs η ⊗Bs ξk ⊗Bs Ĝ−1/2 · ζk ⊗Bs µ⊗Bs ξj)

Since RW (1) = Σ
k

(ξk ⊗Bs Ĝ−1/2 · ζk), and RW is, up to a scalar factor, an isometric

embedding of 1 to W ⊗W , by applying pA to this element, we get

(id⊗X ⊗ F (R
∗
W )⊗ Y ⊗ id)F (RW ⊗RW )⊗ (Ĝ−1/2 · ζi ⊗Bs η ⊗Bs ⊗Bsµ⊗Bs ξj)

Since (R
∗
W ⊗ id)(id⊗RW ) = idW , this is equal to pA((ad)/̃(ζi ⊗Bs ξj)).
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Let us check now the compatibility of / with the involution.

5.13. Lemma. We have a∗ / b = (a / S(b)∗)∗ for all a ∈ A, b ∈ B.

Proof. Recall that if a = X ⊗ η ∈ ÃU , then a• = (id ⊗ X∗)F (RU) ⊗ Ĝ1/2 · η ∈ ÃU .
If b = ζ ⊗Bs ξ ∈ HV ⊗Bs HV , put b• = ξ ⊗Bs ζ. Since pB(b•) = pB(ξ ⊗Bs ζ) = Vξ,ζ =
(S(Vζ,ξ))

∗ = (S(pB(b))∗, we have to prove that pA(a∗/̃b) = pA((a/̃b•)∗). Let us compute:

(X ⊗ η)•/̃(ζ ⊗Bs ξ) =

= (id⊗ id⊗X∗ ⊗ id)(id⊗ F (RU)⊗ id)F (RV )⊗ (Ĝ−1/2 · ζ ⊗Bs Ĝ1/2 · η ⊗Bs ξ).
On the other hand,

(a/̃(ζ ⊗Bs ξ)•)• = ((id⊗X ⊗ id)F (RV )⊗ (Ĝ−1/2 · ξ ⊗Bs η ⊗Bs ζ))• =

= (id⊗ (id⊗X ⊗ id)F (RV ))∗F (RV⊗U⊗V )⊗ (ξ ⊗Bs Ĝ1/2 · η ⊗Bs Ĝ1/2 · ζ).

Comparing these expressions and using the fact that Ĝ−1/2 · ξ = Ĝ1/2 · ξ, we see that they

are not equal only by the reason that the corepresentations V ⊗ U ⊗ V and V ⊗ U ⊗ V
are not equal. But they are equivalent via the map σ(ζ ⊗Bs η ⊗Bs ξ) = ξ ⊗Bs η ⊗Bs ζ
which gives the relation

RV⊗U⊗V = (σ ⊗ id⊗ id⊗ id)(id⊗RV ⊗ id⊗ id)(id⊗RU ⊗ id)RV )

Since (R∗V ⊗ id)(id⊗RV ) = idV , we have

(id⊗ (id⊗X ⊗ id)F (RV ))∗F (RV⊗U⊗V ) =

= σ(id⊗ id⊗X∗ ⊗ id)(id⊗ F (RU)⊗ id)F (RV ).

Hence, the images of these expressions after applying pA are equal

Now let us check the Yetter-Drinfel’d relation (20).

5.14. Lemma. For all a ∈ A and b ∈ B we have

a(a / b) = (a(1) / b[2))⊗ S(b[1))a
(2)b(3)

Proof. Let U, V ∈ UCorep‘(G) and {ηi} ∈ HU , {ζj} ∈ HV be two orthonormal bases.

For the simplicity, consider ζj as eigenvectors of the strictly positive operator ζ 7→ Ĝ · ζ in

HV : Ĝ·ζj = λj(V )ζj. Then one has the following relations between the matrix coefficients

of V with respect to {ζj} and of V with respect to {ζj}: λ
−1/2
j (V )λ

1/2
k (V )V j,k = V ∗j,k =

S(Vk,j).
Now take a = X ⊗ ηk0 ∈ ÃU and b = Vi0,j0 , then we have, using (18):

(a(1) / b(2))⊗ S(b(1))a
(2)b(3) = Σ

i,j,k
[pA(X ⊗ ηk) / Vi,j]⊗ S(Vi0,i)Uk0,kVj0,j =
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= Σ
i,j,k

[pA((id⊗X ⊗ id)F (RV )⊗ (ζ i ⊗Bs ηk ⊗Bs ζj)⊗ λ
1/2
i (V )S(Vi0,i)Uk,k0Vj,j0 .

On the other hand,

a(a / b) = a(pA((id⊗X ⊗ id)F (RV )⊗ (ζ i0 ⊗Bs ηk0 ⊗Bs ζj0))) =

= λ
1/2
i0

(V ) Σ
i,j,k

[pA((id⊗X ⊗ id)F (RV )⊗ (ζ i ⊗Bs ηk ⊗Bs ζj))⊗ V i,i0Uk,k0Vj,j0 .

As λ
−1/2
i (V )λ

1/2
i0

(V )V i,i0 = S(Vi0,i), the two expressions are equal.

Finally, let us check the braided commutativity relation (23)

5.15. Lemma. For all a, b ∈ A we have ab = b(1)(a / b(2)).

Proof. Let a = pA(X ⊗ η), b = pA(Y ⊗ ζ i), where X ∈ F (U), Y ∈ F (V ), η ∈ HU , also
U, V are in UCorep(G) and bases {ηi} ∈ HU and {ζj} ∈ HV as above. Then we compute:

b(1)(a / b(2)) = Σ
j
pA((Y ⊗ ζj)((X ⊗ η)/̃Vj,i)) =

= Σ
j
pA((Y ⊗ ζj)((id⊗X ⊗ id)F (RV )⊗ λ1/2

j (ζj ⊗Bs η ⊗Bs ζi)) =

= Σ
j
pA((id⊗ (id⊗X ⊗ id)F (RV ))Y ⊗ λ1/2

j (ζj ⊗ ζj ⊗Bs η ⊗Bs ζ i)) =

= pA((id⊗ id⊗X ⊗ id)(id⊗ F (RV ))Y ⊗ (RV (1B)⊗Bs η ⊗Bs ζi)

Since RV is, up to a scalar factor, an isometric embedding of 1 into V ⊗ V , the last
expression equals

pA((F (R
∗
V )⊗X ⊗ id)(id⊗ F (RV ))Y ⊗ (η ⊗Bs ζi) = pA((id⊗ Y )X ⊗ (η ⊗Bs ζi)),

which is exactly ab.

Passing to the C∗-completion of A, we finish the proof of Theorem 5.11.
c) Functoriality. Given a morphism A0

//A1 in Y Dbrc(G), the map X //X⊗A0
A1

defines a unitary functor DA0
// DA1

(see [Vainerman-Vallin,2017], Theorem 4.12). By
Theorem 5.10, both DA0

and DA1
are C∗-multitensor categories, and similarly to the proof

of Lemma 5.8 one shows that the isomorphisms

(X ⊗A0
A1)⊗A1

(Y ⊗A0
A1) ∼= (X ⊗A0

Y )⊗A0
A1

defined by (x ⊗A0
a) ⊗A1

(y ⊗A0
b) 7→ x ⊗A0

y(1) ⊗A1
(a / (y(2))b, for all x ∈ X ∈ DA0

and y ∈ Y ∈ DA1
, define a tensor structure on this functor. This functor together

with obvious isomorphisms ηU : (HU ⊗Bs A0) ⊗A0
A1

// HU ⊗Bs A1 define a morphism
(DA0

, EA0
) // (DA1

, EA1
). Thus, we have a functor T : Y Dbrc(G) // Tens(UCorep(G)).

Let now [(F , η)] : (C0, E0) // (C1, E1) be a morphism in Tens(UCorep(G)), and let A0

and A1 be the corresponding braided-commutative YD G − C∗-algebras - see Theorem
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5.11. It follows from the construction of the ∗-algebras A0 and A1 that the maps (E0(Ux)⊗
H
x
) // (E1(Ux)⊗Hx

) given by (X ⊗ ξ) 7→ (F(X)⊗ ξ) define a unital ∗-homomorphism
A0

//A1 that respects their B-comodule and B-module structures. It then extends to a
homomorphism of unital braided-commutative YD G− C∗-algebras f : A0

// A1 which
depends only on the equivalence class of (F , η)]. Thus, we have constructed a functor
S : Tens(UCorep(G)) // Y Dbrc(G).

The homomorphism f : A0
//A1 is injective (resp., surjective) if and only if the maps

HomC0(1, E0(Ux)) //HomC1(1, E1(Ux)) are injective (resp., surjective), for all x ∈ Ω. But
thanks to the equalities of the type HomC(1, V ⊗U) = HomC(U, V ), this holds if and only
if, for all U, V ∈ UCorep(G), the maps HomC0(E0(U), E0(V )) // HomC1(E1(U), E1(V ))
are injective (resp., surjective). Since Ci is generated by Ei(UCorep(G)) for i ∈ {0, 1}, it
follows that f is injective (resp., surjective) if and only if the functor F is faithful (resp.,
full).

d) Equivalence of categories. In order to show that the above functors T and S
are inverse to each other up to an isomorphism, let us start with a pair (C, E) as above,
the corresponding braided-commutative YD G − C∗-algebra A and describe explicitly
the image of any morphism T ∈ HomC(E(U), E(V )), where U, V ∈ UCorep(G), under
the unitary equivalence F : C // DA as left UCorep(G)-module C∗-categories given by
Theorem 4.3.

In particular, F maps a morphism T ∈ HomC(1C, E(V )) = F (V ) to the morphism
F(T ) : Hε⊗Bs Aε //HV ⊗Bs AV sending 1B to Σ

j
[ζj ⊗Bs pA(T ⊗ ζj)], where {ζj} ∈ HV is

an orthonormal basis (see the proof of [Vainerman-Vallin,2017],Theorem 6.3). Now write
any T ∈ HomC(E(U), E(V )) as T = (E(R

∗
U) ⊗ id)(id ⊗ S), where S = (id ⊗ T )E(RU) ∈

HomC(1C, E(U ⊗V )). Choose an orthonormal basis {ξi} in HU (as in the proof of Lemma
5.14, it is convenient to choose {ξi} such that Ĝ · ξi = λi(U)ξi for all i). Then the image
of the morphism S is:

1 7→ Σ
i,j

[ξi ⊗Bs ζj ⊗Bs pA(S ⊗ (ξi ⊗Bs ζj))].

It follows that T = (E(R
∗
U)⊗ id)(id⊗ S) is mapped into

Σ
i,j

[E(R
∗
U)(· ⊗Bs ξi)ζj ⊗Bs pA(S ⊗ (ξi ⊗Bs ζj))].

Using the second of formulas (1), we conclude that the image of T is:

Σ
i,j
θζj ,ξi ⊗Bs pA((id⊗ T )E(RU)⊗ (Ĝ−1/2 · ξi ⊗Bs ζj), (28)

where θζj ,ξi ∈ B(HU , HV ) is defined by θζj ,ξi(η) =< η, ξi > ζj for all η ∈ HU .
In order to show that F is a strict tensor functor on E(UCorep(G)) and hence on

C, we have to show that F(S ⊗ T ) = F(S) ⊗ F(T ) on morphisms in E(UCorep(G)).
Since F is an equivalence of left UCorep(G)-module categories, we already know that
F(id⊗ T ) = id⊗F(T ), so it remains to show that F(S ⊗ id) = F(S)⊗ id.
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If S : E(U) //E(V ) and {ηk} is an orthonormal basis in HW (W ∈ UCorep(G)), then
according to (28) F(S ⊗ idW ) equals

Σ
i,j,k,l

θζj⊗Bsηk,ξi⊗Bsηl ⊗Bs pA((id⊗ (S ⊗ id))E(RU⊗W )⊗

⊗ Ĝ−1/2 · (ξi ⊗Bs ηl)⊗Bs ζj ⊗Bs ηk).

As in the proof of Lemma 5.12, RU⊗W coincides, modulo the equivalence U ⊗W ≡ W⊗U ,
with (id⊗RU ⊗ id)RW ), so the above expression equals

Σ
i,j,k,l

θζj⊗Bsηk,ξi⊗Bsηl ⊗Bs pA((id⊗ (id⊗ S)E(RU)⊗ id)E(RW )⊗

⊗Ĝ−1/2 · ηl ⊗Bs Ĝ−1/2 · ξi ⊗Bs ζj ⊗Bs ηk).

The operators θηk,ηl are the matrix units mk,l in B(HW ). Recalling the definition of /, we
can rewrite the above expression as

Σ
i,j,k,l

θζj ,ξi ⊗Bs mk,l ⊗Bs [pA((id⊗ S)E(RU)⊗ (Ĝ−1/2 · ξi ⊗Bs ζj)) / Wk,l]

On the other hand, F(S) : HU⊗BsA //HV ⊗BsA can be presented as F(S) = Σ
i
si⊗Bs ai,

where si ∈ B(HU , HV ), ai ∈ A, with the action F(S)(ξ ⊗Bs a) = Σ
i
si(ξ) ⊗Bs aia, for all

ξ ∈ HU , a ∈ A. Considering F(S)⊗ id as a morphism from HU⊗W ⊗Bs A to HV⊗W ⊗Bs A,
we have for all ζ ∈ HU , η ∈ HW :

(F(S)⊗ id)(ζ ⊗Bs η ⊗Bs 1A) = TV,W (Σ
i
si(ζ)⊗Bs η ⊗Bs ai) =

= TV,W (Σ
i
si(ζ)⊗Bs ai)⊗A (η ⊗Bs 1A) =

Σ
i
si(ζ)⊗Bs Σ

k,l
mk,lη ⊗Bs (ai / Wk,l).

Hence, the actions of F(S ⊗ id) and F(S) ⊗ id on generating vectors ζ ⊗Bs η ⊗Bs 1A
coincide.

5.16. Remark. Similar calculation and the fact that 1A / Uk,l = δk,l1A give

(id⊗F(S))(η ⊗Bs ζ ⊗Bs 1A) = η ⊗Bs Σ
i
si(ζ)⊗Bs ai.

Conversely, consider a unital braided-commutative YD G − C∗-algebra A and the
corresponding pair (CA, EA), and let AC be the braided-commutative YD G− C∗-algebra
constructed from this pair. By Theorem 4.3, there is an isomorphism λ : AC // A
intertwining the coactions of G and defined by λ(pA(T ⊗ ζ)) = (ζ ⊗ id)T , for all ζ ∈
HV , T ∈ CA(1, V ) ⊂ L(Bs, HV ) ⊗ A = HV ⊗ A. So it only remains to show that λ is a
right B-module map.
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As above, fix U, V ∈ UCorep(G) and orthonormal bases {ξi} ∈ HU and {ζk} ∈ HV ,
and let Ukl be the matrix coefficients of U . Take T = Σ

k
(ζk ⊗Bs ak) ∈ HV ⊗Bs A, then

λ(pA(T ⊗ ζk0)) = ak0 , and check that λ(pA(T ⊗ ζk0)/Ui0,j0) = ak0 /Ui0,j0 . By (27) we have

pA(T ⊗ ζk0) / Ui0,j0 = (id⊗ T ⊗ id)F (RU)⊗ (Ĝ−1/2ξi0 ⊗Bs ζk0 ⊗Bs ξj0).

In order to compute the image of this element under λ, we need an explicit formula for
(id ⊗ T ⊗ id)F (RU) : 1 // HU⊗V⊗U ⊗Bs A. Remark 5.16 and the computation before
it show that the element idU ⊗ T ⊗ idU : HU ⊗Bs HU

// HU ⊗Bs HV ⊗Bs HU equals
1⊗Bs Σ

i,j,k
ζk ⊗Bs mi,j ⊗Bs (ak / Uj,i). Then

(id⊗ T ⊗ id)F (RU) = Σ
i,j,k

Ĝ1/2 · ξj ⊗Bs ζk ⊗Bs ξi ⊗Bs (ak / Uj,i).

Therefore, pA(T ⊗ ζk0) / Ui0,j0 equals

pA( Σ
i,j,k

Ĝ1/2 · ξj ⊗Bs ζk ⊗Bs ξi ⊗Bs (ak / Uj,i)⊗ (Ĝ−1/2ξi0 ⊗Bs ζk0 ⊗Bs ξj0))

Applying λ, we get the required equality λ(pA(T ⊗ ζk0) = akO /Ui0,j0 . As the algebra A is
spanned by elements ak0 for various V ∈ UCorep(G), it follows that λ is a right B-module
map. This completes the proof of Theorem 1.1.

6. Quotient type and invariant coideal C∗ subalgebras

6.1. Quotient type coideal C∗-subalgebras. The notion of a quotient type coideal
C∗-subalgebra of a WHA G is closely related to the notion of a quantum subgroupoid
which is just another WHA H equipped with an epimorphism π : G //H. We start with
basic definitions and results.

6.2. Definition. A morphism between two WHAs, G = (B,∆B, SB, εB) and H =
(C,∆C , SC , εC), is a unital morphism π : B //C of their C∗-algebras such that ∆C ◦π =
(π ⊗ π)∆B, SC ◦ π = π ◦ SB and εC ◦ π = εB.

6.3. Remark. 1. One checks that this definition implies: π ◦ εBt = εCt ◦ π and π ◦ εBs =
εCs ◦ π, so π(Bt) = Ct and π(Bs) = Cs.

2. If G and H are usual Hopf C∗-algebras, Definition 6.2 coincides with the usual
definition of a morphism of Hopf C∗-algebras..

6.4. Lemma. If π : G // H is surjective, the map Eπ : U 7→ (id ⊗ π)U is a unitary
tensor functor UCorep(G) // UCorep(H). Moreover, (id ⊗ π)U ∈ B(Hπ

U) ⊗ C, where
(Hπ

U)⊥ = {ζ ∈ HU |(id⊗ π)U(ζ ⊗ 1) = 0}.
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Proof. Considering HU as a left B̂-module in the following way:

b̂ · ζ =< U (2), b̂ > U (1)ζ (∀b̂ ∈ B̂, ζ ∈ HU),

and the ∗-algebra inclusion π∗ : Ĉ // B̂ dual to π : B // C, one has:

< π(Uη,ζ), ĉ >=< (id⊗ π)U(ζ ⊗ 1B), η ⊗ ĉ >=< U (1)ζ, η >< U (2), π∗(ĉ) >=

=< π∗(ĉ)ζ, η >=< ζ, π∗(ĉ)
∗η > (∀η, ζ ∈ HU , ĉ ∈ Ĉ),

from where Hπ
U = π∗(Ĉ)HU . In particular, π(Uη,ζ) = 0 for all ζ ∈ Hπ

U , η ∈ (Hπ
U)⊥ which

gives the result.

6.5. Corollary. The functor Eπ transforms HU into Hπ
U and intertwiners HU

//HV

into intertwiners Hπ
U

//Hπ
V for all U, V ∈ UCorep(G).

6.6. Lemma. Let l̂ ∈ Ĉ. The matrix coefficient π(Uπ∗(l̂)ζ,η) ∈ Cs for all U ∈ UCorep(G)

and η, ζ ∈ HU if and only if l̂ is a left integral.

Proof. Combining the above mentioned relations, first one has:

π(Uη,π∗(l̂)ζ) =< U (1)π∗(l̂)ζ, η > π(U (2)) =

=< U (1)U
′(1)ζ, η > π(U (2)) < U

′(2), π∗(l̂) >=

< U (1)ζ, η > (id⊗ l̂)∆C(π(U (2))).

Since C is spanned by the π-images of matrix elements of all U ∈ UCorep(G), this element
is in Ct if and only if (id⊗ l̂)∆C = (εCt ⊗ l̂)∆C , i.e., if and only if l̂ is a left integral. Finally,
π(Uπ∗(l̂)ζ,η) = SC(π(Uη,π∗(l̂)ζ))

∗.

Consider now a surjective ∗-homomorphism π : G � H of WHAs G = (B,∆B, SB, εB)
and H = (C,∆C , SC , εC). Then the map a = (π ⊗ idB)∆ is a left coaction of H on B.

6.7. Definition. The fixed point unital ∗-subalgebra I(H\G) of B with respect to the
coaction (π⊗ idB)∆ of H is called a quotient type coideal C∗-subalgebra (briefly, quotient
type coideal) of B. Equivalently,

I(H\G) = {b ∈ B|(π ⊗ id)∆B(b) = (π ⊗ id)((1⊗ b)∆B(1))}

Obviously, π(I) ⊂ Cs and Bs ⊂ I, so π(I) = Cs.
Clearly, the smallest quotient type coideal of B is Bs. It corresponds to H = G, π = id.

Since I(H\G) is the fixed point ∗-subalgebra with respect to the coaction (π⊗ id)∆, it is
included into B′t (= α(Bt)

′).

6.8. Lemma. B′t is the greatest quotient type coideal C∗-subalgebra.
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Proof. Let Ĝ be the dual of a WHA G = (B,∆, S, ε). Let Ĝmin = B̂tB̂s be the minimal
WHA contained in Ĝ and imin : Ĝmin

// Ĝ the corresponding inclusion of WHAs (see
[Bohm-Nill-Szlachanyi,1999], [Nikshych,2003]). Then the adjoint map πmin : G // Ĝ∗min
given by < imin(B̂min), B >=< B̂min, πmin(B) >, is an epimorphism of WHAs. The
corresponding quotient type coideal Imax is the set of such b ∈ B that

< ẑ ⊗ b̂, (πmin ⊗ id)∆(b) >=< ẑ ⊗ b̂, (πmin ⊗ id)(1B ⊗ b)∆(B1) >,

which is equivalent to

< b̂, b ↼ ẑ >=< b̂, b(1B ↼ ẑ) >, for all b̂ ∈ B̂, ẑ ∈ B̂min, (29)

where, by definition, c ↼ ẑ := c2 < ẑ, c1 >, for any c ∈ B. As B̂min = B̂sB̂t, it suffices to
consider ẑ = ûv̂, where û ∈ B̂t and v̂ ∈ B̂s. So, b ∈ Imax if and only if b ∈ B and

b ↼ (ûv̂) = b(1B ↼ (ûv̂))b or (b ↼ û) ↼ v̂ = b((1B ↼ û) ↼ v̂).

By [Bohm-Nill-Szlachanyi,1999], (2.21a), one can rewrite the last equality as (ub) ↼ (v̂) =
b(u ↼ v̂), where we denoted 1B ↼ û ∈ Bt by u. Now, by [Bohm-Nill-Szlachanyi,1999],
(2.20b), this can be rewritten as (ub)v = b(uv), where we denoted 1B ↼ v̂ ∈ Bs by v.
But this is true exactly for b ∈ B′t, and we are done.

6.9. Lemma. Let ζ, η ∈ HU , then Uζ,η ∈ I if and only if π(Uζ,θ) ∈ Cs, for all θ ∈ HU .

Proof. If {θk} is an orthonormal basis is HU and Uζ,η ∈ I, then ∆(Uζ,η) = Σ
k

(Uζ,θk ⊗
Uθk,η) ∈ I ⊗ B, so all Uζ,θk ∈ I and π(Uζ,θk) ∈ Cs for all k. So, π(Uζ,θ) ∈ Cs, for all
θ ∈ HU .

Conversely, if π(Uζ,θ) ∈ Cs, then

(π ⊗ id)∆B(Uζ,θ) = (εCs ⊗ id)(π ⊗ id)∆B(Uζ,θ) =

= (π ⊗ id)(εBs ⊗ id)∆B(Uζ,θ) = (π ⊗ id)(1⊗ Uζ,θ)∆B(1).

The following lemma generalizes [Vainerman-Vallin,2017], Example 6.7 and describes
module categories associated with quotient type coideals.

6.10. Lemma. If (H, π) is a quantum subgroupoid of G and Λ is the set of left integrals
of Ĥ, then I = I(H\G) admits the decomposition

I(H\G) = ⊕
x∈Ω

π∗(Λ)Hx ⊗Hx

and the corresponding UCorep(G)-module C∗-category M is equivalent to UCorep(H)
viewed as a UCorep(G)-module C∗-category via the functor Eπ.



YETTER-DRINFEL’D ALGEBRAS AND COIDEALS OF WEAK HOPF C∗-ALGEBRAS 27

Proof. It suffices to prove that I is equivariantly isomorphic to the G − C∗-algebra
A corresponding to the couple (UCorep(H),1). Following the categorical duality, we
first construct an algebra Ã of the form (16), where F (U) = HomUCorep(H)(1, Eπ(HU)) =

HomURep(Ĥ)(Cs, π∗(Ĉ)(HU)), where Cs is a left Ĉ-module via ĉ·z := ĉ ⇀ z (ĉ ∈ Ĉ, z ∈ Bs).

For any such morphism f the vector f(1) is cyclic for Im(f), so in fact we have to describe
HomRep(Ĥ)(Cs, Ĉ). But [Bohm-Nill-Szlachanyi,1999], Lemma 3.3 shows that this is exactly

the set Λ of left integrals in Ĉ. Thus, we can identify HomURep(Ĥ)(Cs, π∗(Ĉ)(HU)) with

the subspace π∗(Λ)HU ⊂ HU .
So Ã is a subalgebra of the algebra B̃ =

⊕
U

(HU ⊗ HU), and the map pB : B̃ // B

sending ζ ⊗ η ∈ HU ⊗ HU onto the matrix coefficient Uζ,η induces an G-equivariant
isomorphism of A onto the coideal C∗-subalgebra I = V ec{Uζ,η|ζ ∈ π∗(Λ)HU , η ∈ HU , U ∈
UCorep(G)}. Finally, Corollary 6.6 and Lemma 6.9 show that I = I(H\G).

6.11. Invariant coideal C∗-subalgebras. Consider the right adjoint action of B
on itself defined by

b / x := S(x(1))bx(2), for all x, b ∈ B. (30)

It follows from [Nikshych-Turaev-Vainerman,2003], Lemma 2.2 that the map P/ : b 7→
b / 1B is a projection from B onto B′t, from where B / B = B′t.

6.12. Definition. A right coideal C∗-subalgebra I is called invariant if I / B = I.

6.13. Remark. 1. I is invariant if and only if I ⊂ B′t and I /B ⊂ I. Indeed, Definition
6.12 implies I = I / B ⊂ B / B = B′t and I / B = I ⊂ I. Conversely, if I ⊂ B′t and
I / B ⊂ I, then I = P/(I) = I / 1B ⊂ I / B ⊂ I.

2. B is invariant if and only if G is a ∗-Hopf algebra.
3. One can check that B′t is the greatest invariant coideal C∗-subalgebra.

It is known [Nikshych-Vainerman,2000] that all coideal C∗-subalgebras of B form a
lattice l(B) with minimal element Bs and maximal element B under the usual operations:
I1 ∧ I2 = I1 ∩ I2, I1 ∨ I2 = (I1 ∪ I2)′′.

6.14. Lemma. Invariant coideal C∗-subalgebras form its sublattice invl(B) with minimal
(resp., maximal) element Bs (resp., B′t).

Proof. If I, I ′ are two invariant coideal C∗-subalgebras, then for any natural number
k ≥ 2 and all j1, .., jk ∈ I ∪ I ′, b ∈ B one has:

j1..jk / b = (j1...jk−1 / b(1))(jk / b(2)).

So by obvious iteration j1..jk/b ∈ I∨I ′, but I, I ′ are ∗-invariant so I∨I ′ is spanned by sums
of type j1..jk. Moreover, the map: j 7→ j /b is linear which gives that (I∨I ′)/B ⊂ (I∨I ′).
But (I ∨ I ′) ⊂ B′t, so by Remark 6.13, 1 I ∨ I ′ is invariant. Also, (I ∩ I ′) / B ⊂ (I ∩ I ′)
and (I ∩ I ′) ⊂ B′t, so I ∩ I ′ is invariant and the result follows.
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6.15. Lemma. Any invariant coideal C∗-subalgebra I belongs to the category Y Dbrc(G).

Proof. All the relations (19) are obvious. Let us check the Yetter-Drinfel’d and the
braided commutativity relations:

∆(S(b(1))ab(2)) = S(b(2))a(1)b(3) ⊗ S(b(1))a(2)b(4) = (a(1) / b(2))⊗ S(b(1))a(2)b(3),

where a ∈ I, b ∈ B. Finally, using the fact that I ∈ B′t:

b(1)(a / b(2)) = b(1)S(b(2))ab(3) = εt(b(1))ab(2) = aεt(b(1))b(2) = ab, ∀a, b ∈ I.

Now discuss the relationship between quotient type and invariant coideals.

6.16. Lemma. Any quotient type coideal C∗-subalgebra I is invariant.

Proof. Let us show that (I / x) ∈ I for all x ∈ B. Indeed, using Proposition 2.2.1 of
[Nikshych-Vainerman,2002], we have for all b ∈ I:

(π⊗id)∆(S(x(1))bx(2))) =

= (π(S(x(2))⊗ S(x(1)))((π ⊗ id)((1⊗ b)∆(1))(π(x(3))⊗ x(4)) =

= (π ⊗ id)(S(x(2))1(1)x(3) ⊗ S(x(1))b1(2)x(4)) =

= (id⊗ π)(S(x(2))x(3) ⊗ S(x(1))bS(x(4)))) =

= (π ⊗ id)(εs(x(2))⊗ S(x(1))bx(3)) = (π ⊗ id)(1(1) ⊗ S(x(1))bx(2)1(2)).

The inverse statement - Theorem 1.2 is proved as follows:

Proof. Lemma 6.15 shows that I is a braided-commutative YD G-C∗-algebra. Then
Theorem 5.10 shows that the corresponding UCorep(G)-module category DI is a C∗-
multitensor category with tensor product ⊗I and trivial associativities equipped with a
unitary tensor functor

EI : UCorep(G) //DI , U 7→ HU ⊗Bs I.

Let us equip now the category DI with the tensor functor F to Corrf (Bs) sending
HU ⊗Bs I to HU . Then the reconstruction theorems for WHA’s and their morphisms
allow to construct a WHA HI such that UCorep(HI) ∼= CI together with an epimorphism
π : G //HI . In its turn, this allows to construct the quotient type coideal C∗-subalgebra
J = I(HI\G). Now, Lemma 6.10 shows that DJ ∼= UCorep(HI), therefore, DJ ∼= DI . But
due to the categorical duality this implies a covariant isomorphism J ∼= I.

In order to prove the uniqueness of H, we prove that J determines Ker(π). Indeed,
as J = V ec{Uη,ζ}, where U ∈ UCorep(G)}, η ∈ HU and ζ ∈ π∗(L̂)HU ⊂ HU , the
last subspace is determined by J . This means that for any U ∈ UCorep(G, the space
HomUCorep(H)(1, (H

π
U)) is determined by J . The duality morphisms HomUCorep(G)(1, U ⊗
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V ) = HomUCorep(G)(V, U) (U, V ∈ UCorep(G)) show that the same is true for all sub-
spaces
HomUCorep(H(Hπ

V ), Hπ
U) ⊂ B(HV , HU). Finally, an operator from B(HU) belongs to

Ker(π) if and only if all matrix coefficients corresponding to the commutant of the set
EndUCorep(H(Hπ

U) in B(HU) equal to 0.

6.17. Remark. In [Vainerman-Vallin,2020] we introduced the notion of a weak coideal
I of B, the difference of which from a coideal C∗-subalgebra is that 1I is not necessarily
equal to 1B. One can show that if I is invariant and 1I ∈ Z(B), then (I,∆) ∈ Y Dbrc(G).
Then the same reasoning as in the proof of Theorem 1.2 shows that I is isomorphic, as a
G-C∗-algebra, to a unique quotient type coideal C∗-subalgebra.

7. Example: the Tambara - Yamagami case

7.1. Remark. In this example C is not only C∗-multitensor, but a rigid finite C∗-tensor
category. Let F : C // Corrf (R) be a unitary tensor functor, where R is a finite dimen-
sional unital C∗-algebra. Then it was shown in [Szlachanyi,2001] that the WHA recon-
structed from the pair (C,F) as in Theorem 3.1 is biconnected: Bt∩Bs = C = Bt∩Z(B).
Moreover, Hayashi [Hayashi,1999] proved that for any given C, the class of C∗-algebras R
for which such a functor F exists, contains at least R = C|Ω| (where Ω = Irr(C)). He also
constructed the corresponding particular functor H. In general, this class of C∗-algebras
R contains several elements, and the corresponding WHAs are called Morita equivalent.
In particular, if this class contains R = C, the corresponding WHAs are Morita equivalent
to a usual C∗-Hopf algebra.

7.2. Reconstruction for Tambara-Yamagami categories. The description of
the Hayashi’s functor for Tambara-Yamagami categories and the corresponding WHA’s
was first obtained in [Mevel,2010]. Below we follow [Vainerman-Vallin,2020], 2.3 and 4.1,
where one can find more details.

Given a finite abelian group G, a non degenerate symmetric bicharacter χ on it and a
number τ = ±|G|−1/2, one can define a fusion category denoted by T Y(G,χ, τ) [Tambara-
Yamagami,1998]. Its set of simple objects is Ω = G t {m} (m is a separate element),
its Grothendieck ring is isomorphic to the Z2-graded fusion ring T YG = ZG ⊕ Z{m}
such that g · m = m · g = m, m2 = Σ

g∈G
g, g∗ = g−1, m = m∗. The associativities

aU,V,W : (U ⊗ V )⊗W // U ⊗ (V ⊗W ) are

ag,h,k = idg+h+k, ag,h,m = idm, am,g,h = idm,

ag,m,g = χ(g, h)idm, ag,m,m = ⊕
h∈G

idh, am,m,g = ⊕
h∈G

idh,

am,g,m = ⊕
h∈G

χ(g, h)idh, am,m,m = (τχ(g, h)−1idm)g,h,

where g, h, k ∈ G. The unit isomorphisms are trivial. T Y(G,χ, τ) becomes a C∗-tensor
category when χ : G×G //T = {z ∈ C||z| = 1}, from now on we assume that this is the
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case. The dual objects are: g∗ = −g, for all g ∈ G, and m∗ = m. The rigidity morphisms

are defined by Rg : 0
id0 // g∗⊗g, Rg : 0

id0 // g⊗g∗, Rm = τ |G|1/2ι, and Rm = |G|1/2ι, where

ι : 0 //m⊗m is the inclusion. Then dimq(g) = 1, for all g ∈ G, and dimq(m) =
√
|G|.

Using now the Hayashi’s functor H : T Y(G,χ, τ) //Corrf (R), where R ∼= C|G|+1 (see
[Mevel,2010], [Vainerman-Vallin,2020]), one can apply Theorem 3.1 in order to construct
a biconnected regular WHA GT Y = (B,∆, S, ε) with UCorep(GT Y) ∼= T Y(G,χ, τ) as
C∗-tensor categories. It happens that GT Y is selfdual.

Denoting Ωg = Ω := G t {m} and Ωm := G t G, where g ∈ G and G is the second
copy of G, one computes that Hg ∼= C|G|+1, for all g ∈ G, and Hm :∼= C2|G|. Let us fix a
basis {vxy}(y ∈ Ωx) in each Hx (x ∈ Ω) choosing a norm one vector in every 1-dimensional
vector subspace: vgh ∈ Hom(h, (h− g)⊗ g), vgm ∈ Hom(m,m⊗ g), vmg ∈ Hom(m, g⊗m),
and vmg ∈ Hom(g,m ⊗ m), where g ∈ G. Now the whole WHA structure of GT Y =
(B,∆, S, ε) is given by formulas (7), (8), (9), (11) and (12). In particular, the C∗-algebra
B = ⊕

x∈Ω
Hx ⊗Hx has a canonical basis {fxα,β = vxα ⊗ vxβ}x∈Ω,α,β∈Ωx .

For all x, y ∈ Ω and all v ∈ Hx, w ∈ Hy, denote v ◦ w = Jx,y(v ⊗R w). Then for all
α, β ∈ Ωx, γ, δ ∈ Ωy, one has:

fxα,βf
y
γ,δ = (vxα ◦ vyγ)⊗ (vxβ ◦ v

y
δ ),

where computations made in [Mevel,2010] 2.1.5, give, for all g, h, k ∈ G:

vgk ◦ v
h
x = δx,h+kv

g+h
h+k, v

g
m ◦ vhx = δx,mv

g+h
m ,

vmk ◦ vgx = δx,mχ(g, k)vmk , v
m
k
◦ vgx = δx,g+kv

m
g+k

,

vgx ◦ vmk = δx,mχ(g, k)vm
k
, vgx ◦ vmk = δx,kv

m
k−g,

vmh ◦ vmk = vk−hk , vm
h
◦ vmk = δh,kτ Σ

g∈G
χ(g, h)−1vgm.

The coproduct and the counit are defined, respectively, by

∆(fxα,β) =
∑

α′,β′∈Ωx

fxα,α′ ⊗ fxβ′,β

and ε(fxα,β) = δα,β. The antipode and the involution are as follows:

S(f gh,k) = f−gk−g,h−g, S(f gh,m) = f−gm,h−g, S(f gm,h) = f−gh−g,m, (31)

S(f gm,m) = f−gm,m, S(fmg,h) = fm
h,g
, S(fm

g,h
) = τ−1fmh,g, (32)

S(fmg,h) = τfm
h,g
, S(fm

g,h
) = fmh,g

and:
(f gh,k)

∗ = f−gh−g,k−g, (f gh,m)∗ = f−gh−g,m, (f gm,h)
∗ = f−gm,h−g,
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(f gm,m)∗ = f−gm,m, (fmg,h)
∗ = fm

g,h
, (fm

g,h
)∗ = τfmg,h,

(fmg,h)
∗ = τ−1fm

g,h
, (fm

g,h
)∗ = fmg,h.

Recall that H0 is a commutative C∗-algebra isomorphic to R ∼ CΩ.

7.3. Remark. Since GT Y is selfdual, we also have B = ⊕
g∈G

Bg ⊕ Bm, where Bg ∼=

M|G|+1(C), ∀g ∈ G, Bm ∼= M2|G|(C) (see [Mevel,2010], 2.1). Using the basis {fxy,z}
and the matrix units {exy,z} of B with respect to the basis {vxt } of Hx, any irreducible
corepresentation Ux (x ∈ Ω) of GT Y can be written as

Ux =
∑
y,z∈Ωx

exy,z ⊗ fxy,z.

7.4. Quantum subgroupoids and quotient type coideal C∗-subalgebras.

7.5. Remark. The lattice Subgrp(G) of subgroups of G with operations ∧ = ∩ and
∨ = + can be extended to Subgrp(G) := Subgrp(G) t {Ω}, where Ω = G t {m}, by
putting L ∩ Ω = Ω ∩ L = L and L ∨ Ω = Ω ∨ L = Ω ∩ Ω = Ω ∨ Ω = Ω, for any subgroup
L of G. Any rigid tensor C∗-subcategory of T Y(G,χ, τ) is equivalent either to V ecL -
the category of finite dimensional L-graded vector spaces (L < G) or to T Y(G,χ, τ).
Let Cx (x ∈ Subgrp(G)) be a representative in such equivalence class of subcategories, in
particular, CΩ = T Y(G,χ, τ).

In order to construct all quotient type coideal C∗-subalgebras of GT Y , first construct
all its quantum subgroupoids (up to isomorphism). Theorems 3.1 and 3.2 imply that any
quantum subgroupoid of GT Y is isomorphic to one of the quantum subgroupoids (Gx, πx)
such that URep(Gx) ∼= Cx, where x ∈ Subgrp(G). Define (GΩ, πΩ) = (GT Y , id) and, for
any L < G, (GL, πL) as follows:

7.6. Lemma. If exy,z (x ∈ Ω, y, z ∈ Ωx) are the matrix units of B (see Remark 7.3),
l ∈ L, g, h ∈ G, the collection (BL,∆L, SL, εL), where BL = ⊕

l∈L
B(H l),

∆L(elg,g′) =
∑
l1,l2∈L
l1+l2=l

el1g−l2,g′−l2 ⊗ e
l2
g,g′ , ∆L(elg,m) =

∑
l1,l2∈L
l1+l2=l

el1g−l2,m ⊗ e
l2
g,m,

∆L(elm,g′) =
∑
l1,l2∈L
l1+l2=l

el1m,g′−l2 ⊗ e
l2
m,g′ , ∆L(elm,m) =

∑
l1,l2∈L
l1+l2=l

el1m,m ⊗ el2m,m,

SL(elg,g′) = e−lg′−l,g−l, SL(elg,m) = e−lm,g−l,

SL(elm,g′) = e−lg′−l,m, SL(elm,m) = e−lm,m,

εL(elg,g′) = εL(elm,g′) = εL(elg,m′) = εL(elm,m) = δl,0,

defines a WHA GL. The canonical projection πL : B //BL defined, for all x ∈ Ω, α, β ∈
Ωx, by πL(exα,β) = δx,Le

x
α,β, where δx,L = 1 if x ∈ L and = 0 otherwise, gives to GL the

structure of a quantum subgroupoid of GTY .
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Proof. Straightforward computations.

7.7. Corollary. A linear basis for (BL)t (resp., (BL)s) is given by (e(L)α)α∈Ω (resp.,
(e(L)α)α∈Ω), where, for all g ∈ G, one has: e(L)g =

∑
l∈L
elg+l,g+l, e(L)g =

∑
l∈L
elg,g and

e(L)m = e(L)m =
∑
l∈L
elm,m.

The counital maps are given by:

εBLt (elx,y) = δl,0e(L)x, εBLs (elx,y) = δl,0e(L)y.

A linear basis for (BL)s ∩ (BL)t is given by (zβ)β∈G/Lt{m}, where, for all β ∈ G/L, one
has: zβ =

∑
l∈L,g,∈β

elg,g and zm = e(L)m = e(L)m =
∑
l∈L
elm,m. Moreover, (BL)s ∩Z(BL) = C,

so GL is connected and not coconnected.

7.8. Remark. Any GL is Morita equivalent to a commutative and cocommutative Hopf
C∗-algebra generated by the group L.

7.9. Proposition. Denote Ix := I(Gx\G). Then IΩ = Bs and, for any subgroup L of
G, setting v0

Y :=
∑
y∈Y

v0
y, where Y ∈ G/L, one has:

IL = V ec < v0
Y , Y ∈ G/L > ⊗H0 ⊕

l∈L⊥
vlm ⊗H l.

Proof. We will use Lemma 6.10. For all ĉ ∈ ĜL, β ∈ Ωα, one has:

(πL)∗(ĉ)v
α
β =

∑
i,j∈Ωα

< fαi,j, (πL)∗(ĉ) > eαi,jv
α
β =

∑
i∈Ωα

< πL(fαi,β), ĉ > vαi (33)

A linear form φ on BL is a left integral if and only if (i ⊗ φ)∆L(elx,y) is in (BL)t, for all
l ∈ L, x, y ∈ Ω. Then Lemma 7.6 implies that Λ = V ec < λx, x ∈ Ω >.

For all α, γ ∈ Ω, β ∈ Ωα, using (33), one has:

(πL)∗(λγ)v
α
β =

∑
i∈Ωα,l∈L

< πL(fαi,β), (elγ,γ)
∗ > vαi .

This gives, in particular:

(πL)∗(λγ)v
p
k = δp,0δγ,−k

∑
l∈L

v0
k+l,

(πL)∗(λγ)v
p
m = δγ,mδp,L⊥ |L|vpm

And also:
(πL)∗(λγ)v

m
k =

∑
h∈G,l∈L

< πL(eh−k−k,m), (elγ,γ)
∗ > vph = 0,
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(πL)∗(λγ)v
m
k

=
∑

h∈G,l∈L

< πL(eh−km,−k), (e
l
γ,γ)

∗ > vm
h

= 0.

So if one sets: v0
X =

∑
x∈X

v0
x, for all X ⊂ Ω, then:

(πL)∗(Λ)Hp = δp,0(V ec < v0
Y , v

0
m/Y ∈ G/L >) + δp,L⊥Cvpm for all p ∈ G,

(πL)∗(Λ)Hm = {0}.

These calculations and Lemma 6.10 give the result.

7.10. The lattice of invariant coideal C∗-subalgebras. In order to precise the
relationship between quotient type and invariant coideal C∗-subalgebras and to charac-
terize the lattice of these coideals in the Tambara-Yamagami case, rewrite the definition
(30) of / using (31) and (32) as follows:

(ηy ⊗ ξy) / (ηx ⊗ ξx) = (
∑
z∈Ωx

(vxz )\ ◦ ηy ◦ vxz )⊗ (ηx)[ ◦ ξy ◦ ξx,

where x, y ∈ Ω, ηx, ξx ∈ Hx, ηy, ξy ∈ Hy. This expression allows to define the map
P x : ⊕

y∈Ω
Hy // ⊕

y∈Ω
Hy by putting for any fixed x, y ∈ Ω, ηy ∈ Hx:

P x(ηy) =
∑
z∈Ωx

(vxz )\ ◦ ηy ◦ vxz ,

and we have:

7.11. Lemma. A coideal C∗-subalgebra I =
∑
y∈Ω

Xy ⊗ Hy is invariant if and only if

⊕
y∈Ω

Xy = P x( ⊕
y∈Ω

Xy) for all x ∈ Ω.

A straightforward calculation of P x on the basic elements vxz proves

7.12. Lemma. For all g, k, h ∈ G, one has:

P h(vgk) = δg,0v
0
k+h , P

m(vgk) = δg,0sign(τ)
∑
p∈G

χ(p, k)vpm

P h(vgm) = vgm , Pm(vgm) = τ−1|G|1/2
∑
p∈G

χ(g, p)v0
p

P h
|Hm = Pm

|Hm = 0

In the Tambara-Yamagami case any invariant coideal C∗-subalgebra is not only iso-
morphic but is itself of quotient type:
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7.13. Proposition. For any invariant coideal C∗-subalgebra I = ⊕
y∈Ω

Xy ⊗Hy there is a

unique quotient type coideal C∗-subalgebra Ix = I(Gx\G) such that I = Ix.

Proof. Due to [Vainerman-Vallin,2020], Lemma 3.3, b) there is a partition (Γi)i∈I0 of Ω
such that X0 = V ec < v0

Γi
/i ∈ I0 >. Moreover, putting K := {g ∈ G/Dim(Xg) 6= 0},

one has by Lemmas 7.11 and 7.12: Xm = {0}, and Xg = Cvgm for all g ∈ K, g 6= 0. With
the convention m + g = m for all g ∈ G :, one has by Lemma 7.12: v0

Γi+g
∈ X0 for all

i ∈ I0. As a consequence, for all g ∈ G there is j ∈ J such that Γi + g = Γj; this allows
only two possibilities:

1) there is a single class Γi = Ω, so I = Bs + ⊕
g∈K\{0}

Cvgm. But for all g ∈ K \ {0}

one has Pm(vgm) = τ−1|G|1/2
∑
p∈G

χ(g, p)v0
p which must be collinear to v0

Ω =
∑
y∈Ω

v0
y. Hence,

K = {0} and I = Bs = IΩ.
2) The partition (Γi) is {m} together with a partition (ΓGp )p∈P of G. Moreover, for

any p, q ∈ P there is g ∈ G such that ΓGp + g = ΓGq . For any p ∈ P denote Lp = {g ∈
G/ΓGp + g = ΓGp }, then Lp is a subgroup of G. But since for all q ∈ P , there is h ∈ G such
that Γq = Γp + h, the group Lp does not depend on p ∈ P , denote it by L. Let us show
that ΓGp ∈ G/L for any p ∈ P .

If h ∈ ΓGp −ΓGp , then (ΓGp +h)∩ΓGp 6= ∅, so ΓGp +h = ΓGp . Hence, K = ΓGp −ΓGp . For all
p ∈ P , let z be in ΓGp , obviously one has z+L ⊂ ΓGp , let t ∈ ΓGp , then t− z ∈ L = ΓGp −ΓGp
hence t ∈ z + L, as a consequence z + L = ΓGp so ΓGp ∈ G/L, as we deal with a partition
of G: {ΓGp /p ∈ P} = G/L. So we have: X0 = V ec < (v0

Y )Y ∈G/L, v
0
m >.

If now g ∈ K, then due to Lemma 7.12 one must have
∑
h∈G

χ(g, h)v0
h ∈ X0, but:∑

h∈G
χ(g, h)v0

h =
∑

p∈G/L

∑
h∈p
χ(g, h)v0

h, so this element has to belong to X0 and must be of the

form
∑

p∈G/K
µpv

0
p, i.e., for all p ∈ G/K and all h ∈ p, one has µp = χ(g, h), which means

that K ⊂ L⊥. Conversely, by Lemma 7.12, one must have
∑

k∈K,p∈G
χ(p, k)vpm ∈ ⊕

k∈G
Ak, but

on the other hand:

∑
k∈K

∑
p∈G

χ(p, k)vpm =
∑
p∈G

(
∑
k∈K

χ(k, p))vpm = |K|
∑
p∈K⊥

vpm

So L⊥ ⊂ K and in case 2) we have I = IL.

7.14. Corollary. In GT Y(G,χ, τ), the sets of quotient type and invariant coideal C∗-
subalgebras coincide and are in bijection with Subgrp(G).

Proof. By 7.13 any invariant coideal is quotient type, conversely any quotient type
coideal is invariant by lemma 6.16, moreover the set {Ix, x ∈ Subgrp(G)} contains all
invariant coideals and is included in the set of quotient type coideals.
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Finally, we describe the lattice of invariant (or quotient type) coideal C∗-subalgebras.

7.15. Proposition. The map: x 7→ Ix is an anti-isomorphism of the lattices Subgr(G)
and Invl(B).

Proof. For any subgroup K of G, since IK = V ec < v0
Y , Y ∈ G/K > ⊗H0 ⊕

k∈K⊥
vkm⊗Hk,

one sees that the map x 7→ Ix is decreasing. Hence, for all L,K < G, one has IL+K ⊂
IL ∩ IK . Conversely, for all z ∈ IL ∩ IK , there exist some families of complex numbers
(λu), (µv) and non zero vectors (ξ0

w), (ηgm) such that:

z =
∑

Y ∈G/L

λY v
0
Y ⊗ ξ0

Y +
∑
l∈L⊥

λlv
l
m ⊗ ηlm =

∑
Z∈G/K

µZv
0
Z ⊗ ξ0

Z +
∑
k∈K⊥

µkv
k
m ⊗ ηkm.

This gives: ∑
g∈G

λ .gv
0
g ⊗ ξ0

.
g

+
∑
l∈L⊥

λlv
l
m ⊗ ηlm =

∑
g∈G

λ..gv
0
g ⊗ ξ0

..
g

+
∑
k∈K⊥

λkv
k
m ⊗ ηkm,

where
.
g (resp.,

..
g) is the class of g in G/L (resp., in G/K). As a consequence, one has:

1) if l ∈ L⊥ and l /∈ K⊥, then λl = 0.

2) for any g ∈ G the following equality holds: λ .gξ
0
.
g

= λ..gξ
0
..
g
.

Condition 2) implies that for all g ∈ G, p ∈ L + K, one has λ .gξ
0
.
g

= λ .

g+p
ξ0

.

g+p
. Hence,

for any Y ∈ G/(L + K) we can define ξ0
Y such that for all g ∈ Y one has: λ .gξ

0
.
g

= ξ0
Y .

Then, using the fact that L⊥ ∩K⊥ = (L + K)⊥ (see [Hewitt-Ross,1963], (23),(29)(b) on
p.369), one has:

z =
∑
g∈G

λ .gv
0
g ⊗ ξ0

.
g

+
∑

l∈L⊥∩K⊥
λlv

l
m ⊗ ηlm

=
∑

Y ∈G/(L+K)

∑
g∈Y

v0
g ⊗ ξ0

Y +
∑

l∈(L+K)⊥

λlv
l
m ⊗ ηlm

=
∑

Y ∈G/(L+K)

v0
Y ⊗ ξ0

Y +
∑

l∈(L+K)⊥

λlv
l
m ⊗ ηlm

Hence, z ∈ IL+K , which proves that IL+K = IL ∩ IK .
Obviously, IL ∨ IK ⊂ IL∩K . Conversely, since (L ∩ K)⊥ = L⊥ + K⊥, for any p ∈

(L ∩ K)⊥ there exist l ∈ L⊥ and k ∈ K⊥ such that p = k + l. Then vpm ⊗ Hp =
(vlm ⊗H l)(vkm ⊗Hk), so it belongs to IL ∨ IK . For all g ∈ G one has:

v0
g+L ◦ v0

g+K = v0
g+L∩K ,

hence, v0
g+L∩K ⊗H0 belongs to IL ∨ IK . All basic elements of IL∩K are in IL ∨ IK which

gives the converse inclusion IL∩K ⊂ IL ∨ IK , and the result follows.
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équivariante. K-Theory, 2(6):683–721, 1989.
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Gabriella Böhm and Kornél Szlachányi. Weak Hopf algebras. II. Representation theory,
dimensions, and the Markov trace. J. Algebra, 233(1):156–212, 2000.

Damien Calaque and Pavel Etingof. Lectures on tensor categories. In Quantum groups,
volume 12 of IRMA Lect. Math. Theor. Phys., pages 1–38. Eur. Math. Soc., Zürich,
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Jean-Michel Vallin. Groupöıdes quantiques finis. J. Algebra, 239(1):215–261, 2001.

J.-M. Vallin. Deformation of finite dimensional C∗-quantum groupoids. Preprint,arXiv:
math/0310265 [math.QA], 2003.



38 LEONID VAINERMAN, JEAN-MICHEL VALLIN

Jean-Michel Vallin. Multiplicative partial isometries and finite quantum groupoids. In
Locally compact quantum groups and groupoids (Strasbourg, 2002), volume 2 of IRMA
Lect. Math. Theor. Phys., pages 189–227. de Gruyter, Berlin, 2003.

Mishihisa Wakui. Reconstruction of weak bialgebra maps and its applications. Preprint,
arXiv:2002.12568v1 [mathRA], 2020.

Address
LMNO Caen,
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