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Perspective-2-Ellipsoid: Bridging the Gap Between
Object Detections and 6-DoF Camera Pose

Vincent Gaudillière1, Gilles Simon1 and Marie-Odile Berger1

Abstract—Recent years have seen the emergence of very effec-
tive ConvNet-based object detectors that have reconfigured the
computer vision landscape. As a consequence, new approaches
that propose object-based reasoning to solve traditional problems,
such as camera pose estimation, have appeared. In particular,
these methods have shown that modelling 3D objects by ellipsoids
and 2D detections by ellipses offers a convenient manner to
link 2D and 3D data. Following that promising direction, we
propose here a novel object-based pose estimation algorithm that
does not require any sensor but a RGB camera. Our method
operates from at least two object detections, and is based on a
new paradigm that enables to decrease the Degrees of Freedom
(DoF) of the pose estimation problem from six to three, while two
simplifying yet realistic assumptions reduce the remaining DoF
to only one. Exhaustive search is performed over the unique
unknown parameter to recover the full camera pose. Robust
algorithms designed to deal with any number of objects as well as
a refinement step are introduced. Effectiveness of the method has
been assessed on the challenging T-LESS and Freiburg datasets.

Index Terms—Perspective-2-Ellipsoid, visual positioning, pose
from objects

I. INTRODUCTION

Estimating the position and orientation of a camera in
relation to its environment is a fundamental task in computer
vision. In this problem, it is necessary to build and maintain a
three-dimensional representation of the environment in which
the observer operates [1]. When the scene is modeled by a 3D
point cloud, the camera pose can be unambiguously recovered
from four correspondences between points in the image and
points in the model [2]. To achieve greater accuracy, most
methods consider an arbitrary number of 2D-3D correspon-
dences [3], [4]. However, the process efficiency is directly
impacted by significant changes in viewpoints and by the lack
of discrimative power of local feature descriptors in certain
conditions (e.g. lack of texture, presence of repeated patterns).

There has recently been an explosion in the performances
of automatic object detection algorithms, driven by methods
based on ConvNets such as R-CNN [5], SSD [6], or YOLO
[7]. This qualitative leap has led to the emergence of new
approaches to solving traditional computer vision problems.
Recent end-to-end methods such as poseCNN [8], SSD6D [9]
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and DPOD [10] have been proposed for 6D pose recovery.
Such methods however need retraining when a new scene
has to be considered. In order to build more flexible systems
but still take advantage of progress in recognition, a new
trend of research aims at considering pose computation at
the level of objects. Indeed, object detection algorithms are
able to recognize objects across a wide range of viewpoints
and in different weather or lighting conditions. This opens
the way towards more robust pose algorithms based on high-
level features (objects or corners [11]) instead of traditional
low-level primitives (keypoints). Li et al. [12], [13] proposed
to use object detections to estimate relative camera poses in
the case of large changes in viewpoints. However, modelling
the scene by a set of 3D cuboids and the 2D detections by
rectangles does not allow to derive closed-form solutions to
projection equations.

Modeling object projections by ellipses allowed Crocco et
al. to propose an analytical solution to the Structure from
Motion (SfM) reconstruction of the scene in the form of a
set of ellipsoids corresponding to objects of interest [14].
However, this method is limited to the case of orthographic
projection. Perspective projection is taken into account in
[15], where Rubino et al. proposed an analytical solution to
build such a semantic 3D model from only three calibrated
perspective cameras. The reconstructed model is therefore
composed only of a few objects whose projections can be
detected in images under a large range of viewpoints and
conditions. Object detections were used in [16] to correct scale
drift in monocular SLAM sequences.

In [17], Nicholson et al. presented a SLAM method to
simultaneously build the set of 3D ellipsoids and compute the
camera poses. That solution proposes to minimize a geometric
reprojection error as a function of the camera’s six DoF, based
on initial position and orientation values provided by odo-
metric sensors. Recently, it has been shown that the problem
of camera pose estimation from ellipse-ellipsoid correspon-
dences has at most 3 DoF, since the camera position can be
inferred from its orientation, provided that at least one ellipse-
ellipsoid correspondence is known [18], [19]. In particular,
the possibility to compute a rough estimate of the pose from
the camera orientation acquired by sensors or computed from
vanishing points was demonstrated in [19]. Recovering the
full camera pose from at least two objects was investigated
on synthetic data in [18]. However, a prior on orientation
was required and the method has proven sensitive to noise
on ellipses as well as to the number of ellipses detected in the
image. Following on from these works, we propose a method
to recover an estimate of the full camera pose from at least two
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ellipse-ellipsoid correspondences that does not require prior
nor sensors. Given two detected objects, the method presented
in section II allows the camera orientation to be recovered as a
function of only one angular parameter under two assumptions
satisfied by many robotics applications. Given the possibility
to derive position from orientation [18], the camera pose is
the one that minimizes the ellipse-ellipsoid reprojection error.
A robust method is then presented in section III to handle any
number of objects. As shown in the experiments (section IV),
this method is of particular interest when a small number of
objects are visible. It thus allows localization for a large variety
of viewpoints on the scene, either close-up or distant views,
making this method interesting for various robotic tasks.

II. POSE ESTIMATION FROM 2 ELLIPSE-ELLIPSOID PAIRS

In this section, we present the process of camera pose
estimation in the minimal case of two 2D-3D correspondences.
The method exploits the inherent decoupling between cam-
era orientation and position arising from the ellipse-ellipsoid
modeling paradigm, which was introduced in [18], [19], and
derives an approximated analytical expression of the complete
camera pose as a function of only one angular parameter.

A. Method Overview

To estimate the camera orientation, our method relies on two
weak assumptions, that enable to restrict the three degrees of
freedom of the orientation determination problem to only one.
More specifically, our assumptions are:

1) the roll angle of the camera is zero,
2) the line defined by the two ellipsoid centers projects onto

the line defined by the two ellipse centers.
This compares with [20], although Toft et al. make stronger
assumptions than we do to reach the same number of DoF
in the camera pose estimation process. Indeed, they assume
that the gravity direction is known in the camera’s coordinate
system (i.e. the camera y-axis is colinear to the world z-axis),
whereas we just assume coplanarity between camera’s x-axis
and world’s horizontal plane (assumption 1). They assume that
one 2D-3D point correspondence is known in the camera’s
coordinate system, whereas we rely on the very realistic
approximation that the projection of the line connecting the
centers of the ellipsoids coincide with the line connecting the
centers of the ellipses (assumption 2).

The first assumption refers to the case where the x-axis
icam of the camera lies on a world’s horizontal plane (angle
θ1 = 0). Let C1 and C2 (resp. c1 and c2) be the center
of the two ellipsoids (resp. ellipses). The second assumption
implies that the vector c = (C2−C1)/||C2−C1|| lies on the
plane passing through the camera center and the centers of the
ellipses, that is θ2 = 0 (see Fig. 1). In practice, assumption 1
is nearly satisfied by numerous robotics applications. It is
trivially true for autonomous driving applications. We also
show in table I that θ1 values computed on sequences acquired
with a robotic arm (T-LESS) or with a handheld camera
(Freiburg dataset) are small. It is also important to note that in
many cases, rectification techniques based on vanishing points
can be used to make assumption 1 satisfied. Due to the fact that

ratios of distances are not preserved by perspective projection,
the projection of Ci does not match exactly ci and assumption
2 is not strictly verified. However the distance d between these
two points is generally small. Using the camera intrinsics of
the Freiburg dataset, elementary calculus show that d is smaller
when the ellipsoid is farther from the camera. In addition, for
a given camera/ellipsoid depth, d increases when the view
line direction is close to the image plane. To give a more
precise idea, when considering a sphere at a depth D from
the camera, with a ratio diameter/D = 1/10, d ranges from
0 to 1.2 with 0.55 pixels as mean error. For an object close
to the camera with diameter/D = 1/4, d ranges from 0 to 7
with 3.5 as mean error. This leads in practice to small values
of θ2 presented in table I and Fig. 5.

Our method proceeds in two steps. (i) Given any orientation
of icam in the plane (iw, jw), the camera orientation is
obtained by exploiting the fact that the vector c should lie
on the plane passing through the center of the camera and the
centers of the ellipses e1, e2 (presented in red in Fig. 1). In
practice, two camera orientations are possible (section II-B).
(ii) The position that best satisfies the ellipse - ellipsoid cor-
respondences given each camera orientation is then computed
based on the theoretical considerations presented in [18], [19].

Finally we perform a one-dimensional search of the orien-
tation of icam and retain the one that gives rise to the best
overlap between the ellipses and the projected ellipsoids.
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Fig. 1. Camera and scene geometry: θ1 and θ2 are approximated by zero.

B. Camera Orientation

We derive in this section an analytical expression of the
camera orientation as a function of one angular parame-
ter. Let us first consider three direct orthonormal bases:
Bw = (iw, jw,kw), referred as the world basis, in which
the ellipsoids and the vector c are known; Bcam =
(icam, jcam,kcam), referred as the camera basis, in which
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Angle Approximation error, in ◦

[T-LESS] θ1 2.20 (±0.86)
[T-LESS] θ2 (GT ellipses) 0.29 (±0.25)
[T-LESS] θ2 (bbox ellipses) 1.94 (±2.19)
[Freiburg] θ1 1.33 (±1.07)
[Freiburg] θ2 (bbox ellipses) 1.12 (±0.94)

TABLE I
MEAN ANGULAR APPROXIMATION ERRORS (± STANDARD DEVIATION) ON

TEST IMAGES: A TYPICAL SEQUENCE OF THE T-LESS DATASET
(TEST CANON/08) [21], AND ONE SUBSEQUENCE OF THE FREIBURG

DATASET (FR2/DESK: 788 CAMERAS) [22].

the ellipses are known; and Bp = (ip, jp,kp), where ip and
jp belong to the plane passing through the camera center and
the centers of the ellipses (presented in red in Fig. 1), and
where kp is orthogonal to that plane. As the camera intrinsics
K are known, such a basis could be built from K−1(e2−e1)
and K−1e1, but any other choice is possible.

We here distinguish two cases depending on whether c and
icam are colinear or not.

a) c and icam are not colinear: Let α be the angle
which encodes the direction of the projection of vector icam
into the horizontal plane (iw, jw).

We consider a fourth basis, referred as intermediary basis:
Bint = (icam, c, icam × c), where × represents the cross
product between two vectors. To consider Bint as a basis, we
assume that icam and c are not colinear (the case where they
are colinear is developed below in paragraph b)). We finally
denote v(b) = (v

(b)
x v

(b)
y v

(b)
z )> the expression of any vector v

in any basis Bb. Therefore, the change of basis from Bint to
Bw is related to the matrix

wPint =

cos(θ1)cos(α) c
(w)
x

cos(θ1)sin(α) c
(w)
y ...

sin(θ1) c
(w)
z

 (1)

where the last column can be easily computed as the cross
product between the two first ones. The columns contain
the expressions of Bint vectors into Bw. In particular, the
expression c(w) of c into the world basis (second column) is
known. Under assumption 1 (θ1 = 0), wPint is written

wP̃int =

cos(α) c
(w)
x sin(α)c

(w)
z

sin(α) c
(w)
y −cos(α)c(w)

z

0 c
(w)
z cos(α)c

(w)
y − sin(α)c(w)

x


Similarly, the change of basis from Bint to Bcam is related

to the matrix camPint given in (2) (see top of next page),
where β is an unknown angle that encodes the direction of
the projection of vector c into the plane (ip, jp). Here again,
columns contain the expressions of Bint vectors into Bcam.
Under assumption 2 (θ2 = 0), camPint becomes camP̃int,
whose expression is given in (3) (see top of next page).

The camera orientation is then represented by the matrix

wRcam = wPint
camP−1

int

and our goal is to compute the approximated orientation

wR̃cam = wP̃int
camP̃−1

int (4)

Let’s demonstrate that wR̃cam depends only on α (1 DoF).
Indeed, since Bw is an orthonormal basis, the angle γ between
icam and c satisfies

cos(γ) =

cos(α)sin(α)
0

 ·
c

(w)
x

c
(w)
y

c
(w)
z

 (5)

= cos(α)c(w)
x + sin(α)c(w)

y (6)

Since the dot product between vectors does not depend on
the orthonormal basis in which vectors are expressed, γ also
satisfies

cos(γ) =

1
0
0

 ·
cos(β)i

(cam)
p,x + sin(β)j

(cam)
p,x

cos(β)i
(cam)
p,y + sin(β)j

(cam)
p,y

cos(β)i
(cam)
p,z + sin(β)j

(cam)
p,z


= cos(β)i(cam)

p,x + sin(β)j(cam)
p,x

Thus

cos(γ) =

√
i
(cam)
p,x

2
+ j

(cam)
p,x

2
(cos(β)cos(δ) + sin(β)sin(δ))

where δ is defined such that
cos(δ) =

i(cam)
p,x√

i
(cam)
p,x

2
+j

(cam)
p,x

2

sin(δ) =
j(cam)
p,x√

i
(cam)
p,x

2
+j

(cam)
p,x

2

using (6) we finally obtain

cos(β − δ) = cos(γ)√
i
(cam)
p,x

2
+ j

(cam)
p,x

2

=
cos(α)c

(w)
x + sin(α)c

(w)
y√

i
(cam)
p,x

2
+ j

(cam)
p,x

2

Finally, it remains only two possibilities for β as a function
of α assuming that α is known:

β = δ ± arccos

cos(α)c
(w)
x + sin(α)c

(w)
y√

i
(cam)
p,x

2
+ j

(cam)
p,x

2

 (7)

b) c and icam are colinear: If icam and c are colinear,
the camera orientation estimation method presented above
cannot be applied. However, the colinearity means that c is
horizontal (c(w)

z = 0), and that icam = ±c :

i(w)
cam =

c(w)
x

c
(w)
y

0

 , or i(w)
cam =

−c(w)
x

−c(w)
y

0
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cam
Pint =


1 cos(θ2)cos(β)i

(cam)
p,x + cos(θ2)sin(β)j

(cam)
p,x + sin(θ2)k

(cam)
p,x 0

0 cos(θ2)cos(β)i
(cam)
p,y + cos(θ2)sin(β)j

(cam)
p,y + sin(θ2)k

(cam)
p,y −cos(θ2)cos(β)i

(cam)
p,z − cos(θ2)sin(β)j

(cam)
p,z − sin(θ2)k

(cam)
p,z

0 cos(θ2)cos(β)i
(cam)
p,z + cos(θ2)sin(β)j

(cam)
p,z + sin(θ2)k

(cam)
p,z cos(θ2)cos(β)i

(cam)
p,y + cos(θ2)sin(β)j

(cam)
p,y + sin(θ2)k

(cam)
p,y

 (2)

camP̃int =

1 cos(β)i
(cam)
p,x + sin(β)j

(cam)
p,x 0

0 cos(β)i
(cam)
p,y + sin(β)j

(cam)
p,y −(cos(β)i(cam)

p,z + sin(β)j
(cam)
p,z )

0 cos(β)i
(cam)
p,z + sin(β)j

(cam)
p,z cos(β)i

(cam)
p,y + sin(β)j

(cam)
p,y

 (3)

Moreover, it also causes that the vectors (kw,kw×c) define
a plane that contains jcam. In other words, there is an angle
α′ such that jcam = cos(α′)kw + sin(α′)(kw × c)

j(w)
cam = cos(α′)

0
0
1

+ sin(α′)

−c(w)
y

c
(w)
x

0


=

−sin(α′)c(w)
y

sin(α′)c
(w)
x

cos(α′)


Thus the camera orientation matrix can be directly written

as a function of α′:

wR̃cam =

c(w)
x −sin(α′)c(w)

y cos(α′)c
(w)
y

c
(w)
y sin(α′)c

(w)
x −cos(α′)c(w)

x

0 cos(α′) sin(α′)


or

wR̃cam =

−c(w)
x −sin(α′)c(w)

y −cos(α′)c(w)
y

−c(w)
y sin(α′)c

(w)
x cos(α′)c

(w)
x

0 cos(α′) −sin(α′)

 (8)

where the columns are the expressions of the camera basis
vectors into the world basis. The last column is derived as the
cross product between the two first ones, using the fact that c
is normalized (c(w)

x

2
+ c

(w)
y

2
= 1).

C. Camera Position

Previous works ([18], [19]) have demonstrated that the
camera position can be derived from its orientation, as soon
as one ellipse-ellipsoid pair is known. The main insights of
the references are presented below.

In what follows, the backprojection cone refers to the cone
generated by the lines passing through the camera center and
any point on the projected ellipse. Let us denote A(w) ∈ R3×3

the quadratic form of an ellipsoid expressed in Bw, and
B′(cam) ∈ R3×3 the quadratic form of the backprojection cone
associated to the corresponding ellipse expressed in Bcam.

B′(w) = wRcamB
′(cam)wR>cam

It has been proven that the couple of matrices {A(w), B′(w)}
has two distinct generalized eigenvalues (multiplicities 1 and
2). Denoting ∆(w) the vector connecting the center of the
ellipsoid to the camera center expressed in Bw, and δ(w) a

generalized eigenvector of norm 1 associated to the eigenvalue
of multiplicity 1 (let’s say σ), ∆(w) is given by the formula:

∆(w) = kδ(w) (9)

where k satisfies the matrix equation (10). The sign of k is
obtained by applying the chirality constraint, which ensures
that the objects lie in front of the camera.

k
2
(A

(w)
i δ

(w)
i δ

(w)
i

>
A

(w)
i − δ(w)

i

>
A

(w)
i δ

(w)
i A

(w)
i ) = σiB

′(w)
i − A(w)

i (10)

In theory, vectors ∆(w) associated to each ellipsoids define
the same camera center. In practice, the camera center is
computed as the centroid of corresponding noisy positions.

D. Pose Computation Algorithm

The orientation can be computed with methods a) or b)
described in section II-B depending on whether c and icam
are colinear or not. If c is not horizontal, then method a)
applies. If not, we compute the two possible solutions given
by a) and b) and keep the one which gives the best overlap in
the Jaccard sense.

Whether a) or b) method is considered, wR̃cam has only
one degree of freedom. We thus perform an exhaustive search
over potential α or α′ values using uniform discretization of
[0◦; 360◦] interval into N values.

In the case where c and icam are not colinear, we compute
for each discretized value of α the two possible β values using
(7), and derive the two possible camera orientations using (4).
In total, we compute 2N camera orientations. If c is horizontal,
solution b) is computed as well. During this second search
over discretized values of (α′), we assume that c and icam
are colinear, and obtain the orientations from (8). In total, 4N
camera orientations are computed.

Then, for each potential camera orientation, we derive
the camera position using the method described in Section
II-C, and evaluate the correctness of the full camera pose
by measuring the Jaccard distances between detected and
reprojected ellipses. More specifically, considering A and B
two image regions delimited by ellipses, the Jaccard distance
J(A,B) is defined as:

J(A,B) = 1− |A ∩B|
|A ∪B|

where |A∩B| is the area of intersecting ellipses, and |A∪B|
the area of their union. Finally, the selected pose is the one that
minimizes the Jaccard distance averaged over the two ellipse-
ellipsoid pairs.
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III. ROBUST POSE ESTIMATION AND REFINEMENT

In order to deal with more than two object detections, we
have designed a RANSAC-based algorithm to obtain the best
possible initial pose, followed by a refinement step to improve
the estimation accuracy.

A. RANSAC P2E Procedure for Pose Estimation

The main idea of RANSAC P2E is to consider successively
every possible pair of detected objects (let’s say N2Dpairs).
Given the mapping between 2D objects detected in the image
and 3D objects from the model, N2Dpairs poses can be
computed using the algorithm presented in II. The consensus is
then computed for each pose. A correspondence is considered
as an inlier if the Jaccard distance between the reprojected
ellipsoid and the 2D ellipse is smaller than a certain threshold
(0.5 in the experiments). As usual, the best pose is the one that
maximizes the number of inliers. If several poses have had
this maximal size, the retained pose is the one that minimizes
the mean Jaccard distance of the inlier set. An exhaustive
search among the pairs of correspondences is possible as the
number of objects in an even large scene remains relatively
small (maximum dozens of objects). In practice, the number of
2D-3D objects correspondences which are examined depends
on the number of 3D objects that belong to the same class.
Indeed, since only object classes are detected, a label, e.g.
chair, may match each particular 3D chair instance of the
scene model. Suppose for example that N1 objects labeled as
chair are detected in the image and suppose that there are N2

instances of chairs in the scene model. Then N1×N2 possible
correspondences between 2D and 3D objects are generated.

B. Pose Refinement

Once a first camera pose estimate has been computed, one
can apply a refinement step which consists in optimizing an
ellipsoid reprojection error as a function of the standard cam-
era pose parameters. Here again, our ellipse-ellipsoid modeling
paradigm enables to reduce the number of parameters of the
objective function from 6 to 3. Advantages and limits of such
a method are discussed in Section IV-A2. If a CAD model of
the scene is available, iterative minimization of the distance
between the projection of the models and image features can
also be used to refine our pose estimation.

IV. EXPERIMENTS AND EVALUATION

A. T-LESS Dataset Experiments

The T-LESS Dataset [21] is composed of twelve scenes
with around 500 cameras per scene. Each scene exhibits a
few texture-less symmetrical objects, that are 10 to 30 cm
long and laid close to each other. The cameras are roughly
located on a semi-sphere of radius 75 cm around the centroid
of the objects. Available depth information was ignored in our
experiments. In the following, we report experimental results
on the representative test canon/08 sequence, that includes
504 images and 6 objects. During experiments, each object
received a unique label, resulting in an unambiguous map-
ping between 2D detections and 3D model instances. In the

Fig. 2. Ground truth ellipses obtained by projecting the ellipsoids with the
ground truth camera matrix are in green, whereas bbox ellipses are in red.

Ellipses Nb. of objects No Ori. error (◦) Loc. error (cm)
2 3.37 (± 31.62) 3.99 (± 23.65)
3 2.71 (± 0.96) 3.03 (± 1.44)

GT 4 2.51 (± 0.91) 2.77 (± 1.38)
5 2.50 (± 0.90) 2.83 (± 1.37)
6 2.46 (± 0.89) 2.76 (± 1.36)
2 9.99 (± 65.07) 12.23 (± 43.06)
3 4.41 (± 7.77) 6.14 (± 9.33)

bbox 4 3.78 (± 2.56) 5.03 (± 3.18)
5 3.36 (± 2.18) 4.48 (± 2.67)
6 3.15 (± 1.96) 4.09 (± 2.42)

TABLE II
T-LESS: MEDIAN (± STANDARD DEVIATION) ERRORS OF OUR

RANSAC-LIKE POSE ESTIMATION METHOD.

following results, we either consider as detections the ground
truth ellipses (GT), that is to say ellipses that are obtained by
reprojecting the ellipsoids with ground truth camera matrices,
or bounding box ellipses (bbox), i.e. the ones that are fitted
into the bounding boxes of the 2D objects. The difference
between these two types of ellipses is illustrated in Fig. 2.

1) RANSAC P2E:
To evaluate how the pose accuracy depends on the number
of objects detected in the image, No objects were randomly
picked in each image of the sequence (2 ≤ No ≤ 6). The
influence of the bias induced by considering bbox ellipses
with principal axes oriented along the x and y directions was
also examined. Results are presented in Table II for GT and
bbox ellipses. Averages and standard deviations of the error
are computed over the sequence.

Symmetry or quasi-symmetry in the set of ellipsoids may
lead to several candidate poses with similar reprojection errors,
possibly misleading our best pose selection method. This often
occurs when only 2 objects are considered. A third object can
generally disambiguate the solution selection. Despite this, our
method achieves an acceptable level of pose accuracy, taking
into account the inherent error induced by our simplifying
assumptions (see Table I for comparison), as well as the
potential bias on detected ellipses (bbox). An interesting
feature is the fact that the performance increases with the
number of objects in the scene.

The processing time of pose estimation from 2 ellipse-
ellipsoid pairs is in average of TP2E = 3ms on a desktop
computer with Inter(R) Xeon(R) CPU E5-1650 v4 @ 3.60GHz
and 64GB memory without any software parallelization. El-
lipsoid reprojection takes in average Tproj = 10µs per object.
The overall processing time per image is approximatively
C× (TP2E +No×Tproj), where C is the number of possible
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pairs of 2D-3D correspondences, and No is the number of
objects in the scene model. Example values of C and No ob-
tained in practice are provided in Fig. 5. These values translate
into total calculation times (excluding detection times used by
YOLO) ranging from 6ms to 92ms, which is compatible with
real-time applications.

2) Object-based pose refinement:
The obtained initial poses (referred as RANSAC P2E in Fig.
3) were then refined by optimizing three different types of
reprojection errors. The first one is the geometric reprojection
error introduced in [17] (mean quadratic distance between
bounding boxes vertices of detected and reprojected ellipses),
the second one is the algebraic error derived from [14], [15]
(algebraic distance between vectors formed by the 5 parame-
ters characterizing dual ellipses in homogeneous coordinates:
see Equation (11) and [15] for the notations), and the third
one is the Jaccard distance (see Section II-D).

Algebraic error:
∑
i

||βiC∗i − PQ∗iP>||2 (11)

The three types of error were minimized as a function of the
six camera pose parameters (referred as RANSAC P2E + opt
geom6, algebr6, and Jaccard6) or only of the three orientation
parameters, in which case the camera position was derived
from its orientation as explained in II-C (geom3, algebr3,
and Jaccard3). The results are presented in Fig. 3. When the
ellipses are perfectly detected (GT ellipses column), and for
most optimized errors, the refinement step enables significant
correction of errors induced by the two initial simplifying
assumptions. Note that empty bars in the graphs represent zero
localization errors.

In practical settings, only bbox ellipses are available. Re-
ported results (left column) bring up the fact that ellipse-
based pose refinement does not automatically improve the pose
accuracy as it was expected. More precisely, when the number
of objects is too small (< 5 objects), optimization procedure
will in average degrade the method performance due to a noise
overfitting effect. In contrast, it will take advantage of more
objects to extract a sufficient degree of generality from the
data, allowing the optimized pose to be more accurate than
the initial one. Finally, in practical settings with few objects in
the image and rough detections, a pose refinement step based
on local features should be preferred to ellipse-based ones.
For instance, Fig. 3 (last column) shows an example of the
result obtained after iterative minimization of the reprojection
error between the contours of a CAD model of the scene and
the contours of the image obtained by Canny filtering. The
initial estimate (Fig. 3, top-right) was obtained by using our
RANSAC P2E pose computation method.

3) Effect of the roll angle value assumption:
To assess the robustness of our method with respect to the
error introduced by our first assumption (θ1 = 0), larger
errors were artificially generated by introducing in equation
(1) θ1 values further away from the real ones (-5◦ and -10◦ as
assumed values whereas real values range from 0◦ to 3.5◦).
Mean (± standard deviation) errors on θ1 were measured on
estimated cameras (referred as initial error) and on refined
cameras (final err.) over the sequence. Bbox ellipses were

Assumed value 0◦ -5◦ -10◦

Initial error 2.20 (± 0.86) 7.20 (± 0.86) 12.20 (± 0.86)
Final err. (3 obj.) 2.05 (± 1.12) 5.59 (± 2.46) 9.02 (± 4.31)
Final err. (4 obj.) 1.88 (± 1.11) 5.02 (± 2.71) 8.08 (± 4.52)
Final err. (5 obj.) 1.83 (± 1.09) 4.63 (± 2.93) 6.79 (± 4.90)
Final err. (6 obj.) 1.70 (± 1.13) 4.11 (± 2.96) 5.55 (± 4.84)

TABLE III
T-LESS: MEAN (± STANDARD DEVIATION) INITIAL AND FINAL ERRORS

ON θ1 VALUES (IN ◦) DEPENDING ON THE INITIAL ASSUMPTION.

considered in these experiments. The results presented in Table
III show that although bad initial assumptions on θ1 values
lead to larger errors, the refinement step is in average able to
significantly reduce this error, especially when the number of
object increases.

4) Comparison with PnP:
We have compared our ellipse-ellipsoid based approach to a
point-based approach in which the objects are assimilated to
their centroids (ellipsoids centers in 3D, bounding boxes cen-
ters in 2D). Then, a classic RANSAC P3P algorithm was used
to recover the camera pose, followed by a 6-DoF optimization
of the point-based reprojection error (referred as RANSAC P3P
+ opt pts in Fig. 3). It is important noting that our method
requires only 2 objects to recover the pose, whereas the point-
based approach requires at least 4 points, or 3 points with addi-
tional information. Indeed, with only 3 points, P3P induces 4
exact solutions and one cannot disambiguate between them
without a fourth correspondence or additional information.
In our experiments, the retained solution was the one that
gives rise to the smallest ellipsoid reprojection error (in the
sense of Jaccard distance). Pose errors obtained with P2E in
the case of 2 objects (9.50(±23.65)cm and 10.91(±31.62)◦
with GT ellipses, 34.86(±43.06)cm and 44.33(±65.07)◦ with
bbox ellipses) are not presented in the figure to make it
clearer. When bbox ellipses are considered (left column), our
initial pose estimation method is in average more accurate
than the point-based one, and the gap in accuracy tends
to be lower when the number of objects increases. When
GT ellipses are considered, the opposite effect is observed,
since augmenting the number of correspondences does not
significantly improve the accuracy of RANSAC P2E. This is
due to the fact that in this case the pose is very constrained by
center correspondences and that assumption 1 contributes to
slightly bias the estimation. Whatever the refinement method
used, it is important noting that the ellipse-ellipsoid modeling
allows for a higher confidence into the results, since the
standard deviation of the pose error (represented by vertical
error bars) is significantly lower in our case.

5) Comparison with learning-based algorithms: We also
intended to compare our approach with learning-based meth-
ods such as poseCNN [8], SSD6D [9] or DPOD [23]. How-
ever, results are only available on datasets composed of one
object whereas our method requires at least two objects. Some
authors provided experiments on the OccludedLINEMOD
dataset that contains several objects [8], but these objects
are moved from one image to the next preventing us from
building a 3D model. This does not allow to conduct any
fair comparison. We nevertheless compare our method to
CorNet [11], which aims at computing pose from recognized
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bbox ellipses GT ellipses

Fig. 3. Refinement issues on the T-LESS dataset. Mean (with standard deviation) position and orientation errors before and after refinement with bbox ellipses
(left) and GT ellipses (middle). Right: Pose refinement based on contour registration. Top: Perspective projection of a CAD model of the scene based on
RANSAC P2E. Bottom: Pose refinement by iterative minimization of the reprojection error of the model edges.

generic 3D corners without specific scene retraining. Results
are available on object 20 from scene 08 (T-LESS). For corNet,
no solution with an IOU larger than .8 is available whereas
we obtain a succes rate which goes from 66% (pose from 2
objects) to 98.6% (6 objects). Only 34% of success rate is
obtained by CorNet with a lower requirement of 0.4, whereas
ours ranges from 95.0% to 100%. Considering the 3D metric
ADD, our pose from 2 objects is as accurate as CorNet,
whereas our accuracy is much higher with more objects.

B. Freiburg Dataset experiments

The Freiburg Dataset [22] provides large and realistic en-
vironments that exhibit several objects of interest, making
this dataset suitable for assessing the efficiency of object-
based camera pose estimation methods. In our experiments,
we consider a subset of 788 cameras from the Freiburg2/desk
sequence. These images have been selected such that at least
three objects are detected by YOLO [7] in each of them.
Ellipsoidal models of objects were first built off-line from
a dozen of images picked among the 2965 images of the
sequence, using the method described in [15]. By contrast
with T-LESS experiments (Section IV-A), the 2D-3D data
associations are not known. However, YOLO labels were
transferred to 3D ellipsoids during model building and, at test
time, we use our extended RANSAC-like procedure presented
in Section III-A to associate 2D and 3D data as well as to
estimate the camera pose. Results are presented in Fig. 4, in
comparison with the point-based approach already described
in Section IV-A4.

Considering the RANSAC P3P, a small distance threshold
leads to discard most images (less than 4 inliers), but gives
accurate results on 75% of images when the method succeeds,
whereas a large threshold enables to compute a pose for a large
proportion of images, but at the price of lower accuracy. On
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Fig. 4. Freiburg: Cumulative density functions of orientation and position
errors in comparison with PnP. PnP X refers to the thresholdX (in pixels) used
to discriminate between inliers and outliers. For each method, percentages
indicate the proportion of images with successful pose computation.

the contrary, our parameter-free method was able to process
all images and provides the most accurate results: 4.76◦ (±
3.40◦) in average in orientation, and 12.26cm (± 8.19cm) in
average in position, over the 788 images. The lower level of
performance here in comparison with the T-LESS experiments
comes from the fact that the bounding boxes detected by
YOLO often suffer from important noise and/or occlusions.

Figure 5 shows several typical situations with which our
method can be confronted. At the bottom of each case are
given information about the RANSAC input data and the
localization error. Case 1 is an easy case in that a large number
of objects were detected and correctly classified. Our method
obviously obtains a good accuracy in such situations. In case
2, only 3 objects have been detected. This corresponds to
the minimum number of objects needed to be robust to one
classification error and to be able to disambiguate between
multiple matching hypotheses. Object labeling is correct in
case 2, but two cups and two bowls are instantiated in
the model, which is well addressed here. Case 3 is more
challenging: four objects have been detected but two of them
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(1) C:20, Nin:5 (6.4cm, 4.1◦) (2) C:21, Nin:3 (15.4cm, 3.6◦) (3) C:29, Nin:4 (21.1cm, 4.4◦) (4) C:2, Nin:2 (15.4cm, 7.6◦) (5) C:3, Nin:2 (263.0cm, 151.3◦)
error on Θ2 = 1.0◦ error on Θ2 = 2.3◦ error on Θ2 = 1.7◦ error on Θ2 = 6.1◦ error on Θ2 = 45.3◦

Fig. 5. Example of typical situations with which our method can be confronted. First row: detection boxes obtained by YOLO. Second row: projected 3D
model after RANSAC P2E. Ellipsoids classified as inliers are drawn in green, others in black. Last rows: number of matching hypotheses C, number of inliers
Nin and localization errors (translation, rotation) for each case, then errors made on Θ2 angles. The scene model consists of No = 16 ellipsoids in all these
experiments.

appear several times in the model (the cup and the book),
three have a shape far from that of an ellipsoid (the book,
the Teddy bear, and especially the plant), and finally two are
partially outside the image boundaries. Despite this, the pose
accuracy remains reasonable, thanks to the fairly high number
of detections. Case 4 is even more difficult since only two
objects were detected. Moreover, their shape is far from that
of an ellipsoid and they partially fall out of the image. The box
corresponding to the plant is also particularly disproportionate.
Although pose accuracy suffers slightly (see the orientation
error), it is not aberrant. What helped here is the fact that
these two objects have been correctly classified and appear
only once in the model. Case 5, however, makes our method
fail: in this truncated view of the scene, only two objects have
been detected, including a false positive (the corner of the desk
is detected as a book). Among the three books in the model,
one is arbitrarily chosen, which results in an aberrant pose.

V. CONCLUSION

In this paper, we have presented a novel object-based
pose estimation method relying on two weak simplifying
assumptions. Pose estimation is thus turned into a 1-DoF
problem, solved using exhaustive search over the unknown
parameter. A factor limiting the accuracy of our method is
the ellipse detection process, that makes our method based on
very coarse ellipses. This procedure will be reconsidered in
our future work. Moreover, we have shown that our method
is capable of processing scenes with few objects. A strategy
will be developed to jointly take advantage of this capability
and the benefits of the PnP approach with more objects.
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