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Abstract. Atmospheric dynamics are described by a set of
partial differential equations yielding an infinite-dimensional
phase space. However, the actual trajectories followed by the
system appear to be constrained to a finite-dimensional phase
space, i.e. a strange attractor. The dynamical properties of
this attractor are difficult to determine due to the complex na-
ture of atmospheric motions. A first step to simplify the prob-
lem is to focus on observables which affect — or are linked
to phenomena which affect — human welfare and activities,
such as sea-level pressure, 2 m temperature, and precipita-
tion frequency. We make use of recent advances in dynami-
cal systems theory to estimate two instantaneous dynamical
properties of the above fields for the Northern Hemisphere:
local dimension and persistence. We then use these metrics
to characterize the seasonality of the different fields and their
interplay. We further analyse the large-scale anomaly pat-
terns corresponding to phase-space extremes — namely time
steps at which the fields display extremes in their instan-
taneous dynamical properties. The analysis is based on the
NCEP/NCAR reanalysis data, over the period 1948-2013.
The results show that (i) despite the high dimensionality of
atmospheric dynamics, the Northern Hemisphere sea-level
pressure and temperature fields can on average be described
by roughly 20 degrees of freedom; (ii) the precipitation field
has a higher dimensionality; and (iii) the seasonal forcing
modulates the variability of the dynamical indicators and
affects the occurrence of phase-space extremes. We further

identify a number of robust correlations between the dynam-
ical properties of the different variables.

1 Introduction

Atmospheric motions are governed by a web of complex in-
teractions among the different components of the earth sys-
tem (Charney, 1947). Solar radiation and the earth’s rotation
are the primary large-scale drivers of the chaotic atmospheric
dynamics, while turbulent motions add a layer of complex-
ity at small scales. This picture is further complicated by the
presence of features such as ocean—land interactions, vegeta-
tion, anthropocentric forcing, and the hydrological cycle. Un-
derstanding both the transient (i.e. meteorological) and mean
(i.e. climatic) properties of this system is one of today’s ma-
jor scientific challenges.

Since Lorenz (1963)’s seminal work, dynamical systems
techniques have been widely applied to the study of the atmo-
sphere. For example, the use of tools such as the Lyapunov
exponents or the Kolmogorov—Sinai entropy has led to im-
portant advances in our understanding of atmospheric pre-
dictability (Zeng et al., 1993). An important result has been
to show that atmospheric motions are chaotic but not ran-
dom: their trajectories stay close to a high-dimensional object
called an attractor (Lorenz, 1969; Carrassi et al., 2008; Ghil
et al., 2008; Vannitsem, 2014). This object occupies only a
fraction of the atmospheric phase space, meaning that its di-
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714 D. Faranda et al.: Dynamical properties of hemispheric climate fields

mension D is smaller than the number of variables used to
describe the system. D is an important quantity because it
represents the number of degrees of freedom of the system,
namely the minimum number of variables needed to repre-
sent the dynamics. The computation of D for atmospheric at-
tractors has posed a challenge to the dynamical systems com-
munity for several decades. Whereas in the early 1980s sev-
eral estimates pointed to a low-dimensional D < 10 attractor
(Fraedrich, 1986), a later review of the numerical limitations
of the available techniques suggested that they tended to un-
derestimate D for complex systems (Lorenz, 1991). How-
ever, further estimates of D were hardly attempted, because
D > 10 implies that low-dimensional models should fail in
describing the atmospheric dynamics.

D is a mean property, since it describes the dimension of
the attractor for the whole atmospheric trajectory. However,
it is often more useful to determine instantaneous dynami-
cal systems metrics that describe transient states { of com-
plex attractors. A quantity that contains such information is
the local dimension d(¢) (Lucarini et al., 2016). The value
of d is proportional to the active number of degrees of free-
dom and provides information on how predictable the state
¢ and its future evolution are (Faranda et al., 2017). By av-
eraging d over all possible ¢, one recovers the attractor di-
mension D. Unfortunately, the computation of d has posed
even greater challenges than that of D. The original method
developed by Liebovitch and Toth (1989) used box counting
techniques. First, a small portion of the phase space is par-
titioned in hypercubes of different sizes. One then looks at
the amount of space filled up in each hypercube. The scaling
of this quantity across different scales is proportional to d.
The complexity of this technique prevented computations for
high-dimensional systems such as atmospheric flows. Very
recently, some of the authors of this paper have contributed
to developing an alternative way to obtain d, based on the
universal behaviour of Poincaré recurrences in chaotic sys-
tems (Freitas et al., 2010; Faranda et al., 2011, 2013). In a
few words (see “Methodology and data” for the details), the
recurrences of a state ¢ of a chaotic dynamical system of ar-
bitrary dimension have a universal asymptotic distribution in
the limit of infinite recurrences. The parameters of this distri-
bution are linked to the instantaneous dimension d(¢) and to
another important dynamical quantity, namely the inverse of
the average persistence time of the trajectory around ¢ (Fre-
itas et al., 2012). Estimating these parameters via Poincaré
recurrences is easier than with the box counting algorithms
because the method avoids altogether computations in scale
space. Since the asymptotic distribution is known, one can
numerically check that enough recurrences are taken into ac-
count for the parameter estimates by performing standard sta-
tistical tests (see Faranda et al., 2017).

Having overcome the technical difficulties inherent to the
calculation of instantaneous dynamical systems metrics, the
remaining step is the choice of the states ¢ of interest. Since it
is impractical — not to say impossible — to consider all atmo-
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spheric observables at once, we focus our analysis on vari-
ables which are representative of events which affect human
welfare and society, namely sea-level pressure (slp; cyclones,
windstorms etc.), 2m temperature (t2m; heat waves, cold
spells), and precipitation frequency (prp; droughts, floods).
In dynamical systems terms, these fields represent projec-
tions of the full phase-space dynamics onto specific sub-
spaces, called Poincaré sections. In Faranda et al. (2016) and
Messori et al. (2017) we have shown that d and 6 can be used
to characterize regional-scale atmospheric fields and further
provide information on the predictability linked to a given at-
mospheric state. It is therefore important to investigate these
indicators at different spatial scales to fully understand the
insights they can provide. In this study we present a novel
analysis based on d and 6 computed for the whole Northern
Hemisphere (NH). We further investigate for the first time
the mutual correlations between the dynamical properties of
different climate variables.

The paper is organized as follows: in Sect. 2 we give an
overview of the dynamical indicators, the methodology to
compute them, and the data used. In Sect. 3 we present and
discuss the dynamical properties of each of the three atmo-
spheric fields separately, while in Sect. 4 we analyse them
jointly. Finally, we discuss our results and summarize our
conclusions in Sect. 5.

2 Methodology and data

The attractor of a dynamical system is a geometrical object
defined in the space hosting all the possible states of the sys-
tem (the so-called phase space) (Milnor, 1985). Each point
on the attractor { can be characterized by two dynamical
quantities: (i) the local dimension d(¢), which provides the
number of degrees of freedom active locally around ¢, and
(ii) the inverse persistence of the state ¢: 6(¢), which is a
measure of the mean residence time of the system around ¢.

2.1 Local dimensions

The term attractor dimension usually refers to a global mea-
sure (Grassberger and Procaccia, 1983). D indicates the av-
erage number of degrees of freedom of a dynamical sys-
tem. Several methods to measure D were developed in
the 1980s (Grassberger and Procaccia, 1984; Halsey et al.,
1986). These techniques have a certain number of adjustable
parameters and require the system to be embedded in a sub-
space of the phase space. They provide good estimates of D
only when the trajectories are sufficiently long to estimate
the embedding parameters. Such computations are therefore
problematic in systems with large numbers of degrees of
freedom and give biased results when applied to atmospheric
flows (Grassberger, 1986; Lorenz, 1991).

The technique we exploit here results from the application
of extreme value theory to Poincaré recurrences in dynam-
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ical systems (Freitas et al., 2010; Faranda et al., 2011). In
this approach, the returns to points on chaotic attractors are
fully characterized by extreme value laws. In practice, one
needs long trajectories x(¢) that approximate sequences of
states on the attractor. One then fixes a point ¢ on the trajec-
tory and computes the probability P that x(¢) will return in a
ball of radius € centered on point ¢. The Freitas et al. (2010)
theorem, modified in Lucarini et al. (2012b), states that loga-
rithmic returns g(x(¢)) = —log(dist(x(¢), ¢)) are distributed
as

ey

P(g(x(1)) > s(q), ) =~ exp [—M}

o ()

Here s is a high threshold associated with a quantile g of the
series g(x (1)) itself, linked to the radius € via s = g~ ! (¢).
In other words, requiring that the orbit falls within a ball of
radius € around the point ¢ is equivalent to asking that the se-
ries g(x(¢)) is over the threshold s. Here we adopt g = 0.98
to determine s. The resulting distribution is the exponential
member of the generalized Pareto distribution family. The
parameters ¢ and o depend on the point { chosen on the
attractor. o (¢) then provides the local dimensions d(¢) via
the simple relation o = 1/d(¢). This result is very powerful
because it provides a new way to compute local dimensions
on the attractor and to recover D as the average of d on all
the ¢s without the need for embedding, as is required in most
dimension computation algorithms (Grassberger and Procac-
cia, 1984). We want to stress that this procedure is not just a
statistical fitting. The reason why it provides good estimates
of d that were impossible to obtain with previous techniques
derives from the universality of the extreme value statistics
for Poincaré recurrences: one knows a priori the statistics of
such recurrences and can then check that they are achieved
for the numerical trajectory examined.

2.2 Local persistence

The stability of the state ¢ is measured by 6(¢), namely the
inverse of the average residence time of trajectories around
¢. For discrete maps 6 is uniquely defined (see Freitas et al.,
2012, for details): if ¢ is a fixed point of the dynamics,
0(¢) = 0. For a point that leaves the neighbourhood of ¢ im-
mediately, & = 1. For continuous flows, the definition of 8
depends on the Poincaré map chosen and precisely on the At
chosen to discretize the flow. Since 6 is the inverse of the
average residence time, it is measured in units of 1/At. In
general, the higher the persistence of the point ¢, the longer
the previous and subsequent states of the system will resem-
ble ¢. The residence time can be computed by introducing a
further parameter in the previous law. This parameter, known
as the extremal index, is such that

P(g(x(1)) > 5(q)) ~ exp [—9 (x_—“(“ﬂ . ®)
o)
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To estimate 6, we adopt the Siiveges estimator (Stiveges,
2007). For a fixed quantile g, the estimator is defined as

0 =
SN (1) Si+N+Ne—

\/(zfvc(1—q)S,~+N+Nc)2—8NcZ,NC(1*11)51‘
N
2y (-,

where N is the number of recurrences above the chosen
quantile, N the number of observations which form a cluster
of at least two consecutive recurrences, and S; is the length of
each cluster i. This length is the number of consecutive time
steps during which the trajectory remains within a radius € of
¢. For further details on the derivation of this estimator, the
reader is referred to Siiveges (2007).

3)

2.3 Data

We use daily fields from the NCEP/NCAR reanalysis
(Kalnay et al., 1996), with a horizontal resolution of 2°. The
analysis is carried out over the whole Northern Hemisphere
for all days of the year over the period 1948-2013. The ob-
servables of interest are sea-level pressure, 2 m temperature,
and precipitation frequency. A previous study (Faranda et al.,
2017) has shown that the results obtained are largely inde-
pendent of the dataset used and of its spatial resolution.

Anomalies are defined as deviations from the long-term
daily mean. So, for example, the anomaly of t2m at a given
location on 5 December 2000 is computed relative to the
mean value of all 5 Decembers in the dataset at that location.

The relevance of the composite anomaly maps for the dif-
ferent variables is evaluated using a sign test. This identi-
fies geographical areas where at least 2/3 of the composite
maps have the same-sign anomaly. Assuming a binomial pro-
cess with the same number of draws as the composite maps
and equal chances of positive or negative outcomes (binomial
distribution with success rate 0.5), a 2/3 threshold is beyond
the 99.99th percentile of the distribution. In Figs. 5, 8, and
11, such regions are marked by the thick black lines.

3 Dynamical properties of individual observables
3.1 Sea-level pressure (d, 0)

The local dimension, d, of the slp field shows a marked vari-
ability throughout the analysis period, with values ranging
from as low as 8.6 to as high as 33.2 (Fig. 1a). The average
dimension D, which in this case is roughly 19.4, therefore
provides incomplete information concerning the field of in-
terest, since the number of locally active degrees of freedom
(identified by d) can vary by a factor of almost 4. The auto-
correlation function (ACF) of d (Fig. 1c) highlights a robust
variability pattern which is not immediately evident from the
raw time series. There is a clear semi-annual cycle, with peak
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Figure 1. Statistics of local dimension d and persistence 6 for
daily sea-level pressure (slp) data from the NCEP/NCAR reanal-
ysis. Time series of daily values of d (a) and 8 (b). Autocorrelation
function ACF(d) (c¢) and ACF(6) (d) for 3 years in daily lags.

autocorrelation values in excess of 0.21. Over a full year
there are therefore two positive and two negative peaks in
autocorrelation, with the second positive peak typically dis-
playing a larger magnitude than the first. This is consistent
with previous analyses which have identified a strong sea-
sonal dependence in d (Faranda et al., 2017; Rodrigues et al.,
2017). The presence of a semi-annual cycle leads us to inter-
pret the ACF as being modulated by the four seasons, with
the first positive peak corresponding to cross-season correla-
tion and the second, larger, peak corresponding to correlation
between the same seasons in successive years. This periodic-
ity could be linked to semi-annual slp variability features at
the mid-latitudes (Schwerdtfeger and Prohash, 1956).

The inverse persistence, 6, shows a marked variability,
with values ranging from 0.28 to 0.65 (i.e. 1.6 to 3.6 days
in terms of 1/6) (Fig. 1b). We note that these values should
not be compared directly to the persistence of the tradi-
tional weather regimes defined using clustering algorithms
as (i) here we consider a full hemispheric domain, while
weather regimes are typically computed for specific regions,
and (ii) the requirement that the flow does not leave the
neighbourhood of the state ¢ is a more restrictive condition
than continued permanence within a given cluster. Indeed, if
one considers the typical partition of the atmospheric patterns
over the North Atlantic into four weather regimes, the prob-
ability of being in one of them is of order 0.25, whereas the
probability of being close to ¢ is set by the threshold s — in
our case 0.02 (see Sect. 2.1). Concerning the ACF (Fig. 1d),
0 shows a very different pattern to d. The year-to-year cor-
relation between the same seasons is still large and positive,
but the semi-annual oscillation seen in d is almost entirely

Nonlin. Processes Geophys., 24, 713-725, 2017
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Figure 2. Monthly average values (a, b) and standard deviation (c,
d) for the local dimension d (a, ¢) and inverse persistence 6 (b, d)
of sea-level pressure (slp, blue), 2m temperature (t2m, red), and
precipitation frequency (prp, black) data.

absent. Indeed, the winter values appear to be anticorrelated
with those of the other three seasons.

An analysis of monthly-mean values confirms the strong
seasonal control on the dynamical characteristics of the field.
In the summer months, both the magnitude (Fig. 2a, b) and
variability of the two metrics reaches a minimum (Fig. 2c, d).
With the autumn season, the local dimension and 6 increase
rapidly while the variability remains low. As winter pro-
gresses the variability increases, 6 remains roughly constant
while the local dimension shows a marked decrease, albeit
remaining well above the summertime values. In spring d
grows back to values similar to those seen in autumn, while
its variability peaks and 6 starts decreasing. This picture is
consistent with the ACFs described above. The annual cy-
cle of 8 can be explained as follows: stability peaks in sum-
mer when the mid-latitude storm tracks and wave activity
are comparatively weak, decreases in autumn and winter and
starts increasing again during spring. For the annual cycle of
d, the maxima occurring in the intermediate season can be
explained as follows: assuming that there is a winter and a
summer attractor, the transitional seasons are more unstable
because the atmospheric flow can explore both the summer
and winter configurations. In dynamical systems terminol-
ogy, the spring/autumn atmospheric flow sits on a saddle-like
point of the dynamics.

One can further look at the slp anomalies corresponding
to extremes in d (Fig. 3), here defined as events beyond
the 0.02 and 0.98 percentiles of the full distribution (see
dashed lines in Fig. 4a). The maxima of d occur primarily

www.nonlin-processes-geophys.net/24/713/2017/
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Figure 3. Occurrence of extremes (observations beyond the 0.02 (minima) and 0.98 (maxima) quantiles) of local dimension d and inverse
persistence 6 in different seasons. (a—d) sea-level pressure (slp), (e=h) 2 m temperature (t2m), and (i-1) precipitation frequency (prp).

during the spring and autumn months, while the minima are
mainly found in summer and winter (Fig. 3). This mirrors the
monthly-mean values discussed above. The d maxima cor-
respond to a complex anomaly pattern spanning the whole
hemisphere, but a sign test shows that in both the spring and
autumn seasons there is very little agreement between the
individual events (Fig. 5a). This suggests that there is no sin-
gle, dominant hemispheric-scale slp configuration leading to
large dimensional extremes. The wintertime d minima again
display very limited sign agreement, with the only significant
feature being an intensification and eastward extension of the
climatological Aleutian low-pressure centre (Fig. 5b). Such a
result is very different from what has recently been observed
in the North Atlantic region, where both d minima and d
maxima systematically correspond to precise large-scale fea-
tures (Faranda et al., 2017). In contrast, the summer min-
ima display an extensive and significant region of negative
anomalies over the pole. The former pattern is an enhance-
ment of the relatively low climatological slp values seen over
the Arctic basin during the summer months. This results in
a strengthened climatological meridional gradient (and pre-
sumably a strengthened polar vortex and a reduced air-mass
exchange between the mid and high latitudes, although we
recognize that slp is not the optimal field to diagnose this),
and we therefore hypothesize that it matches a relatively pre-
dictable configuration.

www.nonlin-processes-geophys.net/24/713/2017/

We next analyse slp anomalies corresponding to extremes
in 0. The # maxima occur predominantly during the au-
tumn and winter months, while the minima are mostly found
in spring and summer (Fig. 3c, d). The high mean persis-
tence found in the summer months therefore also corre-
sponds to instantaneous maxima in this quantity. The max-
ima of 6 in both autumn and winter correspond to a circum-
hemispheric wave-like structure and show very little sign
agreement (Fig. 5c). Since 6 maxima are by definition un-
stable states, the lack of sign agreement might simply be due
to the zonal propagation of the wave-like anomalies in time,
although we do not explore this idea further here. The 6 min-
ima correspond to a mostly zonally symmetric pattern with a
significant positive slp anomaly over the pole and locally sig-
nificant negative anomalies throughout the mid and low lati-
tudes (Fig. 5d). Over the North Atlantic, this results in a neg-
ative NAO-like dipole which is consistent with the anomaly
pattern found for regional persistence maxima in the Euro-
Atlantic domain (Faranda et al., 2017). The reversal in the
sign of the polar anomalies relative to summertime d minima
is difficult to interpret. However, we note that Faranda et al.
(2017)’s regional analysis also showed opposite-sign anoma-
lies at the high latitudes for d and # minima. More generally,
our results highlight that persistent, predictable states are pri-
marily associated with zonally symmetric slp anomalies and
therefore modulations of the zonal flow. Indeed, past studies
have interpreted the hemispheric circulation as being domi-

Nonlin. Processes Geophys., 24, 713-725, 2017
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Figure 4. (a) Scatter plot of local dimension d and inverse persis-
tence 0 for slp data. Each point represents the value corresponding
to 1 day in the NCEP/NCAR reanalysis. The colour indicates the
month of the year the data point falls in. Blue dotted lines indicate
the 0.02 and 0.98 percentiles of the d, 0 distributions. (b) Corre-
sponding cross-correlation function between d and 6.

nated by a zonal-flow attractor with blocked or wavy states
being associated with an unstable fixed point (Faranda et al.,
2016). Similarly, an enhanced zonality of the large-scale flow
has been linked to increased downstream predictability on re-
gional scales (Messori and Caballero, 2015).

The seasonal control on the two dynamical systems met-
rics we discuss here can be further investigated through a
d-9 scatter plot (Fig. 4a). This highlights how each season
forms a distinct diagonal band of relatively well-correlated
d and 6 values. Figure 4b indeed confirms that the two met-
rics have high cross-correlation values, with the lag-0 corre-
lation approaching 0.7. The lagged cross-correlation shows a
semi-yearly cycle, with the peak correlation values reflecting
integer year shifts and peak anticorrelation values reflecting
a shift of approximately one season. This latter feature can
be easily understood in terms of the above analysis. Both d
and 6 peak in autumn and spring. If we imagine shifting the
d curve forwards or backwards by one season, the autumn 6
peak will now match a dimension trough, thus leading to a
negative correlation. The smaller positive and negative peaks
in the cross-correlation function correspond to shifts of one
and three seasons, respectively, such that the two cycles are
roughly in quadrature.

3.2 Temperature (d,0)

The local dimension d of the t2m field shows a marked vari-
ability throughout the analysis period, with a range similar
to that of d(slp): 8.9 < d(t2m) < 33.3 (Fig. 6a). The aver-
age dimension D is roughly 17.6, slightly lower than D(slp).

Nonlin. Processes Geophys., 24, 713-725, 2017

The ACF of d (Fig. 6¢) again displays a semi-annual cycle,
albeit with larger ACF values than those seen for the slp. We
note that the ACF structure should not be linked directly to
the large seasonal cycle in temperature, since here we are
considering d(t2m), which is not necessarily linked to the
absolute value of the field. The inverse persistence 6 spans
a range corresponding to periods between 1.9 and 6.3 days
(0.16 < 0 < 0.54, Fig. 6b), indicating a higher persistence
than slp. 8’s ACF (Fig. 6d) is again different to that seen for
d. The inter-year same-season correlation is still large and
positive, but the semi-annual oscillation seen in d is entirely
absent. Indeed, the winter values appear to be anticorrelated
with those of the other three seasons, albeit with some weak
modulation in the negative correlation values on seasonal
scales. This difference is driven by the small offset between
the seasonal cycles of d and 6, as discussed below.

An analysis of monthly-mean values (Fig. 2) confirms the
strong seasonal control on the dynamical characteristics of
the field, but also highlights a radically different picture from
that seen for the slp. In the summer months, d and its vari-
ability peak, while 6 and its variability display a local max-
imum. With the autumn season, both the local dimension
and 6 reach a local minimum, only to increase again dur-
ing wintertime. During spring, both metrics display a sec-
ond minimum before returning to their high summertime
values. The seasonal cycle in the variability of both indica-
tors roughly matches that of the indicators themselves. The
fact that the monthly-mean minima in d are broader and oc-
cur with a 1-month shift relative to those in € accounts for
why the semi-annual ACF cycle is only seen in the former
variable. The general picture is therefore consistent with the
ACFs described above. We hypothesize that the summer-
time and wintertime local maxima in d are associated with
the inherent difficulty in forecasting the onset and duration
of warm and cold spells (Sillmann et al., 2013; Matsueda,
2011). This is presumably linked to a high-dimensional at-
mospheric configuration, namely one with a large number of
allowed preceding and future evolutions. The annual cycle
of 8 also displays summertime and wintertime local maxima
and suggests that the winter (and to a lesser degree the sum-
mer) temperature fields are comparatively unstable, while the
transitional seasons have a more sluggish dynamical evolu-
tion. This can be linked to the presence of wintertime cold
spells and summertime heat waves which are usually non-
stationary and locally short-lived, although notable excep-
tions can occur. One can therefore picture the t2m dynamics
as following a single potential well configuration, with the
extremes located in winter and summer. The dynamics of slp
and t2m are very different, and the interaction between the
two could be akin to a Langevin-like model (Lucarini et al.,
2012a). The slp would be the variable pushed into the winter
or summer potential wells, while the temperature acts as a
forcing noise term with extremes in winter and summer.

One can further look at the t2m anomalies corresponding
to extremes in d and 6, again defined as events beyond the
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0.02 and 0.98 percentiles of the full distribution (see dashed
lines in Fig. 7a). The d maxima occur predominantly dur-
ing summer, while the minima are mostly found in autumn
(Fig. 3e, 1), consistently with the seasonal cycle described
above. The spatial anomalies corresponding to d maxima
are weak and display very little sign agreement (Fig. 8a),
suggesting that there is no single large-scale pattern match-
ing these extremes. This is consistent with the theory that
the high dimensionality of the temperature field may be as-
sociated with warm and cold spells, which are highly non-
stationary and therefore will not emerge in a composite plot.
Interestingly, the only region showing strong sign agreement
is over eastern Africa, and also emerges in the composite
anomalies for the dynamical extremes of prp (see below).
The anomalies associated with minima in d are stronger, but
show a similarly low sign agreement (Fig. 8b). The & maxima
and minima occur predominantly during winter and spring,
respectively (Fig. 3g, h), and again show low sign agreement
(Fig. 8c, d). While, as discussed above, the dynamical ex-
tremes elucidate a number of features of the temperature’s
seasonality and variability, they seem to afford relatively lit-
tle insight concerning its geographical nature.

In the d-0 scatter plot for t2m, the winter months form
a cluster corresponding to high 6, relatively high d values,
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while the spring and autumn seasons form a low 6, low d
cluster (Fig. 7a). Summertime forms a continuation of the
spring/autumn band, extending it toward higher d and 6 val-
ues. The relatively broad scatter of the cloud points to a
weak correspondence between d and 6. Indeed, the two met-
rics show lower cross-correlation values than those seen for
slp, with a lag-0 correlation of just above 0.5 (Fig. 7b). The
lagged cross-correlation shows a semi-yearly cycle, with the
peak correlation values reflecting full and half-year shifts, in
agreement with the synchronous double peak in both metrics
shown in Fig. 8. Similarly, the two large negative peaks in
the cross-correlation function correspond to shifts of one and
three seasons, respectively, leading to situations in which the
two yearly cycles are in anti-phase.

3.3 Precipitation frequency (d, 6)

We construct a daily precipitation frequency variable as fol-
lows: we assign a value of 1 to each grid point and time step
for non-zero precipitation rates and a value of 0 otherwise.
For this variable the statistical fit of the recurrences to the
expected distribution is better than for the precipitation rate
itself (not shown). Another motivation to use the precipita-
tion frequency data can be found in the multifractal analy-
sis performed by Langousis et al. (2009), where the authors
warn against using the precipitation data directly to measure
dimensionality. The local dimension d of the precipitation
frequency (prp) shows a large variability throughout the anal-
ysis period, with markedly higher values than those of the
previous variables: 48 < d(prp) < 132 (Fig. 9a). This is also
reflected in the average dimension D = 83.1. These high val-
ues are consistent with the very scattered, noisy nature of the
precipitation field. The autocorrelation function of d displays
a semi-annual cycle with large autocorrelation values at full-
year lags and near-zero values at 6-month lags (Fig. 9¢). This
is very different from the positive 6-month autocorrelation
values seen for d(slp) and d(t2m). The inverse persistence 6
(Fig. 9b) spans a range corresponding to periods between 1.0
and 2.1 days (0.3 < 6 < 0.7), indicating a lower persistence
than the previous variables, compatible with the precipita-
tion’s noisy nature. 6’s autocorrelation function displays fea-
tures similar to those discussed in Sects. 3.1 and 3.2 (Fig. 9d),
namely a yearly ACF peak with negative autocorrelations at
intermediate lags.

An analysis of monthly-mean values (Fig. 2) reveals a
marked semi-seasonal cycle in d, whose absolute values and
variability both peak during spring and late summer/early au-
tumn. These are seasons with enhanced convective precip-
itation at mid-latitudes. 6 displays a similar variability be-
haviour, while the magnitude has a minimum in summer and
an extended period of higher values from autumn into early
spring. During the summer months, the mature phase of NH
monsoon systems provides comparatively persistent and pre-
dictable precipitation patterns. The high persistence might
also be favoured by the predominantly dry summers in the
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Figure 7. (a) Scatter plot of local dimension d and inverse persis-
tence 6 for 2m temperature (t2m) data. Each point represents the
value corresponding to 1 day in the NCEP/NCAR reanalysis. The
colour indicates the month of the year the data point falls in. Blue
dotted lines indicate the 0.02 and 0.98 percentiles of the d, 0 dis-
tributions. (b) Corresponding cross-correlation function between d
and 6.

Mediterranean and other mid-latitude regions, with long dry
spells at regional scale being the norm. This picture is con-
sistent with the autocorrelation functions described above. In
particular, the low absolute ACF values of d seen at lags of 2
to 10 months can be linked to the asymmetry in the positive
and negative peaks. For example, for a lag of 6 months the
first peak will roughly match the second peak, but the first
trough will not match the second trough.

Notwithstanding the local and noisy nature of precipita-
tion, a number of coherent features emerge from the geo-
graphical composites corresponding to extremes in the two
dynamical systems metrics, again defined as events beyond
the 0.02 and 0.98 percentiles of the full distribution (see
dashed lines in Fig. 10a). The bulk of the d and 6 max-
ima occur during spring, while the minima are primarily as-
sociated with the summertime (Fig. 3i-1). d maxima show
predominantly negative precipitation anomalies (Fig. 11a).
Significant features include decreases over the East Asian
Monsoon region, the Indian Ocean, and continental and east-
ern Europe. Weak positive anomalies are mainly found over
the central Pacific Ocean, parts of the USA, and the Cana-
dian Arctic Archipelago. The anomalies associated with 6
maxima closely track the d maxima throughout the North-
ern Hemisphere, albeit with a stronger preference for nega-
tive anomalies (Fig. 11c). Since the positive extremes in both
metrics occur predominantly during spring, we hypothesize
that the anomalies over East Asia could be linked to the shift
between the northerly flow associated with the winter mon-
soon and the southerly flow associated with the summer mon-
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soon. It is reasonable to expect that this shift between very
different large-scale flow configurations could contribute to
the high local dimensions. Similarly, the anomalies over the
Indian Ocean could be associated with the onset of the In-
dian Monsoon’s large-scale flow. d minima (Fig. 11b) show
strong negative anomalies over the continental USA and
southern Indochina and the strong positive anomalies over
eastern Africa and the mid-latitude Pacific. & minima again
track closely the patterns seen for the d minima (Fig. 11d).
The eastern African positive anomalies, roughly correspond-
ing to northern Ethiopia, might indicate a modulation of the
late-summer rainfall peak in the region (Gissila et al., 2004).
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Figure 10. (a) Scatter plot of local dimension d and inverse persis-
tence 6 for precipitation frequency (prp) data. Each point represents
the value corresponding to 1 day in the NCEP/NCAR reanalysis.
The colour indicates the month of the year the data point falls in.
Blue dotted lines indicate the 0.02 and 0.98 percentiles of the d, 6
distributions. (b) Corresponding cross-correlation function between
dand 6.

Similarly, the widespread negative anomalies across eastern
continental North America suggest a modulation of the wet
season over the Great Plains and northern Mexico.

The d—6 scatter plot (Fig. 10a) shows two clouds of points
and a clear separation between the late spring/summer and
autumn/winter seasons. While both clusters span a wide
range of d and 6, there is a clear vertical and horizontal off-
set between the two, with the former seasons corresponding
to lower values than the latter. The two prp metrics show high
cross-correlation features (Fig. 10b), with the lag-O corre-
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lation exceeding 0.6. The lagged cross-correlation shows a
yearly cycle, a negative correlation for lags of 2—4 months,
and a local maximum for lags of around 7 months.

4 Cross-analysis of the dynamical properties

We next address the co-variability of the dynamical indica-
tors of the different variables. In physical space, there is an
obvious link between anomalies in the large-scale slp and 2 m
temperature fields. A similarly close link can be found be-
tween precipitation and temperature or slp anomalies. There
are therefore strong grounds to expect some systematic rela-
tionships to emerge.

We begin by analysing the cross-correlation functions be-
tween the slp and t2m (Fig. 12a, b). d(slp) and d(t2m) are
anticorrelated at zero lag, as might be expected by their con-
trasting seasonal cycles described above. The lagged cross-
correlations display a roughly regular semi-yearly cycle,
which derives from the fact that both local dimensions dis-
play a double peak, albeit in different seasons. The cross-
correlation between 6 (slp) and 6(t2m) is more nuanced, ow-
ing to the fact that 0 (slp) displays high values throughout the
autumn and winter while 6 (t2m) displays two well-separated
peaks, one of which partially overlaps the months of high
0 (slp) values. The lag-0 correlations are positive, albeit low,
and peak negative cross-correlations are achieved at lags of
approximately 6—7 months. The lag-0 anticorrelation of the
local dimensions points to the fact that it is rare to find co-
occurring slp and t2m fields both displaying high predictabil-
ity. This is compounded by the fact that positive correlations
between the 6 are generally weak, suggesting that persistent
slp configurations do not necessarily match equally persistent
t2m patterns. An example of this are wintertime cold spells at
the mid-latitudes: while the large-scale circulation anomalies
are often very persistent, the temperature can evolve rapidly
with a build-up of cold t2m masses leading to a rapidly cool-
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Figure 12. Cross-correlation functions for the local dimensions d
(a, ¢, e) and inverse persistences 0 (b, d, f) of sea-level pressure
(slp), 2 m temperature (t2m), and precipitation frequency (prp) data.
Positive lags indicate that the first variable precedes the second.

ing region which then relaxes back to near-climatological
values as soon as the anomalous circulation pattern weakens
(Messori et al., 2016).

The cross-correlation between d (slp) and d (prp) is shown
in Fig. 12c, d. At lag-0, the two variables have a moderate
positive correlation, with peak positive values being reached
for negative shifts of 1-2 months (i.e. slp leading prp). In-
deed, d(prp) has a broad peak during the spring, then de-
creases rapidly through the summer season, and peaks again
in early autumn. These three features precede by roughly 1
month the corresponding ones in the d(slp) signal. However,
we note that peak cross-correlation values are lower than
those seen between d(slp) and d(t2m). The two persistence
metrics, by contrast, display peak correlation at lag-0, since
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(t2m), and precipitation frequency (prp) data.

they both display a spring maximum and a summer mini-
mum. The large-scale circulation changes associated with the
onset of the monsoonal precipitation over Asia and Africa
and the high summertime persistence in the precipitation
field therefore have a clear correspondence in d(slp) and
O(slp), albeit with a small temporal lag in the case of the first.

The t2m—prp pair is analysed in Fig. 12e, f. In this case, the
lag-0 cross-correlation between the local dimensions is very
small, and peaks for prp leading temperature by roughly 2
months. A similar picture is seen for the persistence metrics,
since the summer peak in 6(t2m) is out of phase with the
summer minimum in 8 (prp). From a dynamical systems per-
spective there therefore seems to be a significant lag between
changes in the monthly-mean properties of the large-scale
temperature and precipitation signals.

The cross-correlations consider the time series of the dif-
ferent metrics as a whole, but provide little insight into the
correlation between dynamical extremes. We conclude our
analysis by looking at the d—6 scatter plots for the local di-
mensions and persistences of the three observables (Fig. 13).
The negative lag-0 correlation found for d(slp) and d(t2m)
is evident (Fig. 13a), while the other two d scatter plots
(Fig. 13c, e) show a more diffuse distribution, consistent
with the low correlation values previously discussed. The
strongest match between both positive and negative d ex-
tremes is found for the slp—prp pair. 6 shows generally higher
co-occurrences of extremes across all pairs, with the most

www.nonlin-processes-geophys.net/24/713/2017/

frequent match being for the late springtime low 6 extremes
of the prp—t2m pair (Fig. 13b, d, f). This indicates that
(1) rapidly shifting slp patterns can lead to equally rapid shifts
in the large-scale temperature and precipitation fields, and
vice versa for persistent configurations; and that (ii) persis-
tent 2 m temperature and precipitation configurations show a
systematic co-occurrence during the spring months.

5 Conclusions

In the present study we have applied recent advances in dy-
namical systems theory to estimate the local dimension and
inverse persistence of instantaneous atmospheric fields over
the Northern Hemisphere. Persistence is a very intuitive met-
ric, which quantifies the average residence time of the sys-
tem’s trajectory in phase space within the neighbourhood of
the point of interest. Local dimension is a proxy for the num-
ber of locally active degrees of freedom in the system, and
can thus be directly linked to the number of possible config-
urations preceding and following the instantaneous field be-
ing analysed. We have specifically focused on three observ-
ables: sea-level pressure, 2 m temperature, and precipitation
frequency. Despite the high dimensionality of atmospheric
dynamics, we find that the Northern Hemisphere sea-level
pressure and low-level temperature fields can on average be
described by roughly 15-20 degrees of freedom, while the
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noisier precipitation field has an average dimension of over
80. We further note that the dimension of the instantaneous
fields can vary by almost a factor of 4 for a given observ-
able. The links between the local dimension and persistence
of a given variable can be complex. While the two generally
show a positive lag-0 correlation, they can display very dif-
ferent seasonal cycles.

This study further analyses dynamical extremes, namely
the instances where one — or both — dynamical systems met-
rics are at the positive or negative edge of their respective dis-
tributions. The dynamical extremes in d and 6 of a given vari-
able occur independently for 2 m temperature, but they coin-
cide almost always for precipitation frequency and sea-level
pressure. Both d and 6 are linked to atmospheric predictabil-
ity, since a persistent, low-dimensional state is intrinsically
easier to forecast than a rapidly shifting, high-dimensional
situation. Fields where the co-occurrence of d and 6 extremes
is more frequent — such as is the case for slp — therefore pro-
vide more highly predictable (or unpredictable) configura-
tions than those where the two occurrences are rarer.

We further identify a number of robust correlations be-
tween the dynamical properties of the different variables. For
example, low-persistence cases in slp often indicate a similar
low persistence in t2m and prp. This is an intuitive relation-
ship since rapidly shifting slp patterns can lead to equally
rapid shifts in the large-scale temperature and precipitation
fields. Similarly, persistent prp and t2m configurations often
co-occur. Other links do not have a similarly straightforward
physical interpretation. For example, the local dimensions of
prp and t2m seem to be mostly uncorrelated, suggesting that
predictable large-scale precipitation patterns do not directly
affect the predictability of the t2m field, unlike what is seen
for persistence.

Our results do not always match those obtained in Faranda
et al. (2017) for the North Atlantic region. Indeed, there is
a strong dependence on the region chosen and the dynam-
ics of the Northern Hemisphere include degrees of freedom
other than the North Atlantic dynamics. This is consistent
with the increase in the average dimension found. Atmo-
spheric predictability is therefore overall different for the
hemisphere than for regional mid-latitude dynamics. We con-
clude that the dynamical systems metrics we adopt here pro-
vide a wealth of information concerning the large-scale at-
mospheric processes and dynamics. We are convinced that
this analysis framework will find applications in a wide num-
ber of climate studies.
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