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Copies of c0(τ) spaces in projective tensor products

Vińıcius Cortes, Elói Medina Galego, and Christian Samuel

This paper is dedicated to the memory of our friend Eve Oja.

Abstract. Let X and Y be Banach spaces and consider the projective tensor
product X⊗̂πY . Suppose that τ is an infinite cardinal, X has the bounded

approximation property and the density character of X is strictly smaller than
the cofinality of τ . We prove the following c0(τ) generalizations of classical c0
results due to Oja (1991) and Kwapień (1974) respectively:

(i) If c0(τ) is isomorphic to a complemented subspace of X⊗̂πY , then c0(τ)
is isomorphic to a complemented subspace of Y.

(ii) If c0(τ) is isomorphic to a subspace of X⊗̂πY , then c0(τ) is isomorphic

to a subspace of Y .
We also show that the result (i) is optimal for regular cardinals τ and Banach

spaces X without copies of c0(τ). In order to do so, we provide a c0(τ)

extension of a classical c0 result due to Emmanuele (1988) concerning the
c0(τ) complemented subspaces of Lp(Dτ , Y ) spaces, 1 ≤ p ≤ ∞, where Dτ is

the Cantor cube. Finally, as a consequence of (i) we conclude that under the

continuum hypothesis, the space c0(ℵα), with α > 1, is not isomorphic to a

complemented subspace of l∞⊗̂πl∞(ℵα).

1. Introduction

Let X and Y be infinite dimensional Banach spaces. We say that Y contains a

copy (resp. a complemented copy) of X, and write X ↪→ Y (resp. X
c
↪→ Y ), if X

is isomorphic to a subspace (resp. complemented subspace) of Y . We denote by
X⊗̂πY the projective tensor product of X and Y [20, p. 17]. For a non-empty
set Γ, c0(Γ, X) denotes the Banach space of all X-valued maps f on Γ with the
property that for each ε > 0, the set {γ ∈ Γ : ‖f(γ)‖ ≥ ε} is finite, equipped with
the supremum norm. This space will be denoted by c0(Γ) when X = R. We will
refer to c0(Γ) as c0(τ) when the cardinality of Γ (denoted by |Γ|) is equal to τ . As
usual, the dual and bidual of c0(τ) will be denoted by l1(τ) and l∞(τ) respectively,
and when τ = ℵ0 these spaces will be denoted by c0, l1 and l∞ respectively.
In this paper we study subspaces and complemented subspaces of projective tensor
products which are isomorphic to some c0(τ) space. In the particular case where
τ = ℵ0, this research topic is really very old and offers many difficulties due to
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the intriguing structure of the projective tensor products, see for instance the work
“Unexpected subspaces of tensor products” [2]. We just point out that Pisier in
[16, Theorem 4.1] showed the existence of Banach spaces X and Y such that

(1.1) c0
c
↪→ X⊗̂πY without c0 ↪→ X or c0 ↪→ Y.

In contrast to Pisier’s result, Oja [14, Théorème 3] proved that if a Banach space X
has a boundedly complete finite dimensional decomposition, then for any Banach
space Y we have

(1.2) c0
c
↪→ X⊗̂πY =⇒ c0

c
↪→ Y.

Moreover, Kwapień [12] had already shown that for any Banach space Y ,

(1.3) c0 ↪→ L1[0, 1]⊗̂πY =⇒ c0 ↪→ Y.

The purpose of this work is to obtain c0(τ) generalizations of the results of Oja
(1.2) and Kwapień (1.3) to the case where τ is an uncountable cardinal. In this
direction we have already studied the c0(τ) complemented subspaces of X⊗̂πY in
the particular cases when X is one of the classical spaces `p(I) [5] or Lp[0, 1] [4].
We have shown that if X = `p(I), 1 ≤ p <∞, or X = Lq[0, 1], 1 < q <∞, then

c0(τ)
c
↪→ X⊗̂πY =⇒ c0

c
↪→ Y,

for any Banach space Y . But we left the problem below unsolved [5, Problem 8.5].

Problem 1.1. Let Y be a Banach space and τ an uncountable cardinal. Is it true
that

c0(τ)
c
↪→ l∞⊗̂πY =⇒ c0(τ)

c
↪→ Y ?

Our generalization of (1.2) will provide a positive solution to Problem 1.1 whenever
the cofinality of τ is strictly greater than the continuum (Corollary 1.8 with m = ℵ0).
Recall that the cofinality of an infinite cardinal τ , denoted by cf(τ), is the least
cardinal α such that there exists a family of ordinals {βj : j ∈ α} satisfying βj < τ
for all j ∈ α, and sup{βj : j ∈ α} = τ [11]. A Banach space X has the λ-bounded
approximation property (in short, X has the λ-bap), λ ≥ 1, if given K a compact
subset of X and ε > 0, there exists a finite rank operator T : X → X satisfying
‖T‖ ≤ λ and ‖x − T (x)‖ < ε for every x ∈ K. X has the bounded approximation
property if X has the λ-bap for some λ ≥ 1 [1]. The density character of X, denoted
by dens(X), is the smallest cardinality of a dense subset of X.

Theorem 1.2. Let X be a Banach space with the bounded approximation property
and τ be an infinite cardinal satisfying dens(X) < cf(τ). For any Banach space Y ,

c0(τ)
c
↪→ X⊗̂πY =⇒ c0(τ)

c
↪→ Y.

Remark 1.3. Even if τ = ℵ0 and X contains no copies of c0, we cannot replace the
hypothesis dens(X) < ℵ0 with dens(X) ≤ ℵ0 in Theorem 1.2. Indeed, the space X
mentioned above in the example of Pisier can be chosen having a Schauder basis
([15, Remark, p. 84] and [17, Corollary 10.1, p. 68]) and, therefore, having the
bounded approximation property.

Recall that a cardinal τ is said to be regular when cf(τ) = τ . As a consequence
of Theorem 1.4, we will show in Remark 1.5 that Theorem 1.2 is optimal for any
regular cardinal τ and any Banach space X containing no copies of c0(τ). In order
to state Theorem 1.4, we need some notation. If Γ is a non-empty set, we endow
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{−1, 1} with the probability measure which assigns to each point the value 1/2 and
denote by DΓ = {−1, 1}Γ the Cantor cube with the corresponding product measure
µ. Given Y a Banach space and p ∈ [1,∞), we denote by Lp(D

Γ, Y ) the Lebesgue-
Bochner space of all (classes of equivalence of) measurable functions f : DΓ → Y
such that the scalar function ‖f‖p is integrable, equipped with the complete norm

‖f‖p =

[∫ 1

0

‖f(t)‖pdt
] 1
p

.

These spaces will be denoted by Lp(D
Γ) when Y = R. A measurable function

f : DΓ → Y is essentially bounded if there exists ε > 0 such that the set {t ∈
DΓ : ‖f(t)‖ ≥ ε} has measure zero, and we denote by ‖f‖∞ the infimum of all such
numbers ε > 0. By L∞(DΓ, Y ) we will denote the space of all (classes of equivalence
of) essentially bounded functions f : DΓ → X, equipped with the complete norm
‖ · ‖∞.

Theorem 1.4. Given Y a Banach space, τ an infinite cardinal and 1 ≤ p ≤ ∞,

c0(τ) ↪→ Y =⇒ c0(τ)
c
↪→ Lp(D

τ , Y ).

Remark 1.5. Let us show that the hypothesis dens(X) < cf(τ) in Theorem 1.2
cannot be improved in the case of regular cardinals τ and Banach spaces X with
no copies of c0(τ). According to a well-know result of Rosenthal [6, Corollary 11,
p.156],

(1.4) c0(τ) 6 c↪→ l∞(τ).

Moreover, L1(DΓ) has the bounded approximation property [6, Example 11] and
the density character of L1(DΓ) is equal to |Γ| [13, Theorem 2.12]. Recall also that
the spaces L1(DΓ, Y ) and L1(DΓ)⊗̂πY are isometrically isomorphic [20, Example
2.19]. So, applying Theorem 1.4 with X = L1(Dτ ) and Y = l∞(τ) yields

c0(τ)
c
↪→ L1(Dτ )⊗̂πl∞(τ) although c0(τ) 6↪→ L1(Dτ ) and c0(τ) 6 c↪→ l∞(τ).

Remark 1.6. Using [9, Lemma 2.1] it is easy to see that Lp([0, 1], Y ) is isomorphic
to Lp(D

ℵ0 , Y ), 1 ≤ p ≤ ∞, for every Banach space Y . Thus, the case τ = ℵ0 of
Theorem 1.4 is due to Emmanuele [7, Main Theorem].

We will also prove the following theorem which can be seen as a version of Theorem
1.2 for Lebesque-Bochner spaces Lp(D

Γ, Y ) with 1 ≤ p <∞.

Theorem 1.7. Let Y be a Banach space, Γ be an infinite set, τ be an infinite
cardinal and 1 ≤ p <∞. If |Γ| < cf(τ), then

c0(τ)
c
↪→ Lp(D

Γ, Y ) =⇒ c0(τ)
c
↪→ Y.

Note that in the particular case m = ℵ0, the following direct consequence of Theo-
rem 1.2 provides a positive solution to Problem 1.1 for many large enough cardinals
τ . Recall that the density character of `∞(τ) is 2τ [8, Theorem 3.6.11] and this
space has the bounded approximation property [6, p. 245].

Corollary 1.8. Let τ and m be infinite cardinals satisfying 2m < cf(τ). Then,
for any Banach space Y,

c0(τ)
c
↪→ `∞(m)⊗̂πY =⇒ c0(τ)

c
↪→ Y.
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Under the continuum hypothesis 2ℵ0 = ℵ1 we also get the following consequence of
Theorem 1.2 which can be seen as a generalization of (1.4) whenever τ > ℵ1.

Corollary 1.9. Assuming the continuum hypothesis, for any α > 1 we have

c0(ℵα) 6 c↪→ l∞⊗̂πl∞(ℵα).

Proof. Assume by contradiction that there exists α > 1 such that

c0(ℵ2)
c
↪→ c0(ℵα)

c
↪→ l∞⊗̂πl∞(ℵα).

By Theorem 1.2 it follows that l∞(ℵα) contains a complemented subspace isomor-
phic to c0(ℵ2), and this contradicts [6, Corollary 11, p.156]. �

Remark 1.10. It is an open problem to know if the statement of Corollary 1.9
remains true for α = 0 [2, Remark 3]. We also left open whether that statement
holds when α = 1.

Now we turn our attention to generalizations of the result (1.3). We will prove:

Theorem 1.11. Let X be a Banach space with the bounded approximation property
and τ an infinite cardinal satisfying dens(X) < cf(τ). For any Banach space Y ,

c0(τ) ↪→ X⊗̂πY =⇒ c0(τ) ↪→ Y.

Next, denote by X⊗̂εY the injective tensor product of the Banach spaces X and
Y [20, p. 46]. As a direct consequence of Theorem 1.11 we obtain the following:

Corollary 1.12. Let X and Y be Banach spaces such that X∗ has both the bounded
approximation property and the Radon-Nikodým property. Suppose that τ is a car-
dinal satisfying dens(X) < cf(τ). Then

l1(τ)
c
↪→ X⊗̂εY =⇒ l1(τ)

c
↪→ Y.

Proof. Since X∗ has the bounded approximation property and the Radon-
Nikodým property, by [20, Theorem 5.33] we know that the dual of X⊗̂εY is
isomorphic to X∗⊗̂πY ∗. Thus we get

c0(τ) ↪→ X∗⊗̂πY ∗.

Now, since X∗ has the Radon-Nikodým property it follows by [21, Theorem 6]
that dens(X) = dens(X∗). Thus, according to Theorem 1.11 we conclude that

c0(τ) ↪→ Y ∗, and an appeal to [19, Corollary 1.2] yields l1(τ)
c
↪→ Y . �

Moreover, notice that the result (1.3) was proved in [12, Main Theorem] to a more
general setting; more precisely, for any Banach space Y and 1 ≤ p <∞,

(1.5) c0 ↪→ Lp([0, 1], Y ) =⇒ c0 ↪→ Y.

Thus, we will also state a c0(τ) generalization of (1.5) by proving the following non
complemented version of Theorem 1.7.

Theorem 1.13. Let Y be a Banach space, Γ be an infinite set, τ be an infinite
cardinal and 1 ≤ p <∞. If |Γ| < cf(τ), then

c0(τ) ↪→ Lp(D
Γ, Y ) =⇒ c0(τ) ↪→ Y.



COPIES OF c0(τ) SPACES IN PROJECTIVE TENSOR PRODUCTS 5

Remark 1.14. Of course, if τ = ℵ0 and X contains no copies of c0, the optimality
of Theorem 1.11 follows from the example of Pisier cited in (1.1). However, we do
not know if Theorem 1.11 is optimal for any regular cardinal τ and any Banach
space X containing no copies of c0(τ). Finally, as far as Corollary 1.12 is concerned,
we do not even know if it is optimal in the case τ = ℵ0.

2. Preliminary results and notation

Before proving our results we will recall some auxiliary results that will be used
throughout this paper. We will denote by (ei)i∈τ the canonical basis of c0(τ), that
is, ei(j) = δij for each i, j ∈ τ . If Γ is a subset of τ , we identify c0(Γ) with the
closed subspace of c0(τ) consisting of the maps g on τ such that g(i) = 0 for each
i ∈ τ \Γ. We begin by recalling the following classical result due to Rosenthal [18,
Remark following Theorem 3.4].

Theorem 2.1. Let X be a Banach space and τ be an infinite cardinal. Suppose
that T : c0(τ)→ X is a bounded linear operator satisfying

inf{‖T (ei)‖ : i ∈ τ} > 0.

Then there exists a subset Γ ⊂ τ such that |Γ| = τ and T|c0(Γ) is an isomorphism
onto its image.

We recall that a family (x∗i )i∈τ in the dual space X∗ is said to be weak∗-null if for
each x ∈ X we have

(x∗i (x))i∈τ ∈ c0(τ).

Recall also that a family (xi)i∈τ in a Banach space X is said to be equivalent to
the canonical basis of c0(τ) if there exists T : c0(τ) → X an isomorphism onto its
image satisfying T (ei) = xi, for each i ∈ τ .
The main characterization of complemented copies of c0(τ) we will use is the fol-
lowing result obtained in [3, Theorem 2.4].

Theorem 2.2. Let X be a Banach space and τ be an infinite cardinal. The following
are equivalent:

(1) X contains a complemented copy of c0(τ).
(2) There exist a family (xi)i∈τ equivalent to the unit-vector basis of c0(τ) in

X and a weak∗-null family (x∗i )i∈τ in X∗ such that, for each i, j ∈ τ ,

x∗i (xj) = δij .

(3) There exist a family (xi)i∈τ equivalent to the unit-vector basis of c0(τ) in
X and a weak∗-null family (x∗i )i∈τ in X∗ such that

inf
i∈τ
|x∗i (xi)| > 0.

The following simple lemma [5, Lemma 2.3] will also be useful in the next sections.

Lemma 2.3. Let I be an infinite set and J be a non-empty set. Let {Ij}j∈J be a
family of subsets of I such that

⋃
j∈J Ij = I. If cf(|I|) > |J |, then there exists

j0 ∈ J such that |Ij0 | = |I|.
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3. On complemented copies of c0(τ) spaces in X⊗̂πY spaces

The main aim of this section is to prove the generalization of Oja’s result (1.2), i.e.
Theorem 1.2. In order to do this we need to state two lemmas.

Lemma 3.1. Let X be Banach space with the λ-bap, λ ≥ 1, and let n be its density
character. Then there exist a directed set A of cardinality n and a net (Tα)α∈A of
finite rank operators on X which converges to IdX in the strong operator topology
and satisfies ‖Tα‖ ≤ λ, for every α ∈ A.

Proof. Let (xi)i∈n be a dense subset of X. Denote by F the family of all
finite, non-empty subsets of n and put

A = { (F, n) : F ∈ F , n = 1, 2, . . . }.
A is a directed set with the order (F, n) � (F1, n1) if F ⊂ F1 and n ≤ n1. The
cardinality of A is n.
Since X has the λ-bap, for each α = (F, n) ∈ A there exists a finite rank operator
Tα on X such that ‖Tα‖ ≤ λ and ‖Tα(xi)− xi‖ ≤ 1/n for every i ∈ F.
In order to prove the convergence of the net (Tα)α∈A to IdX in the strong operator
topology, fix x ∈ X and ε > 0. By density, there exists i0 ∈ n such that

‖x− xi0‖ ≤
ε

3λ
.

Let n0 such that 1/n0 ≤ ε/3 and let α0 = ({ i0 }, n0). It is easy to check that
‖Tα0

(x)− x‖ ≤ ε. �

Lemma 3.2. Let X and Y be Banach spaces and T be a finite rank operator on X
and fix a normalized basis (v1, . . . , vk) of T (X). Then there exist bounded linear
operators S1, . . . , Sk from X⊗̂πY to Y satisfying

(T ⊗ IdY )(u) =

k∑
j=1

vj ⊗ Sj(u),

for every u ∈ X⊗̂πY .

Proof. For each 1 ≤ j ≤ k there exists ϕj ∈ X∗ such that ϕj(vi) = δij ,
1 ≤ i ≤ k. The continuous bilinear operator (x, y) ∈ X × Y → ϕj(x)y ∈ Y induces

a bounded operator Rj : X⊗̂πY → Y such that

Rj(u) =

m∑
n=1

ϕj(xn)yn,

for each u =
∑m
n=1 xn ⊗ yn. Put Sj = Rj ◦ (T ⊗ IdY ). In order to finish the proof

it suffices to notice that

(T ⊗ IdY )(u) =

m∑
n=1

T (xn)⊗ yn =

m∑
n=1

k∑
j=1

ϕj(T (xn))vj ⊗ yn =

k∑
j=1

vj ⊗ Sj(u)

for each u =
∑m
n=1 xn ⊗ yn ∈ X⊗̂πY, and apply standard density arguments. �

Proof of Theorem 1.2. Let λ > 1 be such that X has the λ-bap. By Lemma 3.1,
there exist a directed set A of cardinality n = dens(X) and a net (Tα)α∈A of finite
rank operators on X which converges to IdX in the strong operator topology and
satisfies supα∈A ‖Tα‖ ≤ λ. For every α ∈ A we write πα = Tα ⊗ IdY . It is easy to
check that the net (πα)α∈A converges to IdX⊗̂πY in the strong operator topology.
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Suppose that c0(τ) is isomorphic to a complemented subspace of X⊗̂πY . By The-
orem 2.2, there exist families (ui)i∈τ in X⊗̂πY and (u∗i )i∈τ in [X⊗̂πY ]∗ such that
(ui)i∈τ is equivalent to the canonical basis of c0(τ), (u∗i )i∈τ is weak*-null and
|u∗i (ui)| = 1 for every i ∈ τ . Put C = supi∈τ ‖u∗i ‖.
For every i ∈ τ we have

1 = |u∗i (ui)| = lim
α
|u∗i (πα(ui))|

and so there exists an index αi ∈ A such that |u∗i (παi(ui))| ≥ 1/2.
For every α ∈ A consider the set

Iα = { i ∈ τ : |u∗i (πα(ui))| ≥ 1/2 }.

Since
⋃
α∈A Iα = τ and n < cf(τ), Lemma 2.3 yields an index β0 ∈ A and a subset

τ1 ⊂ τ such that |τ1| = τ and, for every i ∈ τ1,

|u∗i (πβ0
(ui))| ≥

1

2
,

Let k = dimTβ0(X) and (vj)1≤j≤k be a normalized basis of Tβ0(X). By Lemma

3.2, there exist bounded linear operators S1, . . . , Sk : X⊗̂πY → Y satisfying

πβ0
(u) =

k∑
j=1

vj ⊗ Sj(u),

for each u ∈ X⊗̂πY . Thus, for every i ∈ τ1,

1

2
≤ |u∗i (πβ0

(ui))| =

∣∣∣∣∣∣
k∑
j=1

u∗i (vj ⊗ Sj(ui))

∣∣∣∣∣∣ ≤
k∑
j=1

|u∗i (vj ⊗ Sj(ui))|.

Now, τ1 is infinite so there exist an integer 1 ≤ k0 ≤ k and a subset τ2 ⊂ τ1 such
that |τ2| = τ and, for every i ∈ τ2,

(3.1) |u∗i (vk0
⊗ Sk0

(ui))| ≥
1

2k
.

Hence,

‖Sk0(ui))‖ ≥
1

2Ck
,

for every i ∈ τ2.
Since (ui)i∈τ is equivalent to the canonical basis of c0(τ), by Theorem 2.1 there
exists a subset τ3 ⊂ τ2 such that |τ3| = τ and (Sk0(ui))i∈τ3 is equivalent to the unit
basis of c0(τ3). If we denote by y∗i the bounded linear functional on Y defined by

y∗i (y) = u∗i (vk0
⊗ y),

for every i ∈ τ3 and y ∈ Y , then it is clear that (y∗i )i∈τ3 is weak*-null in Y ∗.
Therefore, combining inequality (3.1) with Theorem 2.2, we obtain a complemented
subspace of Y isomorphic to c0(τ).
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4. Complemented copies of c0(τ) spaces in Lp(D
τ , Y ) spaces

This section is devoted to the proofs of Theorems 1.4 and 1.7.

For each i ∈ Γ, denote by πi : DΓ → {−1, 1} the usual Rademacher function. We
recall that the family (πi)i∈Γ is an orthonormal system in L2(DΓ).
Next, given a Banach space Y , f ∈ L1(DΓ, Y ) and i ∈ Γ, we write

ci(f) =

∫
DΓ

πi(t)f(t)dµ(t).

If A is a subset of Γ, the characteristic function of A will be denoted by χA.

Using the previous remark and approximations of vector valued functions by simple
functions it is easy to get a Riemann-Lebesgue theorem for vector valued ”func-
tions” defined on DΓ. Precisely

Lemma 4.1. Let Y be a Banach space and Γ be an infinite cardinal. If f ∈
L1(DΓ, Y ), then (ci(f))i∈Γ ∈ c0(Γ, Y ).

Recall that Hölder’s Inequality and the finiteness of µ imply that

Lp(D
Γ, Y ) ⊂ L1(DΓ, Y )

for every 1 ≤ p ≤ ∞.

Proof of Theorem 1.4. Let (yi)i∈τ be a family in Y equivalent to the canonical
basis of c0(τ). There exist constants 0 < δ ≤M such that

(4.1) δ sup
i∈F
|λi| ≤

∥∥∥∥∥∑
i∈F

λiyi

∥∥∥∥∥ ≤M sup
i∈F
|λi|,

for all finite and non-empty subsets F of τ and all families of scalars (λi)i∈F . Let
(y∗i )i∈τ be a bounded family in Y ∗ such that y∗i (yj) = δij . For each i ∈ τ , write
fi = πiyi ∈ Lp(Dτ , Y ) and define ψi ∈ (Lp(D

τ , Y ))∗ by ψi(f) = y∗i (ci(f)). Notice
that each ψi is bounded, since, by Hölder’s Inequality,

|ψi(f)| ≤ ‖y∗i ‖
∥∥∥∥∫

Dτ
πi(t)f(t)dµ(t)

∥∥∥∥ ≤ ‖y∗i ‖‖f‖p,∀f ∈ Lp(Dτ , Y ).

Since |πi(t)| = 1 for all t ∈ Dτ and i ∈ τ , by (4.1) we have

δ sup
i∈F
|λi| ≤

∥∥∥∥∥∑
i∈F

λifi

∥∥∥∥∥
p

≤M sup
i∈F
|λi|,

for all finite and non-empty subsets F of τ and all families of scalars (λi)i∈F . This
proves that (fi)i∈τ is equivalent to the canonical basis of c0(τ).
Next, if i 6= j then

ψi(fj) =

∫
Dτ

πi(t)πj(t)y
∗
i (yj)dµ(t) = 0

and furthermore

ψi(fi) =

∫
Dτ

π2
i (t)y∗i (yi)dµ(t) = µ(Dτ ) = 1.

Thus, ψi(fj) = δij .



COPIES OF c0(τ) SPACES IN PROJECTIVE TENSOR PRODUCTS 9

In order to finish the proof, it suffices to show that (ψi)i∈τ is a weak∗-null family
in (Lp(D

τ , Y ))∗. Given f ∈ Lp(Dτ , Y ) ⊂ L1(Dτ , Y ), Lemma 4.1 guarantees that
(‖ci(f)‖)i∈τ ∈ c0(τ). Since

|ψi(f)| ≤ ‖y∗i ‖‖ci(f)‖

and the family (y∗i )i∈τ is bounded, (ψi(f))i∈τ ∈ c0(τ). This completes the proof.
Next, we turn our attention to Theorem 1.7. Given Γ an infinite set and Ω a
non-empty, proper subset of Γ, put Ω = Γ \ Ω and write each element of DΓ as

(t, t) ∈ DΩ ×DΩ. We will also denote by µΩ the product measure on DΩ.
Our next two results are vector-valued versions of [10, Lemma 22.11, p. 437] and
[10, Theorem 22.14, p. 439], respectively.

Lemma 4.2. Let Y be a Banach space, Γ be an infinite set and 1 ≤ p < ∞.
Given f ∈ Lp(DΓ, Y ) and F a finite, non-empty subset of Γ, consider the function
SF (f) : DΓ → Y defined by

SF (f)(t, t) =

∫
DF

f(t, s)dµF (s),

for every (t, t) ∈ DF . Then SF is a bounded linear operator on Lp(D
Γ, Y ) with

‖SF ‖ ≤ 1.

Proof. Given f ∈ Lp(DΓ, Y ), notice that SF (f) is a simple function. Indeed,
we may write

(4.2) SF (f) =
∑
t∈DF

χt(·)y(f, t)

where, for each t ∈ DF ,

y(f, t) =

∫
DF

f(t, s)dµF (s) ∈ Y

and χt denotes the characteristic function of the measurable set

At =
{

(t, s) : s ∈ DF
}
.

So, in particular, SF (f) is measurable.
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Now, by the scalar Fubini Theorem and Hölder’s Inequality, we obtain

‖SF (f)‖pp =

∫
DΓ

‖SF (f)(t, t)‖pdµ(t, t)

=

∫
DΓ

∥∥∥∥∫
DF

f(t, s)dµF (s)

∥∥∥∥p dµ(t, t)

≤
∫
DΓ

[∫
DF
‖f(t, s)‖dµF (s)

]p
dµ(t, t)

≤
∫
DΓ

[∫
DF
‖f(t, s)‖pdµF (s)

]
dµ(t, t)

=

∫
DF

[∫
DF

[∫
DF
‖f(t, s)‖pdµF (s)

]
dµF (t)

]
dµF (t)

=

∫
DF

[∫
DΓ

‖f(tF , s)‖pdµ(t, s)

]
dµF (t)

=

∫
DF
‖f‖ppdµF (t) = ‖f‖pp.

Hence, SF (f) ∈ Lp(DΓ, Y ) and ‖SF (f)‖p ≤ ‖f‖p. The linearity of SF is clear. �

Lemma 4.3. Let Y be a Banach space, Γ be an infinite set and 1 ≤ p <∞. Given
f ∈ Lp(DΓ, Y ) and ε > 0, there exists a finite, non-empty subset F0 of Γ such that
‖SF (f)− f‖p < ε, for all finite subsets F of Γ with F0 ⊂ F .

Proof. Once again we split the proof in three cases:

Case 1: f = g(·)y, where g ∈ Lp(DΓ) and y ∈ Y . This case follows immediately
from [10, Theorem 22.14, p. 439], noticing that SF (f) = SF (g)(·)y for every finite,
non-empty subset F of Γ.

Case 2: f ∈ Lp(DΓ, Y ) is a simple function. This follows from the previous case,
by linearity.

Case 3: arbitrary f ∈ Lp(DΓ, Y ). Fix ε > 0. Since the simple functions are dense
in Lp(D

Γ, Y ), there exists a simple function ϕ ∈ Lp(DΓ, Y ) such that ‖f − ϕ‖p <
ε/3. By the previous case, there exists a finite, non-empty subset F0 of Γ such that
‖SF (ϕ)− ϕ‖p < ε/3, for all finite subsets F of Γ with F0 ⊂ F . Therefore

‖SF (f)− f‖p ≤ ‖SF (f − ϕ)‖p + ‖SF (ϕ)− ϕ‖p + ‖ϕ− f‖p < ε,

for all such F ⊂ Γ, as desired. �

We are now ready to prove Theorem 1.7.

Proof of Theorem 1.7. Suppose that Lp(D
Γ, Y ) contains a complemented copy

of c0(τ). According to Theorem 2.2, there exist families (fi)i∈τ in Lp(D
Γ, Y ) and

(ψi)i∈τ in (Lp(D
Γ, Y ))∗ such that (fi)i∈τ is equivalent to the canonical basis of

c0(τ), (ψi)i∈τ is weak∗-null and |ψi(fi)| = 1 for every i ∈ τ . Put C = supi∈τ ‖ψi‖.
Let F be the family of all finite, non-empty subsets of Γ. By Lemma 4.3, for every
i ∈ τ there exists a set Fi ∈ F such that ‖SFi(f)− f‖p < 1/2, and thus

|ψi(SFi(fi))| >
1

2
.
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For every F ∈ F consider the set

IF = { i ∈ τ : |ψi(SF (fi))| > 1/2 }.
Since

⋃
F∈F IF = τ and |F| = |Γ| < cf(τ), Lemma 2.3 yields G ∈ F and τ1 ⊂ τ

such that |τ1| = τ and, for every i ∈ τ1,

|ψi(SG(fi))| >
1

2
.

Similarly to (4.2), for each f ∈ Lp(DΓ, Y ) we write

(4.3) SG(f) =
∑
t∈DG

χt(·)y(f, t)

where, for each t ∈ DG,

y(f, t) =

∫
DG

f(t, s)dµG(s) ∈ Y

and χt denotes the characteristic function of the measurable set

At =
{

(t, s) : s ∈ DG
}
.

Therefore
1

2
< |ψi(SG(fi))| ≤

∑
t∈DG

|ψi(χt(·)y(fi, t))|,

for every i ∈ τ1. Now, τ1 is infinite and so there exist an element t0 ∈ DG and a
subset τ2 ⊂ τ1 such that |τ2| = τ and, for every i ∈ τ2,

(4.4) |ψi(χt0(·)y(fi, t0))| > 1

2|G|+1
.

Since µ(At0) = 1/2|G| < 1, we obtain

(4.5) ‖y(fi, t0)‖ > 1

C2|G|+1
,

for every i ∈ τ2.
Next, consider the linear operator T : Lp(D

Γ, Y ) → Y defined by T (f) = y(f, t0),
for every f ∈ Lp(DΓ, Y ). In order to see that T is bounded, notice that (4.3) yields

‖SG(f)(s1, s2)‖p =
∑
t∈DG

χt(s1, s2)‖y(f, t)‖p,

for every (s1, s2) ∈ DG ×DG. This implies that

‖SG(f)‖pp =

∫
DΓ

‖SG(f)(s1, s2)‖pdµ(s1, s2)

=

∫
DΓ

∑
t∈DG

χt(s1, s2)‖y(f, t)‖pdµ(s1, s2)

=
∑
t∈DG

‖y(f, t)‖p
∫
DΓ

χt(s1, s2)dµ(s1, s2)

=
∑
t∈DG

µ(At)‖y(f, t)‖p =
∑
t∈DG

2−|G|‖y(f, t)‖p

≥ 2−|G|‖y(f, t0)‖p = 2−|G|‖T (f)‖p
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and so

‖T (f)‖ ≤ 2|G|/p‖SG(f)‖p ≤ 2|G|/p‖f‖p,

proving that T is bounded.
Notice that, by (4.5), we have

‖T (fi)‖ >
1

C2|G|+1

for every i ∈ τ2. Also, by hypothesis, (fi)i∈τ is equivalent to the canonical basis
of c0(τ). Thus, by Theorem 2.1 there exists a subset τ3 ⊂ τ2 such that |τ3| = τ
and (T (fi))i∈τ3 is equivalent to the canonical basis of c0(τ3). Denoting by y∗i the
bounded linear function on Y defined by

y∗i (y) = ψi(χt0(·)y),

for every i ∈ τ3 and y ∈ Y , it is clear that (y∗i )i∈τ3 is weak∗-null in Y ∗. Combining
these facts with (4.4), Theorem 2.2 yields a complemented copy of c0(τ) in Y , as
desired.

5. On copies of c0(τ) spaces in X⊗̂πY spaces

With a simple modification of the techniques developed so far, we prove Theorem
1.11.

Proof of Theorem 1.11. Let λ > 1 be such that X has the λ-bap. As in the
proof of Theorem 1.2, by Lemma 3.1 there exist a directed set A of cardinality
n = dens(X) and a net (Tα)α∈A of finite rank operators on X which converges
to IdX in the strong operator topology and satisfies supα∈A ‖Tα‖ ≤ λ. For every
α ∈ A we write πα = Tα ⊗ IdY . The net (πα)α∈A converges to IdX⊗̂πY in the
strong operator topology.
Let (ui)i∈τ be a family in X⊗̂πY equivalent to the canonical basis of c0(τ). There
exist constants 0 < δ ≤M such that

δ sup
i∈F
|λi| ≤

∥∥∥∥∥∑
i∈F

λiui

∥∥∥∥∥
π

≤M sup
i∈F
|λi|,

for all finite and non-empty subsets F of τ and all families of scalars (λi)i∈F .
For every i ∈ τ we have

δ ≤ ‖ui‖π = lim
α
‖πα(ui)‖π

and so there exists an index αi ∈ A such that ‖παi(ui)‖π ≥ δ/2.
For every α ∈ A consider the set

Iα = { i ∈ τ : ‖πα(ui)‖π ≥ δ/2 }.

Since
⋃
α∈A Iα = τ and n < cf(τ), Lemma 2.3 yields an index β0 ∈ A and a subset

τ1 ⊂ τ such that |τ1| = τ and, for every i ∈ τ1,

‖πβ0
(ui)‖π ≥

δ

2
.
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Let k = dimTβ0
(X) and let (vj)1≤j≤k be a normalized basis of Tβ0

(X). By Lemma

3.2, there exist bounded linear operators S1, . . . , Sk : X⊗̂πY → Y satisfying

πβ0
(u) =

k∑
j=1

vj ⊗ Sj(u),

for each u ∈ X⊗̂πY . Thus, for every i ∈ τ1,

δ

2
≤ ‖πβ0

(ui)‖π =

∥∥∥∥∥∥
k∑
j=1

vj ⊗ Sj(ui)

∥∥∥∥∥∥
π

≤
k∑
j=1

‖vj ⊗ Sj(ui)‖π =

k∑
j=1

‖Sj(ui)‖.

Now, τ1 is infinite so there exist an integer 1 ≤ k0 ≤ k and a subset τ2 ⊂ τ1 such
that |τ2| = τ and, for every i ∈ τ2,

‖Sk0
(ui)‖ >

δ

2k
.

Since (ui)i∈τ is equivalent to the canonical basis of c0(τ), by Theorem 2.1 there
exists a subset τ3 ⊂ τ2 such that |τ3| = τ and (Sk0(ui))i∈τ3 is equivalent to the unit
basis of c0(τ3). This finishes the proof.

6. On copies of c0(τ) spaces in Lp(D
τ , Y ) spaces

In this last section, we provide the proof of Theorem 1.13.

Proof of Theorem 1.13. The proof is a slight modification of the proof of
Theorem 1.7. Let (fi)i∈τ be a family equivalent to the canonical basis of c0(τ)
in Lp(D

Γ, Y ). There exist constants 0 < δ ≤M such that

δ sup
i∈F
|λi| ≤

∥∥∥∥∥∑
i∈F

λifi

∥∥∥∥∥
p

≤M sup
i∈F
|λi|,

for all finite and non-empty subsets F of τ and all families of scalars (λi)i∈F .
Denote by F the family of all finite, non-empty subsets of Γ. By Lemma 4.3, for
every index i ∈ τ there exists a set Ωi ∈ F such that ‖SΩi(fi) − fi‖p < δ/2, and
thus

‖SΩi(fi)‖p >
δ

2
.

For every Ω ∈ F consider the set

IΩ = { i ∈ τ : ‖SΩ(fi)‖p > δ/2 }.
Since

⋃
Ω∈F IΩ = τ and |F| = |Γ| < cf(τ), Lemma 2.3 yields G ∈ F and τ1 ⊂ τ

such that |τ1| = τ and, for every i ∈ τ1,

‖SG(fi)‖p >
δ

2
.

Using the exact same notation used in the proof of Theorem 1.7 (see (4.3)), recall
that

‖SG(f)‖pp =
∑
t∈DG

2−|G|‖y(f, t)‖p,

for every f ∈ Lp(DΓ, Y ). In particular, we obtain

δp

2p
< ‖SG(fi)‖pp =

1

2|G|

∑
t∈DG

‖y(fi, t)‖p,
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for every i ∈ τ1. Now, τ1 is infinite and so there exist an element t0 ∈ DG and a
subset τ2 ⊂ τ1 such that |τ2| = τ and, for every i ∈ τ2,

‖y(fi, t0)‖p > δp

2p
2|G|

|G|
≥ δp

2p
> 0,

that is,

‖y(fi, t0)‖ > δ

2
.

Once again, consider the bounded linear operator T : Lp(D
Γ, Y ) → Y defined by

T (f) = y(f, t0), for every f ∈ Lp(DΓ, Y ). The inequality above gives

‖T (fi)‖ >
δ

2
,

for every i ∈ τ2. Since (fi)i∈τ is equivalent to the canonical basis of c0(τ), by
Theorem 2.1 there exists a subset τ3 ⊂ τ2 such that |τ3| = τ and (T (fi))i∈τ3 is
equivalent to the canonical of c0(τ3) in Y , and the proof is complete.
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[2] F. Cabello Sánchez, Félix, D. Pérez-Garćıa, I. Villanueva, Unexpected subspaces of tensor

products. J. London Math. Soc. (2) 74 (2006), 2, 512-526.
[3] V. M. Cortes, E. M. Galego, When does C0(K,X) contain a complemented copy of c0(τ) iff

X does?, To appear in Bull. Sci. Math. Available at https://arxiv.org/abs/1709.01114.
[4] V. M. Cortes, E. M. Galego, C. Samuel, Complemented copies of c0(τ) in tensor products of

Lp[0, 1], To appear in Pacific J. Math.

[5] V. M. Cortes, E. M. Galego, C. Samuel, When is c0(τ) complemented in tensor products of
`p(I)? Math. Nachr. 292 (2019), 5, 1089-1105.

[6] J. Diestel, J. J. Uhl Jr., Vector Measures, Math. Surveys n. 15, American Mathematical Society

(1977).
[7] G. Emmanuele, On complemented copies of c0 in LpX , 1 ≤ p < ∞, Proc. Amer. Math. Soc.

104 (1988), 785-786.

[8] R. Engelking, General Topology, Sigma Series in Pure Mathematics, 6, Heldermann Verlag,
Berlin, 1989.

[9] S. Graf, R. D. Mauldin, A classification of disintegrations of measures, Measure and mea-

surable dynamics (Rochester, NY, 1987), 147-158, Contemp. Math., 94, Amer. Math. Soc.,
Providence, RI, 1989.

[10] E. Hewitt, K. Stromberg, Real and Abstract Analysis, Springer, Berlin-Heidelberg-New York
1965.

[11] T. Jech, Set Theory, The Third Millennium Edition, revised and expanded, Springer Mono-
graphs in Mathematics, Springer (2003).
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