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In the present paper, we prove that the 3-fold projective tensor product c 0 ⊗ π c 0 ⊗ π c 0 of c 0 is not isomorphic to any subspace of c 0 ⊗ π c 0 . In particular, this settles the long-standing open problem, originally raised by Joe Diestel in a private communication, of whether c 0 ⊗ π c 0 is isomorphic to c 0 ⊗ π c 0 ⊗ π c 0 .

Introduction

Since Grothendieck established the theory of tensor products [START_REF] Grothendieck | Produits tensoriels topologiques et espaces nucléaires[END_REF], it has been realized that projective tensor products would have a great impact on the geometry of Banach spaces. Many surprising results are known which show that the geometric structure of a projective tensor product can be quite complicated, even for the simplest component spaces. For example, Stehle showed that there exists a subspace of c 0 ⊗ π c 0 which fails to have the Dunford-Pettis property [START_REF] Stehle | Projective tensor products and the Dunford-Pettis Property[END_REF], despite the well known fact that every subspace of c 0 has this property [START_REF] Grothendieck | Sur les applications linéaires faiblement compactes d'espaces du type C(K)[END_REF], [START_REF] González | The Dunford-Pettis property on tensor products[END_REF]. For further results concerning the geometric structure of projective tensor product of Banach spaces, see for instance [START_REF] Cabello | Unexpected subspaces of tensor products[END_REF], [START_REF] Emmanuele | On complemented copies of c 0 in L p X , 1 ≤ p < ∞[END_REF] and [START_REF] Pisier | Counterexamples to a conjecture of Grothendieck[END_REF].

On the other hand, due to the somewhat intractable nature of the definition of the projective tensor norm, various elementary questions on the spaces X ⊗ π Y still remain unanswered. This is the case for the following problem attributed to Aleksander Pe lczyński [2, p.517]. Does c 0 ⊗ π c 0 have the uniform approximation property (UAP)? Here, for Banach spaces X, Y , X ⊗ π Y denotes the projective tensor product of X and Y .

Recall that a Banach space X has the UAP if there exist a constant K and a function f : N → N such that, given E ⊂ X with dim E = k, there exists continuous, linear operator T : X → X with T ≤ K, dim T (X) ≤ f (k), and T (x) = x for every x ∈ E [START_REF] Casazza | Approximaton properties, Handbook on the geometry of Banach spaces[END_REF].

However, it was proved in [2, Corollary 1.7] that the quadruple projective tensor product of c 0 , c 0 ⊗ π c 0 ⊗ π c 0 ⊗ π c 0 , does not have the UAP. Thus, in view of Pe lczyński's problem, this last result also raised the following problem.

Problem 1.1. Is c 0 ⊗ π c 0 isomorphic to c 0 ⊗ π c 0 ⊗ π c 0 ⊗ π c 0 ?
As already noted by the authors of [START_REF] Cabello | Unexpected subspaces of tensor products[END_REF], by the associativity of the projective tensor product, a positive solution to the next problem involving the triple projective tensor projective product of c 0 would imply a positive solution to Problem 1.1.

Problem 1.2. Is c 0 ⊗ π c 0 isomorphic to c 0 ⊗ π c 0 ⊗ π c 0 ?
Of course, the geometric structure of 3-fold projective tensor products is even more complicated thanthe 2-fold products, and so far very little is known about the geometric properties of these spaces. In particular, Problem 1.2 is another longstanding open question, attributed to Joe Diestel [2, p.517].

The initial motivation for studying the theme of this paper was to look for the solution of Problem 1.2. Although we have solved Problem 1.2 negatively, our main result also resolves Problem 1.1 negatively. In fact, in Theorem 1.3 we establish something stronger about the family of subspaces of c 0 ⊗ π c 0 . This result is a contribution to better understand the fruitful work on projective tensor products started by Grothendieck in 1953, with which many open problems are related (see, e.g., [START_REF] Giladi | On the geometry of projective tensor products[END_REF]Introduction]).

Theorem 1.3. c 0 ⊗ π c 0 ⊗ π c 0 is not isomorphic to a subspace of c 0 ⊗ π c 0 .
In the next section, we provide some preliminary definitions needed to prove Theorem 1.3, as well as indicate the strategy of the proof.

Finally, observe that Theorem 1.3 suggests some new questions. We only highlight one that is closely related to the subject of this work. As usual, we denote by ⊗ n π c 0 the n-fold projective tensor product of c 0 .

Problem 1.4. Suppose that for some m, n ∈ N with m, n 3, ⊗ m π c 0 is isomorphic to ⊗ n π c 0 . Is it true that m = n?

Preliminaries

Our notation is standard as may be found in [START_REF] Ryan | Introduction to Tensor Products of Banach Spaces[END_REF]. We just remember that if X and Y are Banach spaces and B(X, Y ) is the space of bounded bilinear functionals on X × Y , then the projective tensor norm of u

= n i=1 a i ⊗ b i ∈ X ⊗ Y is defined by u = sup n i=1 ϕ(a i , b i ) : ϕ ∈ B(X, Y ), ϕ ≤ 1 .
Thus, X ⊗ π Y is the completion of X ⊗ Y with respect to this norm [START_REF] Ryan | Introduction to Tensor Products of Banach Spaces[END_REF]. We denote by X ⊗ π Y the projective norm on X ⊗ π Y. The idea behind our proof of Theorem 1.3 is to argue that c 0 ⊗π c 0 is 2-asymptotically uniformly smoothable (shown by Dilworth and Kutzarova in [3, Theorem 9]), while c 0 ⊗π c 0 ⊗π c 0 is not. This amounts to exhibiting normalized, weakly null trees in c 0 ⊗π c 0 ⊗π c 0 which do not admit uniform upper 2 estimates on their branches, for which we will use the Hilbert matrices in a manner similar to Kwapien and Pe lczyński's use of the Hilbert matrices in [START_REF] Kwapien | The main triangle projection in matrix spaces and its applications[END_REF]. One consequence of the results of [START_REF] Kwapien | The main triangle projection in matrix spaces and its applications[END_REF] is that

n i=1 e i ⊗ s i c0 ⊗π c0 ≥ Ω log n,
where Ω is a constant > 0, (e i ) ∞ i=1 is the unit vector basis of c 0 and s i = i j=1 e j denotes the summing basis of c 0 . The proof proceeded by using the Hilbert matrix h n as a member of (c 0 ⊗π c 0 ) * to norm n i=1 e i ⊗ s i . More precisely, the Hilbert matrix h n was used to norm a tensor whose rows are a permutation of the rows of n i=1 e i ⊗ s i . A crucial portion of that argument is the use of an appropriate upper estimate on the operator norm of h n , when viewed as an operator from c 0 to 1 . We will use a similar upper estimate on the operator norm of h n from c 0 to 2 and then use the Hilbert matrices (actually, row permutations of the Hilbert matrices) to norm n i=1 e i ⊗ s i ⊗ f n i and provide the lower estimate

n i=1 e i ⊗ s i ⊗ f n i c0 ⊗π c0 ⊗π c0 ≥ Ω n 1/2 log(n)
for a Rademacher system (f n i ) n i=1 and a constant Ω. Note that for each n, we are using a different Rademacher system (f n i ) n i=1 . We then use this estimate to prove that c 0 ⊗π c 0 ⊗π c 0 is not 2-asymptotically uniformly smoothable, and is therefore not isomorphic to a subspace of c 0 ⊗π c 0 . However, we will deal with 2-asymptotic uniform smoothness only implicitly, choosing to deal with weakly null trees instead. We started defining this notion.

For n ∈ N, let

A n = {(m i ) l i=1 : 1 l n, m 1 < . . . < m l , m i ∈ N}. Given t ∈ {∅} ∪ ∞ l=1
A l and m ∈ N, we let t < m denote the relation that either t = ∅ or t = (m 1 , . . . , m l ) and m l < m. We let denote concatenation, so that if t = {∅} ∪ A n-1 and t < m ∈ N, it follows that t (m) ∈ A n .

Given a Banach space X, a family (u t ) t∈An of X is said to be weakly null if for any t ∈ {∅} ∪ A n-1 , (u t (m) ) t<m is a weakly null sequence in X.

For each k ∈ N, let

E k = span{e i ⊗ e j : max{i, j} = k} ⊂ c 0 ⊗π c 0 .
Then the sequence (E k ) ∞ k=1 is a Schauder finite dimensional decomposition (FDD) for c 0 ⊗π c 0 . Moreover, since (c 0 ⊗π c 0 ) * = L(c 0 , 1 ) = K(c 0 , 1 ), the space of compact operators from c 0 to 1 , it follows that the sequence (E * k ) ∞ k=1 given by

E * k = span{e * i ⊗ e * j : max{i, j} = k}
is a FDD of (c 0 ⊗π c 0 ) * . It was shown in [START_REF] Dilworth | Kadec-Klee properties for L( p , q ), Function spaces[END_REF] that this FDD (E * k ) ∞ k=1 satisfies a uniform 2 lower estimate. That is, there exists C 1 such that for any n ∈ N, any integers 0 = r 0 < r 1 < . . . < r n , and any u i ∈ span{E * j : r i-1 < j r i },

C 1 n i=1 u i 2 (c0 ⊗π c0) * n i=1 u i 2 (c0 ⊗π c0) * .
By standard duality arguments, there exists a constant C 2 > 0 such that for any k ∈ N, any integers 0 = r 0 < r 1 < . . . < r n , and any u i ∈ span{E j : r i-1 < j r i },

n i=1 u i 2 c0 ⊗π c0 C 2 n i=1 u i 2 c0 ⊗π c0 .
Therefore for any n ∈ N, any C 3 > C 2 , and any weakly null family (u t ) t∈An of B c0 ⊗π c0 , there exists (m 1 , . . . , m n ) ∈ A n such that n i=1 u (m1,...,mi)

c0 ⊗π c0 C 3 n 1/2 .
We isolate this result in the following proposition.

Proposition 2.1. There exists a constant C such that for any n ∈ N and any weakly null family (u t ) t∈An of B c0 ⊗π c0 , there exists (m 1 , . . . , m n ) ∈ A n such that n i=1 u (m1,...,mi)

c0 ⊗π c0 Cn 1/2 .
We also note that the isolated property states in Proposition 2.1 is strictly weaker than 2-asymptotic uniform smoothability. Moreover, we will ultimately show that c 0 ⊗π c 0 ⊗π c 0 lacks this weaker property (Proposition 4.2), which means we will prove something stronger than the fact that c 0 ⊗π c 0 ⊗π c 0 is not 2-asymptotically uniformly smoothable. In particular, joining Propositions 2.1 and 4.2 it immediately follows that c 0 ⊗ π c 0 ⊗ π c 0 is not isomorphic to a subspace of c 0 ⊗ π c 0 , so we will have proved Theorem 1.3.

The Hilbert matrices h n and the Rademarcher system

(f n i ) n i=1
In this section first we define the Hilbert matrices h n and some permuted versions thereof, which we denote by p n . Throughout, our matrices will be identified with the operators they induce via matrix multiplication. We will denote the row i, column j entry of a matrix M by M (i, j). We define

h n (i, j) = 1 n+1-i-j
: i, j n and i + j = n + 1 0 : otherwise and p n (i, j) = 1 i-j : i, j n and i = j 0 : otherwise.

Remark 3.1. Notice that for any j ∈ N, p n (i, j) = h n (n+1-i, j) for 1 i n and p n (i, j) = h n (i, j) for all i > n. Therefore h n : 2 → 2 = p n : 2 → 2 for all n ∈ N. As noted in [9, Inequality 1.7], and there attributed to Titchmarch [START_REF] Titchmarsh | Reciprocal formulae involving series and integrals[END_REF], there exists a constant τ = τ (2) such that for all n ∈ N, h n : 2 → 2 τ . Since the rows of p n are simply the rows of h n permuted, p n : 2 → 2 τ for al n ∈ N. Since the map I n : c 0 → 2 given by I n ∞ i=1 a i e i = n i=1 a i e i has norm n 1/2 , and since p n : c 0 → 2 is equal to the composition p n I n : c 0 → 2 , we have (3.1) p n : c 0 → 2 τ n 1/2 for all n ∈ N.

Next we need to remember the definitions of the Haar and the Rademacher systems introduced by A. Pe lczyńki and Singer [START_REF] Pe | On non-equivalent basis and conditional convergence in Banach spaces[END_REF] in a 2 n -dimensional space with respect to a symmetric basis (x i ) 1≤i≤2 n . The Haar system (y i ) 1≤i≤2 n is the sequence defined by

y 1 = 2 n i=1 x 1 , y 2 k +l = 2 n i=1 β k,l i x i , (l = 1, . . . , 2 k ; k = 0, . . . , n -1) 
where

β k,l i =      1 for (2l -2)2 n-k-1 + 1 ≤ i ≤ (2l -1)2 n-k-1 -1 for (2l -1)2 n-k-1 + 1 ≤ i ≤ 2l 2 n-k-1 0 for 1 ≤ i ≤ (2l -2)2 n-k-1 and 2l 2 n-k-1 + 1 ≤ i ≤ 2 n
We shall call Rademacher system the sequence (r k ) 1≤k≤n defined by

r k = 2 k-1 l=1 y 2 k-1 +l
We denote (f n i ) 1≤i≤n the Rademacher system associated to the unit basis 2 n ∞ and (g n i ) 1≤i≤n the normalized Rademacher system associated to the unit basis 2 n 1 . In the duality

2 n 1 , 2 n ∞ we have g n i (f n i ) = 1.
Lemma 3.2. For any scalars (a i ) 1≤i≤n we have

n i=1 a i g n i ≤ n i=1 |a i | 2 1 2
Proof. Let (r k ) 1≤k be the sequence of the usual Rademacher system. It follows from the claim (10) of [START_REF] Pe | On non-equivalent basis and conditional convergence in Banach spaces[END_REF] and Hölder's inequality that

n i=1 a i g n i = [0,1] n i=1 a i r i (t) dt ≤   [0,1] n i=1 a i r i (t) 2 dt   1 2
. The usual Rademacher system is orthonormal so the right hand inequality follows.

The following lemma will play a key role in section 4. Lemma 3.3. For every integer n there exists a unique bounded linear operator P n : c o ⊗ π c 0 → 1 such that P n (e i ⊗ e j ) = p n (i, j)g n i . Moreover P n ≤ τ n Proof. It is obvious that there exists a bilinear map b n from c 0 × c 0 → 1 such that b n (e i , e j ) = p n (i, j)g n i . We shall show that b n is bounded

. Let x = ∞ i=1 a i e i and y = ∞ j=1 b j e j be two elements of B c0 . Then b n (x, y) = n i=1 n j=1 a i b j p n (i, j)g n i = n i=1 a i   n j=1 b j p n (i, j)   g n i .
By Lemma 3.2 and (3.1) it follows that

b n (x, y) ≤    n i=1 a i n j=1 b j p n (i, j) 2    1 2 ≤    n i=1 n j=1 b j p n (i, j) 2    1 2 ≤ τ n 1 2 .
4. On the geometric structure of c 0 ⊗π c 0 ⊗π c 0

The objective of this last section is to prove Proposition 4.2. It contains the fact that c 0 ⊗π c 0 ⊗π c 0 lacks the previously isolated property states in Proposition 2.1. Lemma 4.1. There exists a constant ∆ > 0 such that for any n ∈ N,

n i=1 e i ⊗ s i ⊗ f n i ⊗ 3 π c0 ∆n 1/2 log(n).
Proof. We recall that the spaces (c 0 ⊗π c 0 ⊗π c 0 ) * and L(c 0 ⊗π c 0 , 1 ) are isometrically isomorphic so, for every integer n, τ n

1 2 n i=1 e i ⊗ s i ⊗ f n i ⊗ 3 π c0 ≥ n i=1 P n (e i ⊗ s i )(f n i ) = n i=1 i j=1 p n (i, j)g n i (f n i )
and letting k = i -1, l = i -j, by an elementary computation we have

≥ n-1 k=1 k l=1 1 l ≥ 1 2 n log n.
We conclude by letting ∆ = 2τ. It remains to show that (u t ) t∈Am is weakly null. For this, fix t ∈ {∅} ∪ A n-1 and let 0 ≤ l be the length of t. Then for each t < m, u t (m) = e m ⊗ s l+1 ⊗ f n l+1 . Since l does not depend on m, and since s l+1 c0 = f n l+1 c0 = 1, it follows that (u t (m) ) t<m = (e m ⊗ s l+1 ⊗ f n l+1 ) ∞ t<m is isometrically equivalent to the canonical c 0 basis in ⊗ 3 π c 0 , and therefore a weakly null sequence.
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