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Introduction

Let X and Y be infinite dimensional Banach spaces. We say that Y contains a copy (resp. a complemented copy) of X, and write X → Y (resp. X c → Y ), if X is isomorphic to a subspace (resp. complemented subspace) of Y . We denote by X ⊗ π Y the projective tensor product of X and Y [20, p. 17]. For a non-empty set Γ, c 0 (Γ, X) denotes the Banach space of all X-valued maps f on Γ with the property that for each ε > 0, the set {γ ∈ Γ : f (γ) ≥ ε} is finite, equipped with the supremum norm. This space will be denoted by c 0 (Γ) when X = R. We will refer to c 0 (Γ) as c 0 (τ ) when the cardinality of Γ (denoted by |Γ|) is equal to τ . As usual, the dual and bidual of c 0 (τ ) will be denoted by l 1 (τ ) and l ∞ (τ ) respectively, and when τ = ℵ 0 these spaces will be denoted by c 0 , l 1 and l ∞ respectively. In this paper we study subspaces and complemented subspaces of projective tensor products which are isomorphic to some c 0 (τ ) space. In the particular case where τ = ℵ 0 , this research topic is really very old and offers many difficulties due to the intriguing structure of the projective tensor products, see for instance the work "Unexpected subspaces of tensor products" [START_REF] Sánchez | Unexpected subspaces of tensor products[END_REF]. We just point out that Pisier in [START_REF] Pisier | Counterexamples to a conjecture of Grothendieck[END_REF]Theorem 4.1] showed the existence of Banach spaces X and Y such that

(1.1) c 0 c → X ⊗ π Y without c 0 → X or c 0 → Y.
In contrast to Pisier's result, Oja [14, Théorème 3] proved that if a Banach space X has a boundedly complete finite dimensional decomposition, then for any Banach space Y we have

(1.2) c 0 c → X ⊗ π Y =⇒ c 0 c → Y.
Moreover, Kwapień [START_REF] Kwapień | Sums of independent Banach space valued random variables[END_REF] had already shown that for any Banach space Y ,

(1.3) c 0 → L 1 [0, 1] ⊗ π Y =⇒ c 0 → Y.
The purpose of this work is to obtain c 0 (τ ) generalizations of the results of Oja (1.2) and Kwapień (1.3) to the case where τ is an uncountable cardinal. In this direction we have already studied the c 0 (τ ) complemented subspaces of X ⊗ π Y in the particular cases when X is one of the classical spaces p (I) [START_REF] Cortes | When is c 0 (τ ) complemented in tensor products of p(I )?[END_REF] or L p [0, 1] [START_REF] Cortes | Complemented copies of c 0 (τ ) in tensor products of Lp[END_REF].

We have shown that if X = p (I), 1 ≤ p < ∞, or X = L q [0, 1], 1 < q < ∞, then

c 0 (τ ) c → X ⊗ π Y =⇒ c 0 c → Y,
for any Banach space Y . But we left the problem below unsolved [START_REF] Cortes | When is c 0 (τ ) complemented in tensor products of p(I )?[END_REF]Problem 8.5].

Problem 1.1. Let Y be a Banach space and τ an uncountable cardinal. Is it true that c 0 (τ )

c → l ∞ ⊗ π Y =⇒ c 0 (τ ) c → Y ?
Our generalization of (1.2) will provide a positive solution to Problem 1.1 whenever the cofinality of τ is strictly greater than the continuum (Corollary 1.8 with m = ℵ 0 ). Recall that the cofinality of an infinite cardinal τ , denoted by cf(τ ), is the least cardinal α such that there exists a family of ordinals {β j : j ∈ α} satisfying β j < τ for all j ∈ α, and sup{β j : j ∈ α} = τ [START_REF] Jech | Set Theory, The Third Millennium Edition, revised and expanded[END_REF]. A Banach space X has the λ-bounded approximation property (in short, X has the λ-bap), λ ≥ 1, if given K a compact subset of X and ε > 0, there exists a finite rank operator T : X → X satisfying T ≤ λ and x -T (x) < ε for every x ∈ K. X has the bounded approximation property if X has the λ-bap for some λ ≥ 1 [START_REF] Casazza | Approximation properties, Handbook of the geometry of Banach spaces[END_REF]. The density character of X, denoted by dens(X), is the smallest cardinality of a dense subset of X.

Theorem 1.2. Let X be a Banach space with the bounded approximation property and τ be an infinite cardinal satisfying dens(X) < cf(τ ). For any Banach space Y ,

c 0 (τ ) c → X ⊗ π Y =⇒ c 0 (τ ) c → Y.
Remark 1.3. Even if τ = ℵ 0 and X contains no copies of c 0 , we cannot replace the hypothesis dens(X) < ℵ 0 with dens(X) ≤ ℵ 0 in Theorem 1.2. Indeed, the space X mentioned above in the example of Pisier can be chosen having a Schauder basis ( [START_REF] Pe | Banach spaces of analytic functions and absolutely summing operators[END_REF]Remark,p. 84] and [START_REF] Pisier | Factorization of linear operators and geometry of Banach spaces[END_REF]Corollary 10.1,p. 68]) and, therefore, having the bounded approximation property.

Recall that a cardinal τ is said to be regular when cf(τ ) = τ . As a consequence of Theorem 1.4, we will show in Remark 1.5 that Theorem 1.2 is optimal for any regular cardinal τ and any Banach space X containing no copies of c 0 (τ ). In order to state Theorem 1.4, we need some notation. If Γ is a non-empty set, we endow {-1, 1} with the probability measure which assigns to each point the value 1/2 and denote by D Γ = {-1, 1} Γ the Cantor cube with the corresponding product measure µ. Given Y a Banach space and p ∈ [1, ∞), we denote by L p (D Γ , Y ) the Lebesgue-Bochner space of all (classes of equivalence of) measurable functions f : D Γ → Y such that the scalar function f p is integrable, equipped with the complete norm

f p = 1 0 f (t) p dt 1 p
. These spaces will be denoted by L p (D Γ ) when Y = R. A measurable function f : D Γ → Y is essentially bounded if there exists ε > 0 such that the set {t ∈ D Γ : f (t) ≥ ε} has measure zero, and we denote by f ∞ the infimum of all such numbers ε > 0. By L ∞ (D Γ , Y ) we will denote the space of all (classes of equivalence of) essentially bounded functions f : D Γ → X, equipped with the complete norm • ∞ .

Theorem 1.4. Given Y a Banach space, τ an infinite cardinal and 1 ≤ p ≤ ∞,

c 0 (τ ) → Y =⇒ c 0 (τ ) c → L p (D τ , Y ).
Remark 1.5. Let us show that the hypothesis dens(X) < cf(τ ) in Theorem 1.2 cannot be improved in the case of regular cardinals τ and Banach spaces X with no copies of c 0 (τ ). According to a well-know result of Rosenthal [6, Corollary 11, p.156],

(1.4) 

c 0 (τ ) c → l ∞ (τ ).
c 0 (τ ) c → L 1 (D τ ) ⊗ π l ∞ (τ ) although c 0 (τ ) → L 1 (D τ ) and c 0 (τ ) c → l ∞ (τ ). Remark 1.6. Using [9, Lemma 2.1] it is easy to see that L p ([0, 1], Y ) is isomorphic to L p (D ℵ0 , Y ), 1 ≤ p ≤ ∞,
for every Banach space Y . Thus, the case τ = ℵ 0 of Theorem 1.4 is due to Emmanuele [START_REF] Emmanuele | On complemented copies of c 0 in L p X , 1 ≤ p < ∞[END_REF]Main Theorem].

We will also prove the following theorem which can be seen as a version of Theorem 1.2 for Lebesque-Bochner spaces L p (D Γ , Y ) with 1 ≤ p < ∞.

Theorem 1.7. Let Y be a Banach space, Γ be an infinite set, τ be an infinite cardinal and

1 ≤ p < ∞. If |Γ| < cf(τ ), then c 0 (τ ) c → L p (D Γ , Y ) =⇒ c 0 (τ ) c → Y.
Note that in the particular case m = ℵ 0 , the following direct consequence of Theorem 1. 

c 0 (τ ) c → ∞ (m) ⊗ π Y =⇒ c 0 (τ ) c → Y.
Under the continuum hypothesis 2 ℵ0 = ℵ 1 we also get the following consequence of Theorem 1.2 which can be seen as a generalization of (1.4) whenever τ > ℵ 1 .

Corollary 1.9. Assuming the continuum hypothesis, for any α > 1 we have

c 0 (ℵ α ) c → l ∞ ⊗ π l ∞ (ℵ α ).
Proof. Assume by contradiction that there exists α > 1 such that Now we turn our attention to generalizations of the result (1.3). We will prove:

c 0 (ℵ 2 ) c → c 0 (ℵ α ) c → l ∞ ⊗ π l ∞ (ℵ α ). By Theorem 1.2 it follows that l ∞ (ℵ α ) contains a complemented subspace isomor- phic to c 0 (ℵ 2 ),
Theorem 1.11. Let X be a Banach space with the bounded approximation property and τ an infinite cardinal satisfying dens(X) < cf(τ ). For any Banach space Y ,

c 0 (τ ) → X ⊗ π Y =⇒ c 0 (τ ) → Y.
Next, denote by X ⊗ ε Y the injective tensor product of the Banach spaces X and Y [20, p. 46]. As a direct consequence of Theorem 1.11 we obtain the following:

Corollary 1.12. Let X and Y be Banach spaces such that X * has both the bounded approximation property and the Radon-Nikodým property. Suppose that τ is a cardinal satisfying dens(X) < cf(τ ). Then

l 1 (τ ) c → X ⊗ ε Y =⇒ l 1 (τ ) c → Y.
Proof. Since X * has the bounded approximation property and the Radon-Nikodým property, by [START_REF] Ryan | Introduction to Tensor Products of Banach Spaces[END_REF]Theorem 5.33] we know that the dual of

X ⊗ ε Y is isomorphic to X * ⊗ π Y * . Thus we get c 0 (τ ) → X * ⊗ π Y * .
Now, since X * has the Radon-Nikodým property it follows by [START_REF] Yost | Asplund spaces for beginners[END_REF]Theorem 6] that dens(X) = dens(X * ). Thus, according to Theorem 1.11 we conclude that c 0 (τ ) → Y * , and an appeal to [START_REF] Rosenthal | On injective Banach spaces and the spaces L∞(µ) for finite measure µ[END_REF]

, Corollary 1.2] yields l 1 (τ ) c → Y .
Moreover, notice that the result (1.3) was proved in [12, Main Theorem] to a more general setting; more precisely, for any Banach space Y and 1 ≤ p < ∞,

(1.5) c 0 → L p ([0, 1], Y ) =⇒ c 0 → Y.
Thus, we will also state a c 0 (τ ) generalization of (1.5) by proving the following non complemented version of Theorem 1.7.

Theorem 1.13. Let Y be a Banach space, Γ be an infinite set, τ be an infinite cardinal and

1 ≤ p < ∞. If |Γ| < cf(τ ), then c 0 (τ ) → L p (D Γ , Y ) =⇒ c 0 (τ ) → Y.
Remark 1.14. Of course, if τ = ℵ 0 and X contains no copies of c 0 , the optimality of Theorem 1.11 follows from the example of Pisier cited in (1.1). However, we do not know if Theorem 1.11 is optimal for any regular cardinal τ and any Banach space X containing no copies of c 0 (τ ). Finally, as far as Corollary 1.12 is concerned, we do not even know if it is optimal in the case τ = ℵ 0 .

Preliminary results and notation

Before proving our results we will recall some auxiliary results that will be used throughout this paper. We will denote by (e i ) i∈τ the canonical basis of c 0 (τ ), that is, e i (j) = δ ij for each i, j ∈ τ . If Γ is a subset of τ , we identify c 0 (Γ) with the closed subspace of c 0 (τ ) consisting of the maps g on τ such that g(i) = 0 for each i ∈ τ \ Γ. We begin by recalling the following classical result due to Rosenthal [18, Remark following Theorem 3.4].

Theorem 2.1. Let X be a Banach space and τ be an infinite cardinal. Suppose that T : c 0 (τ ) → X is a bounded linear operator satisfying

inf{ T (e i ) : i ∈ τ } > 0.
Then there exists a subset Γ ⊂ τ such that |Γ| = τ and T |c0(Γ) is an isomorphism onto its image.

We recall that a family (x * i ) i∈τ in the dual space X * is said to be weak * -null if for each x ∈ X we have (x * i (x)) i∈τ ∈ c 0 (τ ). Recall also that a family (x i ) i∈τ in a Banach space X is said to be equivalent to the canonical basis of c 0 (τ ) if there exists T : c 0 (τ ) → X an isomorphism onto its image satisfying T (e i ) = x i , for each i ∈ τ . The main characterization of complemented copies of c 0 (τ ) we will use is the following result obtained in [START_REF] Cortes | When does C 0 (K, X) contain a complemented copy of c 0 (τ ) iff X does?[END_REF]Theorem 2.4].

Theorem 2.2. Let X be a Banach space and τ be an infinite cardinal. The following are equivalent:

(1) X contains a complemented copy of c 0 (τ ).

(2) There exist a family (x i ) i∈τ equivalent to the unit-vector basis of c 0 (τ ) in X and a weak * -null family (x * i ) i∈τ in X * such that, for each i, j ∈ τ ,

x * i (x j ) = δ ij .
(3) There exist a family (x i ) i∈τ equivalent to the unit-vector basis of c 0 (τ ) in X and a weak * -null family

(x * i ) i∈τ in X * such that inf i∈τ |x * i (x i )| > 0.
The following simple lemma [5, Lemma 2.3] will also be useful in the next sections.

Lemma 2.3. Let I be an infinite set and J be a non-empty set. Let {I j } j∈J be a family of subsets of I such that j∈J I j = I. If cf(|I|) > |J|, then there exists

j 0 ∈ J such that |I j0 | = |I|.
3. On complemented copies of c 0 (τ ) spaces in X ⊗ π Y spaces

The main aim of this section is to prove the generalization of Oja's result (1.2), i.e. Theorem 1.2. In order to do this we need to state two lemmas.

Lemma 3.1. Let X be Banach space with the λ-bap, λ ≥ 1, and let n be its density character. Then there exist a directed set A of cardinality n and a net (T α ) α∈A of finite rank operators on X which converges to Id X in the strong operator topology and satisfies T α ≤ λ, for every α ∈ A.

Proof. Let (x i ) i∈n be a dense subset of X. Denote by F the family of all finite, non-empty subsets of n and put

A = { (F, n) : F ∈ F, n = 1, 2, . . . }.
A is a directed set with the order (F, n)

(F 1 , n 1 ) if F ⊂ F 1 and n ≤ n 1 . The cardinality of A is n.
Since X has the λ-bap, for each α = (F, n) ∈ A there exists a finite rank operator T α on X such that T α ≤ λ and T α (x i ) -x i ≤ 1/n for every i ∈ F. In order to prove the convergence of the net (T α ) α∈A to Id X in the strong operator topology, fix x ∈ X and ε > 0. By density, there exists i 0 ∈ n such that

x -x i0 ≤ ε 3λ .
Let n 0 such that 1/n 0 ≤ ε/3 and let

α 0 = ({ i 0 }, n 0 ). It is easy to check that T α0 (x) -x ≤ ε. Lemma 3.2.
Let X and Y be Banach spaces and T be a finite rank operator on X and fix a normalized basis (v 1 , . . . , v k ) of T (X). Then there exist bounded linear operators S 1 , . . . , S k from X ⊗ π Y to Y satisfying

(T ⊗ Id Y )(u) = k j=1 v j ⊗ S j (u), for every u ∈ X ⊗ π Y . Proof. For each 1 ≤ j ≤ k there exists ϕ j ∈ X * such that ϕ j (v i ) = δ ij , 1 ≤ i ≤ k. The continuous bilinear operator (x, y) ∈ X × Y → ϕ j (x)y ∈ Y induces a bounded operator R j : X ⊗ π Y → Y such that R j (u) = m n=1 ϕ j (x n )y n , for each u = m n=1 x n ⊗ y n . Put S j = R j • (T ⊗ Id Y ).
In order to finish the proof it suffices to notice that

(T ⊗ Id Y )(u) = m n=1 T (x n ) ⊗ y n = m n=1 k j=1 ϕ j (T (x n ))v j ⊗ y n = k j=1 v j ⊗ S j (u) for each u = m n=1 x n ⊗ y n ∈ X ⊗ π Y,
and apply standard density arguments. Proof of Theorem 1.2. Let λ > 1 be such that X has the λ-bap. By Lemma 3.1, there exist a directed set A of cardinality n = dens(X) and a net (T α ) α∈A of finite rank operators on X which converges to Id X in the strong operator topology and satisfies sup α∈A T α ≤ λ. For every α ∈ A we write π α = T α ⊗ Id Y . It is easy to check that the net (π α ) α∈A converges to Id X ⊗ π Y in the strong operator topology.

Suppose that c 0 (τ ) is isomorphic to a complemented subspace of X ⊗ π Y . By Theorem 2.2, there exist families

(u i ) i∈τ in X ⊗ π Y and (u * i ) i∈τ in [X ⊗ π Y ] * such that (u i ) i∈τ is equivalent to the canonical basis of c 0 (τ ), (u * i ) i∈τ is weak*-null and |u * i (u i )| = 1 for every i ∈ τ . Put C = sup i∈τ u * i . For every i ∈ τ we have 1 = |u * i (u i )| = lim α |u * i (π α (u i ))|
and so there exists an index α i ∈ A such that |u * i (π αi (u i ))| ≥ 1/2. For every α ∈ A consider the set

I α = { i ∈ τ : |u * i (π α (u i ))| ≥ 1/2 }.
Since α∈A I α = τ and n < cf(τ ), Lemma 2.3 yields an index β 0 ∈ A and a subset τ 1 ⊂ τ such that |τ 1 | = τ and, for every i ∈ τ 1 ,

|u * i (π β0 (u i ))| ≥ 1 2 ,
Let k = dim T β0 (X) and (v j ) 1≤j≤k be a normalized basis of T β0 (X). By Lemma 3.2, there exist bounded linear operators S 1 , . . . , S k :

X ⊗ π Y → Y satisfying π β0 (u) = k j=1 v j ⊗ S j (u),
for each u ∈ X ⊗ π Y . Thus, for every i ∈ τ 1 ,

1 2 ≤ |u * i (π β0 (u i ))| = k j=1 u * i (v j ⊗ S j (u i )) ≤ k j=1 |u * i (v j ⊗ S j (u i ))|.
Now, τ 1 is infinite so there exist an integer 1 ≤ k 0 ≤ k and a subset τ 2 ⊂ τ 1 such that |τ 2 | = τ and, for every i ∈ τ 2 , (3.1)

|u * i (v k0 ⊗ S k0 (u i ))| ≥ 1 2k .
Hence,

S k0 (u i )) ≥ 1 2Ck
,

for every i ∈ τ 2 .
Since (u i ) i∈τ is equivalent to the canonical basis of c 0 (τ ), by Theorem 2.1 there exists a subset τ 3 ⊂ τ 2 such that |τ 3 | = τ and (S k0 (u i )) i∈τ3 is equivalent to the unit basis of c 0 (τ 3 ). If we denote by y * i the bounded linear functional on Y defined by

y * i (y) = u * i (v k0 ⊗ y),
for every i ∈ τ 3 and y ∈ Y , then it is clear that (y * i ) i∈τ3 is weak*-null in Y * . Therefore, combining inequality (3.1) with Theorem 2.2, we obtain a complemented subspace of Y isomorphic to c 0 (τ ). For each i ∈ Γ, denote by π i : D Γ → {-1, 1} the usual Rademacher function. We recall that the family (π i ) i∈Γ is an orthonormal system in L 2 (D Γ ). Next, given a Banach space Y , f ∈ L 1 (D Γ , Y ) and i ∈ Γ, we write

c i (f ) = D Γ π i (t)f (t)dµ(t).
If A is a subset of Γ, the characteristic function of A will be denoted by χ A .

Using the previous remark and approximations of vector valued functions by simple functions it is easy to get a Riemann-Lebesgue theorem for vector valued "functions" defined on D Γ . Precisely Lemma 4.1. Let Y be a Banach space and Γ be an infinite cardinal.

If f ∈ L 1 (D Γ , Y ), then (c i (f )) i∈Γ ∈ c 0 (Γ, Y ).
Recall that Hölder's Inequality and the finiteness of µ imply that

L p (D Γ , Y ) ⊂ L 1 (D Γ , Y ) for every 1 ≤ p ≤ ∞.
Proof of Theorem 1.4. Let (y i ) i∈τ be a family in Y equivalent to the canonical basis of c 0 (τ ). There exist constants 0 < δ ≤ M such that (4.1)

δ sup i∈F |λ i | ≤ i∈F λ i y i ≤ M sup i∈F |λ i |,
for all finite and non-empty subsets F of τ and all families of scalars (λ i ) i∈F . Let (y * i ) i∈τ be a bounded family in Y * such that y * i (y j ) = δ ij . For each i ∈ τ , write

f i = π i y i ∈ L p (D τ , Y ) and define ψ i ∈ (L p (D τ , Y )) * by ψ i (f ) = y * i (c i (f )
). Notice that each ψ i is bounded, since, by Hölder's Inequality,

|ψ i (f )| ≤ y * i D τ π i (t)f (t)dµ(t) ≤ y * i f p , ∀f ∈ L p (D τ , Y ).
Since |π i (t)| = 1 for all t ∈ D τ and i ∈ τ , by (4.1) we have

δ sup i∈F |λ i | ≤ i∈F λ i f i p ≤ M sup i∈F |λ i |,
for all finite and non-empty subsets F of τ and all families of scalars (λ i ) i∈F . This proves that (f i ) i∈τ is equivalent to the canonical basis of c 0 (τ ). Next, if i = j then

ψ i (f j ) = D τ π i (t)π j (t)y * i (y j )dµ(t) = 0
and furthermore

ψ i (f i ) = D τ π 2 i (t)y * i (y i )dµ(t) = µ(D τ ) = 1. Thus, ψ i (f j ) = δ ij .
In order to finish the proof, it suffices to show that (ψ i ) i∈τ is a weak

* -null family in (L p (D τ , Y )) * . Given f ∈ L p (D τ , Y ) ⊂ L 1 (D τ , Y ), Lemma 4.1 guarantees that ( c i (f ) ) i∈τ ∈ c 0 (τ ). Since |ψ i (f )| ≤ y * i c i (f )
and the family (y * i ) i∈τ is bounded, (ψ i (f )) i∈τ ∈ c 0 (τ ). This completes the proof. Next, we turn our attention to Theorem 1.7. Given Γ an infinite set and Ω a non-empty, proper subset of Γ, put Ω = Γ \ Ω and write each element of D Γ as (t, t) ∈ D Ω × D Ω . We will also denote by µ Ω the product measure on D Ω . Our next two results are vector-valued versions of [START_REF] Hewitt | Real and Abstract Analysis[END_REF]Lemma 22.11,p. 437] and [10, Theorem 22.14, p. 439], respectively. Lemma 4.2. Let Y be a Banach space, Γ be an infinite set and 1 ≤ p < ∞. Given f ∈ L p (D Γ , Y ) and F a finite, non-empty subset of Γ, consider the function

S F (f ) : D Γ → Y defined by S F (f )(t, t) = D F f (t, s)dµ F (s),
for every (t, t) ∈ D F . Then S F is a bounded linear operator on L p (D Γ , Y ) with S F ≤ 1.

Proof. Given f ∈ L p (D Γ , Y ), notice that S F (f ) is a simple function. Indeed, we may write

(4.2) S F (f ) = t∈D F χ t (•)y(f, t)
where, for each t ∈ D F ,

y(f, t) = D F f (t, s)dµ F (s) ∈ Y
and χ t denotes the characteristic function of the measurable set

A t = (t, s) : s ∈ D F .
So, in particular, S F (f ) is measurable. Now, by the scalar Fubini Theorem and Hölder's Inequality, we obtain

S F (f ) p p = D Γ S F (f )(t, t) p dµ(t, t) = D Γ D F f (t, s)dµ F (s) p dµ(t, t) ≤ D Γ D F f (t, s) dµ F (s) p dµ(t, t) ≤ D Γ D F f (t, s) p dµ F (s) dµ(t, t) = D F D F D F f (t, s) p dµ F (s) dµ F (t) dµ F (t) = D F D Γ f (t F , s) p dµ(t, s) dµ F (t) = D F f p p dµ F (t) = f p p . Hence, S F (f ) ∈ L p (D Γ , Y ) and S F (f ) p ≤ f p . The linearity of S F is clear. Lemma 4.3.
Let Y be a Banach space, Γ be an infinite set and 1 ≤ p < ∞. Given f ∈ L p (D Γ , Y ) and ε > 0, there exists a finite, non-empty subset

F 0 of Γ such that S F (f ) -f p < ε, for all finite subsets F of Γ with F 0 ⊂ F .
Proof. Once again we split the proof in three cases:

Case 1: f = g(•)y, where g ∈ L p (D Γ ) and y ∈ Y . This case follows immediately from [10, Theorem 22.14, p. 439], noticing that S F (f ) = S F (g)(•)y for every finite, non-empty subset F of Γ.

Case 2: f ∈ L p (D Γ , Y ) is a simple function. This follows from the previous case, by linearity.

Case 3: arbitrary f ∈ L p (D Γ , Y ). Fix ε > 0. Since the simple functions are dense in L p (D Γ , Y ), there exists a simple function ϕ ∈ L p (D Γ , Y ) such that f -ϕ p < ε/3. By the previous case, there exists a finite, non-empty subset F 0 of Γ such that S F (ϕ) -ϕ p < ε/3, for all finite subsets F of Γ with F 0 ⊂ F . Therefore

S F (f ) -f p ≤ S F (f -ϕ) p + S F (ϕ) -ϕ p + ϕ -f p < ε,
for all such F ⊂ Γ, as desired.

We are now ready to prove Theorem 1.7.

Proof of Theorem 1.7. Suppose that L p (D Γ , Y ) contains a complemented copy of c 0 (τ ). According to Theorem 2.2, there exist families (f i ) i∈τ in L p (D Γ , Y ) and (ψ i ) i∈τ in (L p (D Γ , Y )) * such that (f i ) i∈τ is equivalent to the canonical basis of c 0 (τ ), (ψ i ) i∈τ is weak * -null and |ψ i (f i )| = 1 for every i ∈ τ . Put C = sup i∈τ ψ i .

Let F be the family of all finite, non-empty subsets of Γ. By Lemma 4.3, for every i ∈ τ there exists a set F i ∈ F such that S Fi (f ) -f p < 1/2, and thus

|ψ i (S Fi (f i ))| > 1 2 .
For every F ∈ F consider the set

I F = { i ∈ τ : |ψ i (S F (f i ))| > 1/2 }.
Since F ∈F I F = τ and |F| = |Γ| < cf(τ ), Lemma 2.3 yields G ∈ F and τ 1 ⊂ τ such that |τ 1 | = τ and, for every i ∈ τ 1 ,

|ψ i (S G (f i ))| > 1 2 .
Similarly to (4.2), for each f ∈ L p (D Γ , Y ) we write

(4.3) S G (f ) = t∈D G χ t (•)y(f, t)
where, for each t ∈ D G ,

y(f, t) = D G f (t, s)dµ G (s) ∈ Y
and χ t denotes the characteristic function of the measurable set

A t = (t, s) : s ∈ D G . Therefore 1 2 < |ψ i (S G (f i ))| ≤ t∈D G |ψ i (χ t (•)y(f i , t))|,
for every i ∈ τ 1 . Now, τ 1 is infinite and so there exist an element t 0 ∈ D G and a subset τ 2 ⊂ τ 1 such that |τ 2 | = τ and, for every i ∈ τ 2 , (4.4)

|ψ i (χ t0 (•)y(f i , t 0 ))| > 1 2 |G|+1 . Since µ(A t0 ) = 1/2 |G| < 1, we obtain (4.5) y(f i , t 0 ) > 1 C2 |G|+1 , for every i ∈ τ 2 .
Next, consider the linear operator T : L p (D Γ , Y ) → Y defined by T (f ) = y(f, t 0 ), for every f ∈ L p (D Γ , Y ). In order to see that T is bounded, notice that (4.3) yields

S G (f )(s 1 , s 2 ) p = t∈D G χ t (s 1 , s 2 ) y(f, t) p , for every (s 1 , s 2 ) ∈ D G × D G . This implies that S G (f ) p p = D Γ S G (f )(s 1 , s 2 ) p dµ(s 1 , s 2 ) = D Γ t∈D G χ t (s 1 , s 2 ) y(f, t) p dµ(s 1 , s 2 ) = t∈D G y(f, t) p D Γ χ t (s 1 , s 2 )dµ(s 1 , s 2 ) = t∈D G µ(A t ) y(f, t) p = t∈D G 2 -|G| y(f, t) p ≥ 2 -|G| y(f, t 0 ) p = 2 -|G| T (f ) p
and so

T (f ) ≤ 2 |G|/p S G (f ) p ≤ 2 |G|/p f p ,
proving that T is bounded. Notice that, by (4.5), we have

T (f i ) > 1 C2 |G|+1
for every i ∈ τ 2 . Also, by hypothesis, (f i ) i∈τ is equivalent to the canonical basis of c 0 (τ ). Thus, by Theorem 2.1 there exists a subset τ 3 ⊂ τ 2 such that |τ 3 | = τ and (T (f i )) i∈τ3 is equivalent to the canonical basis of c 0 (τ 3 ). Denoting by y * i the bounded linear function on Y defined by

y * i (y) = ψ i (χ t0 (•)y),
for every i ∈ τ 3 and y ∈ Y , it is clear that (y * i ) i∈τ3 is weak * -null in Y * . Combining these facts with (4.4), Theorem 2.2 yields a complemented copy of c 0 (τ ) in Y , as desired.

On copies of c

0 (τ ) spaces in X ⊗ π Y spaces
With a simple modification of the techniques developed so far, we prove Theorem 1.11.

Proof of Theorem 1.11. Let λ > 1 be such that X has the λ-bap. As in the proof of Theorem 1.2, by Lemma 3.1 there exist a directed set A of cardinality n = dens(X) and a net (T α ) α∈A of finite rank operators on X which converges to Id X in the strong operator topology and satisfies sup α∈A T α ≤ λ. For every α ∈ A we write π α = T α ⊗ Id Y . The net (π α ) α∈A converges to Id X ⊗ π Y in the strong operator topology. Let (u i ) i∈τ be a family in X ⊗ π Y equivalent to the canonical basis of c 0 (τ ). There exist constants 0 < δ ≤ M such that

δ sup i∈F |λ i | ≤ i∈F λ i u i π ≤ M sup i∈F |λ i |,
for all finite and non-empty subsets F of τ and all families of scalars (λ i ) i∈F . For every i ∈ τ we have

δ ≤ u i π = lim α π α (u i ) π
and so there exists an index α i ∈ A such that π αi (u i ) π ≥ δ/2. For every α ∈ A consider the set

I α = { i ∈ τ : π α (u i ) π ≥ δ/2 }.
Since α∈A I α = τ and n < cf(τ ), Lemma 2.3 yields an index β 0 ∈ A and a subset τ 1 ⊂ τ such that |τ 1 | = τ and, for every i ∈ τ 1 ,

π β0 (u i ) π ≥ δ 2 .
Let k = dim T β0 (X) and let (v j ) 1≤j≤k be a normalized basis of T β0 (X). By Lemma 3.2, there exist bounded linear operators S 1 , . . . , S k :

X ⊗ π Y → Y satisfying π β0 (u) = k j=1 v j ⊗ S j (u), for each u ∈ X ⊗ π Y . Thus, for every i ∈ τ 1 , δ 2 ≤ π β0 (u i ) π = k j=1 v j ⊗ S j (u i ) π ≤ k j=1 v j ⊗ S j (u i ) π = k j=1 S j (u i ) .
Now, τ 1 is infinite so there exist an integer 1 ≤ k 0 ≤ k and a subset τ 2 ⊂ τ 1 such that |τ 2 | = τ and, for every i ∈ τ 2 , S k0 (u i ) > δ 2k .

Since (u i ) i∈τ is equivalent to the canonical basis of c 0 (τ ), by Theorem 2.1 there exists a subset τ 3 ⊂ τ 2 such that |τ 3 | = τ and (S k0 (u i )) i∈τ3 is equivalent to the unit basis of c 0 (τ 3 ). This finishes the proof.

6. On copies of c 0 (τ ) spaces in L p (D τ , Y ) spaces

In this last section, we provide the proof of Theorem 1.13.

Proof of Theorem 1.13. The proof is a slight modification of the proof of Theorem 1.7. Let (f i ) i∈τ be a family equivalent to the canonical basis of c 0 (τ ) in L p (D Γ , Y ). There exist constants 0 < δ ≤ M such that

δ sup i∈F |λ i | ≤ i∈F λ i f i p ≤ M sup i∈F |λ i |,
for all finite and non-empty subsets F of τ and all families of scalars (λ i ) i∈F . Denote by F the family of all finite, non-empty subsets of Γ. By Lemma 4.3, for every index i ∈ τ there exists a set Ω i ∈ F such that S Ωi (f i ) -f i p < δ/2, and thus S Ωi (f i ) p > δ 2 .

For every Ω ∈ F consider the set

I Ω = { i ∈ τ : S Ω (f i ) p > δ/2 }.
Since Ω∈F I Ω = τ and |F| = |Γ| < cf(τ ), Lemma 2.3 yields G ∈ F and τ 1 ⊂ τ such that |τ 1 | = τ and, for every i ∈ τ 1 ,

S G (f i ) p > δ 2 .
Using the exact same notation used in the proof of Theorem 1.7 (see (4.3)), recall that S G (f ) p p = t∈D G 2 -|G| y(f, t) p , for every f ∈ L p (D Γ , Y ). In particular, we obtain

δ p 2 p < S G (f i ) p p = 1 2 |G| t∈D G y(f i , t) p ,
for every i ∈ τ 1 . Now, τ 1 is infinite and so there exist an element t 0 ∈ D G and a subset τ 2 ⊂ τ 1 such that |τ 2 | = τ and, for every i ∈ τ 2 ,

y(f i , t 0 ) p > δ p 2 p 2 |G| |G| ≥ δ p 2 p > 0,
that is,

y(f i , t 0 ) > δ 2 .
Once again, consider the bounded linear operator T : L p (D Γ , Y ) → Y defined by T (f ) = y(f, t 0 ), for every f ∈ L p (D Γ , Y ). The inequality above gives

T (f i ) > δ 2 ,
for every i ∈ τ 2 . Since (f i ) i∈τ is equivalent to the canonical basis of c 0 (τ ), by Theorem 2.1 there exists a subset τ 3 ⊂ τ 2 such that |τ 3 | = τ and (T (f i )) i∈τ3 is equivalent to the canonical of c 0 (τ 3 ) in Y , and the proof is complete.

Moreover, L 1 (

 1 D Γ ) has the bounded approximation property [6, Example 11] and the density character of L 1 (D Γ ) is equal to |Γ| [13, Theorem 2.12]. Recall also that the spaces L 1 (D Γ , Y ) and L 1 (D Γ ) ⊗ π Y are isometrically isomorphic [20, Example 2.19]. So, applying Theorem 1.4 with X = L 1 (D τ ) and Y = l ∞ (τ ) yields

  and this contradicts [6, Corollary 11, p.156]. Remark 1.10. It is an open problem to know if the statement of Corollary 1.9 remains true for α = 0 [2, Remark 3]. We also left open whether that statement holds when α = 1.

4 .

 4 Complemented copies of c 0 (τ ) spaces in L p (D τ , Y ) spacesThis section is devoted to the proofs of Theorems 1.4 and 1.7.