EGU2020 – 06 May 2020

SHORT-TERM PHOTOVOLTAIC GENERATION FORECASTING USING HETEROGENOUS SOURCES OF DATA BASED ON AN ANALOG APPROACH

Kevin BELLINGUER⁽¹⁾ Robin GIRARD⁽¹⁾ Guillaume BONTRON⁽²⁾ Georges KARINIOTAKIS⁽¹⁾

 (1) MINES ParisTech, PSL University, PERSEE - Centre for Processes, Renewable Energies and Energy Systems
 (2) Compagnie Nationale du Rhône

Research center : PERSEE Centre for processes, renewable energies and energy systems

> **EGU** European Geosciences Union

PSL X

Industrial partner :

©Authors. All rights reserved. Contact: <u>kevin.bellinguer@mines-paristech.fr</u>

- I. Objectives of PV forecasting
- II. Proposed approach
 - I. A multi-inputs approach
 - II. A conditioned learning
- **III.** Models definition / Case study
- IV. Outcomes and analysis
- V. Conclusions

Objectives

Proposed approach Models / Case study Outcomes Conclusion / Perspectives

OBJECTIVES OF PV FORECASTING

Weather dependence

- Production variability, limited controllability, uncertainties...
- ... leads to large-scale integration problems

New challenges to meet

- Management of the distribution network (balance, reserve, ...)
- Optimization of maintenance scheduling
- Trading on electricity market

What we propose:

- Short-term forecasting model (i.e. few minutes up to 6h ahead)
- A statistical approach
- A seamless model (i.e. a unique model suitable for large range of horizons)
- A simple model with good performances

A multi-inputs approach – State of the art

Objectives Proposed approach Models / Case study Outcomes Conclusion / Perspectives

State-of-the-art

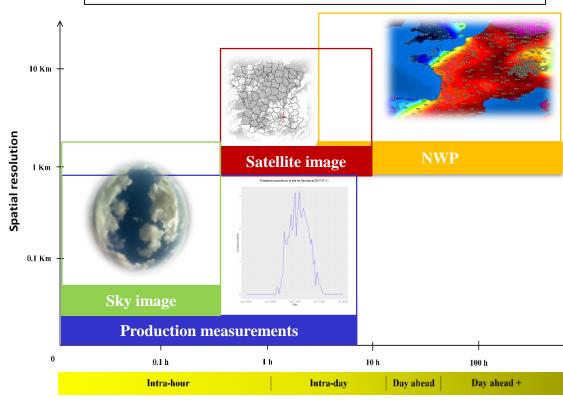
- Production measurements
- Numerical Weather Prediction (NWP)
- Satellite images
- Sky images

Inputs complementarity

• Due to their temporal & spatial resolutions, each approach observes specific phenomena

Inputs combination

 Improvement of forecasting performance for short-term horizons (Aguiar 2016, Vallence 2018) Classification of inputs used for PV production forecasting. Adapted from (*Antonanzas*, 2016) and (*Diagne 2013*). Photo credits: (Météo-France, meteociel.fr. (*Cañadillas*, 2018), CNR)



Temporal horizon

Objectives • Proposed approach Models / Case study Outcomes Conclusion / Perspectives

Description

• Exploits the spatial and temporal correlations between the production data of spatially distributed PV sites

The Spatio-Temporal approach

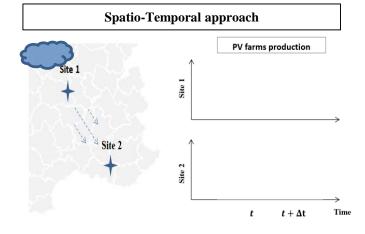
- Idea: a set of neighbouring PV plants is affected by the same clouds
- Short-term horizons (Bessa 2015)

Interests

- Data easily available (provided real time data logging)
- Improve forecasting performance up to 10% (Bessa 2015, Agoua 2018)

Limitations

- PV sites spatial distribution (low density)
- Quality of time series (converter shutdown, ...)



A need for adaptivity

Objectives Proposed approach Models / Case study Outcomes Conclusion / Perspectives

Weather variability

- Variability in cloud cover leads to variability in PV production
- Models need to operate on a wide range of weather conditions (from sunny to overcast skies)
- An adaptative model is more accurate than a static model (Bacher, 2009)

Proposed approach

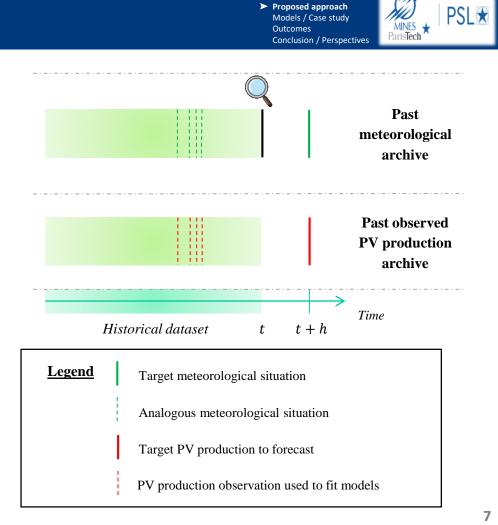
- Hypothesis: similar PV production dynamics are observed under similar weather conditions
- Thus, fitting a model on all past PV observations can drown relevant information
- It seems wise to **sample the learning set** to obtain a **weather coherent** PV production observations **subset** in regard with the future weather state
- To do so, an analogy based approach is implemented

A conditioned learning

An analog based approach:

- Construction of 2 past records for the same period
 - Meteorological archive
 - Observed PV production archive
- Retrieve forecast of analog predictors at time t + h
- Compute the analogy score between the target meteorological situation and all the candidate situations from the meteorological archive.
- Each meteorological situation is ordered from the most similar to the less one. N best meteorological situations are selected.
- The *N* associated PV production observations are selected to train the forecasting model.
- Forecast of PV production at time *t* + *h*.

Which leads to an adaptative learning



Objectives

An analog based approach

Analog variable

- Geopotential field is chosen as an analog predictor
- Geopotential field is considered as a wind driver

Analog metric

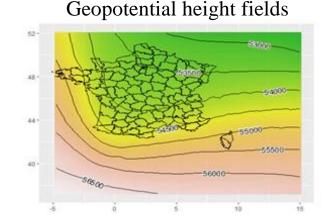
- Need to take into account the predictor spatial distribution
- Score S1 is used to measure similarity between the target and the candidate situations
 - (Teweless and Wobus 1954, Obled, 2002)

Data integration

- Perfect prognosis mode
 - Regarding target situation, reanalysis data are used instead of predictions
 - Quantify the interest of using geopotential field as an analog predictor

Models / Case study Outcomes Conclusion / Perspectives

Objectives Proposed approach



$$\begin{split} & \sum_{i=1}^{I-1} \sum_{j=1}^{J} \left| \Delta_{i,j}^{i,Target} - \Delta_{i,j}^{i,Candidate} \right| + \\ & S_1 = 100 \frac{\sum_{i=1}^{I} \sum_{j=1}^{J-1} \left| \Delta_{i,j}^{j,Target} - \Delta_{i,j}^{j,Candidate} \right|}{\sum_{i=1}^{I-1} \sum_{j=1}^{J} \max\left(\left| \Delta_{i,j}^{i,Target} \right|, \left| \Delta_{i,j}^{i,Candidate} \right| \right) + \\ & \sum_{i=1}^{I} \sum_{j=1}^{J-1} \max\left(\left| \Delta_{i,j}^{j,Target} \right|, \left| \Delta_{i,j}^{j,Candidate} \right| \right) \end{split}$$

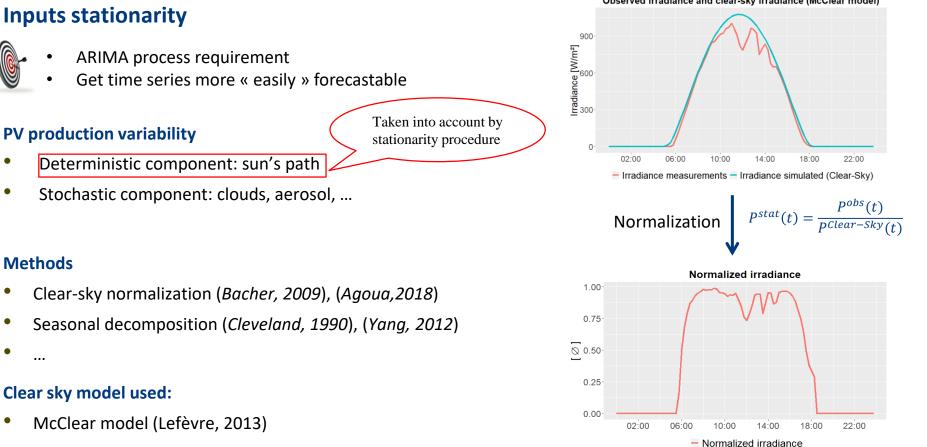
Terms are defined in the <u>annex</u> section

Data Stationarization

• • •

Objectives Proposed approach Models / Case study Outcomes Conclusion / Perspectives

Observed irradiance and clear-sky irradiance (McClear model)



Models definition

Objectives Proposed approach Models / Case study Outcomes Conclusion / Perspectives

Performance evaluation

Reference model: smart persistence

$$\widehat{P}_{t+h|t}^{x} = \begin{cases} \overline{P_{t}}^{x} & \text{if } \overline{P_{t}}^{x} \neq 0 \text{ (i.e. daytime)} \\ \overline{P}_{t+h-24H}^{x} & \text{if } \overline{P_{t}}^{x} = 0 \text{ (i.e. nighttime)} \end{cases}$$

Auto-Regressive (AR) model

$$\hat{\bar{P}}_{t+h|t}^{x} = \hat{\beta}_{h}^{0} + \sum_{l=0}^{L} \hat{\beta}_{h}^{l} \bar{P}_{t-l}^{x}$$

Terms are defined in the <u>annex</u> section

Conditioned learning

Objectives Proposed approach Models / Case study Outcomes Conclusion / Perspectives

A two steps conditioned learning approach (CAR model)

- First, the learning set is sample according to the hour of the day (CAR-T)
- Then, the previous subset is sample again in respect to the **synoptic situations** using the analogy based method **(CAR-T.An)**

Conditioned Auto-Regressive (CAR-T.An)

CAR-T.An + Spatio-Temporal data (CARST-T.An)

CARST-T.An + eXogenous inputs (CARXST)

$$\hat{\bar{P}}_{t+h|A_{t+h}}^{x} = \hat{\beta}_{h}^{0} + \sum_{l=0}^{L} \hat{\beta}_{h}^{l} f_{A_{t+h}}(\bar{P}_{t-l}^{x})$$

$$+\sum_{l=0}^{L}\sum_{y\in X}\widehat{\beta}_{h}^{l,y}f_{A_{t+h}}(\bar{P}_{t-l}^{y})$$
$$+\sum_{i=1}^{N}\widehat{\beta}_{i,h}^{Sat}f_{A_{t+h}}(\overline{Sat}_{t}^{i})$$

 $+ \hat{\beta}_h^{NWP} f_{A_{t+h}}(\overline{NWP}_{t+h}^x)$

On-site observations

+ nearby sites observations
 + satellite images

+ NWP

Terms are defined in the <u>annex</u> section

Features selection

Objectives Proposed approach Models / Case study > Outcomes Conclusion / Perspectives

Least Absolute Shrinkage and Selection Operator (LASSO)

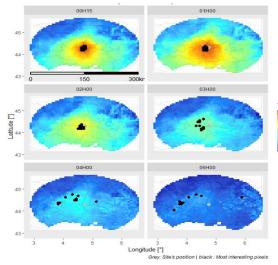
• To provide a seamless model, variable selection is carried out on each horizon to keep most informative features

$$\hat{\beta}_{h}^{LASSO} = \frac{argmin}{\beta_{h}} \left\{ \frac{1}{2} RSS(\beta_{h}) + \lambda |\beta_{h}| \right\}$$

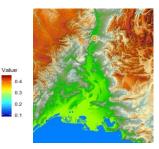
Satellite pixels selection

- To avoid a too large number of variables, we limits our approach to the **10 most informative pixels**
- To quantify the correlation between the stationarized PV production and the stationarized satellite data for various lags, the Mutual Information Criterion is used (Carriere, 2020).
- The correlation area is highly influenced by the Rhône valley topography.
- The shorter the horizon, the closer the most relevant pixels.
- For horizon higher than 3H00 ahead, most informative points are located westward.
 - In this region, main wind seams to be westerly wind (see <u>annex</u>)

Location of the 10 most informative pixels



Rhône valley topography



Case study

jectives pposed approach odels / Case study tcomes nclusion / Perspectives	MINES ParisTech	PSL★
---	--------------------	------

Ob

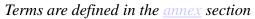
Prc

Mi Ou Co

Production measurements	• 9 PV plants • D \in [7.3 ; 133] km • $\overline{P}_{t} = \frac{\overline{P}_{t}}{P_{nom}}$, with $P_{nom} \in$ [1.2 ;12] <i>MW</i> p • $\Delta t = 15'$	Lapin
Satellite images	 Helioclim-3 (Blanc, 2011) Stationarized GHI Δt =15' 	GHI (HC3) 31/12/2017 a 06H00
NWP (exogenous inputs)	 ARPEGE – Météo France Operational forecasting conditions Dissemination schedule Stationarized GHI Δt = 1H interpolated to Δt =15' 	
Analog predictor	 ERA5 – ECMWF – Reanalysis <i>Perfect prognosis</i> mode Geopotential field at 500 & 925hPa At – 111 	42- 2.5 5.0 7.5 Wh/m ²

 $\Delta t = 1H$

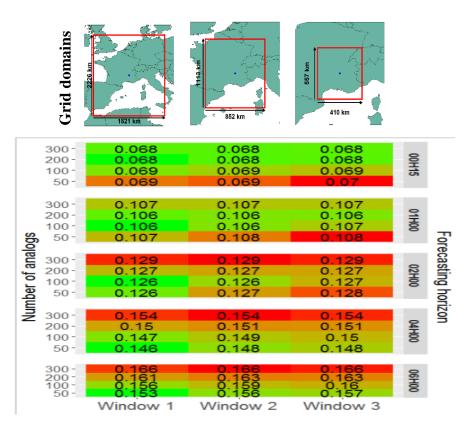
•



13

Sensibility analysis

Objectives Proposed approach Models / Case study > Outcomes Conclusion / Perspectives



Parameters of the sensibility analysis

- Grid domains of the analog spatial window
 - 3 regions centered over the Rhône valley region
- Number of analogs situations to train the models
 - From 50 up to 300 analogs situations

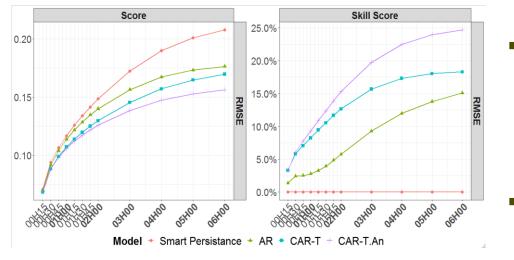
Conclusions

- Grid domains
 - The larger spatial window exhibits better performances.
- Number of analogs
 - For very short-term horizons (i.e. from 15' up to 1H ahead), the more analogs, the better the performances,
 - For longer horizons (i.e. from 2H up to 6H ahead), better performances are achieved with less analogous situations.
 - 100 analog situations seems a good compromise.

Influence of the conditioned approach over performances

Objectives Proposed approach Models / Case study Outcomes Conclusion / Perspectives

Performance evaluation of the proposed conditioning approach over the reference model



Model names are defined in the annex section

Conclusions

- AR model
 - AR model outperforms the persistence up to ~15% for a 6H horizon.

---- CAR-T model

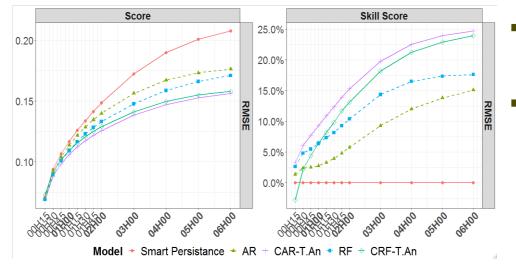
- Conditioning of the learning set to the hour of day, improves performances in comparison with the AR model
- This phenomenon can be explained by:
 - The stationnarisation procedure is not perfect, especially for dawn times (Agoua, 2018)
 - The PV production dynamics varies according to the time of the day

🗕 CAR-T.An

- The CAR-T.An model outperforms both the previous models. Compared to persistence model, improvement can reach ~24% for a 6H lead time
- Better performances are obtained when forecast model depends on the weather situation

Comparison with a more advanced model

Performance evaluation of the proposed conditioning approach with the Random Forest model (RF)



Model names are defined in the annex section

Conclusions

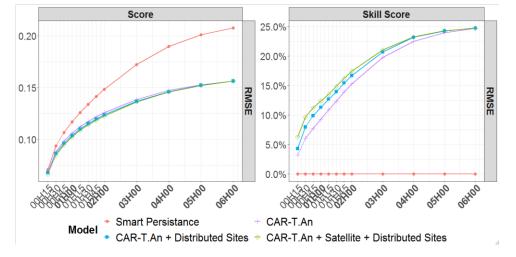
- AR model
 - The RF approach outperforms the AR model regardless of the considered forecasting horizon

---- CAR model

- The proposed conditioning approach outperforms the RF and CRF models.
- Bad performances from CRF for very short times are supposed to result from over fitting

Spatio temporal inputs – CARST model

Objectives Proposed approach Models / Case study Outcomes Conclusion / Perspectives



Performance evaluation of the CAR model with ST inputs

Model names are defined in the <u>annex</u> section

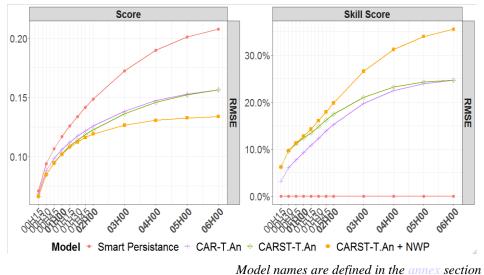
Conclusions

CARST-T.An Model

- ST inputs (i.e. distributed sites and satellite pixels) improves performances for horizons below 6H00 ahead.
- Improvement are higher for 30' horizon and decrease with time
- At 6H00 horizon, the influence of ST is neglectable

NWP inputs – CARXST model

Objectives Proposed approach Models / Case study Outcomes



Performance evaluation of the proposed models

Conclusions

- ----- CARST-T.An Model
 - For horizon ranging from 15' up to 45', performances improvement result from ST data

CARXST-T.An Model

From **1H up to 6H** ahead horizon, the main source of performance improvement is due to NWP.

Seamless way to integrate capacity of NWP outputs to extend forecasting horizon

Conclusion et perspectives

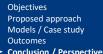
Objectives Proposed approach Models / Case study Outcomes Conclusion / Perspectives

Conclusion

- The proposed **conditioned learning improve performances up to 25%** in comparison with a persistence model for a **6H ahead horizon**
- ST data improve performances for horizon below 6H ahead,
 - By ~4% for a 30 min horizon
 - Improvement decrease progressively to become neglectable for a 6H horizon
- Combining the proposed conditioning approach with ST and NWP inputs, performances reach ~35% for a 6H lead time in regards with the persistence model
- The LASSO features selection enable to propose a seamless approach

Perspectives

- Operational framework: consider NWP of geopotential fields rather than reanalysis
- Improve ST data integration by considering Cloud Motion Vector (CMV) approach



► Conclusion / Perspectives

Thanks for your attention.

Reference

- CHOWDHURY, RAHMAN, Forecasting sub-hourly solar irradiance for prediction of photovoltaic output, IEEE Photovoltaic Specialists Conference, 1987
- CLEVELAND, CLEVELAND, MCRAE, STL A seasonal-Trend Decomposition Procedure Based on Loess, Journal of Official Statistics, 1990
- BACHER, MADSEN, NIELSEN, Online short-term solar power forecasting, Solar Energy, 2009
- LORENZ, HURKA, HEINEMANN, Irradiance Forecasting for the Power Prediction of Grid-Connected Photovoltaic Systems, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2009
- YANG, JIRUTITIJAROEN, WALSH, Hourly solar irradiance time series forecasting using cloud cover index, Solar Energy, 2012
- DIAGNE, DAVID, LAURET, Review of solar irradiance forecasting methods and a proposition for small-scale insular grids, Renewable and Sustainable Energy Reviews, 2013
- DONG, YANG, REINDL, Short-term solar irradiance forecasting using exponential smoothing state space model, Energy, 2013
- HUANG, KOROLKIEWICZ, AGRAWAL, Forecasting solar radiation on an hourly time scale using a Coupled AutoRegressive and Dynamical System (CARDS) model, Solar Energy, 2013
- AKYUREK, KLEISSL, ROSING, TESLA Taylor expanded solar analog forecasting, 2014 IEEE International Conference on Smart Grid Communications (SmartGridComm), 2014
- ALESSANDRINI, DELLE MONACHE, SPERATI, An analog ensemble for short-term probabilistic solar power forecast, Applied Energy, 2015
- BESSA, TRINDADE, MIRANDA, Spatial-Temporal Solar Power Forecasting for Smart Grids, IEEE Transactions on Industrial Informatics, 2015
- ANTONANZAS, OSORIO, ESCOBAR, Review of photovoltaic power forecasting, Solar Energy, 2016
- AGUIAR, PEREIRA, LAURET Combining solar irradiance measurements, satellite-derived data and a numerical weather prediction model to improve intra-day solar forecasting, Renewable Energy, 2016
- GRADITI, FERLITO, ADINOLFI, Comparison of Photovoltaic plant power production prediction methods using a large measured dataset, Renewable Energy, 2016
- AGOUA, GIRARD, KARINIOTAKIS, Short-Term Spatio-Temporal Forecasting of Photovoltaic Power Production, IEEE Transactions on Sustainable Energy, 2018
- KAPOURCHALI, SPEHRY, ARAVINTHAN, Multivariate Spatio-temporal Solar Generation Forecasting: A Unified Approach to Deal With Communication Failure and Invisible Sites, IEEE Systems Journal, 2018
- CANADILLAS, GONZALEZ-DIAS, RODRIGUEZ, A low-cost two-camera sky-imager ground-based intra-hour solar forecasting system with cloud base height estimation capabilities working in a smart grid, 2018
 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC), 2018
- VAN DER MEER, WIDEN, MUNKHAMMAR, Review on probabilistic forecasting of photovoltaic power production and electricity consumption, Renewable and Sustainable Energy Reviews, 2018
- CARRIERE, VERNAY, PITAVAL, KARINIOTAKIS, A Novel Approach for Seamless Probabilistic Photovoltaic Power Forecasting Covering Multiple Time Frames, IEEE Transactions on Smart Grid, pp. 1–1, 2019,
- BLANC, GSCHWIND, LEFEVRE, and WALD, The HelioClimProject: Surface Solar Irradiance Data for Climate Applications, Remote Sensing, vol. 3, no. 2, pp. 343–361, Feb. 2011
- N. N. W. Service, "Glossary NOAA's National Weather Service,"00000 Library Catalog: w1.weather.gov. [Online]. Available: https://w1.weather.gov/glossary/index.php?letter=h
- OBLED, BONTRON, GARCON, Quantitative precipitation forecasts: a statistical adaptation of model outputs through ananalogues sorting approach, Atmospheric Research, vol. 63, no.3-4, pp. 303–324, Aug. 2002.

Glossary

Abbreviation	Definition
AR	Auto Regressive
CAR	Auto Regressive model with Conditioned learning
CARST	Conditioned Auto Regressive model with Spatio-Temporal inputs
CARXST	Conditioned Auto Regressive model with Spatio-Temporal and eXogenous inputs
CMV	Cloud Motion Vector
CNR	Compagnie Nationale du Rhône
GHI	Global Horizon Irradiance
LASSO	Least Absolute Shrinkage and Selection Operator
NWP	Numerical Weather Predictions
PV	PhotoVoltaic
ST	Spatio Temporal
SS	Skill Score
RF	Random Forest

Abbreviation	Definition
AR	Auto Regressive model considering all available PV production observations
RF	Random Forest model considering all available PV production observations
CAR	Auto Regressive model with Conditioned learning
CAR-T	AR model Conditioned to the Time of the day
CAR-T.An	AR model conditioned to the T ime of the day and the synoptic state through an An alog based method
CRF-T.An	RF model conditioned to the T ime of the day and the synoptic state through an An alog based method
CARST-T.An	Conditioned Auto Regressive model with Spatio-Temporal inputs
CARXST-T.An	Conditioned Auto Regressive model with Spatio-Temporal and eXogenous inputs

S1 score

Definition of the S1 score

$$S_{1} = 100 \frac{\sum_{i=1}^{I-1} \sum_{j=1}^{J} \left| \Delta_{i,j}^{i,Target} - \Delta_{i,j}^{i,Candidate} \right| + \sum_{i=1}^{I} \sum_{j=1}^{J-1} \left| \Delta_{i,j}^{j,Target} - \Delta_{i,j}^{j,Candidate} \right|}{\sum_{i=1}^{I-1} \sum_{j=1}^{J} \max\left(\left| \Delta_{i,j}^{i,Target} \right|, \left| \Delta_{i,j}^{i,Candidate} \right| \right) + \sum_{i=1}^{I} \sum_{j=1}^{J-1} \max\left(\left| \Delta_{i,j}^{j,Target} \right|, \left| \Delta_{i,j}^{j,Candidate} \right| \right) \right|} \\ \left\{ \begin{aligned} \Delta_{i,j}^{i,X} = V_{i+1,j}^{X} - V_{i,j}^{X} \\ \Delta_{i,j}^{j,X} = V_{i,j+1}^{X} - V_{i,j}^{X} \end{aligned} \right\} X \in \{Target, Candidate\} \end{aligned}$$

- <u>Where:</u> $\Delta_{i,j}^{i}$ The east-west geopotential gradient
- $\Delta_{i,j}^{j}$ The north-south geopotential gradient
- $V_{i,i}$ The geopotential field at grid node (i,j) ٠

Parameters definition

- \overline{P}_t^x Observed stationarized PV production at time *t* for plant *x*
- \hat{P}_{t+h}^x Predicted stationarized PV production at time *t+h* for plant *x*
- A_{t+h} Synoptic weather situation expected at time t+h
- $f_{A_{t+h}}$ Conditioning approach based on synoptic situation and time of the day
- $\hat{\beta}$ Regression coefficients
- L Maximum lag of PV production observations (here, 2H)
- X Neighbouring sites (here, 5 closest sites are considered)
- \overline{Sat}_t^i Stationarized GHI observed at pixel *i* and time *t*
- \overline{NWP}_{t+h}^x Stationarized GHI forecast obtained from NWP output at plant x and time t+h

Skill score definition

$$SS(h) = \frac{RMSE_{Model}(h) - RMSE_{Reference}(h)}{\frac{RMSE_{Perfect model}(h)}{=0 \forall h} - RMSE_{Reference}(h)}$$

MINES ParisTech

Main wind in the Rhône valley

Principal Component Analysis (PCA)

- **PCA** is performed on 1 years of hourly reanalysis (ERA 5) of wind velocity at 750hPa
- The first Principal Component (PC) is represented at the opposite graph
- Westerly wind are observed

